linux/drivers/gpu/drm/imx/imx-drm-core.c

591 lines
15 KiB
C
Raw Normal View History

/*
* Freescale i.MX drm driver
*
* Copyright (C) 2011 Sascha Hauer, Pengutronix
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/component.h>
#include <linux/device.h>
#include <linux/fb.h>
#include <linux/module.h>
staging: imx-drm-core: Use OF graph to find components and connections between encoder and crtcs This patch adds support to find the involved components connected to the IPU display interface ports using the OF graph bindings documented in Documentation/devicetree/bindings/media/video-interfaces.txt. It makes use of the of_graph (formerly v4l2_of) parsing helpers and thus depends on the patch that moves those out to drivers/of. Each display interface needs to have an associated port node in the device tree. We can associate this node with the crtc platform device and use it to find the crtc corresponding to a given port node instead of using a combination of parent device node and id number, as before. Explicitly converting the void* cookie to the port device tree node allows to get rid of the ipu_id and di_id fields. The multiplexer setting on i.MX6 now can be obtained from the port id (reg property) in the device tree. The imx-drm node now needs a ports property that contains phandles to each of the IPU display interface port nodes. From there, all attached encoders are scanned and enabled encoders are added to a waiting list. The bind order makes sure that once all components are probed, crtcs are bound before encoders, so that imx_drm_encoder_parse_of can be called from the encoder bind callbacks. For parsing the OF graph, temporary copies of the V4L2 OF graph helpers are used, that can be removed again once those are available at a generic place. Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2014-03-05 09:20:52 +00:00
#include <linux/of_graph.h>
#include <linux/platform_device.h>
#include <drm/drmP.h>
#include <drm/drm_fb_helper.h>
#include <drm/drm_crtc_helper.h>
#include <drm/drm_gem_cma_helper.h>
#include <drm/drm_fb_cma_helper.h>
#include <drm/drm_plane_helper.h>
#include <drm/drm_of.h>
#include "imx-drm.h"
#define MAX_CRTC 4
staging: imx-drm-core: Use OF graph to find components and connections between encoder and crtcs This patch adds support to find the involved components connected to the IPU display interface ports using the OF graph bindings documented in Documentation/devicetree/bindings/media/video-interfaces.txt. It makes use of the of_graph (formerly v4l2_of) parsing helpers and thus depends on the patch that moves those out to drivers/of. Each display interface needs to have an associated port node in the device tree. We can associate this node with the crtc platform device and use it to find the crtc corresponding to a given port node instead of using a combination of parent device node and id number, as before. Explicitly converting the void* cookie to the port device tree node allows to get rid of the ipu_id and di_id fields. The multiplexer setting on i.MX6 now can be obtained from the port id (reg property) in the device tree. The imx-drm node now needs a ports property that contains phandles to each of the IPU display interface port nodes. From there, all attached encoders are scanned and enabled encoders are added to a waiting list. The bind order makes sure that once all components are probed, crtcs are bound before encoders, so that imx_drm_encoder_parse_of can be called from the encoder bind callbacks. For parsing the OF graph, temporary copies of the V4L2 OF graph helpers are used, that can be removed again once those are available at a generic place. Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2014-03-05 09:20:52 +00:00
struct imx_drm_component {
struct device_node *of_node;
struct list_head list;
};
struct imx_drm_device {
struct drm_device *drm;
struct imx_drm_crtc *crtc[MAX_CRTC];
unsigned int pipes;
struct drm_fbdev_cma *fbhelper;
};
struct imx_drm_crtc {
struct drm_crtc *crtc;
struct imx_drm_crtc_helper_funcs imx_drm_helper_funcs;
};
