2019-06-04 08:11:33 +00:00
|
|
|
// SPDX-License-Identifier: GPL-2.0-only
|
2015-03-02 21:01:12 +00:00
|
|
|
/*
|
|
|
|
* Copyright (C) 2015 Broadcom
|
|
|
|
*/
|
|
|
|
|
|
|
|
/**
|
|
|
|
* DOC: VC4 HVS module.
|
|
|
|
*
|
2017-02-27 20:11:43 +00:00
|
|
|
* The Hardware Video Scaler (HVS) is the piece of hardware that does
|
|
|
|
* translation, scaling, colorspace conversion, and compositing of
|
|
|
|
* pixels stored in framebuffers into a FIFO of pixels going out to
|
|
|
|
* the Pixel Valve (CRTC). It operates at the system clock rate (the
|
|
|
|
* system audio clock gate, specifically), which is much higher than
|
|
|
|
* the pixel clock rate.
|
2015-03-02 21:01:12 +00:00
|
|
|
*
|
|
|
|
* There is a single global HVS, with multiple output FIFOs that can
|
|
|
|
* be consumed by the PVs. This file just manages the resources for
|
|
|
|
* the HVS, while the vc4_crtc.c code actually drives HVS setup for
|
|
|
|
* each CRTC.
|
|
|
|
*/
|
|
|
|
|
2017-05-18 04:29:38 +00:00
|
|
|
#include <linux/component.h>
|
2019-07-16 06:42:07 +00:00
|
|
|
#include <linux/platform_device.h>
|
|
|
|
|
|
|
|
#include <drm/drm_atomic_helper.h>
|
2020-06-11 13:36:47 +00:00
|
|
|
#include <drm/drm_vblank.h>
|
2019-07-16 06:42:07 +00:00
|
|
|
|
2015-03-02 21:01:12 +00:00
|
|
|
#include "vc4_drv.h"
|
|
|
|
#include "vc4_regs.h"
|
|
|
|
|
2019-02-20 21:03:38 +00:00
|
|
|
static const struct debugfs_reg32 hvs_regs[] = {
|
|
|
|
VC4_REG32(SCALER_DISPCTRL),
|
|
|
|
VC4_REG32(SCALER_DISPSTAT),
|
|
|
|
VC4_REG32(SCALER_DISPID),
|
|
|
|
VC4_REG32(SCALER_DISPECTRL),
|
|
|
|
VC4_REG32(SCALER_DISPPROF),
|
|
|
|
VC4_REG32(SCALER_DISPDITHER),
|
|
|
|
VC4_REG32(SCALER_DISPEOLN),
|
|
|
|
VC4_REG32(SCALER_DISPLIST0),
|
|
|
|
VC4_REG32(SCALER_DISPLIST1),
|
|
|
|
VC4_REG32(SCALER_DISPLIST2),
|
|
|
|
VC4_REG32(SCALER_DISPLSTAT),
|
|
|
|
VC4_REG32(SCALER_DISPLACT0),
|
|
|
|
VC4_REG32(SCALER_DISPLACT1),
|
|
|
|
VC4_REG32(SCALER_DISPLACT2),
|
|
|
|
VC4_REG32(SCALER_DISPCTRL0),
|
|
|
|
VC4_REG32(SCALER_DISPBKGND0),
|
|
|
|
VC4_REG32(SCALER_DISPSTAT0),
|
|
|
|
VC4_REG32(SCALER_DISPBASE0),
|
|
|
|
VC4_REG32(SCALER_DISPCTRL1),
|
|
|
|
VC4_REG32(SCALER_DISPBKGND1),
|
|
|
|
VC4_REG32(SCALER_DISPSTAT1),
|
|
|
|
VC4_REG32(SCALER_DISPBASE1),
|
|
|
|
VC4_REG32(SCALER_DISPCTRL2),
|
|
|
|
VC4_REG32(SCALER_DISPBKGND2),
|
|
|
|
VC4_REG32(SCALER_DISPSTAT2),
|
|
|
|
VC4_REG32(SCALER_DISPBASE2),
|
|
|
|
VC4_REG32(SCALER_DISPALPHA2),
|
|
|
|
VC4_REG32(SCALER_OLEDOFFS),
|
|
|
|
VC4_REG32(SCALER_OLEDCOEF0),
|
|
|
|
VC4_REG32(SCALER_OLEDCOEF1),
|
|
|
|
VC4_REG32(SCALER_OLEDCOEF2),
|
2015-03-02 21:01:12 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
void vc4_hvs_dump_state(struct drm_device *dev)
