linux/sound/usb/line6/pod.c

620 lines
15 KiB
C
Raw Normal View History

/*
* Line 6 Linux USB driver
*
* Copyright (C) 2004-2010 Markus Grabner (grabner@icg.tugraz.at)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation, version 2.
*
*/
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <linux/wait.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/usb.h>
#include <sound/core.h>
#include <sound/control.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include "capture.h"
#include "driver.h"
#include "playback.h"
#include "usbdefs.h"
/*
Locate name in binary program dump
*/
#define POD_NAME_OFFSET 0
#define POD_NAME_LENGTH 16
/*
Other constants
*/
#define POD_CONTROL_SIZE 0x80
#define POD_BUFSIZE_DUMPREQ 7
#define POD_STARTUP_DELAY 1000
/*
Stages of POD startup procedure
*/
enum {
POD_STARTUP_INIT = 1,
POD_STARTUP_VERSIONREQ,
POD_STARTUP_WORKQUEUE,
POD_STARTUP_SETUP,
POD_STARTUP_LAST = POD_STARTUP_SETUP - 1
};
enum {
LINE6_BASSPODXT,
LINE6_BASSPODXTLIVE,
LINE6_BASSPODXTPRO,
LINE6_POCKETPOD,
LINE6_PODXT,
LINE6_PODXTLIVE_POD,
LINE6_PODXTPRO,
};
struct usb_line6_pod {
/**
Generic Line 6 USB data.
*/
struct usb_line6 line6;
/**
Instrument monitor level.
*/
int monitor_level;
/**
Timer for device initializaton.
*/
struct timer_list startup_timer;
/**
Work handler for device initializaton.
*/
struct work_struct startup_work;
/**
Current progress in startup procedure.
*/
int startup_progress;
/**
Serial number of device.
*/
int serial_number;
/**
Firmware version (x 100).
*/
int firmware_version;
/**
Device ID.
*/
int device_id;
};
#define POD_SYSEX_CODE 3
#define POD_BYTES_PER_FRAME 6 /* 24bit audio (stereo) */
/* *INDENT-OFF* */
enum {
POD_SYSEX_SAVE = 0x24,
POD_SYSEX_SYSTEM = 0x56,
POD_SYSEX_SYSTEMREQ = 0x57,
/* POD_SYSEX_UPDATE = 0x6c, */ /* software update! */
POD_SYSEX_STORE = 0x71,
POD_SYSEX_FINISH = 0x72,
POD_SYSEX_DUMPMEM = 0x73,
POD_SYSEX_DUMP = 0x74,
POD_SYSEX_DUMPREQ = 0x75
/* dumps entire internal memory of PODxt Pro */
/* POD_SYSEX_DUMPMEM2 = 0x76 */
};
enum {
POD_MONITOR_LEVEL = 0x04,
POD_SYSTEM_INVALID = 0x10000
};
/* *INDENT-ON* */
enum {
POD_DUMP_MEMORY = 2
};
enum {
POD_BUSY_READ,
POD_BUSY_WRITE,
POD_CHANNEL_DIRTY,
POD_SAVE_PRESSED,
POD_BUSY_MIDISEND
};
static struct snd_ratden pod_ratden = {
.num_min = 78125,
.num_max = 78125,
.num_step = 1,
.den = 2
};
static struct line6_pcm_properties pod_pcm_properties = {
.snd_line6_playback_hw = {
.info = (SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_PAUSE |
SNDRV_PCM_INFO_SYNC_START),
.formats = SNDRV_PCM_FMTBIT_S24_3LE,
.rates = SNDRV_PCM_RATE_KNOT,
.rate_min = 39062,
.rate_max = 39063,
.channels_min = 2,
.channels_max = 2,
.buffer_bytes_max = 60000,
.period_bytes_min = 64,
.period_bytes_max = 8192,
.periods_min = 1,
.periods_max = 1024},
.snd_line6_capture_hw = {
.info = (SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_SYNC_START),
.formats = SNDRV_PCM_FMTBIT_S24_3LE,
.rates = SNDRV_PCM_RATE_KNOT,
.rate_min = 39062,
.rate_max = 39063,
.channels_min = 2,
.channels_max = 2,
.buffer_bytes_max = 60000,
.period_bytes_min = 64,
.period_bytes_max = 8192,
.periods_min = 1,
.periods_max = 1024},
.snd_line6_rates = {
.nrats = 1,
.rats = &pod_ratden},
.bytes_per_frame = POD_BYTES_PER_FRAME
};
static const char pod_version_header[] = {
0xf2, 0x7e, 0x7f, 0x06, 0x02
};
/* forward declarations: */
static void pod_startup2(unsigned long data);
static void pod_startup3(struct usb_line6_pod *pod);
static char *pod_alloc_sysex_buffer(struct usb_line6_pod *pod, int code,
int size)
{
return line6_alloc_sysex_buffer(&pod->line6, POD_SYSEX_CODE, code,
size);
}
/*
Process a completely received message.
