linux/drivers/media/dvb-frontends/drxd_hard.c

2956 lines
74 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* drxd_hard.c: DVB-T Demodulator Micronas DRX3975D-A2,DRX397xD-B1
*
* Copyright (C) 2003-2007 Micronas
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/firmware.h>
#include <linux/i2c.h>
#include <asm/div64.h>
#include <media/dvb_frontend.h>
#include "drxd.h"
#include "drxd_firm.h"
#define DRX_FW_FILENAME_A2 "drxd-a2-1.1.fw"
#define DRX_FW_FILENAME_B1 "drxd-b1-1.1.fw"
#define CHUNK_SIZE 48
#define DRX_I2C_RMW 0x10
#define DRX_I2C_BROADCAST 0x20
#define DRX_I2C_CLEARCRC 0x80
#define DRX_I2C_SINGLE_MASTER 0xC0
#define DRX_I2C_MODEFLAGS 0xC0
#define DRX_I2C_FLAGS 0xF0
#define DEFAULT_LOCK_TIMEOUT 1100
#define DRX_CHANNEL_AUTO 0
#define DRX_CHANNEL_HIGH 1
#define DRX_CHANNEL_LOW 2
#define DRX_LOCK_MPEG 1
#define DRX_LOCK_FEC 2
#define DRX_LOCK_DEMOD 4
/****************************************************************************/
enum CSCDState {
CSCD_INIT = 0,
CSCD_SET,
CSCD_SAVED
};
enum CDrxdState {
DRXD_UNINITIALIZED = 0,
DRXD_STOPPED,
DRXD_STARTED
};
enum AGC_CTRL_MODE {
AGC_CTRL_AUTO = 0,
AGC_CTRL_USER,
AGC_CTRL_OFF
};
enum OperationMode {
OM_Default,
OM_DVBT_Diversity_Front,
OM_DVBT_Diversity_End
};
struct SCfgAgc {
enum AGC_CTRL_MODE ctrlMode;
u16 outputLevel; /* range [0, ... , 1023], 1/n of fullscale range */
u16 settleLevel; /* range [0, ... , 1023], 1/n of fullscale range */
u16 minOutputLevel; /* range [0, ... , 1023], 1/n of fullscale range */
u16 maxOutputLevel; /* range [0, ... , 1023], 1/n of fullscale range */
u16 speed; /* range [0, ... , 1023], 1/n of fullscale range */
u16 R1;
u16 R2;
u16 R3;
};
struct SNoiseCal {
int cpOpt;
short cpNexpOfs;
short tdCal2k;
short tdCal8k;
};
enum app_env {
APPENV_STATIC = 0,
APPENV_PORTABLE = 1,
APPENV_MOBILE = 2
};
enum EIFFilter {
IFFILTER_SAW = 0,
IFFILTER_DISCRETE = 1
};
struct drxd_state {
struct dvb_frontend frontend;
struct dvb_frontend_ops ops;
struct dtv_frontend_properties props;
const struct firmware *fw;
struct device *dev;
struct i2c_adapter *i2c;
void *priv;
struct drxd_config config;
int i2c_access;
int init_done;
struct mutex mutex;
u8 chip_adr;
u16 hi_cfg_timing_div;
u16 hi_cfg_bridge_delay;
u16 hi_cfg_wakeup_key;
u16 hi_cfg_ctrl;
u16 intermediate_freq;
u16 osc_clock_freq;
enum CSCDState cscd_state;
enum CDrxdState drxd_state;
u16 sys_clock_freq;
s16 osc_clock_deviation;
u16 expected_sys_clock_freq;
u16 insert_rs_byte;
u16 enable_parallel;
int operation_mode;
struct SCfgAgc if_agc_cfg;
struct SCfgAgc rf_agc_cfg;
struct SNoiseCal noise_cal;
u32 fe_fs_add_incr;
u32 org_fe_fs_add_incr;
u16 current_fe_if_incr;
u16 m_FeAgRegAgPwd;
u16 m_FeAgRegAgAgcSio;
u16 m_EcOcRegOcModeLop;
u16 m_EcOcRegSncSncLvl;
u8 *m_InitAtomicRead;
u8 *m_HiI2cPatch;
u8 *m_ResetCEFR;
u8 *m_InitFE_1;
u8 *m_InitFE_2;
u8 *m_InitCP;
u8 *m_InitCE;
u8 *m_InitEQ;
u8 *m_InitSC;
u8 *m_InitEC;
u8 *m_ResetECRAM;
u8 *m_InitDiversityFront;
u8 *m_InitDiversityEnd;
u8 *m_DisableDiversity;
u8 *m_StartDiversityFront;
u8 *m_StartDiversityEnd;
u8 *m_DiversityDelay8MHZ;
u8 *m_DiversityDelay6MHZ;
u8 *microcode;
u32 microcode_length;
int type_A;
int PGA;
int diversity;
int tuner_mirrors;
enum app_env app_env_default;
enum app_env app_env_diversity;
};
/****************************************************************************/
/* I2C **********************************************************************/
/****************************************************************************/
static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 * data, int len)
{
struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = data, .len = len };
if (i2c_transfer(adap, &msg, 1) != 1)
return -1;
return 0;
}
static int i2c_read(struct i2c_adapter *adap,
u8 adr, u8 *msg, int len, u8 *answ, int alen)
{
struct i2c_msg msgs[2] = {
{
.addr = adr, .flags = 0,
.buf = msg, .len = len
}, {
.addr = adr, .flags = I2C_M_RD,
.buf = answ, .len = alen
}
};
if (i2c_transfer(adap, msgs, 2) != 2)
return -1;
return 0;
}
static inline u32 MulDiv32(u32 a, u32 b, u32 c)
{
u64 tmp64;
tmp64 = (u64)a * (u64)b;
do_div(tmp64, c);
return (u32) tmp64;
}
static int Read16(struct drxd_state *state, u32 reg, u16 *data, u8 flags)
{
u8 adr = state->config.demod_address;
u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
};
u8 mm2[2];
if (i2c_read(state->i2c, adr, mm1, 4, mm2, 2) < 0)
return -1;
if (data)
*data = mm2[0] | (mm2[1] << 8);
return mm2[0] | (mm2[1] << 8);
}
static int Read32(struct drxd_state *state, u32 reg, u32 *data, u8 flags)
{
u8 adr = state->config.demod_address;
u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
};
u8 mm2[4];
if (i2c_read(state->i2c, adr, mm1, 4, mm2, 4) < 0)
return -1;
if (data)
*data =
mm2[0] | (mm2[1] << 8) | (mm2[2] << 16) | (mm2[3] << 24);
return 0;
}
static int Write16(struct drxd_state *state, u32 reg, u16 data, u8 flags)
{
u8 adr = state->config.demod_address;
u8 mm[6] = { reg & 0xff, (reg >> 16) & 0xff,
flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
data & 0xff, (data >> 8) & 0xff
};
if (i2c_write(state->i2c, adr, mm, 6) < 0)
return -1;
return 0;
}
static int Write32(struct drxd_state *state, u32 reg, u32 data, u8 flags)
{
u8 adr = state->config.demod_address;
u8 mm[8] = { reg & 0xff, (reg >> 16) & 0xff,
flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
data & 0xff, (data >> 8) & 0xff,
(data >> 16) & 0xff, (data >> 24) & 0xff
};
if (i2c_write(state->i2c, adr, mm, 8) < 0)
return -1;
return 0;
}
static int write_chunk(struct drxd_state *state,
u32 reg, u8 *data, u32 len, u8 flags)
{
u8 adr = state->config.demod_address;
u8 mm[CHUNK_SIZE + 4] = { reg & 0xff, (reg >> 16) & 0xff,
flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
};
int i;
for (i = 0; i < len; i++)
mm[4 + i] = data[i];
if (i2c_write(state->i2c, adr, mm, 4 + len) < 0) {
printk(KERN_ERR "error in write_chunk\n");
return -1;
}
return 0;
}
static int WriteBlock(struct drxd_state *state,
u32 Address, u16 BlockSize, u8 *pBlock, u8 Flags)
{
while (BlockSize > 0) {
u16 Chunk = BlockSize > CHUNK_SIZE ? CHUNK_SIZE : BlockSize;
if (write_chunk(state, Address, pBlock, Chunk, Flags) < 0)
return -1;
pBlock += Chunk;
Address += (Chunk >> 1);
BlockSize -= Chunk;
}
return 0;
}
static int WriteTable(struct drxd_state *state, u8 * pTable)
{
int status = 0;
if (!pTable)
return 0;
while (!status) {
u16 Length;
u32 Address = pTable[0] | (pTable[1] << 8) |
(pTable[2] << 16) | (pTable[3] << 24);
if (Address == 0xFFFFFFFF)
break;
pTable += sizeof(u32);
Length = pTable[0] | (pTable[1] << 8);
pTable += sizeof(u16);
if (!Length)
break;
status = WriteBlock(state, Address, Length * 2, pTable, 0);
pTable += (Length * 2);
}
return status;
}
/****************************************************************************/
/****************************************************************************/
/****************************************************************************/
static int ResetCEFR(struct drxd_state *state)
{
return WriteTable(state, state->m_ResetCEFR);
}
static int InitCP(struct drxd_state *state)
{
return WriteTable(state, state->m_InitCP);
}
static int InitCE(struct drxd_state *state)
{
int status;
enum app_env AppEnv = state->app_env_default;
do {
status = WriteTable(state, state->m_InitCE);
if (status < 0)
break;
if (state->operation_mode == OM_DVBT_Diversity_Front ||
state->operation_mode == OM_DVBT_Diversity_End) {
AppEnv = state->app_env_diversity;
}
if (AppEnv == APPENV_STATIC) {
status = Write16(state, CE_REG_TAPSET__A, 0x0000, 0);
if (status < 0)
break;
} else if (AppEnv == APPENV_PORTABLE) {
status = Write16(state, CE_REG_TAPSET__A, 0x0001, 0);
if (status < 0)
break;
} else if (AppEnv == APPENV_MOBILE && state->type_A) {
status = Write16(state, CE_REG_TAPSET__A, 0x0002, 0);
if (status < 0)
break;
} else if (AppEnv == APPENV_MOBILE && !state->type_A) {
status = Write16(state, CE_REG_TAPSET__A, 0x0006, 0);
if (status < 0)
break;
}
/* start ce */
status = Write16(state, B_CE_REG_COMM_EXEC__A, 0x0001, 0);
if (status < 0)
break;
} while (0);
return status;
}
static int StopOC(struct drxd_state *state)
{
int status = 0;
u16 ocSyncLvl = 0;
u16 ocModeLop = state->m_EcOcRegOcModeLop;
u16 dtoIncLop = 0;
u16 dtoIncHip = 0;
do {
/* Store output configuration */