|
|
|
|
{
|
|
|
|
struct vc4_dev *vc4 = to_vc4_dev(dev);
|
2019-02-20 21:03:38 +00:00
|
|
|
struct drm_printer p = drm_info_printer(&vc4->hvs->pdev->dev);
|
2015-03-02 21:01:12 +00:00
|
|
|
int i;
|
|
|
|
|
2019-02-20 21:03:38 +00:00
|
|
|
drm_print_regset32(&p, &vc4->hvs->regset);
|
2015-03-02 21:01:12 +00:00
|
|
|
|
|
|
|
DRM_INFO("HVS ctx:\n");
|
|
|
|
for (i = 0; i < 64; i += 4) {
|
|
|
|
DRM_INFO("0x%08x (%s): 0x%08x 0x%08x 0x%08x 0x%08x\n",
|
|
|
|
i * 4, i < HVS_BOOTLOADER_DLIST_END ? "B" : "D",
|
2015-10-23 09:24:11 +00:00
|
|
|
readl((u32 __iomem *)vc4->hvs->dlist + i + 0),
|
|
|
|
readl((u32 __iomem *)vc4->hvs->dlist + i + 1),
|
|
|
|
readl((u32 __iomem *)vc4->hvs->dlist + i + 2),
|
|
|
|
readl((u32 __iomem *)vc4->hvs->dlist + i + 3));
|
2015-03-02 21:01:12 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-04-01 18:35:58 +00:00
|
|
|
static int vc4_hvs_debugfs_underrun(struct seq_file *m, void *data)
|
2019-02-20 15:51:22 +00:00
|
|
|
{
|
|
|
|
struct drm_info_node *node = m->private;
|
|
|
|
struct drm_device *dev = node->minor->dev;
|
|
|
|
struct vc4_dev *vc4 = to_vc4_dev(dev);
|
|
|
|
struct drm_printer p = drm_seq_file_printer(m);
|
|
|
|
|
|
|
|
drm_printf(&p, "%d\n", atomic_read(&vc4->underrun));
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
2015-03-02 21:01:12 +00:00
|
|
|
|
2015-10-20 15:06:57 +00:00
|
|
|
/* The filter kernel is composed of dwords each containing 3 9-bit
|
|
|
|
* signed integers packed next to each other.
|
|
|
|
*/
|
|
|
|
#define VC4_INT_TO_COEFF(coeff) (coeff & 0x1ff)
|
|
|
|
#define VC4_PPF_FILTER_WORD(c0, c1, c2) \
|
|
|
|
((((c0) & 0x1ff) << 0) | \
|
|
|
|
(((c1) & 0x1ff) << 9) | \
|
|
|
|
(((c2) & 0x1ff) << 18))
|
|
|
|
|
|
|
|
/* The whole filter kernel is arranged as the coefficients 0-16 going
|
|
|
|
* up, then a pad, then 17-31 going down and reversed within the
|
|
|
|
* dwords. This means that a linear phase kernel (where it's
|
|
|
|
* symmetrical at the boundary between 15 and 16) has the last 5
|
|
|
|
* dwords matching the first 5, but reversed.
|
|
|
|
*/
|
|
|
|
#define VC4_LINEAR_PHASE_KERNEL(c0, c1, c2, c3, c4, c5, c6, c7, c8, \
|
|
|
|
c9, c10, c11, c12, c13, c14, c15) \
|
|
|
|
{VC4_PPF_FILTER_WORD(c0, c1, c2), \
|
|
|
|
VC4_PPF_FILTER_WORD(c3, c4, c5), \
|
|
|
|
VC4_PPF_FILTER_WORD(c6, c7, c8), \
|
|
|
|
VC4_PPF_FILTER_WORD(c9, c10, c11), \
|
|
|
|
VC4_PPF_FILTER_WORD(c12, c13, c14), \
|
|
|
|
VC4_PPF_FILTER_WORD(c15, c15, 0)}
|
|
|
|
|
|
|
|
#define VC4_LINEAR_PHASE_KERNEL_DWORDS 6
|
|
|
|
#define VC4_KERNEL_DWORDS (VC4_LINEAR_PHASE_KERNEL_DWORDS * 2 - 1)
|
|
|
|
|
|
|
|
/* Recommended B=1/3, C=1/3 filter choice from Mitchell/Netravali.