*/
static void line6_pod_process_message(struct usb_line6 *line6)
{
struct usb_line6_pod *pod = (struct usb_line6_pod *) line6;
const unsigned char *buf = pod->line6.buffer_message;
if (memcmp(buf, pod_version_header, sizeof(pod_version_header)) == 0) {
pod->firmware_version = buf[13] * 100 + buf[14] * 10 + buf[15];
pod->device_id = ((int)buf[8] << 16) | ((int)buf[9] << 8) |
(int) buf[10];
pod_startup3(pod);
return;
}
/* Only look for sysex messages from this device */
if (buf[0] != (LINE6_SYSEX_BEGIN | LINE6_CHANNEL_DEVICE) &&
buf[0] != (LINE6_SYSEX_BEGIN | LINE6_CHANNEL_UNKNOWN)) {
return;
}
if (memcmp(buf + 1, line6_midi_id, sizeof(line6_midi_id)) != 0)
return;
if (buf[5] == POD_SYSEX_SYSTEM && buf[6] == POD_MONITOR_LEVEL) {
short value = ((int)buf[7] << 12) | ((int)buf[8] << 8) |
((int)buf[9] << 4) | (int)buf[10];
pod->monitor_level = value;
}
}
/*
Send system parameter (from integer).
*/
static int pod_set_system_param_int(struct usb_line6_pod *pod, int value,
int code)
{
char *sysex;
static const int size = 5;
sysex = pod_alloc_sysex_buffer(pod, POD_SYSEX_SYSTEM, size);
if (!sysex)
return -ENOMEM;
sysex[SYSEX_DATA_OFS] = code;
sysex[SYSEX_DATA_OFS + 1] = (value >> 12) & 0x0f;
sysex[SYSEX_DATA_OFS + 2] = (value >> 8) & 0x0f;
sysex[SYSEX_DATA_OFS + 3] = (value >> 4) & 0x0f;
sysex[SYSEX_DATA_OFS + 4] = (value) & 0x0f;
line6_send_sysex_message(&pod->line6, sysex, size);
kfree(sysex);
return 0;
}
/*
"read" request on "serial_number" special file.
*/
static ssize_t serial_number_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct usb_interface *interface = to_usb_interface(dev);
struct usb_line6_pod *pod = usb_get_intfdata(interface);
return sprintf(buf, "%d\n", pod->serial_number);
}
/*
"read" request on "firmware_version" special file.
*/
static ssize_t firmware_version_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct usb_interface *interface = to_usb_interface(dev);
struct usb_line6_pod *pod = usb_get_intfdata(interface);
return sprintf(buf, "%d.%02d\n", pod->firmware_version / 100,
pod->firmware_version % 100);
}
/*
"read" request on "device_id" special file.
*/
static ssize_t device_id_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct usb_interface *interface = to_usb_interface(dev);
struct usb_line6_pod *pod = usb_get_intfdata(interface);
return sprintf(buf, "%d\n", pod->device_id);
}
/*
POD startup procedure.
This is a sequence of functions with special requirements (e.g., must
not run immediately after initialization, must not run in interrupt
context). After the last one has finished, the device is ready to use.