#if IS_ENABLED(CONFIG_DRM_FBDEV_EMULATION)
static int legacyfb_depth = 16;
module_param(legacyfb_depth, int, 0444);
#endif
unsigned int imx_drm_crtc_id(struct imx_drm_crtc *crtc)
{
return drm_crtc_index(crtc->crtc);
}
EXPORT_SYMBOL_GPL(imx_drm_crtc_id);
static void imx_drm_driver_lastclose(struct drm_device *drm)
{
struct imx_drm_device *imxdrm = drm->dev_private;
drm_fbdev_cma_restore_mode(imxdrm->fbhelper);
}
static int imx_drm_driver_unload(struct drm_device *drm)
{
struct imx_drm_device *imxdrm = drm->dev_private;
drm_kms_helper_poll_fini(drm);
if (imxdrm->fbhelper)
drm_fbdev_cma_fini(imxdrm->fbhelper);
component_unbind_all(drm->dev, drm);
drm_vblank_cleanup(drm);
drm_mode_config_cleanup(drm);
platform_set_drvdata(drm->platformdev, NULL);
return 0;
}
static struct imx_drm_crtc *imx_drm_find_crtc(struct drm_crtc *crtc)
{
struct imx_drm_device *imxdrm = crtc->dev->dev_private;
unsigned i;
for (i = 0; i < MAX_CRTC; i++)
if (imxdrm->crtc[i] && imxdrm->crtc[i]->crtc == crtc)
return imxdrm->crtc[i];
return NULL;
}
int imx_drm_set_bus_format_pins(struct drm_encoder *encoder, u32 bus_format,
int hsync_pin, int vsync_pin)
{
struct imx_drm_crtc_helper_funcs *helper;
struct imx_drm_crtc *imx_crtc;
imx_crtc = imx_drm_find_crtc(encoder->crtc);
if (!imx_crtc)
return -EINVAL;
helper = &imx_crtc->imx_drm_helper_funcs;
if (helper->set_interface_pix_fmt)
return helper->set_interface_pix_fmt(encoder->crtc,
bus_format, hsync_pin, vsync_pin);
return 0;
}
EXPORT_SYMBOL_GPL(imx_drm_set_bus_format_pins);
int imx_drm_set_bus_format(struct drm_encoder *encoder, u32 bus_format)
{
return imx_drm_set_bus_format_pins(encoder, bus_format, 2, 3);
}
EXPORT_SYMBOL_GPL(imx_drm_set_bus_format);
int imx_drm_crtc_vblank_get(struct imx_drm_crtc *imx_drm_crtc)
{
return drm_crtc_vblank_get(imx_drm_crtc->crtc);
}
EXPORT_SYMBOL_GPL(imx_drm_crtc_vblank_get);
void imx_drm_crtc_vblank_put(struct imx_drm_crtc *imx_drm_crtc)
{
drm_crtc_vblank_put(imx_drm_crtc->crtc);
}
EXPORT_SYMBOL_GPL(imx_drm_crtc_vblank_put);
void imx_drm_handle_vblank(struct imx_drm_crtc *imx_drm_crtc)
{
drm_crtc_handle_vblank(imx_drm_crtc->crtc);
}
EXPORT_SYMBOL_GPL(imx_drm_handle_vblank);
static int imx_drm_enable_vblank(struct drm_device *drm, unsigned int pipe)
{
struct imx_drm_device *imxdrm = drm->dev_private;
struct imx_drm_crtc *imx_drm_crtc = imxdrm->crtc[pipe];
int ret;
if (!imx_drm_crtc)
return -EINVAL;
if (!imx_drm_crtc->imx_drm_helper_funcs.enable_vblank)
return -ENOSYS;
ret = imx_drm_crtc->imx_drm_helper_funcs.enable_vblank(
imx_drm_crtc->crtc);
return ret;
}
static void imx_drm_disable_vblank(struct drm_device *drm, unsigned int pipe)
{
struct imx_drm_device *imxdrm = drm->dev_private;
struct imx_drm_crtc *imx_drm_crtc = imxdrm->crtc[pipe];
if (!imx_drm_crtc)
return;
if (!imx_drm_crtc->imx_drm_helper_funcs.disable_vblank)
return;
imx_drm_crtc->imx_drm_helper_funcs.disable_vblank(imx_drm_crtc->crtc);
}
static void imx_drm_driver_preclose(struct drm_device *drm,
struct drm_file *file)
{
int i;
if (!file->is_master)
return;
for (i = 0; i < MAX_CRTC; i++)
imx_drm_disable_vblank(drm, i);
}
static const struct file_operations imx_drm_driver_fops = {
.owner = THIS_MODULE,
.open = drm_open,
.release = drm_release,
.unlocked_ioctl = drm_ioctl,
.mmap = drm_gem_cma_mmap,
.poll = drm_poll,
.read = drm_read,
.llseek = noop_llseek,
};
void imx_drm_connector_destroy(struct drm_connector *connector)
{
drm_connector_unregister(connector);
drm_connector_cleanup(connector);
}
EXPORT_SYMBOL_GPL(imx_drm_connector_destroy);
void imx_drm_encoder_destroy(struct drm_encoder *encoder)
{
drm_encoder_cleanup(encoder);
}
EXPORT_SYMBOL_GPL(imx_drm_encoder_destroy);
static void imx_drm_output_poll_changed(struct drm_device *drm)
{
struct imx_drm_device *imxdrm = drm->dev_private;
drm_fbdev_cma_hotplug_event(imxdrm->fbhelper);
}
static const struct drm_mode_config_funcs imx_drm_mode_config_funcs = {
.fb_create = drm_fb_cma_create,
.output_poll_changed = imx_drm_output_poll_changed,
};
/*
* Main DRM initialisation. This binds, initialises and registers
* with DRM the subcomponents of the driver.
