linux/drivers/gpu/drm/meson/meson_osd_afbcd.c

390 lines
11 KiB
C
Raw Normal View History

drm/meson: Add AFBCD module driver This adds the driver for the ARM Framebuffer Compression decoders found in the Amlogic GXM and G12A SoCs. The Amlogic GXM and G12A AFBC decoder are totally different, the GXM only handling only the AFBC v1.0 modes and the G12A decoder handling the AFBC v1.2 modes. The G12A AFBC decoder is an external IP integrated in the video pipeline, and the GXM AFBC decoder seems to the an Amlogic custom decoder more tighly integrated in the video pipeline. The GXM AFBC decoder can handle only one AFBC plane for 2 available OSD planes available in HW, and the G12A AFBC decoder can handle up to 4 AFBC planes for up to 3 OSD planes available in HW. The Amlogic GXM supports 16x16 SPARSE and 16x16 SPLIT AFBC buffers up to 4k. On the other side, for G12A SPLIT is mandatory in 16x16 block mode, but for 4k modes 32x8+SPLIT AFBC buffers is manadatory for performances reasons. The RDMA is used here to reset and program the AFBC decoder unit on each vsync without involving the interrupt handler that can be masked for a long period of time, producing display glitches. For this we use the meson_rdma_writel_sync() which adds the register write tuple (VPU register offset and register value) to the RDMA buffer and write the value to the HW. When enabled, the RDMA is enabled to rewrite the same sequence at the next VSYNC event, until a new buffer is committed to the OSD plane. Then the Amlogic G12A is switched to RDMA, the Amlogic GXM Decoder doesn't need a reset/reprogram at each vsync, but needs to keep the vsync interrupt enabled to trigger the RDMA module. Signed-off-by: Neil Armstrong <narmstrong@baylibre.com> Reviewed-by: Kevin Hilman <khilman@baylibre.com> [narmstrong: fixed typo in commit log] Link: https://patchwork.freedesktop.org/patch/msgid/20191021091509.3864-6-narmstrong@baylibre.com
2019-10-21 09:15:05 +00:00
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2019 BayLibre, SAS
* Author: Neil Armstrong <narmstrong@baylibre.com>
*/
#include <linux/bitfield.h>
#include <drm/drm_print.h>
#include <drm/drm_fourcc.h>
#include "meson_drv.h"
#include "meson_registers.h"
#include "meson_viu.h"
#include "meson_rdma.h"
#include "meson_osd_afbcd.h"
/*
* DOC: Driver for the ARM FrameBuffer Compression Decoders
*
* The Amlogic GXM and G12A SoC families embeds an AFBC Decoder,
* to decode compressed buffers generated by the ARM Mali GPU.
*
* For the GXM Family, Amlogic designed their own Decoder, named in
* the vendor source as "MESON_AFBC", and a single decoder is available
* for the 2 OSD planes.
* This decoder is compatible with the AFBC 1.0 specifications and the
* Mali T820 GPU capabilities.
* It supports :
* - basic AFBC buffer for RGB32 only, thus YTR feature is mandatory
* - SPARSE layout and SPLIT layout
* - only 16x16 superblock
*
* The decoder reads the data from the SDRAM, decodes and sends the
* decoded pixel stream to the OSD1 Plane pixel composer.
*
* For the G12A Family, Amlogic integrated an ARM AFBC Decoder, named
* in the vendor source as "MALI_AFBC", and the decoder can decode up
* to 4 surfaces, one for each of the 4 available OSDs.
* This decoder is compatible with the AFBC 1.2 specifications for the
* Mali G31 and G52 GPUs.
* Is supports :
* - basic AFBC buffer for multiple RGB and YUV pixel formats
* - SPARSE layout and SPLIT layout
* - 16x16 and 32x8 "wideblk" superblocks
* - Tiled header
*
* The ARM AFBC Decoder independent from the VPU Pixel Pipeline, so
* the ARM AFBC Decoder reads the data from the SDRAM then decodes
* into a private internal physical address where the OSD1 Plane pixel
* composer unpacks the decoded data.