|
|
|
|
* http://www.cs.utexas.edu/~fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf
|
|
|
|
*/
|
|
|
|
static const u32 mitchell_netravali_1_3_1_3_kernel[] =
|
|
|
|
VC4_LINEAR_PHASE_KERNEL(0, -2, -6, -8, -10, -8, -3, 2, 18,
|
|
|
|
50, 82, 119, 155, 187, 213, 227);
|
|
|
|
|
|
|
|
static int vc4_hvs_upload_linear_kernel(struct vc4_hvs *hvs,
|
|
|
|
struct drm_mm_node *space,
|
|
|
|
const u32 *kernel)
|
|
|
|
{
|
|
|
|
int ret, i;
|
|
|
|
u32 __iomem *dst_kernel;
|
|
|
|
|
2017-02-02 21:04:38 +00:00
|
|
|
ret = drm_mm_insert_node(&hvs->dlist_mm, space, VC4_KERNEL_DWORDS);
|
2015-10-20 15:06:57 +00:00
|
|
|
if (ret) {
|
|
|
|
DRM_ERROR("Failed to allocate space for filter kernel: %d\n",
|
|
|
|
ret);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
dst_kernel = hvs->dlist + space->start;
|
|
|
|
|
|
|
|
for (i = 0; i < VC4_KERNEL_DWORDS; i++) {
|
|
|
|
if (i < VC4_LINEAR_PHASE_KERNEL_DWORDS)
|
|
|
|
writel(kernel[i], &dst_kernel[i]);
|
|
|
|
else {
|
|
|
|
writel(kernel[VC4_KERNEL_DWORDS - i - 1],
|
|
|
|
&dst_kernel[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2020-06-11 13:36:47 +00:00
|
|
|
static void vc4_hvs_lut_load(struct drm_crtc *crtc)
|
|
|
|
{
|
|
|
|
struct drm_device *dev = crtc->dev;
|
|
|
|
struct vc4_dev *vc4 = to_vc4_dev(dev);
|
|
|
|
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
|
|
|
|
u32 i;
|
|
|
|
|
|
|
|
/* The LUT memory is laid out with each HVS channel in order,
|
|
|
|
* each of which takes 256 writes for R, 256 for G, then 256
|
|
|
|
* for B.
|
|
|
|
*/
|
|
|
|
HVS_WRITE(SCALER_GAMADDR,
|
|
|
|
SCALER_GAMADDR_AUTOINC |
|
|
|
|
(vc4_crtc->channel * 3 * crtc->gamma_size));
|
|
|
|
|
|
|
|
for (i = 0; i < crtc->gamma_size; i++)
|
|
|
|
HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
|
|
|
|
for (i = 0; i < crtc->gamma_size; i++)
|
|
|
|
HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
|
|
|
|
for (i = 0; i < crtc->gamma_size; i++)
|
|
|
|
HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void vc4_hvs_update_gamma_lut(struct drm_crtc *crtc)
|
|
|
|
{
|
|
|
|
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
|
|
|
|
struct drm_color_lut *lut = crtc->state->gamma_lut->data;
|
|
|
|
u32 length = drm_color_lut_size(crtc->state->gamma_lut);
|
|
|
|
u32 i;
|
|
|
|
|
|
|
|
for (i = 0; i < length; i++) {
|
|
|
|
vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8);
|
|
|
|
vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8);
|
|
|
|
vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8);
|
|
|
|
}
|
|
|
|
|
|
|
|
vc4_hvs_lut_load(crtc);
|
|
|
|
}
|
|
|
|
|
|
|
|
int vc4_hvs_atomic_check(struct drm_crtc *crtc,
|
|
|
|
struct drm_crtc_state *state)
|
|
|
|
{
|
|
|
|
struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
|
|
|
|
struct drm_device *dev = crtc->dev;
|
|
|
|
struct vc4_dev *vc4 = to_vc4_dev(dev);
|
|
|
|
struct drm_plane *plane;
|
|
|
|
unsigned long flags;
|
|
|
|
const struct drm_plane_state *plane_state;
|
|
|
|
u32 dlist_count = 0;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
/* The pixelvalve can only feed one encoder (and encoders are
|
|
|
|
* 1:1 with connectors.)