*/
static int imx_drm_driver_load(struct drm_device *drm, unsigned long flags)
{
struct imx_drm_device *imxdrm;
struct drm_connector *connector;
int ret;
imxdrm = devm_kzalloc(drm->dev, sizeof(*imxdrm), GFP_KERNEL);
if (!imxdrm)
return -ENOMEM;
imxdrm->drm = drm;
drm->dev_private = imxdrm;
/*
* enable drm irq mode.
* - with irq_enabled = true, we can use the vblank feature.
*
* P.S. note that we wouldn't use drm irq handler but
* just specific driver own one instead because
* drm framework supports only one irq handler and
* drivers can well take care of their interrupts
*/
drm->irq_enabled = true;
/*
* set max width and height as default value(4096x4096).
* this value would be used to check framebuffer size limitation
* at drm_mode_addfb().
*/
drm->mode_config.min_width = 64;
drm->mode_config.min_height = 64;
drm->mode_config.max_width = 4096;
drm->mode_config.max_height = 4096;
drm->mode_config.funcs = &imx_drm_mode_config_funcs;
drm_mode_config_init(drm);
ret = drm_vblank_init(drm, MAX_CRTC);
if (ret)
goto err_kms;
/*
* with vblank_disable_allowed = true, vblank interrupt will be
* disabled by drm timer once a current process gives up ownership
* of vblank event. (after drm_vblank_put function is called)
*/
drm->vblank_disable_allowed = true;
platform_set_drvdata(drm->platformdev, drm);
/* Now try and bind all our sub-components */
ret = component_bind_all(drm->dev, drm);
if (ret)
goto err_vblank;
/*
* All components are now added, we can publish the connector sysfs
* entries to userspace. This will generate hotplug events and so
* userspace will expect to be able to access DRM at this point.
*/
list_for_each_entry(connector, &drm->mode_config.connector_list, head) {
ret = drm_connector_register(connector);
if (ret) {
dev_err(drm->dev,
"[CONNECTOR:%d:%s] drm_connector_register failed: %d\n",
connector->base.id,
connector->name, ret);
goto err_unbind;
}
}
/*
* All components are now initialised, so setup the fb helper.
* The fb helper takes copies of key hardware information, so the
* crtcs/connectors/encoders must not change after this point.
*/
#if IS_ENABLED(CONFIG_DRM_FBDEV_EMULATION)
if (legacyfb_depth != 16 && legacyfb_depth != 32) {
dev_warn(drm->dev, "Invalid legacyfb_depth. Defaulting to 16bpp\n");
legacyfb_depth = 16;
}
drm_helper_disable_unused_functions(drm);
imxdrm->fbhelper = drm_fbdev_cma_init(drm, legacyfb_depth,
drm->mode_config.num_crtc, MAX_CRTC);
if (IS_ERR(imxdrm->fbhelper)) {
ret = PTR_ERR(imxdrm->fbhelper);
imxdrm->fbhelper = NULL;
goto err_unbind;
}
#endif
drm_kms_helper_poll_init(drm);
return 0;
err_unbind:
component_unbind_all(drm->dev, drm);
err_vblank:
drm_vblank_cleanup(drm);
err_kms:
drm_mode_config_cleanup(drm);
return ret;
}
/*
* imx_drm_add_crtc - add a new crtc
*/
int imx_drm_add_crtc(struct drm_device *drm, struct drm_crtc *crtc,
struct imx_drm_crtc **new_crtc, struct drm_plane *primary_plane,
const struct imx_drm_crtc_helper_funcs *imx_drm_helper_funcs,
staging: imx-drm-core: Use OF graph to find components and connections between encoder and crtcs This patch adds support to find the involved components connected to the IPU display interface ports using the OF graph bindings documented in Documentation/devicetree/bindings/media/video-interfaces.txt. It makes use of the of_graph (formerly v4l2_of) parsing helpers and thus depends on the patch that moves those out to drivers/of. Each display interface needs to have an associated port node in the device tree. We can associate this node with the crtc platform device and use it to find the crtc corresponding to a given port node instead of using a combination of parent device node and id number, as before. Explicitly converting the void* cookie to the port device tree node allows to get rid of the ipu_id and di_id fields. The multiplexer setting on i.MX6 now can be obtained from the port id (reg property) in the device tree. The imx-drm node now needs a ports property that contains phandles to each of the IPU display interface port nodes. From there, all attached encoders are scanned and enabled encoders are added to a waiting list. The bind order makes sure that once all components are probed, crtcs are bound before encoders, so that imx_drm_encoder_parse_of can be called from the encoder bind callbacks. For parsing the OF graph, temporary copies of the V4L2 OF graph helpers are used, that can be removed again once those are available at a generic place. Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2014-03-05 09:20:52 +00:00
struct device_node *port)
{
struct imx_drm_device *imxdrm = drm->dev_private;
struct imx_drm_crtc *imx_drm_crtc;
int ret;
/*
* The vblank arrays are dimensioned by MAX_CRTC - we can't
* pass IDs greater than this to those functions.