*/
/* Amlogic AFBC Decoder for GXM Family */
#define OSD1_AFBCD_RGB32 0x15
static int meson_gxm_afbcd_pixel_fmt(u64 modifier, uint32_t format)
{
switch (format) {
case DRM_FORMAT_XBGR8888:
case DRM_FORMAT_ABGR8888:
return OSD1_AFBCD_RGB32;
/* TOFIX support mode formats */
default:
DRM_DEBUG("unsupported afbc format[%08x]\n", format);
return -EINVAL;
}
}
static bool meson_gxm_afbcd_supported_fmt(u64 modifier, uint32_t format)
{
if (modifier & AFBC_FORMAT_MOD_BLOCK_SIZE_32x8)
return false;
if (!(modifier & AFBC_FORMAT_MOD_YTR))
return false;
return meson_gxm_afbcd_pixel_fmt(modifier, format) >= 0;
}
static int meson_gxm_afbcd_init(struct meson_drm *priv)
{
return 0;
}
static int meson_gxm_afbcd_reset(struct meson_drm *priv)
{
writel_relaxed(VIU_SW_RESET_OSD1_AFBCD,
priv->io_base + _REG(VIU_SW_RESET));
writel_relaxed(0, priv->io_base + _REG(VIU_SW_RESET));
return 0;
}
static int meson_gxm_afbcd_enable(struct meson_drm *priv)
{
writel_relaxed(FIELD_PREP(OSD1_AFBCD_ID_FIFO_THRD, 0x40) |
OSD1_AFBCD_DEC_ENABLE,
priv->io_base + _REG(OSD1_AFBCD_ENABLE));
return 0;
}
static int meson_gxm_afbcd_disable(struct meson_drm *priv)
{
writel_bits_relaxed(OSD1_AFBCD_DEC_ENABLE, 0,
priv->io_base + _REG(OSD1_AFBCD_ENABLE));
return 0;
}
static int meson_gxm_afbcd_setup(struct meson_drm *priv)
{
u32 conv_lbuf_len;
u32 mode = FIELD_PREP(OSD1_AFBCD_MIF_URGENT, 3) |
FIELD_PREP(OSD1_AFBCD_HOLD_LINE_NUM, 4) |
FIELD_PREP(OSD1_AFBCD_RGBA_EXCHAN_CTRL, 0x34) |
meson_gxm_afbcd_pixel_fmt(priv->afbcd.modifier,
priv->afbcd.format);
if (priv->afbcd.modifier & AFBC_FORMAT_MOD_SPARSE)
mode |= OSD1_AFBCD_HREG_HALF_BLOCK;
if (priv->afbcd.modifier & AFBC_FORMAT_MOD_SPLIT)
mode |= OSD1_AFBCD_HREG_BLOCK_SPLIT;
writel_relaxed(mode, priv->io_base + _REG(OSD1_AFBCD_MODE));
writel_relaxed(FIELD_PREP(OSD1_AFBCD_HREG_VSIZE_IN,
priv->viu.osd1_width) |
FIELD_PREP(OSD1_AFBCD_HREG_HSIZE_IN,
priv->viu.osd1_height),
priv->io_base + _REG(OSD1_AFBCD_SIZE_IN));
writel_relaxed(priv->viu.osd1_addr >> 4,
priv->io_base + _REG(OSD1_AFBCD_HDR_PTR));
writel_relaxed(priv->viu.osd1_addr >> 4,
priv->io_base + _REG(OSD1_AFBCD_FRAME_PTR));
/* TOFIX: bits 31:24 are not documented, nor the meaning of 0xe4 */
writel_relaxed((0xe4 << 24) | (priv->viu.osd1_addr & 0xffffff),
priv->io_base + _REG(OSD1_AFBCD_CHROMA_PTR));
if (priv->viu.osd1_width <= 128)
conv_lbuf_len = 32;
else if (priv->viu.osd1_width <= 256)
conv_lbuf_len = 64;
else if (priv->viu.osd1_width <= 512)
conv_lbuf_len = 128;
else if (priv->viu.osd1_width <= 1024)
conv_lbuf_len = 256;
else if (priv->viu.osd1_width <= 2048)
conv_lbuf_len = 512;
else