|
|
|
|
*/
|
|
|
|
if (hweight32(state->connector_mask) > 1)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
|
|
|
|
dlist_count += vc4_plane_dlist_size(plane_state);
|
|
|
|
|
|
|
|
dlist_count++; /* Account for SCALER_CTL0_END. */
|
|
|
|
|
|
|
|
spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
|
|
|
|
ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
|
|
|
|
dlist_count);
|
|
|
|
spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void vc4_hvs_update_dlist(struct drm_crtc *crtc)
|
|
|
|
{
|
|
|
|
struct drm_device *dev = crtc->dev;
|
|
|
|
struct vc4_dev *vc4 = to_vc4_dev(dev);
|
|
|
|
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
|
|
|
|
struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
|
|
|
|
|
|
|
|
if (crtc->state->event) {
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
crtc->state->event->pipe = drm_crtc_index(crtc);
|
|
|
|
|
|
|
|
WARN_ON(drm_crtc_vblank_get(crtc) != 0);
|
|
|
|
|
|
|
|
spin_lock_irqsave(&dev->event_lock, flags);
|
|
|
|
|
|
|
|
if (!vc4_state->feed_txp || vc4_state->txp_armed) {
|
|
|
|
vc4_crtc->event = crtc->state->event;
|
|
|
|
crtc->state->event = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
|
|
|
|
vc4_state->mm.start);
|
|
|
|
|
|
|
|
spin_unlock_irqrestore(&dev->event_lock, flags);
|
|
|
|
} else {
|
|
|
|
HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
|
|
|
|
vc4_state->mm.start);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void vc4_hvs_atomic_enable(struct drm_crtc *crtc,
|
|
|
|
struct drm_crtc_state *old_state)
|
|
|
|
{
|
|
|
|
struct drm_device *dev = crtc->dev;
|
|
|
|
struct vc4_dev *vc4 = to_vc4_dev(dev);
|
|
|
|
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
|
|
|
|
struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
|
|
|
|
struct drm_display_mode *mode = &crtc->state->adjusted_mode;
|
|
|
|
bool oneshot = vc4_state->feed_txp;
|
|
|
|
u32 dispctrl;
|
|
|
|
|
|
|
|
vc4_hvs_update_dlist(crtc);
|
|
|
|
|
|
|
|
/* Turn on the scaler, which will wait for vstart to start
|
|
|
|
* compositing.
|
|
|
|
* When feeding the transposer, we should operate in oneshot
|
|
|
|
* mode.
|
|
|
|
*/
|
|
|
|
dispctrl = SCALER_DISPCTRLX_ENABLE;
|
|
|
|
dispctrl |= VC4_SET_FIELD(mode->hdisplay,
|
|
|
|
SCALER_DISPCTRLX_WIDTH) |
|
|
|
|
VC4_SET_FIELD(mode->vdisplay,
|
|
|
|
SCALER_DISPCTRLX_HEIGHT) |
|
|
|
|
(oneshot ? SCALER_DISPCTRLX_ONESHOT : 0);
|
|
|
|
|
|
|
|
HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel), dispctrl);
|
|
|
|
}
|
|
|
|
|
|
|
|
void vc4_hvs_atomic_disable(struct drm_crtc *crtc,
|
|
|
|
struct drm_crtc_state *old_state)
|
|
|
|
{
|
|
|
|
struct drm_device *dev = crtc->dev;
|
|
|
|
struct vc4_dev *vc4 = to_vc4_dev(dev);
|
|
|
|
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
|
|
|
|
u32 chan = vc4_crtc->channel;
|
|
|
|
|
|
|
|
if (HVS_READ(SCALER_DISPCTRLX(chan)) &
|
|
|
|
SCALER_DISPCTRLX_ENABLE) {
|
|
|
|
HVS_WRITE(SCALER_DISPCTRLX(chan),
|
|
|
|
SCALER_DISPCTRLX_RESET);
|
|
|
|
|
|
|
|
/* While the docs say that reset is self-clearing, it
|
|
|
|
* seems it doesn't actually.