status = Read16(state, EC_OC_REG_SNC_ISC_LVL__A, &ocSyncLvl, 0);
if (status < 0)
break;
/* CHK_ERROR(Read16(EC_OC_REG_OC_MODE_LOP__A, &ocModeLop)); */
state->m_EcOcRegSncSncLvl = ocSyncLvl;
/* m_EcOcRegOcModeLop = ocModeLop; */
/* Flush FIFO (byte-boundary) at fixed rate */
status = Read16(state, EC_OC_REG_RCN_MAP_LOP__A, &dtoIncLop, 0);
if (status < 0)
break;
status = Read16(state, EC_OC_REG_RCN_MAP_HIP__A, &dtoIncHip, 0);
if (status < 0)
break;
status = Write16(state, EC_OC_REG_DTO_INC_LOP__A, dtoIncLop, 0);
if (status < 0)
break;
status = Write16(state, EC_OC_REG_DTO_INC_HIP__A, dtoIncHip, 0);
if (status < 0)
break;
ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC__M);
ocModeLop |= EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC_STATIC;
status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
if (status < 0)
break;
status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
if (status < 0)
break;
msleep(1);
/* Output pins to '0' */
status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS__M, 0);
if (status < 0)
break;
/* Force the OC out of sync */
ocSyncLvl &= ~(EC_OC_REG_SNC_ISC_LVL_OSC__M);
status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, ocSyncLvl, 0);
if (status < 0)
break;
ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M);
ocModeLop |= EC_OC_REG_OC_MODE_LOP_PAR_ENA_ENABLE;
ocModeLop |= 0x2; /* Magically-out-of-sync */
status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
if (status < 0)
break;
status = Write16(state, EC_OC_REG_COMM_INT_STA__A, 0x0, 0);
if (status < 0)
break;
status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
if (status < 0)
break;
} while (0);
return status;
}
static int StartOC(struct drxd_state *state)
{
int status = 0;
do {
/* Stop OC */
status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
if (status < 0)
break;
/* Restore output configuration */
status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, state->m_EcOcRegSncSncLvl, 0);
if (status < 0)
break;
status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, state->m_EcOcRegOcModeLop, 0);
if (status < 0)
break;
/* Output pins active again */
status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS_INIT, 0);
if (status < 0)
break;
/* Start OC */
status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
if (status < 0)
break;
} while (0);
return status;
}
static int InitEQ(struct drxd_state *state)
{
return WriteTable(state, state->m_InitEQ);
}
static int InitEC(struct drxd_state *state)
{
return WriteTable(state, state->m_InitEC);
}
static int InitSC(struct drxd_state *state)
{
return WriteTable(state, state->m_InitSC);
}
static int InitAtomicRead(struct drxd_state *state)
{
return WriteTable(state, state->m_InitAtomicRead);
}
static int CorrectSysClockDeviation(struct drxd_state *state);
static int DRX_GetLockStatus(struct drxd_state *state, u32 * pLockStatus)
{
u16 ScRaRamLock = 0;
const u16 mpeg_lock_mask = (SC_RA_RAM_LOCK_MPEG__M |
SC_RA_RAM_LOCK_FEC__M |
SC_RA_RAM_LOCK_DEMOD__M);
const u16 fec_lock_mask = (SC_RA_RAM_LOCK_FEC__M |
SC_RA_RAM_LOCK_DEMOD__M);
const u16 demod_lock_mask = SC_RA_RAM_LOCK_DEMOD__M;
int status;
*pLockStatus = 0;
status = Read16(state, SC_RA_RAM_LOCK__A, &ScRaRamLock, 0x0000);
if (status < 0) {
printk(KERN_ERR "Can't read SC_RA_RAM_LOCK__A status = %08x\n", status);
return status;
}
if (state->drxd_state != DRXD_STARTED)
return 0;
if ((ScRaRamLock & mpeg_lock_mask) == mpeg_lock_mask) {
*pLockStatus |= DRX_LOCK_MPEG;
CorrectSysClockDeviation(state);
}
if ((ScRaRamLock & fec_lock_mask) == fec_lock_mask)
*pLockStatus |= DRX_LOCK_FEC;
if ((ScRaRamLock & demod_lock_mask) == demod_lock_mask)
*pLockStatus |= DRX_LOCK_DEMOD;
return 0;
}
/****************************************************************************/
static int SetCfgIfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
{
int status;
if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
return -1;
if (cfg->ctrlMode == AGC_CTRL_USER) {
do {
u16 FeAgRegPm1AgcWri;
u16 FeAgRegAgModeLop;
status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
if (status < 0)
break;
FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
FeAgRegAgModeLop |= FE_AG_REG_AG_MODE_LOP_MODE_4_STATIC;
status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
if (status < 0)
break;
FeAgRegPm1AgcWri = (u16) (cfg->outputLevel &
FE_AG_REG_PM1_AGC_WRI__M);
status = Write16(state, FE_AG_REG_PM1_AGC_WRI__A, FeAgRegPm1AgcWri, 0);
if (status < 0)
break;
} while (0);
} else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
if (((cfg->maxOutputLevel) < (cfg->minOutputLevel)) ||
((cfg->maxOutputLevel) > DRXD_FE_CTRL_MAX) ||
((cfg->speed) > DRXD_FE_CTRL_MAX) ||
((cfg->settleLevel) > DRXD_FE_CTRL_MAX)
)
return -1;
do {
u16 FeAgRegAgModeLop;
u16 FeAgRegEgcSetLvl;
u16 slope, offset;
/* == Mode == */
status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
if (status < 0)
break;
FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
FeAgRegAgModeLop |=
FE_AG_REG_AG_MODE_LOP_MODE_4_DYNAMIC;
status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
if (status < 0)
break;
/* == Settle level == */
FeAgRegEgcSetLvl = (u16) ((cfg->settleLevel >> 1) &
FE_AG_REG_EGC_SET_LVL__M);
status = Write16(state, FE_AG_REG_EGC_SET_LVL__A, FeAgRegEgcSetLvl, 0);
if (status < 0)
break;
/* == Min/Max == */
slope = (u16) ((cfg->maxOutputLevel -
cfg->minOutputLevel) / 2);
offset = (u16) ((cfg->maxOutputLevel +
cfg->minOutputLevel) / 2 - 511);
status = Write16(state, FE_AG_REG_GC1_AGC_RIC__A, slope, 0);
if (status < 0)
break;
status = Write16(state, FE_AG_REG_GC1_AGC_OFF__A, offset, 0);
if (status < 0)
break;
/* == Speed == */
{
const u16 maxRur = 8;
static const u16 slowIncrDecLUT[] = {
3, 4, 4, 5, 6 };
static const u16 fastIncrDecLUT[] = {
14, 15, 15, 16,
17, 18, 18, 19,
20, 21, 22, 23,
24, 26, 27, 28,
29, 31
};
u16 fineSteps = (DRXD_FE_CTRL_MAX + 1) /
(maxRur + 1);
u16 fineSpeed = (u16) (cfg->speed -
((cfg->speed /
fineSteps) *
fineSteps));
u16 invRurCount = (u16) (cfg->speed /
fineSteps);
u16 rurCount;
if (invRurCount > maxRur) {
rurCount = 0;
fineSpeed += fineSteps;
} else {
rurCount = maxRur - invRurCount;
}
/*
fastInc = default *
(2^(fineSpeed/fineSteps))
=> range[default...2*default>
slowInc = default *
(2^(fineSpeed/fineSteps))
*/
{
u16 fastIncrDec =
fastIncrDecLUT[fineSpeed /
((fineSteps /
(14 + 1)) + 1)];
u16 slowIncrDec =
slowIncrDecLUT[fineSpeed /
(fineSteps /
(3 + 1))];
status = Write16(state, FE_AG_REG_EGC_RUR_CNT__A, rurCount, 0);
if (status < 0)
break;
status = Write16(state, FE_AG_REG_EGC_FAS_INC__A, fastIncrDec, 0);
if (status < 0)
break;
status = Write16(state, FE_AG_REG_EGC_FAS_DEC__A, fastIncrDec, 0);
if (status < 0)
break;
status = Write16(state, FE_AG_REG_EGC_SLO_INC__A, slowIncrDec, 0);
if (status < 0)
break;
status = Write16(state, FE_AG_REG_EGC_SLO_DEC__A, slowIncrDec, 0);
if (status < 0)
break;
}
}
} while (0);
} else {
/* No OFF mode for IF control */
return -1;
}
return status;
}
static int SetCfgRfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
{
int status = 0;
if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
return -1;
if (cfg->ctrlMode == AGC_CTRL_USER) {
do {
u16 AgModeLop = 0;
u16 level = (cfg->outputLevel);
if (level == DRXD_FE_CTRL_MAX)
level++;
status = Write16(state, FE_AG_REG_PM2_AGC_WRI__A, level, 0x0000);
if (status < 0)
break;
/*==== Mode ====*/
/* Powerdown PD2, WRI source */
state->m_FeAgRegAgPwd &= ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
state->m_FeAgRegAgPwd |=
FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
if (status < 0)
break;
status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
if (status < 0)
break;
AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
FE_AG_REG_AG_MODE_LOP_MODE_E__M));
AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
if (status < 0)
break;
/* enable AGC2 pin */
{
u16 FeAgRegAgAgcSio = 0;
status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
if (status < 0)
break;
FeAgRegAgAgcSio &=
~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
FeAgRegAgAgcSio |=
FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
if (status < 0)
break;
}
} while (0);
} else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
u16 AgModeLop = 0;
do {
u16 level;
/* Automatic control */