*/
if (imxdrm->pipes >= MAX_CRTC)
return -EINVAL;
if (imxdrm->drm->open_count)
return -EBUSY;
imx_drm_crtc = kzalloc(sizeof(*imx_drm_crtc), GFP_KERNEL);
if (!imx_drm_crtc)
return -ENOMEM;
imx_drm_crtc->imx_drm_helper_funcs = *imx_drm_helper_funcs;
imx_drm_crtc->crtc = crtc;
crtc->port = port;
imxdrm->crtc[imxdrm->pipes++] = imx_drm_crtc;
*new_crtc = imx_drm_crtc;
ret = drm_mode_crtc_set_gamma_size(imx_drm_crtc->crtc, 256);
if (ret)
goto err_register;
drm_crtc_helper_add(crtc,
imx_drm_crtc->imx_drm_helper_funcs.crtc_helper_funcs);
drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
2015-12-09 14:19:31 +00:00
imx_drm_crtc->imx_drm_helper_funcs.crtc_funcs, NULL);
return 0;
err_register:
imxdrm->crtc[--imxdrm->pipes] = NULL;
kfree(imx_drm_crtc);
return ret;
}
EXPORT_SYMBOL_GPL(imx_drm_add_crtc);
/*
* imx_drm_remove_crtc - remove a crtc
*/
int imx_drm_remove_crtc(struct imx_drm_crtc *imx_drm_crtc)
{
struct imx_drm_device *imxdrm = imx_drm_crtc->crtc->dev->dev_private;
unsigned int pipe = drm_crtc_index(imx_drm_crtc->crtc);
drm_crtc_cleanup(imx_drm_crtc->crtc);
imxdrm->crtc[pipe] = NULL;
kfree(imx_drm_crtc);
return 0;
}
EXPORT_SYMBOL_GPL(imx_drm_remove_crtc);
int imx_drm_encoder_parse_of(struct drm_device *drm,
struct drm_encoder *encoder, struct device_node *np)
{
uint32_t crtc_mask = drm_of_find_possible_crtcs(drm, np);
/*
* If we failed to find the CRTC(s) which this encoder is
* supposed to be connected to, it's because the CRTC has
* not been registered yet. Defer probing, and hope that
* the required CRTC is added later.
*/
if (crtc_mask == 0)
return -EPROBE_DEFER;
staging: imx-drm-core: Use OF graph to find components and connections between encoder and crtcs This patch adds support to find the involved components connected to the IPU display interface ports using the OF graph bindings documented in Documentation/devicetree/bindings/media/video-interfaces.txt. It makes use of the of_graph (formerly v4l2_of) parsing helpers and thus depends on the patch that moves those out to drivers/of. Each display interface needs to have an associated port node in the device tree. We can associate this node with the crtc platform device and use it to find the crtc corresponding to a given port node instead of using a combination of parent device node and id number, as before. Explicitly converting the void* cookie to the port device tree node allows to get rid of the ipu_id and di_id fields. The multiplexer setting on i.MX6 now can be obtained from the port id (reg property) in the device tree. The imx-drm node now needs a ports property that contains phandles to each of the IPU display interface port nodes. From there, all attached encoders are scanned and enabled encoders are added to a waiting list. The bind order makes sure that once all components are probed, crtcs are bound before encoders, so that imx_drm_encoder_parse_of can be called from the encoder bind callbacks. For parsing the OF graph, temporary copies of the V4L2 OF graph helpers are used, that can be removed again once those are available at a generic place. Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2014-03-05 09:20:52 +00:00
encoder->possible_crtcs = crtc_mask;
/* FIXME: this is the mask of outputs which can clone this output. */
encoder->possible_clones = ~0;
return 0;
}
EXPORT_SYMBOL_GPL(imx_drm_encoder_parse_of);
staging: imx-drm-core: Use OF graph to find components and connections between encoder and crtcs This patch adds support to find the involved components connected to the IPU display interface ports using the OF graph bindings documented in Documentation/devicetree/bindings/media/video-interfaces.txt. It makes use of the of_graph (formerly v4l2_of) parsing helpers and thus depends on the patch that moves those out to drivers/of. Each display interface needs to have an associated port node in the device tree. We can associate this node with the crtc platform device and use it to find the crtc corresponding to a given port node instead of using a combination of parent device node and id number, as before. Explicitly converting the void* cookie to the port device tree node allows to get rid of the ipu_id and di_id fields. The multiplexer setting on i.MX6 now can be obtained from the port id (reg property) in the device tree. The imx-drm node now needs a ports property that contains phandles to each of the IPU display interface port nodes. From there, all attached encoders are scanned and enabled encoders are added to a waiting list. The bind order makes sure that once all components are probed, crtcs are bound before encoders, so that imx_drm_encoder_parse_of can be called from the encoder bind callbacks. For parsing the OF graph, temporary copies of the V4L2 OF graph helpers are used, that can be removed again once those are available at a generic place. Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2014-03-05 09:20:52 +00:00
/*
* @node: device tree node containing encoder input ports
* @encoder: drm_encoder
*/
int imx_drm_encoder_get_mux_id(struct device_node *node,
struct drm_encoder *encoder)
{
struct imx_drm_crtc *imx_crtc = imx_drm_find_crtc(encoder->crtc);
struct device_node *ep;
struct of_endpoint endpoint;