|
|
|
|
*/
|
|
|
|
HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Once we leave, the scaler should be disabled and its fifo empty. */
|
|
|
|
|
|
|
|
WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
|
|
|
|
|
|
|
|
WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
|
|
|
|
SCALER_DISPSTATX_MODE) !=
|
|
|
|
SCALER_DISPSTATX_MODE_DISABLED);
|
|
|
|
|
|
|
|
WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
|
|
|
|
(SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
|
|
|
|
SCALER_DISPSTATX_EMPTY);
|
|
|
|
}
|
|
|
|
|
|
|
|
void vc4_hvs_atomic_flush(struct drm_crtc *crtc,
|
|
|
|
struct drm_crtc_state *old_state)
|
|
|
|
{
|
|
|
|
struct drm_device *dev = crtc->dev;
|
|
|
|
struct vc4_dev *vc4 = to_vc4_dev(dev);
|
|
|
|
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
|
|
|
|
struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
|
|
|
|
struct drm_plane *plane;
|
|
|
|
struct vc4_plane_state *vc4_plane_state;
|
|
|
|
bool debug_dump_regs = false;
|
|
|
|
bool enable_bg_fill = false;
|
|
|
|
u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
|
|
|
|
u32 __iomem *dlist_next = dlist_start;
|
|
|
|
|
|
|
|
if (debug_dump_regs) {
|
|
|
|
DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
|
|
|
|
vc4_hvs_dump_state(dev);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Copy all the active planes' dlist contents to the hardware dlist. */
|
|
|
|
drm_atomic_crtc_for_each_plane(plane, crtc) {
|
|
|
|
/* Is this the first active plane? */
|
|
|
|
if (dlist_next == dlist_start) {
|
|
|
|
/* We need to enable background fill when a plane
|
|
|
|
* could be alpha blending from the background, i.e.
|
|
|
|
* where no other plane is underneath. It suffices to
|
|
|
|
* consider the first active plane here since we set
|
|
|
|
* needs_bg_fill such that either the first plane
|
|
|
|
* already needs it or all planes on top blend from
|
|
|
|
* the first or a lower plane.
|
|
|
|
*/
|
|
|
|
vc4_plane_state = to_vc4_plane_state(plane->state);
|
|
|
|
enable_bg_fill = vc4_plane_state->needs_bg_fill;
|
|
|
|
}
|
|
|
|
|
|
|
|
dlist_next += vc4_plane_write_dlist(plane, dlist_next);
|
|
|
|
}
|
|
|
|
|
|
|
|
writel(SCALER_CTL0_END, dlist_next);
|
|
|
|
dlist_next++;
|
|
|
|
|
|
|
|
WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
|
|
|
|
|
|
|
|
if (enable_bg_fill)
|
|
|
|
/* This sets a black background color fill, as is the case
|
|
|
|
* with other DRM drivers.
|
|
|
|
*/
|
|
|
|
HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
|
|
|
|
HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel)) |
|
|
|
|
SCALER_DISPBKGND_FILL);
|
|
|
|
|
|
|
|
/* Only update DISPLIST if the CRTC was already running and is not
|
|
|
|
* being disabled.
|
|
|
|
* vc4_crtc_enable() takes care of updating the dlist just after
|
|
|
|
* re-enabling VBLANK interrupts and before enabling the engine.
|
|
|
|
* If the CRTC is being disabled, there's no point in updating this
|
|
|
|
* information.
|
|
|
|
*/
|
|
|
|
if (crtc->state->active && old_state->active)
|
|
|
|
vc4_hvs_update_dlist(crtc);
|
|
|
|
|
|
|
|
if (crtc->state->color_mgmt_changed) {
|
|
|
|
u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel));
|
|
|
|
|
|
|
|
if (crtc->state->gamma_lut) {
|
|
|
|
vc4_hvs_update_gamma_lut(crtc);
|
|
|
|
dispbkgndx |= SCALER_DISPBKGND_GAMMA;
|
|
|
|
} else {
|
|
|
|
/* Unsetting DISPBKGND_GAMMA skips the gamma lut step
|
|
|
|
* in hardware, which is the same as a linear lut that
|
|
|
|
* DRM expects us to use in absence of a user lut.
|
|
|
|
*/
|
|
|
|
dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
|
|
|
|
}
|
|
|
|
HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), dispbkgndx);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (debug_dump_regs) {
|
|
|
|
DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
|
|
|
|
vc4_hvs_dump_state(dev);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void vc4_hvs_mode_set_nofb(struct drm_crtc *crtc)
|
|
|
|
{
|
|
|
|
struct drm_device *dev = crtc->dev;
|
|
|
|
struct vc4_dev *vc4 = to_vc4_dev(dev);
|
|
|
|
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
|
|
|
|
struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
|
|
|
|
struct drm_display_mode *mode = &crtc->state->adjusted_mode;
|
|
|
|
bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
|
|
|
|
|
|
|
|
if (vc4_crtc->data->hvs_channel == 2) {
|
|
|
|
u32 dispctrl;
|
|
|
|
u32 dsp3_mux;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to
|
|
|
|
* FIFO X'.