/* Powerup PD2, AGC2 as output, TGC source */
(state->m_FeAgRegAgPwd) &=
~(FE_AG_REG_AG_PWD_PWD_PD2__M);
(state->m_FeAgRegAgPwd) |=
FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
if (status < 0)
break;
status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
if (status < 0)
break;
AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
FE_AG_REG_AG_MODE_LOP_MODE_E__M));
AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
FE_AG_REG_AG_MODE_LOP_MODE_E_DYNAMIC);
status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
if (status < 0)
break;
/* Settle level */
level = (((cfg->settleLevel) >> 4) &
FE_AG_REG_TGC_SET_LVL__M);
status = Write16(state, FE_AG_REG_TGC_SET_LVL__A, level, 0x0000);
if (status < 0)
break;
/* Min/max: don't care */
/* Speed: TODO */
/* enable AGC2 pin */
{
u16 FeAgRegAgAgcSio = 0;
status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
if (status < 0)
break;
FeAgRegAgAgcSio &=
~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
FeAgRegAgAgcSio |=
FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
if (status < 0)
break;
}
} while (0);
} else {
u16 AgModeLop = 0;
do {
/* No RF AGC control */
/* Powerdown PD2, AGC2 as output, WRI source */
(state->m_FeAgRegAgPwd) &=
~(FE_AG_REG_AG_PWD_PWD_PD2__M);
(state->m_FeAgRegAgPwd) |=
FE_AG_REG_AG_PWD_PWD_PD2_ENABLE;
status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
if (status < 0)
break;
status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
if (status < 0)
break;
AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
FE_AG_REG_AG_MODE_LOP_MODE_E__M));
AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
if (status < 0)
break;
/* set FeAgRegAgAgcSio AGC2 (RF) as input */
{
u16 FeAgRegAgAgcSio = 0;
status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
if (status < 0)
break;
FeAgRegAgAgcSio &=
~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
FeAgRegAgAgcSio |=
FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_INPUT;
status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
if (status < 0)
break;
}
} while (0);
}
return status;
}
static int ReadIFAgc(struct drxd_state *state, u32 * pValue)
{
int status = 0;
*pValue = 0;
if (state->if_agc_cfg.ctrlMode != AGC_CTRL_OFF) {
u16 Value;
status = Read16(state, FE_AG_REG_GC1_AGC_DAT__A, &Value, 0);
Value &= FE_AG_REG_GC1_AGC_DAT__M;
if (status >= 0) {
/* 3.3V
|
R1
|
Vin - R3 - * -- Vout
|
R2
|
GND
*/
u32 R1 = state->if_agc_cfg.R1;
u32 R2 = state->if_agc_cfg.R2;
u32 R3 = state->if_agc_cfg.R3;
u32 Vmax, Rpar, Vmin, Vout;
if (R2 == 0 && (R1 == 0 || R3 == 0))
return 0;
Vmax = (3300 * R2) / (R1 + R2);
Rpar = (R2 * R3) / (R3 + R2);
Vmin = (3300 * Rpar) / (R1 + Rpar);
Vout = Vmin + ((Vmax - Vmin) * Value) / 1024;
*pValue = Vout;
}
}
return status;
}
static int load_firmware(struct drxd_state *state, const char *fw_name)
{
const struct firmware *fw;
if (request_firmware(&fw, fw_name, state->dev) < 0) {
printk(KERN_ERR "drxd: firmware load failure [%s]\n", fw_name);
return -EIO;
}
state->microcode = kmemdup(fw->data, fw->size, GFP_KERNEL);
if (!state->microcode) {
release_firmware(fw);
return -ENOMEM;
}
state->microcode_length = fw->size;
release_firmware(fw);
return 0;
}
static int DownloadMicrocode(struct drxd_state *state,
const u8 *pMCImage, u32 Length)
{
u8 *pSrc;
u32 Address;
u16 nBlocks;
u16 BlockSize;
u32 offset = 0;
int i, status = 0;
pSrc = (u8 *) pMCImage;
/* We're not using Flags */
/* Flags = (pSrc[0] << 8) | pSrc[1]; */
pSrc += sizeof(u16);
offset += sizeof(u16);
nBlocks = (pSrc[0] << 8) | pSrc[1];
pSrc += sizeof(u16);
offset += sizeof(u16);
for (i = 0; i < nBlocks; i++) {
Address = (pSrc[0] << 24) | (pSrc[1] << 16) |
(pSrc[2] << 8) | pSrc[3];
pSrc += sizeof(u32);
offset += sizeof(u32);
BlockSize = ((pSrc[0] << 8) | pSrc[1]) * sizeof(u16);
pSrc += sizeof(u16);
offset += sizeof(u16);
/* We're not using Flags */
/* u16 Flags = (pSrc[0] << 8) | pSrc[1]; */
pSrc += sizeof(u16);
offset += sizeof(u16);
/* We're not using BlockCRC */
/* u16 BlockCRC = (pSrc[0] << 8) | pSrc[1]; */
pSrc += sizeof(u16);
offset += sizeof(u16);
status = WriteBlock(state, Address, BlockSize,
pSrc, DRX_I2C_CLEARCRC);
if (status < 0)
break;
pSrc += BlockSize;
offset += BlockSize;
}
return status;
}
static int HI_Command(struct drxd_state *state, u16 cmd, u16 * pResult)
{
u32 nrRetries = 0;
int status;
status = Write16(state, HI_RA_RAM_SRV_CMD__A, cmd, 0);
if (status < 0)
return status;
do {
nrRetries += 1;
if (nrRetries > DRXD_MAX_RETRIES) {
status = -1;
break;
}
status = Read16(state, HI_RA_RAM_SRV_CMD__A, NULL, 0);
} while (status != 0);
if (status >= 0)
status = Read16(state, HI_RA_RAM_SRV_RES__A, pResult, 0);
return status;
}
static int HI_CfgCommand(struct drxd_state *state)
{
int status = 0;
mutex_lock(&state->mutex);
Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, state->hi_cfg_timing_div, 0);
Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, state->hi_cfg_bridge_delay, 0);
Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, state->hi_cfg_wakeup_key, 0);
Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, state->hi_cfg_ctrl, 0);
Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
if ((state->hi_cfg_ctrl & HI_RA_RAM_SRV_CFG_ACT_PWD_EXE) ==
HI_RA_RAM_SRV_CFG_ACT_PWD_EXE)
status = Write16(state, HI_RA_RAM_SRV_CMD__A,
HI_RA_RAM_SRV_CMD_CONFIG, 0);
else
status = HI_Command(state, HI_RA_RAM_SRV_CMD_CONFIG, NULL);
mutex_unlock(&state->mutex);
return status;
}
static int InitHI(struct drxd_state *state)
{
state->hi_cfg_wakeup_key = (state->chip_adr);
/* port/bridge/power down ctrl */
state->hi_cfg_ctrl = HI_RA_RAM_SRV_CFG_ACT_SLV0_ON;
return HI_CfgCommand(state);
}
static int HI_ResetCommand(struct drxd_state *state)
{
int status;
mutex_lock(&state->mutex);
status = Write16(state, HI_RA_RAM_SRV_RST_KEY__A,
HI_RA_RAM_SRV_RST_KEY_ACT, 0);
if (status == 0)
status = HI_Command(state, HI_RA_RAM_SRV_CMD_RESET, NULL);
mutex_unlock(&state->mutex);
msleep(1);
return status;
}
static int DRX_ConfigureI2CBridge(struct drxd_state *state, int bEnableBridge)
{
state->hi_cfg_ctrl &= (~HI_RA_RAM_SRV_CFG_ACT_BRD__M);
if (bEnableBridge)
state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_ON;
else
state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_OFF;
return HI_CfgCommand(state);
}
#define HI_TR_WRITE 0x9
#define HI_TR_READ 0xA
#define HI_TR_READ_WRITE 0xB
#define HI_TR_BROADCAST 0x4
#if 0
static int AtomicReadBlock(struct drxd_state *state,
u32 Addr, u16 DataSize, u8 *pData, u8 Flags)
{
int status;
int i = 0;
/* Parameter check */
if ((!pData) || ((DataSize & 1) != 0))
return -1;
mutex_lock(&state->mutex);
do {
/* Instruct HI to read n bytes */
/* TODO use proper names forthese egisters */
status = Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, (HI_TR_FUNC_ADDR & 0xFFFF), 0);
if (status < 0)
break;
status = Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, (u16) (Addr >> 16), 0);
if (status < 0)
break;
status = Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, (u16) (Addr & 0xFFFF), 0);
if (status < 0)
break;
status = Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, (u16) ((DataSize / 2) - 1), 0);
if (status < 0)
break;
status = Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, HI_TR_READ, 0);
if (status < 0)
break;
status = HI_Command(state, HI_RA_RAM_SRV_CMD_EXECUTE, 0);
if (status < 0)
break;
} while (0);
if (status >= 0) {
for (i = 0; i < (DataSize / 2); i += 1) {
u16 word;
status = Read16(state, (HI_RA_RAM_USR_BEGIN__A + i),
&word, 0);
if (status < 0)
break;
pData[2 * i] = (u8) (word & 0xFF);
pData[(2 * i) + 1] = (u8) (word >> 8);
}
}
mutex_unlock(&state->mutex);
return status;
}
static int AtomicReadReg32(struct drxd_state *state,
u32 Addr, u32 *pData, u8 Flags)
{
u8 buf[sizeof(u32)];
int status;
if (!pData)
return -1;
status = AtomicReadBlock(state, Addr, sizeof(u32), buf, Flags);
*pData = (((u32) buf[0]) << 0) +
(((u32) buf[1]) << 8) +
(((u32) buf[2]) << 16) + (((u32) buf[3]) << 24);
return status;
}
#endif
static int StopAllProcessors(struct drxd_state *state)
{
return Write16(state, HI_COMM_EXEC__A,
SC_COMM_EXEC_CTL_STOP, DRX_I2C_BROADCAST);
}
static int EnableAndResetMB(struct drxd_state *state)
{
if (state->type_A) {
/* disable? monitor bus observe @ EC_OC */
Write16(state, EC_OC_REG_OC_MON_SIO__A, 0x0000, 0x0000);