staging: imx-drm-core: Use OF graph to find components and connections between encoder and crtcs This patch adds support to find the involved components connected to the IPU display interface ports using the OF graph bindings documented in Documentation/devicetree/bindings/media/video-interfaces.txt. It makes use of the of_graph (formerly v4l2_of) parsing helpers and thus depends on the patch that moves those out to drivers/of. Each display interface needs to have an associated port node in the device tree. We can associate this node with the crtc platform device and use it to find the crtc corresponding to a given port node instead of using a combination of parent device node and id number, as before. Explicitly converting the void* cookie to the port device tree node allows to get rid of the ipu_id and di_id fields. The multiplexer setting on i.MX6 now can be obtained from the port id (reg property) in the device tree. The imx-drm node now needs a ports property that contains phandles to each of the IPU display interface port nodes. From there, all attached encoders are scanned and enabled encoders are added to a waiting list. The bind order makes sure that once all components are probed, crtcs are bound before encoders, so that imx_drm_encoder_parse_of can be called from the encoder bind callbacks. For parsing the OF graph, temporary copies of the V4L2 OF graph helpers are used, that can be removed again once those are available at a generic place. Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2014-03-05 09:20:52 +00:00
struct device_node *port;
int ret;
staging: imx-drm-core: Use OF graph to find components and connections between encoder and crtcs This patch adds support to find the involved components connected to the IPU display interface ports using the OF graph bindings documented in Documentation/devicetree/bindings/media/video-interfaces.txt. It makes use of the of_graph (formerly v4l2_of) parsing helpers and thus depends on the patch that moves those out to drivers/of. Each display interface needs to have an associated port node in the device tree. We can associate this node with the crtc platform device and use it to find the crtc corresponding to a given port node instead of using a combination of parent device node and id number, as before. Explicitly converting the void* cookie to the port device tree node allows to get rid of the ipu_id and di_id fields. The multiplexer setting on i.MX6 now can be obtained from the port id (reg property) in the device tree. The imx-drm node now needs a ports property that contains phandles to each of the IPU display interface port nodes. From there, all attached encoders are scanned and enabled encoders are added to a waiting list. The bind order makes sure that once all components are probed, crtcs are bound before encoders, so that imx_drm_encoder_parse_of can be called from the encoder bind callbacks. For parsing the OF graph, temporary copies of the V4L2 OF graph helpers are used, that can be removed again once those are available at a generic place. Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2014-03-05 09:20:52 +00:00
if (!node || !imx_crtc)
return -EINVAL;
for_each_endpoint_of_node(node, ep) {
staging: imx-drm-core: Use OF graph to find components and connections between encoder and crtcs This patch adds support to find the involved components connected to the IPU display interface ports using the OF graph bindings documented in Documentation/devicetree/bindings/media/video-interfaces.txt. It makes use of the of_graph (formerly v4l2_of) parsing helpers and thus depends on the patch that moves those out to drivers/of. Each display interface needs to have an associated port node in the device tree. We can associate this node with the crtc platform device and use it to find the crtc corresponding to a given port node instead of using a combination of parent device node and id number, as before. Explicitly converting the void* cookie to the port device tree node allows to get rid of the ipu_id and di_id fields. The multiplexer setting on i.MX6 now can be obtained from the port id (reg property) in the device tree. The imx-drm node now needs a ports property that contains phandles to each of the IPU display interface port nodes. From there, all attached encoders are scanned and enabled encoders are added to a waiting list. The bind order makes sure that once all components are probed, crtcs are bound before encoders, so that imx_drm_encoder_parse_of can be called from the encoder bind callbacks. For parsing the OF graph, temporary copies of the V4L2 OF graph helpers are used, that can be removed again once those are available at a generic place. Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2014-03-05 09:20:52 +00:00
port = of_graph_get_remote_port(ep);
of_node_put(port);
if (port == imx_crtc->crtc->port) {
ret = of_graph_parse_endpoint(ep, &endpoint);
of_node_put(ep);
return ret ? ret : endpoint.port;