conv_lbuf_len = 1024;
writel_relaxed(conv_lbuf_len,
priv->io_base + _REG(OSD1_AFBCD_CONV_CTRL));
writel_relaxed(FIELD_PREP(OSD1_AFBCD_DEC_PIXEL_BGN_H, 0) |
FIELD_PREP(OSD1_AFBCD_DEC_PIXEL_END_H,
priv->viu.osd1_width - 1),
priv->io_base + _REG(OSD1_AFBCD_PIXEL_HSCOPE));
writel_relaxed(FIELD_PREP(OSD1_AFBCD_DEC_PIXEL_BGN_V, 0) |
FIELD_PREP(OSD1_AFBCD_DEC_PIXEL_END_V,
priv->viu.osd1_height - 1),
priv->io_base + _REG(OSD1_AFBCD_PIXEL_VSCOPE));
return 0;
}
struct meson_afbcd_ops meson_afbcd_gxm_ops = {
.init = meson_gxm_afbcd_init,
.reset = meson_gxm_afbcd_reset,
.enable = meson_gxm_afbcd_enable,
.disable = meson_gxm_afbcd_disable,
.setup = meson_gxm_afbcd_setup,
.supported_fmt = meson_gxm_afbcd_supported_fmt,
};
/* ARM AFBC Decoder for G12A Family */
/* Amlogic G12A Mali AFBC Decoder supported formats */
enum {
MAFBC_FMT_RGB565 = 0,
MAFBC_FMT_RGBA5551,
MAFBC_FMT_RGBA1010102,
MAFBC_FMT_YUV420_10B,
MAFBC_FMT_RGB888,
MAFBC_FMT_RGBA8888,
MAFBC_FMT_RGBA4444,
MAFBC_FMT_R8,
MAFBC_FMT_RG88,
MAFBC_FMT_YUV420_8B,
MAFBC_FMT_YUV422_8B = 11,
MAFBC_FMT_YUV422_10B = 14,
};
static int meson_g12a_afbcd_pixel_fmt(u64 modifier, uint32_t format)
{
switch (format) {
case DRM_FORMAT_XRGB8888:
case DRM_FORMAT_ARGB8888:
/* YTR is forbidden for non XBGR formats */
if (modifier & AFBC_FORMAT_MOD_YTR)
return -EINVAL;
fallthrough;
drm/meson: Add AFBCD module driver This adds the driver for the ARM Framebuffer Compression decoders found in the Amlogic GXM and G12A SoCs. The Amlogic GXM and G12A AFBC decoder are totally different, the GXM only handling only the AFBC v1.0 modes and the G12A decoder handling the AFBC v1.2 modes. The G12A AFBC decoder is an external IP integrated in the video pipeline, and the GXM AFBC decoder seems to the an Amlogic custom decoder more tighly integrated in the video pipeline. The GXM AFBC decoder can handle only one AFBC plane for 2 available OSD planes available in HW, and the G12A AFBC decoder can handle up to 4 AFBC planes for up to 3 OSD planes available in HW. The Amlogic GXM supports 16x16 SPARSE and 16x16 SPLIT AFBC buffers up to 4k. On the other side, for G12A SPLIT is mandatory in 16x16 block mode, but for 4k modes 32x8+SPLIT AFBC buffers is manadatory for performances reasons. The RDMA is used here to reset and program the AFBC decoder unit on each vsync without involving the interrupt handler that can be masked for a long period of time, producing display glitches. For this we use the meson_rdma_writel_sync() which adds the register write tuple (VPU register offset and register value) to the RDMA buffer and write the value