}
/* do inverse broadcast, followed by explicit write to HI */
Write16(state, HI_COMM_MB__A, 0x0000, DRX_I2C_BROADCAST);
Write16(state, HI_COMM_MB__A, 0x0000, 0x0000);
return 0;
}
static int InitCC(struct drxd_state *state)
{
int status = 0;
if (state->osc_clock_freq == 0 ||
state->osc_clock_freq > 20000 ||
(state->osc_clock_freq % 4000) != 0) {
printk(KERN_ERR "invalid osc frequency %d\n", state->osc_clock_freq);
return -1;
}
status |= Write16(state, CC_REG_OSC_MODE__A, CC_REG_OSC_MODE_M20, 0);
status |= Write16(state, CC_REG_PLL_MODE__A,
CC_REG_PLL_MODE_BYPASS_PLL |
CC_REG_PLL_MODE_PUMP_CUR_12, 0);
status |= Write16(state, CC_REG_REF_DIVIDE__A,
state->osc_clock_freq / 4000, 0);
status |= Write16(state, CC_REG_PWD_MODE__A, CC_REG_PWD_MODE_DOWN_PLL,
0);
status |= Write16(state, CC_REG_UPDATE__A, CC_REG_UPDATE_KEY, 0);
return status;
}
static int ResetECOD(struct drxd_state *state)
{
int status = 0;
if (state->type_A)
status = Write16(state, EC_OD_REG_SYNC__A, 0x0664, 0);
else
status = Write16(state, B_EC_OD_REG_SYNC__A, 0x0664, 0);
if (!(status < 0))
status = WriteTable(state, state->m_ResetECRAM);
if (!(status < 0))
status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0001, 0);
return status;
}
/* Configure PGA switch */
static int SetCfgPga(struct drxd_state *state, int pgaSwitch)
{
int status;
u16 AgModeLop = 0;
u16 AgModeHip = 0;
do {
if (pgaSwitch) {
/* PGA on */
/* fine gain */
status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
if (status < 0)
break;
AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_DYNAMIC;
status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
if (status < 0)
break;
/* coarse gain */
status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
if (status < 0)
break;
AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_DYNAMIC;
status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
if (status < 0)
break;
/* enable fine and coarse gain, enable AAF,
no ext resistor */
status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFY_PCY_AFY_REN, 0x0000);
if (status < 0)
break;
} else {
/* PGA off, bypass */
/* fine gain */
status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
if (status < 0)
break;
AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_STATIC;
status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
if (status < 0)
break;
/* coarse gain */
status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
if (status < 0)
break;
AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_STATIC;
status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
if (status < 0)
break;
/* disable fine and coarse gain, enable AAF,
no ext resistor */
status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN, 0x0000);
if (status < 0)
break;
}
} while (0);
return status;
}
static int InitFE(struct drxd_state *state)
{
int status;
do {
status = WriteTable(state, state->m_InitFE_1);
if (status < 0)
break;
if (state->type_A) {
status = Write16(state, FE_AG_REG_AG_PGA_MODE__A,
FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
0);
} else {
if (state->PGA)
status = SetCfgPga(state, 0);
else
status =
Write16(state, B_FE_AG_REG_AG_PGA_MODE__A,
B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
0);
}
if (status < 0)
break;
status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, state->m_FeAgRegAgAgcSio, 0x0000);
if (status < 0)
break;
status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
if (status < 0)
break;
status = WriteTable(state, state->m_InitFE_2);
if (status < 0)
break;
} while (0);
return status;
}
static int InitFT(struct drxd_state *state)
{
/*
norm OFFSET, MB says =2 voor 8K en =3 voor 2K waarschijnlijk
SC stuff
*/
return Write16(state, FT_REG_COMM_EXEC__A, 0x0001, 0x0000);
}
static int SC_WaitForReady(struct drxd_state *state)
{
int i;
for (i = 0; i < DRXD_MAX_RETRIES; i += 1) {
int status = Read16(state, SC_RA_RAM_CMD__A, NULL, 0);
if (status == 0)
return status;
}
return -1;
}
static int SC_SendCommand(struct drxd_state *state, u16 cmd)
{
int status = 0, ret;
u16 errCode;
status = Write16(state, SC_RA_RAM_CMD__A, cmd, 0);
if (status < 0)
return status;
SC_WaitForReady(state);
ret = Read16(state, SC_RA_RAM_CMD_ADDR__A, &errCode, 0);
if (ret < 0 || errCode == 0xFFFF) {
printk(KERN_ERR "Command Error\n");
status = -1;
}
return status;
}
static int SC_ProcStartCommand(struct drxd_state *state,
u16 subCmd, u16 param0, u16 param1)
{
int ret, status = 0;
u16 scExec;
mutex_lock(&state->mutex);
do {
ret = Read16(state, SC_COMM_EXEC__A, &scExec, 0);
if (ret < 0 || scExec != 1) {
status = -1;
break;
}
SC_WaitForReady(state);
status |= Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
status |= Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
status |= Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
SC_SendCommand(state, SC_RA_RAM_CMD_PROC_START);
} while (0);
mutex_unlock(&state->mutex);
return status;
}
static int SC_SetPrefParamCommand(struct drxd_state *state,
u16 subCmd, u16 param0, u16 param1)
{
int status;
mutex_lock(&state->mutex);
do {
status = SC_WaitForReady(state);
if (status < 0)
break;
status = Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
if (status < 0)
break;
status = Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
if (status < 0)
break;
status = Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
if (status < 0)
break;
status = SC_SendCommand(state, SC_RA_RAM_CMD_SET_PREF_PARAM);
if (status < 0)
break;
} while (0);
mutex_unlock(&state->mutex);
return status;
}
#if 0
static int SC_GetOpParamCommand(struct drxd_state *state, u16 * result)
{
int status = 0;
mutex_lock(&state->mutex);
do {
status = SC_WaitForReady(state);
if (status < 0)
break;
status = SC_SendCommand(state, SC_RA_RAM_CMD_GET_OP_PARAM);
if (status < 0)
break;
status = Read16(state, SC_RA_RAM_PARAM0__A, result, 0);
if (status < 0)
break;
} while (0);
mutex_unlock(&state->mutex);
return status;
}
#endif
static int ConfigureMPEGOutput(struct drxd_state *state, int bEnableOutput)
{
int status;
do {
u16 EcOcRegIprInvMpg = 0;
u16 EcOcRegOcModeLop = 0;
u16 EcOcRegOcModeHip = 0;
u16 EcOcRegOcMpgSio = 0;
/*CHK_ERROR(Read16(state, EC_OC_REG_OC_MODE_LOP__A, &EcOcRegOcModeLop, 0)); */
if (state->operation_mode == OM_DVBT_Diversity_Front) {
if (bEnableOutput) {
EcOcRegOcModeHip |=
B_EC_OC_REG_OC_MODE_HIP_MPG_BUS_SRC_MONITOR;
} else
EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
EcOcRegOcModeLop |=
EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
} else {
EcOcRegOcModeLop = state->m_EcOcRegOcModeLop;
if (bEnableOutput)
EcOcRegOcMpgSio &= (~(EC_OC_REG_OC_MPG_SIO__M));
else
EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
/* Don't Insert RS Byte */
if (state->insert_rs_byte) {
EcOcRegOcModeLop &=
(~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M));
EcOcRegOcModeHip &=
(~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
EcOcRegOcModeHip |=
EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_ENABLE;
} else {
EcOcRegOcModeLop |=
EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
EcOcRegOcModeHip &=
(~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
EcOcRegOcModeHip |=
EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_DISABLE;
}
/* Mode = Parallel */
if (state->enable_parallel)
EcOcRegOcModeLop &=
(~(EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE__M));
else
EcOcRegOcModeLop |=
EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE_SERIAL;
}
/* Invert Data */
/* EcOcRegIprInvMpg |= 0x00FF; */
EcOcRegIprInvMpg &= (~(0x00FF));
/* Invert Error ( we don't use the pin ) */
/* EcOcRegIprInvMpg |= 0x0100; */
EcOcRegIprInvMpg &= (~(0x0100));
/* Invert Start ( we don't use the pin ) */
/* EcOcRegIprInvMpg |= 0x0200; */
EcOcRegIprInvMpg &= (~(0x0200));
/* Invert Valid ( we don't use the pin ) */
/* EcOcRegIprInvMpg |= 0x0400; */
EcOcRegIprInvMpg &= (~(0x0400));
/* Invert Clock */
/* EcOcRegIprInvMpg |= 0x0800; */
EcOcRegIprInvMpg &= (~(0x0800));
/* EcOcRegOcModeLop =0x05; */
status = Write16(state, EC_OC_REG_IPR_INV_MPG__A, EcOcRegIprInvMpg, 0);
if (status < 0)
break;
status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, EcOcRegOcModeLop, 0);
if (status < 0)
break;
status = Write16(state, EC_OC_REG_OC_MODE_HIP__A, EcOcRegOcModeHip, 0x0000);