staging: imx-drm-core: Use OF graph to find components and connections between encoder and crtcs This patch adds support to find the involved components connected to the IPU display interface ports using the OF graph bindings documented in Documentation/devicetree/bindings/media/video-interfaces.txt. It makes use of the of_graph (formerly v4l2_of) parsing helpers and thus depends on the patch that moves those out to drivers/of. Each display interface needs to have an associated port node in the device tree. We can associate this node with the crtc platform device and use it to find the crtc corresponding to a given port node instead of using a combination of parent device node and id number, as before. Explicitly converting the void* cookie to the port device tree node allows to get rid of the ipu_id and di_id fields. The multiplexer setting on i.MX6 now can be obtained from the port id (reg property) in the device tree. The imx-drm node now needs a ports property that contains phandles to each of the IPU display interface port nodes. From there, all attached encoders are scanned and enabled encoders are added to a waiting list. The bind order makes sure that once all components are probed, crtcs are bound before encoders, so that imx_drm_encoder_parse_of can be called from the encoder bind callbacks. For parsing the OF graph, temporary copies of the V4L2 OF graph helpers are used, that can be removed again once those are available at a generic place. Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2014-03-05 09:20:52 +00:00
}
}
staging: imx-drm-core: Use OF graph to find components and connections between encoder and crtcs This patch adds support to find the involved components connected to the IPU display interface ports using the OF graph bindings documented in Documentation/devicetree/bindings/media/video-interfaces.txt. It makes use of the of_graph (formerly v4l2_of) parsing helpers and thus depends on the patch that moves those out to drivers/of. Each display interface needs to have an associated port node in the device tree. We can associate this node with the crtc platform device and use it to find the crtc corresponding to a given port node instead of using a combination of parent device node and id number, as before. Explicitly converting the void* cookie to the port device tree node allows to get rid of the ipu_id and di_id fields. The multiplexer setting on i.MX6 now can be obtained from the port id (reg property) in the device tree. The imx-drm node now needs a ports property that contains phandles to each of the IPU display interface port nodes. From there, all attached encoders are scanned and enabled encoders are added to a waiting list. The bind order makes sure that once all components are probed, crtcs are bound before encoders, so that imx_drm_encoder_parse_of can be called from the encoder bind callbacks. For parsing the OF graph, temporary copies of the V4L2 OF graph helpers are used, that can be removed again once those are available at a generic place. Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2014-03-05 09:20:52 +00:00
return -EINVAL;
}
EXPORT_SYMBOL_GPL(imx_drm_encoder_get_mux_id);
static const struct drm_ioctl_desc imx_drm_ioctls[] = {
/* none so far */
};
static struct drm_driver imx_drm_driver = {
.driver_features = DRIVER_MODESET | DRIVER_GEM | DRIVER_PRIME,
.load = imx_drm_driver_load,
.unload = imx_drm_driver_unload,
.lastclose = imx_drm_driver_lastclose,
.preclose = imx_drm_driver_preclose,
.set_busid = drm_platform_set_busid,
.gem_free_object = drm_gem_cma_free_object,
.gem_vm_ops = &drm_gem_cma_vm_ops,
.dumb_create = drm_gem_cma_dumb_create,
.dumb_map_offset = drm_gem_cma_dumb_map_offset,
.dumb_destroy = drm_gem_dumb_destroy,
.prime_handle_to_fd = drm_gem_prime_handle_to_fd,
.prime_fd_to_handle = drm_gem_prime_fd_to_handle,
.gem_prime_import = drm_gem_prime_import,
.gem_prime_export = drm_gem_prime_export,
.gem_prime_get_sg_table = drm_gem_cma_prime_get_sg_table,
.gem_prime_import_sg_table = drm_gem_cma_prime_import_sg_table,
.gem_prime_vmap = drm_gem_cma_prime_vmap,
.gem_prime_vunmap = drm_gem_cma_prime_vunmap,
.gem_prime_mmap = drm_gem_cma_prime_mmap,
.get_vblank_counter = drm_vblank_no_hw_counter,
.enable_vblank = imx_drm_enable_vblank,
.disable_vblank = imx_drm_disable_vblank,
.ioctls = imx_drm_ioctls,
.num_ioctls = ARRAY_SIZE(imx_drm_ioctls),
.fops = &imx_drm_driver_fops,
.name = "imx-drm",
.desc = "i.MX DRM graphics",
.date = "20120507",
.major = 1,
.minor = 0,
.patchlevel = 0,
};
static int compare_of(struct device *dev, void *data)
{
staging: imx-drm-core: Use OF graph to find components and connections between encoder and crtcs This patch adds support to find the involved components connected to the IPU display interface ports using the OF graph bindings documented in Documentation/devicetree/bindings/media/video-interfaces.txt. It makes use of the of_graph (formerly v4l2_of) parsing helpers and thus depends on the patch that moves those out to drivers/of. Each display interface needs to have an associated port node in the device tree. We can associate this node with the crtc platform device and use it to find the crtc corresponding to a given port node instead of using a combination of parent device node and id number, as before. Explicitly converting the void* cookie to the port device tree node allows to get rid of the ipu_id and di_id fields. The multiplexer setting on i.MX6 now can be obtained from the port id (reg property) in the device tree. The imx-drm node now needs a ports property that contains phandles to each of the IPU display interface port nodes. From there, all attached encoders are scanned and enabled encoders are added to a waiting list. The bind order makes sure that once all components are probed, crtcs are bound before encoders, so that imx_drm_encoder_parse_of can be called from the encoder bind callbacks. For parsing the OF graph, temporary copies of the V4L2 OF graph helpers are used, that can be removed again once those are available at a generic place. Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2014-03-05 09:20:52 +00:00