*/
static void pod_startup1(struct usb_line6_pod *pod)
{
CHECK_STARTUP_PROGRESS(pod->startup_progress, POD_STARTUP_INIT);
/* delay startup procedure: */
line6_start_timer(&pod->startup_timer, POD_STARTUP_DELAY, pod_startup2,
(unsigned long)pod);
}
static void pod_startup2(unsigned long data)
{
struct usb_line6_pod *pod = (struct usb_line6_pod *)data;
struct usb_line6 *line6 = &pod->line6;
CHECK_STARTUP_PROGRESS(pod->startup_progress, POD_STARTUP_VERSIONREQ);
/* request firmware version: */
line6_version_request_async(line6);
}
static void pod_startup3(struct usb_line6_pod *pod)
{
CHECK_STARTUP_PROGRESS(pod->startup_progress, POD_STARTUP_WORKQUEUE);
/* schedule work for global work queue: */
schedule_work(&pod->startup_work);
}
static void pod_startup4(struct work_struct *work)
{
struct usb_line6_pod *pod =
container_of(work, struct usb_line6_pod, startup_work);
struct usb_line6 *line6 = &pod->line6;
CHECK_STARTUP_PROGRESS(pod->startup_progress, POD_STARTUP_SETUP);
/* serial number: */
line6_read_serial_number(&pod->line6, &pod->serial_number);
/* ALSA audio interface: */
snd_card_register(line6->card);
}
/* POD special files: */
static DEVICE_ATTR_RO(device_id);
static DEVICE_ATTR_RO(firmware_version);
static DEVICE_ATTR_RO(serial_number);
/* control info callback */
static int snd_pod_control_monitor_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 65535;
return 0;
}
/* control get callback */
static int snd_pod_control_monitor_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_line6_pcm *line6pcm = snd_kcontrol_chip(kcontrol);
struct usb_line6_pod *pod = (struct usb_line6_pod *)line6pcm->line6;
ucontrol->value.integer.value[0] = pod->monitor_level;
return 0;
}
/* control put callback */
static int snd_pod_control_monitor_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_line6_pcm *line6pcm = snd_kcontrol_chip(kcontrol);
struct usb_line6_pod *pod = (struct usb_line6_pod *)line6pcm->line6;
if (ucontrol->value.integer.value[0] == pod->monitor_level)
return 0;
pod->monitor_level = ucontrol->value.integer.value[0];
pod_set_system_param_int(pod, ucontrol->value.integer.value[0],
POD_MONITOR_LEVEL);
return 1;
}
/* control definition */
static struct snd_kcontrol_new pod_control_monitor = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Monitor Playback Volume",
.index = 0,
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
.info = snd_pod_control_monitor_info,
.get = snd_pod_control_monitor_get,
.put = snd_pod_control_monitor_put
};
/*
POD device disconnected.
*/
static void line6_pod_disconnect(struct usb_interface *interface)
{
struct usb_line6_pod *pod = usb_get_intfdata(interface);
struct device *dev = &interface->dev;
/* remove sysfs entries: */
device_remove_file(dev, &dev_attr_device_id);
device_remove_file(dev, &dev_attr_firmware_version);
device_remove_file(dev, &dev_attr_serial_number);
del_timer_sync(&pod->startup_timer);
cancel_work_sync(&pod->startup_work);
}
/*
Create sysfs entries.
*/
static int pod_create_files2(struct device *dev)
{
int err;
err = device_create_file(dev, &dev_attr_device_id);
if (err < 0)
return err;
err = device_create_file(dev, &dev_attr_firmware_version);
if (err < 0)
return err;
err = device_create_file(dev, &dev_attr_serial_number);
if (err < 0)
return err;
return 0;
}
/*
Try to init POD device.
*/
static int pod_init(struct usb_interface *interface,
struct usb_line6 *line6)
{
int err;
struct usb_line6_pod *pod = (struct usb_line6_pod *) line6;
line6->process_message = line6_pod_process_message;
line6->disconnect = line6_pod_disconnect;
init_timer(&pod->startup_timer);
INIT_WORK(&pod->startup_work, pod_startup4);
/* create sysfs entries: */
err = pod_create_files2(&interface->dev);
if (err < 0)
return err;
/* initialize MIDI subsystem: */
err = line6_init_midi(line6);
if (err < 0)
return err;
/* initialize PCM subsystem: */
err = line6_init_pcm(line6, &pod_pcm_properties);
if (err < 0)
return err;
/* register monitor control: */
err = snd_ctl_add(line6->card,
snd_ctl_new1(&pod_control_monitor, line6->line6pcm));
if (err < 0)
return err;
/*
When the sound card is registered at this point, the PODxt Live
displays "Invalid Code Error 07", so we do it later in the event
handler.