if (status < 0)
break;
status = Write16(state, EC_OC_REG_OC_MPG_SIO__A, EcOcRegOcMpgSio, 0);
if (status < 0)
break;
} while (0);
return status;
}
static int SetDeviceTypeId(struct drxd_state *state)
{
int status = 0;
u16 deviceId = 0;
do {
status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
if (status < 0)
break;
/* TODO: why twice? */
status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
if (status < 0)
break;
printk(KERN_INFO "drxd: deviceId = %04x\n", deviceId);
state->type_A = 0;
state->PGA = 0;
state->diversity = 0;
if (deviceId == 0) { /* on A2 only 3975 available */
state->type_A = 1;
printk(KERN_INFO "DRX3975D-A2\n");
} else {
deviceId >>= 12;
printk(KERN_INFO "DRX397%dD-B1\n", deviceId);
switch (deviceId) {
case 4:
state->diversity = 1;
/* fall through */
case 3:
case 7:
state->PGA = 1;
break;
case 6:
state->diversity = 1;
/* fall through */
case 5:
case 8:
break;
default:
status = -1;
break;
}
}
} while (0);
if (status < 0)
return status;
/* Init Table selection */
state->m_InitAtomicRead = DRXD_InitAtomicRead;
state->m_InitSC = DRXD_InitSC;
state->m_ResetECRAM = DRXD_ResetECRAM;
if (state->type_A) {
state->m_ResetCEFR = DRXD_ResetCEFR;
state->m_InitFE_1 = DRXD_InitFEA2_1;
state->m_InitFE_2 = DRXD_InitFEA2_2;
state->m_InitCP = DRXD_InitCPA2;
state->m_InitCE = DRXD_InitCEA2;
state->m_InitEQ = DRXD_InitEQA2;
state->m_InitEC = DRXD_InitECA2;
if (load_firmware(state, DRX_FW_FILENAME_A2))
return -EIO;
} else {
state->m_ResetCEFR = NULL;
state->m_InitFE_1 = DRXD_InitFEB1_1;
state->m_InitFE_2 = DRXD_InitFEB1_2;
state->m_InitCP = DRXD_InitCPB1;
state->m_InitCE = DRXD_InitCEB1;
state->m_InitEQ = DRXD_InitEQB1;
state->m_InitEC = DRXD_InitECB1;
if (load_firmware(state, DRX_FW_FILENAME_B1))
return -EIO;
}
if (state->diversity) {
state->m_InitDiversityFront = DRXD_InitDiversityFront;
state->m_InitDiversityEnd = DRXD_InitDiversityEnd;
state->m_DisableDiversity = DRXD_DisableDiversity;
state->m_StartDiversityFront = DRXD_StartDiversityFront;
state->m_StartDiversityEnd = DRXD_StartDiversityEnd;
state->m_DiversityDelay8MHZ = DRXD_DiversityDelay8MHZ;
state->m_DiversityDelay6MHZ = DRXD_DiversityDelay6MHZ;
} else {
state->m_InitDiversityFront = NULL;
state->m_InitDiversityEnd = NULL;
state->m_DisableDiversity = NULL;
state->m_StartDiversityFront = NULL;
state->m_StartDiversityEnd = NULL;
state->m_DiversityDelay8MHZ = NULL;
state->m_DiversityDelay6MHZ = NULL;
}
return status;
}
static int CorrectSysClockDeviation(struct drxd_state *state)
{
int status;
s32 incr = 0;
s32 nomincr = 0;
u32 bandwidth = 0;
u32 sysClockInHz = 0;
u32 sysClockFreq = 0; /* in kHz */
s16 oscClockDeviation;
s16 Diff;
do {
/* Retrieve bandwidth and incr, sanity check */
/* These accesses should be AtomicReadReg32, but that
causes trouble (at least for diversity */
status = Read32(state, LC_RA_RAM_IFINCR_NOM_L__A, ((u32 *) &nomincr), 0);
if (status < 0)
break;
status = Read32(state, FE_IF_REG_INCR0__A, (u32 *) &incr, 0);
if (status < 0)
break;
if (state->type_A) {
if ((nomincr - incr < -500) || (nomincr - incr > 500))
break;
} else {
if ((nomincr - incr < -2000) || (nomincr - incr > 2000))
break;
}
switch (state->props.bandwidth_hz) {
case 8000000:
bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
break;
case 7000000:
bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
break;
case 6000000:
bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
break;
default:
return -1;
break;
}
/* Compute new sysclock value
sysClockFreq = (((incr + 2^23)*bandwidth)/2^21)/1000 */
incr += (1 << 23);
sysClockInHz = MulDiv32(incr, bandwidth, 1 << 21);
sysClockFreq = (u32) (sysClockInHz / 1000);
/* rounding */
if ((sysClockInHz % 1000) > 500)
sysClockFreq++;
/* Compute clock deviation in ppm */
oscClockDeviation = (u16) ((((s32) (sysClockFreq) -
(s32)
(state->expected_sys_clock_freq)) *
1000000L) /
(s32)
(state->expected_sys_clock_freq));
Diff = oscClockDeviation - state->osc_clock_deviation;
/*printk(KERN_INFO "sysclockdiff=%d\n", Diff); */
if (Diff >= -200 && Diff <= 200) {
state->sys_clock_freq = (u16) sysClockFreq;
if (oscClockDeviation != state->osc_clock_deviation) {
if (state->config.osc_deviation) {
state->config.osc_deviation(state->priv,
oscClockDeviation,
1);
state->osc_clock_deviation =
oscClockDeviation;
}
}
/* switch OFF SRMM scan in SC */
status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DONT_SCAN, 0);
if (status < 0)
break;
/* overrule FE_IF internal value for
proper re-locking */
status = Write16(state, SC_RA_RAM_IF_SAVE__AX, state->current_fe_if_incr, 0);
if (status < 0)
break;
state->cscd_state = CSCD_SAVED;
}
} while (0);
return status;
}
static int DRX_Stop(struct drxd_state *state)
{
int status;
if (state->drxd_state != DRXD_STARTED)
return 0;
do {
if (state->cscd_state != CSCD_SAVED) {
u32 lock;
status = DRX_GetLockStatus(state, &lock);
if (status < 0)
break;
}
status = StopOC(state);
if (status < 0)
break;
state->drxd_state = DRXD_STOPPED;
status = ConfigureMPEGOutput(state, 0);
if (status < 0)
break;
if (state->type_A) {
/* Stop relevant processors off the device */
status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0x0000);
if (status < 0)
break;
status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
if (status < 0)
break;
status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
if (status < 0)
break;
} else {
/* Stop all processors except HI & CC & FE */
status = Write16(state, B_SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
if (status < 0)
break;
status = Write16(state, B_LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
if (status < 0)
break;
status = Write16(state, B_FT_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
if (status < 0)
break;
status = Write16(state, B_CP_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
if (status < 0)
break;
status = Write16(state, B_CE_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
if (status < 0)
break;
status = Write16(state, B_EQ_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
if (status < 0)
break;
status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0);
if (status < 0)
break;
}
} while (0);
return status;
}
#if 0 /* Currently unused */
static int SetOperationMode(struct drxd_state *state, int oMode)
{
int status;
do {
if (state->drxd_state != DRXD_STOPPED) {
status = -1;
break;
}
if (oMode == state->operation_mode) {
status = 0;
break;
}
if (oMode != OM_Default && !state->diversity) {
status = -1;
break;
}
switch (oMode) {
case OM_DVBT_Diversity_Front:
status = WriteTable(state, state->m_InitDiversityFront);
break;
case OM_DVBT_Diversity_End:
status = WriteTable(state, state->m_InitDiversityEnd);
break;
case OM_Default:
/* We need to check how to
get DRXD out of diversity */
default:
status = WriteTable(state, state->m_DisableDiversity);
break;
}
} while (0);
if (!status)
state->operation_mode = oMode;
return status;
}
#endif
static int StartDiversity(struct drxd_state *state)
{
int status = 0;
u16 rcControl;
do {
if (state->operation_mode == OM_DVBT_Diversity_Front) {
status = WriteTable(state, state->m_StartDiversityFront);
if (status < 0)
break;
} else if (state->operation_mode == OM_DVBT_Diversity_End) {
status = WriteTable(state, state->m_StartDiversityEnd);
if (status < 0)
break;
if (state->props.bandwidth_hz == 8000000) {
status = WriteTable(state, state->m_DiversityDelay8MHZ);
if (status < 0)
break;
} else {
status = WriteTable(state, state->m_DiversityDelay6MHZ);
if (status < 0)
break;
}
status = Read16(state, B_EQ_REG_RC_SEL_CAR__A, &rcControl, 0);
if (status < 0)
break;
rcControl &= ~(B_EQ_REG_RC_SEL_CAR_FFTMODE__M);
rcControl |= B_EQ_REG_RC_SEL_CAR_DIV_ON |
/* combining enabled */
B_EQ_REG_RC_SEL_CAR_MEAS_A_CC |
B_EQ_REG_RC_SEL_CAR_PASS_A_CC |
B_EQ_REG_RC_SEL_CAR_LOCAL_A_CC;
status = Write16(state, B_EQ_REG_RC_SEL_CAR__A, rcControl, 0);
if (status < 0)
break;
}
} while (0);
return status;
}
static int SetFrequencyShift(struct drxd_state *state,
u32 offsetFreq, int channelMirrored)
{
int negativeShift = (state->tuner_mirrors == channelMirrored);
/* Handle all mirroring
*
* Note: ADC mirroring (aliasing) is implictly handled by limiting
* feFsRegAddInc to 28 bits below
* (if the result before masking is more than 28 bits, this means
* that the ADC is mirroring.