struct device_node *np = data;
staging: imx-drm-core: Use OF graph to find components and connections between encoder and crtcs This patch adds support to find the involved components connected to the IPU display interface ports using the OF graph bindings documented in Documentation/devicetree/bindings/media/video-interfaces.txt. It makes use of the of_graph (formerly v4l2_of) parsing helpers and thus depends on the patch that moves those out to drivers/of. Each display interface needs to have an associated port node in the device tree. We can associate this node with the crtc platform device and use it to find the crtc corresponding to a given port node instead of using a combination of parent device node and id number, as before. Explicitly converting the void* cookie to the port device tree node allows to get rid of the ipu_id and di_id fields. The multiplexer setting on i.MX6 now can be obtained from the port id (reg property) in the device tree. The imx-drm node now needs a ports property that contains phandles to each of the IPU display interface port nodes. From there, all attached encoders are scanned and enabled encoders are added to a waiting list. The bind order makes sure that once all components are probed, crtcs are bound before encoders, so that imx_drm_encoder_parse_of can be called from the encoder bind callbacks. For parsing the OF graph, temporary copies of the V4L2 OF graph helpers are used, that can be removed again once those are available at a generic place. Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2014-03-05 09:20:52 +00:00
/* Special case for LDB, one device for two channels */
if (of_node_cmp(np->name, "lvds-channel") == 0) {
np = of_get_parent(np);
of_node_put(np);
}
staging: imx-drm-core: Use OF graph to find components and connections between encoder and crtcs This patch adds support to find the involved components connected to the IPU display interface ports using the OF graph bindings documented in Documentation/devicetree/bindings/media/video-interfaces.txt. It makes use of the of_graph (formerly v4l2_of) parsing helpers and thus depends on the patch that moves those out to drivers/of. Each display interface needs to have an associated port node in the device tree. We can associate this node with the crtc platform device and use it to find the crtc corresponding to a given port node instead of using a combination of parent device node and id number, as before. Explicitly converting the void* cookie to the port device tree node allows to get rid of the ipu_id and di_id fields. The multiplexer setting on i.MX6 now can be obtained from the port id (reg property) in the device tree. The imx-drm node now needs a ports property that contains phandles to each of the IPU display interface port nodes. From there, all attached encoders are scanned and enabled encoders are added to a waiting list. The bind order makes sure that once all components are probed, crtcs are bound before encoders, so that imx_drm_encoder_parse_of can be called from the encoder bind callbacks. For parsing the OF graph, temporary copies of the V4L2 OF graph helpers are used, that can be removed again once those are available at a generic place. Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2014-03-05 09:20:52 +00:00
return dev->of_node == np;
}
static int imx_drm_bind(struct device *dev)
{
return drm_platform_init(&imx_drm_driver, to_platform_device(dev));
}
static void imx_drm_unbind(struct device *dev)
{
drm_put_dev(dev_get_drvdata(dev));
}
static const struct component_master_ops imx_drm_ops = {
.bind = imx_drm_bind,
.unbind = imx_drm_unbind,
};
static int imx_drm_platform_probe(struct platform_device *pdev)
{
int ret = drm_of_component_probe(&pdev->dev, compare_of, &imx_drm_ops);
staging: imx-drm-core: Use OF graph to find components and connections between encoder and crtcs This patch adds support to find the involved components connected to the IPU display interface ports using the OF graph bindings documented in Documentation/devicetree/bindings/media/video-interfaces.txt. It makes use of the of_graph (formerly v4l2_of) parsing helpers and thus depends on the patch that moves those out to drivers/of. Each display interface needs to have an associated port node in the device tree. We can associate this node with the crtc platform device and use it to find the crtc corresponding to a given port node instead of using a combination of parent device node and id number, as before. Explicitly converting the void* cookie to the port device tree node allows to get rid of the ipu_id and di_id fields. The multiplexer setting on i.MX6 now can be obtained from the port id (reg property) in the device tree. The imx-drm node now needs a ports property that contains phandles to each of the IPU display interface port nodes. From there, all attached encoders are scanned and enabled encoders are added to a waiting list. The bind order makes sure that once all components are probed, crtcs are bound before encoders, so that imx_drm_encoder_parse_of can be called from the encoder bind callbacks. For parsing the OF graph, temporary copies of the V4L2 OF graph helpers are used, that can be removed again once those are available at a generic place. Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2014-03-05 09:20:52 +00:00