|
|
|
|
* SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'.
|
|
|
|
*
|
|
|
|
* DSP3 is connected to FIFO2 unless the transposer is
|
|
|
|
* enabled. In this case, FIFO 2 is directly accessed by the
|
|
|
|
* TXP IP, and we need to disable the FIFO2 -> pixelvalve1
|
|
|
|
* route.
|
|
|
|
*/
|
|
|
|
if (vc4_state->feed_txp)
|
|
|
|
dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX);
|
|
|
|
else
|
|
|
|
dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
|
|
|
|
|
|
|
|
dispctrl = HVS_READ(SCALER_DISPCTRL) &
|
|
|
|
~SCALER_DISPCTRL_DSP3_MUX_MASK;
|
|
|
|
HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux);
|
|
|
|
}
|
|
|
|
|
|
|
|
HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
|
|
|
|
SCALER_DISPBKGND_AUTOHS |
|
|
|
|
SCALER_DISPBKGND_GAMMA |
|
|
|
|
(interlace ? SCALER_DISPBKGND_INTERLACE : 0));
|
|
|
|
|
|
|
|
/* Reload the LUT, since the SRAMs would have been disabled if
|
|
|
|
* all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
|
|
|
|
*/
|
|
|
|
vc4_hvs_lut_load(crtc);
|
|
|
|
}
|
|
|
|
|
2019-02-20 15:51:22 +00:00
|
|
|
void vc4_hvs_mask_underrun(struct drm_device *dev, int channel)
|
|
|
|
{
|
|
|
|
struct vc4_dev *vc4 = to_vc4_dev(dev);
|
|
|
|
u32 dispctrl = HVS_READ(SCALER_DISPCTRL);
|
|
|
|
|
|
|
|
dispctrl &= ~SCALER_DISPCTRL_DSPEISLUR(channel);
|
|
|
|
|
|
|
|
HVS_WRITE(SCALER_DISPCTRL, dispctrl);
|
|
|
|
}
|
|
|
|
|
|
|
|
void vc4_hvs_unmask_underrun(struct drm_device *dev, int channel)
|
|
|
|
{
|
|
|
|
struct vc4_dev *vc4 = to_vc4_dev(dev);
|
|
|
|
u32 dispctrl = HVS_READ(SCALER_DISPCTRL);
|
|
|
|
|
|
|
|
dispctrl |= SCALER_DISPCTRL_DSPEISLUR(channel);
|
|
|
|
|
|
|
|
HVS_WRITE(SCALER_DISPSTAT,
|
|
|
|
SCALER_DISPSTAT_EUFLOW(channel));
|
|
|
|
HVS_WRITE(SCALER_DISPCTRL, dispctrl);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void vc4_hvs_report_underrun(struct drm_device *dev)
|
|
|
|
{
|
|
|
|
struct vc4_dev *vc4 = to_vc4_dev(dev);
|
|
|
|
|
|
|
|
atomic_inc(&vc4->underrun);
|
|
|
|
DRM_DEV_ERROR(dev->dev, "HVS underrun\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
static irqreturn_t vc4_hvs_irq_handler(int irq, void *data)
|
|
|
|
{
|
|
|
|
struct drm_device *dev = data;
|
|
|
|
struct vc4_dev *vc4 = to_vc4_dev(dev);
|
|
|
|
irqreturn_t irqret = IRQ_NONE;
|
|
|
|
int channel;
|
|
|
|
u32 control;
|
|
|
|
u32 status;
|
|
|
|
|
|
|
|
status = HVS_READ(SCALER_DISPSTAT);
|
|
|
|
control = HVS_READ(SCALER_DISPCTRL);
|
|
|
|
|
|
|
|
for (channel = 0; channel < SCALER_CHANNELS_COUNT; channel++) {
|
|
|
|
/* Interrupt masking is not always honored, so check it here. */
|
|
|
|
if (status & SCALER_DISPSTAT_EUFLOW(channel) &&
|
|
|
|
control & SCALER_DISPCTRL_DSPEISLUR(channel)) {
|
|
|
|
vc4_hvs_mask_underrun(dev, channel);
|
|
|
|
vc4_hvs_report_underrun(dev);
|
|
|
|
|
|
|
|
irqret = IRQ_HANDLED;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Clear every per-channel interrupt flag. */