* The masking is in fact the aliasing of the ADC)
*
*/
/* Compute register value, unsigned computation */
state->fe_fs_add_incr = MulDiv32(state->intermediate_freq +
offsetFreq,
1 << 28, state->sys_clock_freq);
/* Remove integer part */
state->fe_fs_add_incr &= 0x0FFFFFFFL;
if (negativeShift)
state->fe_fs_add_incr = ((1 << 28) - state->fe_fs_add_incr);
/* Save the frequency shift without tunerOffset compensation
for CtrlGetChannel. */
state->org_fe_fs_add_incr = MulDiv32(state->intermediate_freq,
1 << 28, state->sys_clock_freq);
/* Remove integer part */
state->org_fe_fs_add_incr &= 0x0FFFFFFFL;
if (negativeShift)
state->org_fe_fs_add_incr = ((1L << 28) -
state->org_fe_fs_add_incr);
return Write32(state, FE_FS_REG_ADD_INC_LOP__A,
state->fe_fs_add_incr, 0);
}
static int SetCfgNoiseCalibration(struct drxd_state *state,
struct SNoiseCal *noiseCal)
{
u16 beOptEna;
int status = 0;
do {
status = Read16(state, SC_RA_RAM_BE_OPT_ENA__A, &beOptEna, 0);
if (status < 0)
break;
if (noiseCal->cpOpt) {
beOptEna |= (1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
} else {
beOptEna &= ~(1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
status = Write16(state, CP_REG_AC_NEXP_OFFS__A, noiseCal->cpNexpOfs, 0);
if (status < 0)
break;
}
status = Write16(state, SC_RA_RAM_BE_OPT_ENA__A, beOptEna, 0);
if (status < 0)
break;
if (!state->type_A) {
status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_2K__A, noiseCal->tdCal2k, 0);
if (status < 0)
break;
status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_8K__A, noiseCal->tdCal8k, 0);
if (status < 0)
break;
}
} while (0);
return status;
}
static int DRX_Start(struct drxd_state *state, s32 off)
{
struct dtv_frontend_properties *p = &state->props;
int status;
u16 transmissionParams = 0;
u16 operationMode = 0;
u16 qpskTdTpsPwr = 0;
u16 qam16TdTpsPwr = 0;
u16 qam64TdTpsPwr = 0;
u32 feIfIncr = 0;
u32 bandwidth = 0;
int mirrorFreqSpect;
u16 qpskSnCeGain = 0;
u16 qam16SnCeGain = 0;
u16 qam64SnCeGain = 0;
u16 qpskIsGainMan = 0;
u16 qam16IsGainMan = 0;
u16 qam64IsGainMan = 0;
u16 qpskIsGainExp = 0;
u16 qam16IsGainExp = 0;
u16 qam64IsGainExp = 0;
u16 bandwidthParam = 0;
if (off < 0)
off = (off - 500) / 1000;
else
off = (off + 500) / 1000;
do {
if (state->drxd_state != DRXD_STOPPED)
return -1;
status = ResetECOD(state);
if (status < 0)
break;
if (state->type_A) {
status = InitSC(state);
if (status < 0)
break;
} else {
status = InitFT(state);
if (status < 0)
break;
status = InitCP(state);
if (status < 0)
break;
status = InitCE(state);
if (status < 0)
break;
status = InitEQ(state);
if (status < 0)
break;
status = InitSC(state);
if (status < 0)
break;
}
/* Restore current IF & RF AGC settings */
status = SetCfgIfAgc(state, &state->if_agc_cfg);
if (status < 0)
break;
status = SetCfgRfAgc(state, &state->rf_agc_cfg);
if (status < 0)
break;
mirrorFreqSpect = (state->props.inversion == INVERSION_ON);
switch (p->transmission_mode) {
default: /* Not set, detect it automatically */
operationMode |= SC_RA_RAM_OP_AUTO_MODE__M;
/* fall through - try first guess DRX_FFTMODE_8K */
case TRANSMISSION_MODE_8K:
transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_8K;
if (state->type_A) {
status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_8K, 0x0000);
if (status < 0)
break;
qpskSnCeGain = 99;
qam16SnCeGain = 83;
qam64SnCeGain = 67;
}
break;
case TRANSMISSION_MODE_2K:
transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_2K;
if (state->type_A) {
status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_2K, 0x0000);
if (status < 0)
break;
qpskSnCeGain = 97;
qam16SnCeGain = 71;
qam64SnCeGain = 65;
}
break;
}
switch (p->guard_interval) {
case GUARD_INTERVAL_1_4:
transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
break;
case GUARD_INTERVAL_1_8:
transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_8;
break;
case GUARD_INTERVAL_1_16:
transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_16;
break;
case GUARD_INTERVAL_1_32:
transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_32;
break;
default: /* Not set, detect it automatically */
operationMode |= SC_RA_RAM_OP_AUTO_GUARD__M;
/* try first guess 1/4 */
transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
break;
}
switch (p->hierarchy) {
case HIERARCHY_1:
transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A1;
if (state->type_A) {
status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0001, 0x0000);
if (status < 0)
break;
status = Write16(state, EC_SB_REG_ALPHA__A, 0x0001, 0x0000);
if (status < 0)
break;
qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA1;
qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA1;
qpskIsGainMan =
SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
qam16IsGainMan =
SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
qam64IsGainMan =
SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
qpskIsGainExp =
SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
qam16IsGainExp =
SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
qam64IsGainExp =
SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
}
break;
case HIERARCHY_2:
transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A2;
if (state->type_A) {
status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0002, 0x0000);
if (status < 0)
break;
status = Write16(state, EC_SB_REG_ALPHA__A, 0x0002, 0x0000);
if (status < 0)
break;
qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA2;
qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA2;
qpskIsGainMan =
SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
qam16IsGainMan =
SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_MAN__PRE;
qam64IsGainMan =
SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_MAN__PRE;
qpskIsGainExp =
SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
qam16IsGainExp =
SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_EXP__PRE;
qam64IsGainExp =
SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_EXP__PRE;
}
break;
case HIERARCHY_4:
transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A4;
if (state->type_A) {
status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0003, 0x0000);
if (status < 0)
break;
status = Write16(state, EC_SB_REG_ALPHA__A, 0x0003, 0x0000);
if (status < 0)
break;
qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA4;
qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA4;
qpskIsGainMan =
SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
qam16IsGainMan =
SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_MAN__PRE;
qam64IsGainMan =
SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_MAN__PRE;
qpskIsGainExp =
SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
qam16IsGainExp =
SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_EXP__PRE;
qam64IsGainExp =
SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_EXP__PRE;
}
break;
case HIERARCHY_AUTO:
default:
/* Not set, detect it automatically, start with none */
operationMode |= SC_RA_RAM_OP_AUTO_HIER__M;
transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_NO;
if (state->type_A) {
status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0000, 0x0000);
if (status < 0)
break;
status = Write16(state, EC_SB_REG_ALPHA__A, 0x0000, 0x0000);
if (status < 0)
break;
qpskTdTpsPwr = EQ_TD_TPS_PWR_QPSK;
qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHAN;
qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHAN;
qpskIsGainMan =
SC_RA_RAM_EQ_IS_GAIN_QPSK_MAN__PRE;
qam16IsGainMan =
SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
qam64IsGainMan =
SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
qpskIsGainExp =
SC_RA_RAM_EQ_IS_GAIN_QPSK_EXP__PRE;
qam16IsGainExp =
SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
qam64IsGainExp =
SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
}
break;
}
if (status < 0)
break;
switch (p->modulation) {
default:
operationMode |= SC_RA_RAM_OP_AUTO_CONST__M;
/* fall through - try first guess DRX_CONSTELLATION_QAM64 */
case QAM_64:
transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM64;
if (state->type_A) {
status = Write16(state, EQ_REG_OT_CONST__A, 0x0002, 0x0000);
if (status < 0)
break;
status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_64QAM, 0x0000);
if (status < 0)
break;
status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0020, 0x0000);
if (status < 0)
break;
status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0008, 0x0000);
if (status < 0)
break;
status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0002, 0x0000);
if (status < 0)
break;
status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam64TdTpsPwr, 0x0000);
if (status < 0)
break;
status = Write16(state, EQ_REG_SN_CEGAIN__A, qam64SnCeGain, 0x0000);
if (status < 0)
break;
status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam64IsGainMan, 0x0000);
if (status < 0)
break;
status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam64IsGainExp, 0x0000);
if (status < 0)
break;
}
break;
case QPSK:
transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QPSK;
if (state->type_A) {
status = Write16(state, EQ_REG_OT_CONST__A, 0x0000, 0x0000);
if (status < 0)
break;
status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_QPSK, 0x0000);
if (status < 0)
break;
status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
if (status < 0)
break;
status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0000, 0x0000);
if (status < 0)
break;
status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
if (status < 0)
break;
status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qpskTdTpsPwr, 0x0000);