if (!ret)
ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
staging: imx-drm-core: Use OF graph to find components and connections between encoder and crtcs This patch adds support to find the involved components connected to the IPU display interface ports using the OF graph bindings documented in Documentation/devicetree/bindings/media/video-interfaces.txt. It makes use of the of_graph (formerly v4l2_of) parsing helpers and thus depends on the patch that moves those out to drivers/of. Each display interface needs to have an associated port node in the device tree. We can associate this node with the crtc platform device and use it to find the crtc corresponding to a given port node instead of using a combination of parent device node and id number, as before. Explicitly converting the void* cookie to the port device tree node allows to get rid of the ipu_id and di_id fields. The multiplexer setting on i.MX6 now can be obtained from the port id (reg property) in the device tree. The imx-drm node now needs a ports property that contains phandles to each of the IPU display interface port nodes. From there, all attached encoders are scanned and enabled encoders are added to a waiting list. The bind order makes sure that once all components are probed, crtcs are bound before encoders, so that imx_drm_encoder_parse_of can be called from the encoder bind callbacks. For parsing the OF graph, temporary copies of the V4L2 OF graph helpers are used, that can be removed again once those are available at a generic place. Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2014-03-05 09:20:52 +00:00
return ret;
}
static int imx_drm_platform_remove(struct platform_device *pdev)
{
component_master_del(&pdev->dev, &imx_drm_ops);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int imx_drm_suspend(struct device *dev)
{
struct drm_device *drm_dev = dev_get_drvdata(dev);
/* The drm_dev is NULL before .load hook is called */
if (drm_dev == NULL)
return 0;
drm_kms_helper_poll_disable(drm_dev);
return 0;
}
static int imx_drm_resume(struct device *dev)
{
struct drm_device *drm_dev = dev_get_drvdata(dev);
if (drm_dev == NULL)
return 0;
drm_helper_resume_force_mode(drm_dev);
drm_kms_helper_poll_enable(drm_dev);
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(imx_drm_pm_ops, imx_drm_suspend, imx_drm_resume);
static const struct of_device_id imx_drm_dt_ids[] = {
staging: imx-drm-core: Use OF graph to find components and connections between encoder and crtcs This patch adds support to find the involved components connected to the IPU display interface ports using the OF graph bindings documented in Documentation/devicetree/bindings/media/video-interfaces.txt. It makes use of the of_graph (formerly v4l2_of) parsing helpers and thus depends on the patch that moves those out to drivers/of. Each display interface needs to have an associated port node in the device tree. We can associate this node with the crtc platform device and use it to find the crtc corresponding to a given port node instead of using a combination of parent device node and id number, as before. Explicitly converting the void* cookie to the port device tree node allows to get rid of the ipu_id and di_id fields. The multiplexer setting on i.MX6 now can be obtained from the port id (reg property) in the device tree. The imx-drm node now needs a ports property that contains phandles to each of the IPU display interface port nodes. From there, all attached encoders are scanned and enabled encoders are added to a waiting list. The bind order makes sure that once all components are probed, crtcs are bound before encoders, so that imx_drm_encoder_parse_of can be called from the encoder bind callbacks. For parsing the OF graph, temporary copies of the V4L2 OF graph helpers are used, that can be removed again once those are available at a generic place. Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2014-03-05 09:20:52 +00:00
{ .compatible = "fsl,imx-display-subsystem", },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, imx_drm_dt_ids);
static struct platform_driver imx_drm_pdrv = {
.probe = imx_drm_platform_probe,
.remove = imx_drm_platform_remove,
.driver = {
.name = "imx-drm",
.pm = &imx_drm_pm_ops,
.of_match_table = imx_drm_dt_ids,
},
};
module_platform_driver(imx_drm_pdrv);
MODULE_AUTHOR("Sascha Hauer <s.hauer@pengutronix.de>");
MODULE_DESCRIPTION("i.MX drm driver core");
MODULE_LICENSE("GPL");