to the HW. When enabled, the RDMA is enabled to rewrite the same sequence at the next VSYNC event, until a new buffer is committed to the OSD plane. Then the Amlogic G12A is switched to RDMA, the Amlogic GXM Decoder doesn't need a reset/reprogram at each vsync, but needs to keep the vsync interrupt enabled to trigger the RDMA module. Signed-off-by: Neil Armstrong <narmstrong@baylibre.com> Reviewed-by: Kevin Hilman <khilman@baylibre.com> [narmstrong: fixed typo in commit log] Link: https://patchwork.freedesktop.org/patch/msgid/20191021091509.3864-6-narmstrong@baylibre.com
2019-10-21 09:15:05 +00:00
case DRM_FORMAT_XBGR8888:
case DRM_FORMAT_ABGR8888:
return MAFBC_FMT_RGBA8888;
case DRM_FORMAT_RGB888:
/* YTR is forbidden for non XBGR formats */
if (modifier & AFBC_FORMAT_MOD_YTR)
return -EINVAL;
return MAFBC_FMT_RGB888;
case DRM_FORMAT_RGB565:
/* YTR is forbidden for non XBGR formats */
if (modifier & AFBC_FORMAT_MOD_YTR)
return -EINVAL;
return MAFBC_FMT_RGB565;
/* TOFIX support mode formats */
default:
DRM_DEBUG("unsupported afbc format[%08x]\n", format);
return -EINVAL;
}
}
static int meson_g12a_afbcd_bpp(uint32_t format)
{
switch (format) {
case DRM_FORMAT_XRGB8888:
case DRM_FORMAT_ARGB8888:
case DRM_FORMAT_XBGR8888:
case DRM_FORMAT_ABGR8888:
return 32;
case DRM_FORMAT_RGB888:
return 24;
case DRM_FORMAT_RGB565:
return 16;
/* TOFIX support mode formats */
default:
DRM_ERROR("unsupported afbc format[%08x]\n", format);
return 0;
}
}
static int meson_g12a_afbcd_fmt_to_blk_mode(u64 modifier, uint32_t format)
{
switch (format) {
case DRM_FORMAT_XRGB8888:
case DRM_FORMAT_ARGB8888:
case DRM_FORMAT_XBGR8888:
case DRM_FORMAT_ABGR8888:
return OSD_MALI_COLOR_MODE_RGBA8888;
case DRM_FORMAT_RGB888:
return OSD_MALI_COLOR_MODE_RGB888;
case DRM_FORMAT_RGB565:
return OSD_MALI_COLOR_MODE_RGB565;
/* TOFIX support mode formats */
default:
DRM_DEBUG("unsupported afbc format[%08x]\n", format);
return -EINVAL;
}
}
static bool meson_g12a_afbcd_supported_fmt(u64 modifier, uint32_t format)
{
return meson_g12a_afbcd_pixel_fmt(modifier, format) >= 0;
}
static int meson_g12a_afbcd_init(struct meson_drm *priv)
{
int ret;
ret = meson_rdma_init(priv);
if (ret)
return ret;
meson_rdma_setup(priv);
/* Handle AFBC Decoder reset manually */
writel_bits_relaxed(MALI_AFBCD_MANUAL_RESET, MALI_AFBCD_MANUAL_RESET,
priv->io_base + _REG(MALI_AFBCD_TOP_CTRL));
return 0;
}
static int meson_g12a_afbcd_reset(struct meson_drm *priv)
{
meson_rdma_reset(priv);
meson_rdma_writel_sync(priv, VIU_SW_RESET_G12A_AFBC_ARB |
VIU_SW_RESET_G12A_OSD1_AFBCD,
VIU_SW_RESET);