if (status < 0)
break;
status = Write16(state, EQ_REG_SN_CEGAIN__A, qpskSnCeGain, 0x0000);
if (status < 0)
break;
status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qpskIsGainMan, 0x0000);
if (status < 0)
break;
status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qpskIsGainExp, 0x0000);
if (status < 0)
break;
}
break;
case QAM_16:
transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM16;
if (state->type_A) {
status = Write16(state, EQ_REG_OT_CONST__A, 0x0001, 0x0000);
if (status < 0)
break;
status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_16QAM, 0x0000);
if (status < 0)
break;
status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
if (status < 0)
break;
status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0004, 0x0000);
if (status < 0)
break;
status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
if (status < 0)
break;
status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam16TdTpsPwr, 0x0000);
if (status < 0)
break;
status = Write16(state, EQ_REG_SN_CEGAIN__A, qam16SnCeGain, 0x0000);
if (status < 0)
break;
status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam16IsGainMan, 0x0000);
if (status < 0)
break;
status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam16IsGainExp, 0x0000);
if (status < 0)
break;
}
break;
}
if (status < 0)
break;
switch (DRX_CHANNEL_HIGH) {
default:
case DRX_CHANNEL_AUTO:
case DRX_CHANNEL_LOW:
transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_LO;
status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_LO, 0x0000);
break;
case DRX_CHANNEL_HIGH:
transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_HI;
status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_HI, 0x0000);
break;
}
switch (p->code_rate_HP) {
case FEC_1_2:
transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_1_2;
if (state->type_A)
status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C1_2, 0x0000);
break;
default:
operationMode |= SC_RA_RAM_OP_AUTO_RATE__M;
/* fall through */
case FEC_2_3:
transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_2_3;
if (state->type_A)
status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C2_3, 0x0000);
break;
case FEC_3_4:
transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_3_4;
if (state->type_A)
status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C3_4, 0x0000);
break;
case FEC_5_6:
transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_5_6;
if (state->type_A)
status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C5_6, 0x0000);
break;
case FEC_7_8:
transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_7_8;
if (state->type_A)
status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C7_8, 0x0000);
break;
}
if (status < 0)
break;
/* First determine real bandwidth (Hz) */
/* Also set delay for impulse noise cruncher (only A2) */
/* Also set parameters for EC_OC fix, note
EC_OC_REG_TMD_HIL_MAR is changed
by SC for fix for some 8K,1/8 guard but is restored by
InitEC and ResetEC
functions */
switch (p->bandwidth_hz) {
case 0:
p->bandwidth_hz = 8000000;
/* fall through */
case 8000000:
/* (64/7)*(8/8)*1000000 */
bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
bandwidthParam = 0;
status = Write16(state,
FE_AG_REG_IND_DEL__A, 50, 0x0000);
break;
case 7000000:
/* (64/7)*(7/8)*1000000 */
bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
bandwidthParam = 0x4807; /*binary:0100 1000 0000 0111 */
status = Write16(state,
FE_AG_REG_IND_DEL__A, 59, 0x0000);
break;
case 6000000:
/* (64/7)*(6/8)*1000000 */
bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
bandwidthParam = 0x0F07; /*binary: 0000 1111 0000 0111 */
status = Write16(state,
FE_AG_REG_IND_DEL__A, 71, 0x0000);
break;
default:
status = -EINVAL;
}
if (status < 0)
break;
status = Write16(state, SC_RA_RAM_BAND__A, bandwidthParam, 0x0000);
if (status < 0)
break;
{
u16 sc_config;
status = Read16(state, SC_RA_RAM_CONFIG__A, &sc_config, 0);
if (status < 0)
break;
/* enable SLAVE mode in 2k 1/32 to
prevent timing change glitches */
if ((p->transmission_mode == TRANSMISSION_MODE_2K) &&
(p->guard_interval == GUARD_INTERVAL_1_32)) {
/* enable slave */
sc_config |= SC_RA_RAM_CONFIG_SLAVE__M;
} else {
/* disable slave */
sc_config &= ~SC_RA_RAM_CONFIG_SLAVE__M;
}
status = Write16(state, SC_RA_RAM_CONFIG__A, sc_config, 0);
if (status < 0)
break;
}
status = SetCfgNoiseCalibration(state, &state->noise_cal);
if (status < 0)
break;
if (state->cscd_state == CSCD_INIT) {
/* switch on SRMM scan in SC */
status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DO_SCAN, 0x0000);
if (status < 0)
break;
/* CHK_ERROR(Write16(SC_RA_RAM_SAMPLE_RATE_STEP__A, DRXD_OSCDEV_STEP, 0x0000));*/
state->cscd_state = CSCD_SET;
}
/* Now compute FE_IF_REG_INCR */
/*((( SysFreq/BandWidth)/2)/2) -1) * 2^23) =>
((SysFreq / BandWidth) * (2^21) ) - (2^23) */
feIfIncr = MulDiv32(state->sys_clock_freq * 1000,
(1ULL << 21), bandwidth) - (1 << 23);
status = Write16(state, FE_IF_REG_INCR0__A, (u16) (feIfIncr & FE_IF_REG_INCR0__M), 0x0000);
if (status < 0)
break;
status = Write16(state, FE_IF_REG_INCR1__A, (u16) ((feIfIncr >> FE_IF_REG_INCR0__W) & FE_IF_REG_INCR1__M), 0x0000);
if (status < 0)
break;
/* Bandwidth setting done */
/* Mirror & frequency offset */
SetFrequencyShift(state, off, mirrorFreqSpect);
/* Start SC, write channel settings to SC */
/* Enable SC after setting all other parameters */
status = Write16(state, SC_COMM_STATE__A, 0, 0x0000);
if (status < 0)
break;
status = Write16(state, SC_COMM_EXEC__A, 1, 0x0000);
if (status < 0)
break;
/* Write SC parameter registers, operation mode */
#if 1
operationMode = (SC_RA_RAM_OP_AUTO_MODE__M |
SC_RA_RAM_OP_AUTO_GUARD__M |
SC_RA_RAM_OP_AUTO_CONST__M |
SC_RA_RAM_OP_AUTO_HIER__M |
SC_RA_RAM_OP_AUTO_RATE__M);
#endif
status = SC_SetPrefParamCommand(state, 0x0000, transmissionParams, operationMode);
if (status < 0)
break;
/* Start correct processes to get in lock */
status = SC_ProcStartCommand(state, SC_RA_RAM_PROC_LOCKTRACK, SC_RA_RAM_SW_EVENT_RUN_NMASK__M, SC_RA_RAM_LOCKTRACK_MIN);
if (status < 0)
break;
status = StartOC(state);
if (status < 0)
break;
if (state->operation_mode != OM_Default) {
status = StartDiversity(state);
if (status < 0)
break;
}
state->drxd_state = DRXD_STARTED;
} while (0);
return status;
}
static int CDRXD(struct drxd_state *state, u32 IntermediateFrequency)
{
u32 ulRfAgcOutputLevel = 0xffffffff;
u32 ulRfAgcSettleLevel = 528; /* Optimum value for MT2060 */
u32 ulRfAgcMinLevel = 0; /* Currently unused */
u32 ulRfAgcMaxLevel = DRXD_FE_CTRL_MAX; /* Currently unused */
u32 ulRfAgcSpeed = 0; /* Currently unused */
u32 ulRfAgcMode = 0; /*2; Off */
u32 ulRfAgcR1 = 820;
u32 ulRfAgcR2 = 2200;
u32 ulRfAgcR3 = 150;
u32 ulIfAgcMode = 0; /* Auto */
u32 ulIfAgcOutputLevel = 0xffffffff;
u32 ulIfAgcSettleLevel = 0xffffffff;
u32 ulIfAgcMinLevel = 0xffffffff;
u32 ulIfAgcMaxLevel = 0xffffffff;
u32 ulIfAgcSpeed = 0xffffffff;
u32 ulIfAgcR1 = 820;
u32 ulIfAgcR2 = 2200;
u32 ulIfAgcR3 = 150;
u32 ulClock = state->config.clock;
u32 ulSerialMode = 0;
u32 ulEcOcRegOcModeLop = 4; /* Dynamic DTO source */
u32 ulHiI2cDelay = HI_I2C_DELAY;
u32 ulHiI2cBridgeDelay = HI_I2C_BRIDGE_DELAY;
u32 ulHiI2cPatch = 0;
u32 ulEnvironment = APPENV_PORTABLE;
u32 ulEnvironmentDiversity = APPENV_MOBILE;
u32 ulIFFilter = IFFILTER_SAW;
state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
state->if_agc_cfg.outputLevel = 0;
state->if_agc_cfg.settleLevel = 140;
state->if_agc_cfg.minOutputLevel = 0;
state->if_agc_cfg.maxOutputLevel = 1023;
state->if_agc_cfg.speed = 904;
if (ulIfAgcMode == 1 && ulIfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
state->if_agc_cfg.ctrlMode = AGC_CTRL_USER;
state->if_agc_cfg.outputLevel = (u16) (ulIfAgcOutputLevel);
}
if (ulIfAgcMode == 0 &&
ulIfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
ulIfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
ulIfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
ulIfAgcSpeed <= DRXD_FE_CTRL_MAX) {
state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
state->if_agc_cfg.settleLevel = (u16) (ulIfAgcSettleLevel);
state->if_agc_cfg.minOutputLevel = (u16) (ulIfAgcMinLevel);
state->if_agc_cfg.maxOutputLevel = (u16) (ulIfAgcMaxLevel);
state->if_agc_cfg.speed = (u16) (ulIfAgcSpeed);
}
state->if_agc_cfg.R1 = (u16) (ulIfAgcR1);
state->if_agc_cfg.R2 = (u16) (ulIfAgcR2);
state->if_agc_cfg.R3 = (u16) (ulIfAgcR3);
state->rf_agc_cfg.R1 = (u16) (ulRfAgcR1);
state->rf_agc_cfg.R2 = (u16) (ulRfAgcR2);
state->rf_agc_cfg.R3 = (u16) (ulRfAgcR3);
state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
/* rest of the RFAgcCfg structure currently unused */
if (ulRfAgcMode == 1 && ulRfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
state->rf_agc_cfg.ctrlMode = AGC_CTRL_USER;
state->rf_agc_cfg.outputLevel = (u16) (ulRfAgcOutputLevel);
}
if (ulRfAgcMode == 0 &&
ulRfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
ulRfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
ulRfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
ulRfAgcSpeed <= DRXD_FE_CTRL_MAX) {
state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
state->rf_agc_cfg.settleLevel = (u16) (ulRfAgcSettleLevel);
state->rf_agc_cfg.minOutputLevel = (u16) (ulRfAgcMinLevel);
state->rf_agc_cfg.maxOutputLevel = (u16) (ulRfAgcMaxLevel);
state->rf_agc_cfg.speed = (u16) (ulRfAgcSpeed);
}
if (ulRfAgcMode == 2)
state->rf_agc_cfg.ctrlMode = AGC_CTRL_OFF;
if (ulEnvironment <= 2)
state->app_env_default = (enum app_env)
(ulEnvironment);
if (ulEnvironmentDiversity <= 2)
state->app_env_diversity = (enum app_env)
(ulEnvironmentDiversity);
if (ulIFFilter == IFFILTER_DISCRETE) {