|
|
|
|
HVS_WRITE(SCALER_DISPSTAT, SCALER_DISPSTAT_IRQMASK(0) |
|
|
|
|
SCALER_DISPSTAT_IRQMASK(1) |
|
|
|
|
SCALER_DISPSTAT_IRQMASK(2));
|
|
|
|
|
|
|
|
return irqret;
|
|
|
|
}
|
|
|
|
|
2015-03-02 21:01:12 +00:00
|
|
|
static int vc4_hvs_bind(struct device *dev, struct device *master, void *data)
|
|
|
|
{
|
|
|
|
struct platform_device *pdev = to_platform_device(dev);
|
|
|
|
struct drm_device *drm = dev_get_drvdata(master);
|
|
|
|
struct vc4_dev *vc4 = drm->dev_private;
|
|
|
|
struct vc4_hvs *hvs = NULL;
|
2015-10-20 15:06:57 +00:00
|
|
|
int ret;
|
2016-12-14 19:46:14 +00:00
|
|
|
u32 dispctrl;
|
2015-03-02 21:01:12 +00:00
|
|
|
|
|
|
|
hvs = devm_kzalloc(&pdev->dev, sizeof(*hvs), GFP_KERNEL);
|
|
|
|
if (!hvs)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
hvs->pdev = pdev;
|
|
|
|
|
|
|
|
hvs->regs = vc4_ioremap_regs(pdev, 0);
|
|
|
|
if (IS_ERR(hvs->regs))
|
|
|
|
return PTR_ERR(hvs->regs);
|
|
|
|
|
2019-02-20 21:03:38 +00:00
|
|
|
hvs->regset.base = hvs->regs;
|
|
|
|
hvs->regset.regs = hvs_regs;
|
|
|
|
hvs->regset.nregs = ARRAY_SIZE(hvs_regs);
|
|
|
|
|
2015-03-02 21:01:12 +00:00
|
|
|
hvs->dlist = hvs->regs + SCALER_DLIST_START;
|
|
|
|
|
2015-12-28 21:25:41 +00:00
|
|
|
spin_lock_init(&hvs->mm_lock);
|
|
|
|
|
|
|
|
/* Set up the HVS display list memory manager. We never
|
|
|
|
* overwrite the setup from the bootloader (just 128b out of
|
|
|
|
* our 16K), since we don't want to scramble the screen when
|
|
|
|
* transitioning from the firmware's boot setup to runtime.
|
|
|
|
*/
|
|
|
|
drm_mm_init(&hvs->dlist_mm,
|
|
|
|
HVS_BOOTLOADER_DLIST_END,
|
|
|
|
(SCALER_DLIST_SIZE >> 2) - HVS_BOOTLOADER_DLIST_END);
|
|
|
|
|
2015-10-20 15:06:57 +00:00
|
|
|
/* Set up the HVS LBM memory manager. We could have some more
|
|
|
|
* complicated data structure that allowed reuse of LBM areas
|
|
|
|
* between planes when they don't overlap on the screen, but
|
|
|
|
* for now we just allocate globally.
|
|
|
|
*/
|
|
|
|
drm_mm_init(&hvs->lbm_mm, 0, 96 * 1024);
|
|
|
|
|
|
|
|
/* Upload filter kernels. We only have the one for now, so we
|
|
|
|
* keep it around for the lifetime of the driver.
|
|
|
|
*/
|
|
|
|
ret = vc4_hvs_upload_linear_kernel(hvs,
|
|
|
|
&hvs->mitchell_netravali_filter,
|
|
|
|
mitchell_netravali_1_3_1_3_kernel);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
2015-03-02 21:01:12 +00:00
|
|
|
vc4->hvs = hvs;
|
2016-12-14 19:46:14 +00:00
|
|
|
|
|
|
|
dispctrl = HVS_READ(SCALER_DISPCTRL);
|
|
|
|
|
|
|
|
dispctrl |= SCALER_DISPCTRL_ENABLE;
|
2019-02-20 15:51:22 +00:00
|
|
|
dispctrl |= SCALER_DISPCTRL_DISPEIRQ(0) |
|
|
|
|
SCALER_DISPCTRL_DISPEIRQ(1) |
|
|
|
|
SCALER_DISPCTRL_DISPEIRQ(2);
|
2016-12-14 19:46:14 +00:00
|
|
|
|
|
|
|
/* Set DSP3 (PV1) to use HVS channel 2, which would otherwise
|
|
|
|
* be unused.