meson_rdma_writel_sync(priv, 0, VIU_SW_RESET);
return 0;
}
static int meson_g12a_afbcd_enable(struct meson_drm *priv)
{
meson_rdma_writel_sync(priv, VPU_MAFBC_IRQ_SURFACES_COMPLETED |
VPU_MAFBC_IRQ_CONFIGURATION_SWAPPED |
VPU_MAFBC_IRQ_DECODE_ERROR |
VPU_MAFBC_IRQ_DETILING_ERROR,
VPU_MAFBC_IRQ_MASK);
meson_rdma_writel_sync(priv, VPU_MAFBC_S0_ENABLE,
VPU_MAFBC_SURFACE_CFG);
meson_rdma_writel_sync(priv, VPU_MAFBC_DIRECT_SWAP,
VPU_MAFBC_COMMAND);
/* This will enable the RDMA replaying the register writes on vsync */
meson_rdma_flush(priv);
return 0;
}
static int meson_g12a_afbcd_disable(struct meson_drm *priv)
{
writel_bits_relaxed(VPU_MAFBC_S0_ENABLE, 0,
priv->io_base + _REG(VPU_MAFBC_SURFACE_CFG));
return 0;
}
static int meson_g12a_afbcd_setup(struct meson_drm *priv)
{
u32 format = meson_g12a_afbcd_pixel_fmt(priv->afbcd.modifier,
priv->afbcd.format);
if (priv->afbcd.modifier & AFBC_FORMAT_MOD_YTR)
format |= VPU_MAFBC_YUV_TRANSFORM;
if (priv->afbcd.modifier & AFBC_FORMAT_MOD_SPLIT)
format |= VPU_MAFBC_BLOCK_SPLIT;
if (priv->afbcd.modifier & AFBC_FORMAT_MOD_TILED)
format |= VPU_MAFBC_TILED_HEADER_EN;
if ((priv->afbcd.modifier & AFBC_FORMAT_MOD_BLOCK_SIZE_MASK) ==
AFBC_FORMAT_MOD_BLOCK_SIZE_32x8)
format |= FIELD_PREP(VPU_MAFBC_SUPER_BLOCK_ASPECT, 1);
meson_rdma_writel_sync(priv, format,
VPU_MAFBC_FORMAT_SPECIFIER_S0);
meson_rdma_writel_sync(priv, priv->viu.osd1_addr,
VPU_MAFBC_HEADER_BUF_ADDR_LOW_S0);
meson_rdma_writel_sync(priv, 0,
VPU_MAFBC_HEADER_BUF_ADDR_HIGH_S0);
meson_rdma_writel_sync(priv, priv->viu.osd1_width,
VPU_MAFBC_BUFFER_WIDTH_S0);
meson_rdma_writel_sync(priv, ALIGN(priv->viu.osd1_height, 32),
VPU_MAFBC_BUFFER_HEIGHT_S0);
meson_rdma_writel_sync(priv, 0,
VPU_MAFBC_BOUNDING_BOX_X_START_S0);
meson_rdma_writel_sync(priv, priv->viu.osd1_width - 1,
VPU_MAFBC_BOUNDING_BOX_X_END_S0);
meson_rdma_writel_sync(priv, 0,
VPU_MAFBC_BOUNDING_BOX_Y_START_S0);
meson_rdma_writel_sync(priv, priv->viu.osd1_height - 1,
VPU_MAFBC_BOUNDING_BOX_Y_END_S0);
meson_rdma_writel_sync(priv, MESON_G12A_AFBCD_OUT_ADDR,
VPU_MAFBC_OUTPUT_BUF_ADDR_LOW_S0);
meson_rdma_writel_sync(priv, 0,
VPU_MAFBC_OUTPUT_BUF_ADDR_HIGH_S0);
meson_rdma_writel_sync(priv, priv->viu.osd1_width *
(meson_g12a_afbcd_bpp(priv->afbcd.format) / 8),
VPU_MAFBC_OUTPUT_BUF_STRIDE_S0);
return 0;
}
struct meson_afbcd_ops meson_afbcd_g12a_ops = {
.init = meson_g12a_afbcd_init,
.reset = meson_g12a_afbcd_reset,
.enable = meson_g12a_afbcd_enable,
.disable = meson_g12a_afbcd_disable,
.setup = meson_g12a_afbcd_setup,
.fmt_to_blk_mode = meson_g12a_afbcd_fmt_to_blk_mode,
.supported_fmt = meson_g12a_afbcd_supported_fmt,
};