/* discrete filter */
state->noise_cal.cpOpt = 0;
state->noise_cal.cpNexpOfs = 40;
state->noise_cal.tdCal2k = -40;
state->noise_cal.tdCal8k = -24;
} else {
/* SAW filter */
state->noise_cal.cpOpt = 1;
state->noise_cal.cpNexpOfs = 0;
state->noise_cal.tdCal2k = -21;
state->noise_cal.tdCal8k = -24;
}
state->m_EcOcRegOcModeLop = (u16) (ulEcOcRegOcModeLop);
state->chip_adr = (state->config.demod_address << 1) | 1;
switch (ulHiI2cPatch) {
case 1:
state->m_HiI2cPatch = DRXD_HiI2cPatch_1;
break;
case 3:
state->m_HiI2cPatch = DRXD_HiI2cPatch_3;
break;
default:
state->m_HiI2cPatch = NULL;
}
/* modify tuner and clock attributes */
state->intermediate_freq = (u16) (IntermediateFrequency / 1000);
/* expected system clock frequency in kHz */
state->expected_sys_clock_freq = 48000;
/* real system clock frequency in kHz */
state->sys_clock_freq = 48000;
state->osc_clock_freq = (u16) ulClock;
state->osc_clock_deviation = 0;
state->cscd_state = CSCD_INIT;
state->drxd_state = DRXD_UNINITIALIZED;
state->PGA = 0;
state->type_A = 0;
state->tuner_mirrors = 0;
/* modify MPEG output attributes */
state->insert_rs_byte = state->config.insert_rs_byte;
state->enable_parallel = (ulSerialMode != 1);
/* Timing div, 250ns/Psys */
/* Timing div, = ( delay (nano seconds) * sysclk (kHz) )/ 1000 */
state->hi_cfg_timing_div = (u16) ((state->sys_clock_freq / 1000) *
ulHiI2cDelay) / 1000;
/* Bridge delay, uses oscilator clock */
/* Delay = ( delay (nano seconds) * oscclk (kHz) )/ 1000 */
state->hi_cfg_bridge_delay = (u16) ((state->osc_clock_freq / 1000) *
ulHiI2cBridgeDelay) / 1000;
state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
/* state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO; */
state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
return 0;
}
static int DRXD_init(struct drxd_state *state, const u8 *fw, u32 fw_size)
{
int status = 0;
u32 driverVersion;
if (state->init_done)
return 0;
CDRXD(state, state->config.IF ? state->config.IF : 36000000);
do {
state->operation_mode = OM_Default;
status = SetDeviceTypeId(state);
if (status < 0)
break;
/* Apply I2c address patch to B1 */
if (!state->type_A && state->m_HiI2cPatch) {
status = WriteTable(state, state->m_HiI2cPatch);
if (status < 0)
break;
}
if (state->type_A) {
/* HI firmware patch for UIO readout,
avoid clearing of result register */
status = Write16(state, 0x43012D, 0x047f, 0);
if (status < 0)
break;
}
status = HI_ResetCommand(state);
if (status < 0)
break;
status = StopAllProcessors(state);
if (status < 0)
break;
status = InitCC(state);
if (status < 0)
break;
state->osc_clock_deviation = 0;
if (state->config.osc_deviation)
state->osc_clock_deviation =
state->config.osc_deviation(state->priv, 0, 0);
{
/* Handle clock deviation */
s32 devB;
s32 devA = (s32) (state->osc_clock_deviation) *
(s32) (state->expected_sys_clock_freq);
/* deviation in kHz */
s32 deviation = (devA / (1000000L));
/* rounding, signed */
if (devA > 0)
devB = (2);
else
devB = (-2);
if ((devB * (devA % 1000000L) > 1000000L)) {
/* add +1 or -1 */
deviation += (devB / 2);
}
state->sys_clock_freq =
(u16) ((state->expected_sys_clock_freq) +
deviation);
}
status = InitHI(state);
if (status < 0)
break;
status = InitAtomicRead(state);
if (status < 0)
break;
status = EnableAndResetMB(state);
if (status < 0)
break;
if (state->type_A) {
status = ResetCEFR(state);
if (status < 0)
break;
}
if (fw) {
status = DownloadMicrocode(state, fw, fw_size);
if (status < 0)
break;
} else {
status = DownloadMicrocode(state, state->microcode, state->microcode_length);
if (status < 0)
break;
}
if (state->PGA) {
state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO;
SetCfgPga(state, 0); /* PGA = 0 dB */
} else {
state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
}
state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
status = InitFE(state);
if (status < 0)
break;
status = InitFT(state);
if (status < 0)
break;
status = InitCP(state);
if (status < 0)
break;
status = InitCE(state);
if (status < 0)
break;
status = InitEQ(state);
if (status < 0)
break;
status = InitEC(state);
if (status < 0)
break;
status = InitSC(state);
if (status < 0)
break;
status = SetCfgIfAgc(state, &state->if_agc_cfg);
if (status < 0)
break;
status = SetCfgRfAgc(state, &state->rf_agc_cfg);
if (status < 0)
break;
state->cscd_state = CSCD_INIT;
status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
if (status < 0)
break;
status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
if (status < 0)
break;
driverVersion = (((VERSION_MAJOR / 10) << 4) +
(VERSION_MAJOR % 10)) << 24;
driverVersion += (((VERSION_MINOR / 10) << 4) +
(VERSION_MINOR % 10)) << 16;
driverVersion += ((VERSION_PATCH / 1000) << 12) +
((VERSION_PATCH / 100) << 8) +
((VERSION_PATCH / 10) << 4) + (VERSION_PATCH % 10);
status = Write32(state, SC_RA_RAM_DRIVER_VERSION__AX, driverVersion, 0);
if (status < 0)
break;
status = StopOC(state);
if (status < 0)
break;
state->drxd_state = DRXD_STOPPED;
state->init_done = 1;
status = 0;
} while (0);
return status;
}
static int DRXD_status(struct drxd_state *state, u32 *pLockStatus)
{
DRX_GetLockStatus(state, pLockStatus);
/*if (*pLockStatus&DRX_LOCK_MPEG) */
if (*pLockStatus & DRX_LOCK_FEC) {
ConfigureMPEGOutput(state, 1);
/* Get status again, in case we have MPEG lock now */
/*DRX_GetLockStatus(state, pLockStatus); */
}
return 0;
}
/****************************************************************************/
/****************************************************************************/
/****************************************************************************/
static int drxd_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
{
struct drxd_state *state = fe->demodulator_priv;
u32 value;
int res;
res = ReadIFAgc(state, &value);
if (res < 0)
*strength = 0;
else
*strength = 0xffff - (value << 4);
return 0;
}
static int drxd_read_status(struct dvb_frontend *fe, enum fe_status *status)
{
struct drxd_state *state = fe->demodulator_priv;
u32 lock;
DRXD_status(state, &lock);
*status = 0;
/* No MPEG lock in V255 firmware, bug ? */
#if 1
if (lock & DRX_LOCK_MPEG)
*status |= FE_HAS_LOCK;
#else
if (lock & DRX_LOCK_FEC)
*status |= FE_HAS_LOCK;
#endif
if (lock & DRX_LOCK_FEC)
*status |= FE_HAS_VITERBI | FE_HAS_SYNC;
if (lock & DRX_LOCK_DEMOD)
*status |= FE_HAS_CARRIER | FE_HAS_SIGNAL;
return 0;
}
static int drxd_init(struct dvb_frontend *fe)
{
struct drxd_state *state = fe->demodulator_priv;
return DRXD_init(state, NULL, 0);
}
static int drxd_config_i2c(struct dvb_frontend *fe, int onoff)
{
struct drxd_state *state = fe->demodulator_priv;
if (state->config.disable_i2c_gate_ctrl == 1)
return 0;
return DRX_ConfigureI2CBridge(state, onoff);
}
static int drxd_get_tune_settings(struct dvb_frontend *fe,
struct dvb_frontend_tune_settings *sets)
{
sets->min_delay_ms = 10000;
sets->max_drift = 0;
sets->step_size = 0;
return 0;
}
static int drxd_read_ber(struct dvb_frontend *fe, u32 * ber)
{
*ber = 0;
return 0;
}
static int drxd_read_snr(struct dvb_frontend *fe, u16 * snr)
{
*snr = 0;
return 0;
}
static int drxd_read_ucblocks(struct dvb_frontend *fe, u32 * ucblocks)
{
*ucblocks = 0;
return 0;
}
static int drxd_sleep(struct dvb_frontend *fe)
{
struct drxd_state *state = fe->demodulator_priv;
ConfigureMPEGOutput(state, 0);
return 0;
}
static int drxd_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
{
return drxd_config_i2c(fe, enable);
}
static int drxd_set_frontend(struct dvb_frontend *fe)
{
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
struct drxd_state *state = fe->demodulator_priv;
s32 off = 0;
state->props = *p;
DRX_Stop(state);
if (fe->ops.tuner_ops.set_params) {
fe->ops.tuner_ops.set_params(fe);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
}
msleep(200);
return DRX_Start(state, off);
}
static void drxd_release(struct dvb_frontend *fe)
{
struct drxd_state *state = fe->demodulator_priv;
kfree(state);
}
static const struct dvb_frontend_ops drxd_ops = {
.delsys = { SYS_DVBT},
.info = {
.name = "Micronas DRXD DVB-T",
.frequency_min_hz = 47125 * kHz,
.frequency_max_hz = 855250 * kHz,
.frequency_stepsize_hz = 166667,
.caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 |
FE_CAN_FEC_AUTO |
FE_CAN_QAM_16 | FE_CAN_QAM_64 |
FE_CAN_QAM_AUTO |
FE_CAN_TRANSMISSION_MODE_AUTO |
FE_CAN_GUARD_INTERVAL_AUTO |
FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER | FE_CAN_MUTE_TS},
.release = drxd_release,
.init = drxd_init,
.sleep = drxd_sleep,
.i2c_gate_ctrl = drxd_i2c_gate_ctrl,
.set_frontend = drxd_set_frontend,
.get_tune_settings = drxd_get_tune_settings,
.read_status = drxd_read_status,
.read_ber = drxd_read_ber,
.read_signal_strength = drxd_read_signal_strength,
.read_snr = drxd_read_snr,
.read_ucblocks = drxd_read_ucblocks,
};
struct dvb_frontend *drxd_attach(const struct drxd_config *config,
void *priv, struct i2c_adapter *i2c,
struct device *dev)
{
struct drxd_state *state = NULL;
state = kzalloc(sizeof(*state), GFP_KERNEL);
if (!state)
return NULL;
state->ops = drxd_ops;
state->dev = dev;
state->config = *config;
state->i2c = i2c;
state->priv = priv;
mutex_init(&state->mutex);
if (Read16(state, 0, NULL, 0) < 0)
goto error;
state->frontend.ops = drxd_ops;
state->frontend.demodulator_priv = state;
ConfigureMPEGOutput(state, 0);
/* add few initialization to allow gate control */
CDRXD(state, state->config.IF ? state->config.IF : 36000000);
InitHI(state);
return &state->frontend;
error:
printk(KERN_ERR "drxd: not found\n");
kfree(state);
return NULL;
}
EXPORT_SYMBOL(drxd_attach);
MODULE_DESCRIPTION("DRXD driver");
MODULE_AUTHOR("Micronas");
MODULE_LICENSE("GPL");