|
|
|
|
*/
|
|
|
|
dispctrl &= ~SCALER_DISPCTRL_DSP3_MUX_MASK;
|
2019-02-20 15:51:22 +00:00
|
|
|
dispctrl &= ~(SCALER_DISPCTRL_DMAEIRQ |
|
|
|
|
SCALER_DISPCTRL_SLVWREIRQ |
|
|
|
|
SCALER_DISPCTRL_SLVRDEIRQ |
|
|
|
|
SCALER_DISPCTRL_DSPEIEOF(0) |
|
|
|
|
SCALER_DISPCTRL_DSPEIEOF(1) |
|
|
|
|
SCALER_DISPCTRL_DSPEIEOF(2) |
|
|
|
|
SCALER_DISPCTRL_DSPEIEOLN(0) |
|
|
|
|
SCALER_DISPCTRL_DSPEIEOLN(1) |
|
|
|
|
SCALER_DISPCTRL_DSPEIEOLN(2) |
|
|
|
|
SCALER_DISPCTRL_DSPEISLUR(0) |
|
|
|
|
SCALER_DISPCTRL_DSPEISLUR(1) |
|
|
|
|
SCALER_DISPCTRL_DSPEISLUR(2) |
|
|
|
|
SCALER_DISPCTRL_SCLEIRQ);
|
2016-12-14 19:46:14 +00:00
|
|
|
dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
|
|
|
|
|
|
|
|
HVS_WRITE(SCALER_DISPCTRL, dispctrl);
|
|
|
|
|
2019-02-20 15:51:22 +00:00
|
|
|
ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
|
|
|
|
vc4_hvs_irq_handler, 0, "vc4 hvs", drm);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
2019-04-01 18:35:58 +00:00
|
|
|
vc4_debugfs_add_regset32(drm, "hvs_regs", &hvs->regset);
|
|
|
|
vc4_debugfs_add_file(drm, "hvs_underrun", vc4_hvs_debugfs_underrun,
|
|
|
|
NULL);
|
|
|
|
|
2015-03-02 21:01:12 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void vc4_hvs_unbind(struct device *dev, struct device *master,
|
|
|
|
void *data)
|
|
|
|
{
|
|
|
|
struct drm_device *drm = dev_get_drvdata(master);
|
|
|
|
struct vc4_dev *vc4 = drm->dev_private;
|
|
|
|
|
2019-10-03 21:00:58 +00:00
|
|
|
if (drm_mm_node_allocated(&vc4->hvs->mitchell_netravali_filter))
|
2015-10-20 15:06:57 +00:00
|
|
|
drm_mm_remove_node(&vc4->hvs->mitchell_netravali_filter);
|
|
|
|
|
2015-12-28 21:25:41 +00:00
|
|
|
drm_mm_takedown(&vc4->hvs->dlist_mm);
|
2015-10-20 15:06:57 +00:00
|
|
|
drm_mm_takedown(&vc4->hvs->lbm_mm);
|
2015-12-28 21:25:41 +00:00
|
|
|
|
2015-03-02 21:01:12 +00:00
|
|
|
vc4->hvs = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
static const struct component_ops vc4_hvs_ops = {
|
|
|
|
.bind = vc4_hvs_bind,
|
|
|
|
.unbind = vc4_hvs_unbind,
|
|
|
|
};
|
|
|
|
|
|
|
|
static int vc4_hvs_dev_probe(struct platform_device *pdev)
|
|
|
|
{
|
|
|
|
return component_add(&pdev->dev, &vc4_hvs_ops);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int vc4_hvs_dev_remove(struct platform_device *pdev)
|
|
|
|
{
|
|
|
|
component_del(&pdev->dev, &vc4_hvs_ops);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static const struct of_device_id vc4_hvs_dt_match[] = {
|
|
|
|
{ .compatible = "brcm,bcm2835-hvs" },
|
|
|
|
{}
|
|
|
|
};
|
|
|
|
|
|
|
|
struct platform_driver vc4_hvs_driver = {
|
|
|
|
.probe = vc4_hvs_dev_probe,
|
|
|
|
.remove = vc4_hvs_dev_remove,
|
|
|
|
.driver = {
|
|
|
|
.name = "vc4_hvs",
|
|
|
|
.of_match_table = vc4_hvs_dt_match,
|
|
|
|
},
|
|
|
|
};
|