*/
if (pod->line6.properties->capabilities & LINE6_CAP_CONTROL) {
pod->monitor_level = POD_SYSTEM_INVALID;
/* initiate startup procedure: */
pod_startup1(pod);
}
return 0;
}
#define LINE6_DEVICE(prod) USB_DEVICE(0x0e41, prod)
#define LINE6_IF_NUM(prod, n) USB_DEVICE_INTERFACE_NUMBER(0x0e41, prod, n)
/* table of devices that work with this driver */
static const struct usb_device_id pod_id_table[] = {
{ LINE6_DEVICE(0x4250), .driver_info = LINE6_BASSPODXT },
{ LINE6_DEVICE(0x4642), .driver_info = LINE6_BASSPODXTLIVE },
{ LINE6_DEVICE(0x4252), .driver_info = LINE6_BASSPODXTPRO },
{ LINE6_IF_NUM(0x5051, 1), .driver_info = LINE6_POCKETPOD },
{ LINE6_DEVICE(0x5044), .driver_info = LINE6_PODXT },
{ LINE6_IF_NUM(0x4650, 0), .driver_info = LINE6_PODXTLIVE_POD },
{ LINE6_DEVICE(0x5050), .driver_info = LINE6_PODXTPRO },
{}
};
MODULE_DEVICE_TABLE(usb, pod_id_table);
static const struct line6_properties pod_properties_table[] = {
[LINE6_BASSPODXT] = {
.id = "BassPODxt",
.name = "BassPODxt",
.capabilities = LINE6_CAP_CONTROL
| LINE6_CAP_PCM
| LINE6_CAP_HWMON,
.altsetting = 5,
.ep_ctrl_r = 0x84,
.ep_ctrl_w = 0x03,
.ep_audio_r = 0x82,
.ep_audio_w = 0x01,
},
[LINE6_BASSPODXTLIVE] = {
.id = "BassPODxtLive",
.name = "BassPODxt Live",
.capabilities = LINE6_CAP_CONTROL
| LINE6_CAP_PCM
| LINE6_CAP_HWMON,
.altsetting = 1,
.ep_ctrl_r = 0x84,
.ep_ctrl_w = 0x03,
.ep_audio_r = 0x82,
.ep_audio_w = 0x01,
},
[LINE6_BASSPODXTPRO] = {
.id = "BassPODxtPro",
.name = "BassPODxt Pro",
.capabilities = LINE6_CAP_CONTROL
| LINE6_CAP_PCM
| LINE6_CAP_HWMON,
.altsetting = 5,
.ep_ctrl_r = 0x84,
.ep_ctrl_w = 0x03,
.ep_audio_r = 0x82,
.ep_audio_w = 0x01,
},
[LINE6_POCKETPOD] = {
.id = "PocketPOD",
.name = "Pocket POD",
.capabilities = LINE6_CAP_CONTROL,
.altsetting = 0,
.ep_ctrl_r = 0x82,
.ep_ctrl_w = 0x02,
/* no audio channel */
},
[LINE6_PODXT] = {
.id = "PODxt",
.name = "PODxt",
.capabilities = LINE6_CAP_CONTROL
| LINE6_CAP_PCM
| LINE6_CAP_HWMON,
.altsetting = 5,
.ep_ctrl_r = 0x84,
.ep_ctrl_w = 0x03,
.ep_audio_r = 0x82,
.ep_audio_w = 0x01,
},
[LINE6_PODXTLIVE_POD] = {
.id = "PODxtLive",
.name = "PODxt Live",
.capabilities = LINE6_CAP_CONTROL
| LINE6_CAP_PCM
| LINE6_CAP_HWMON,
.altsetting = 1,
.ep_ctrl_r = 0x84,
.ep_ctrl_w = 0x03,
.ep_audio_r = 0x82,
.ep_audio_w = 0x01,
},
[LINE6_PODXTPRO] = {
.id = "PODxtPro",
.name = "PODxt Pro",
.capabilities = LINE6_CAP_CONTROL
| LINE6_CAP_PCM
| LINE6_CAP_HWMON,
.altsetting = 5,
.ep_ctrl_r = 0x84,
.ep_ctrl_w = 0x03,
.ep_audio_r = 0x82,
.ep_audio_w = 0x01,
},
};
/*
Probe USB device.
*/
static int pod_probe(struct usb_interface *interface,
const struct usb_device_id *id)
{
struct usb_line6_pod *pod;
pod = kzalloc(sizeof(*pod), GFP_KERNEL);
if (!pod)
return -ENODEV;
return line6_probe(interface, &pod->line6,
&pod_properties_table[id->driver_info],
pod_init);
}
static struct usb_driver pod_driver = {
.name = KBUILD_MODNAME,
.probe = pod_probe,
.disconnect = line6_disconnect,
#ifdef CONFIG_PM
.suspend = line6_suspend,
.resume = line6_resume,
.reset_resume = line6_resume,
#endif
.id_table = pod_id_table,
};
module_usb_driver(pod_driver);
MODULE_DESCRIPTION("Line 6 POD USB driver");
MODULE_LICENSE("GPL");