License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
|
|
|
// SPDX-License-Identifier: GPL-2.0
|
2005-04-16 22:20:36 +00:00
|
|
|
/*
|
|
|
|
* arch/alpha/kernel/traps.c
|
|
|
|
*
|
|
|
|
* (C) Copyright 1994 Linus Torvalds
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This file initializes the trap entry points
|
|
|
|
*/
|
|
|
|
|
2008-04-28 09:13:47 +00:00
|
|
|
#include <linux/jiffies.h>
|
2005-04-16 22:20:36 +00:00
|
|
|
#include <linux/mm.h>
|
2017-02-08 17:51:30 +00:00
|
|
|
#include <linux/sched/signal.h>
|
2017-02-08 17:51:35 +00:00
|
|
|
#include <linux/sched/debug.h>
|
2005-04-16 22:20:36 +00:00
|
|
|
#include <linux/tty.h>
|
|
|
|
#include <linux/delay.h>
|
2016-07-23 18:01:45 +00:00
|
|
|
#include <linux/extable.h>
|
2005-04-16 22:20:36 +00:00
|
|
|
#include <linux/kallsyms.h>
|
2010-03-01 18:25:49 +00:00
|
|
|
#include <linux/ratelimit.h>
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
#include <asm/gentrap.h>
|
2016-12-24 19:46:01 +00:00
|
|
|
#include <linux/uaccess.h>
|
2005-04-16 22:20:36 +00:00
|
|
|
#include <asm/unaligned.h>
|
|
|
|
#include <asm/sysinfo.h>
|
|
|
|
#include <asm/hwrpb.h>
|
|
|
|
#include <asm/mmu_context.h>
|
2012-03-28 17:11:12 +00:00
|
|
|
#include <asm/special_insns.h>
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
#include "proto.h"
|
|
|
|
|
|
|
|
/* Work-around for some SRMs which mishandle opDEC faults. */
|
|
|
|
|
|
|
|
static int opDEC_fix;
|
|
|
|
|
2013-06-17 19:43:14 +00:00
|
|
|
static void
|
2005-04-16 22:20:36 +00:00
|
|
|
opDEC_check(void)
|
|
|
|
{
|
|
|
|
__asm__ __volatile__ (
|
|
|
|
/* Load the address of... */
|
|
|
|
" br $16, 1f\n"
|
|
|
|
/* A stub instruction fault handler. Just add 4 to the
|
|
|
|
pc and continue. */
|
|
|
|
" ldq $16, 8($sp)\n"
|
|
|
|
" addq $16, 4, $16\n"
|
|
|
|
" stq $16, 8($sp)\n"
|
|
|
|
" call_pal %[rti]\n"
|
|
|
|
/* Install the instruction fault handler. */
|
|
|
|
"1: lda $17, 3\n"
|
|
|
|
" call_pal %[wrent]\n"
|
|
|
|
/* With that in place, the fault from the round-to-minf fp
|
|
|
|
insn will arrive either at the "lda 4" insn (bad) or one
|
|
|
|
past that (good). This places the correct fixup in %0. */
|
|
|
|
" lda %[fix], 0\n"
|
|
|
|
" cvttq/svm $f31,$f31\n"
|
|
|
|
" lda %[fix], 4"
|
|
|
|
: [fix] "=r" (opDEC_fix)
|
|
|
|
: [rti] "n" (PAL_rti), [wrent] "n" (PAL_wrent)
|
|
|
|
: "$0", "$1", "$16", "$17", "$22", "$23", "$24", "$25");
|
|
|
|
|
|
|
|
if (opDEC_fix)
|
|
|
|
printk("opDEC fixup enabled.\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
dik_show_regs(struct pt_regs *regs, unsigned long *r9_15)
|
|
|
|
{
|
|
|
|
printk("pc = [<%016lx>] ra = [<%016lx>] ps = %04lx %s\n",
|
|
|
|
regs->pc, regs->r26, regs->ps, print_tainted());
|
2012-12-12 18:18:51 +00:00
|
|
|
printk("pc is at %pSR\n", (void *)regs->pc);
|
|
|
|
printk("ra is at %pSR\n", (void *)regs->r26);
|
2005-04-16 22:20:36 +00:00
|
|
|
printk("v0 = %016lx t0 = %016lx t1 = %016lx\n",
|
|
|
|
regs->r0, regs->r1, regs->r2);
|
|
|
|
printk("t2 = %016lx t3 = %016lx t4 = %016lx\n",
|
|
|
|
regs->r3, regs->r4, regs->r5);
|
|
|
|
printk("t5 = %016lx t6 = %016lx t7 = %016lx\n",
|
|
|
|
regs->r6, regs->r7, regs->r8);
|
|
|
|
|
|
|
|
if (r9_15) {
|
|
|
|
printk("s0 = %016lx s1 = %016lx s2 = %016lx\n",
|
|
|
|
r9_15[9], r9_15[10], r9_15[11]);
|
|
|
|
printk("s3 = %016lx s4 = %016lx s5 = %016lx\n",
|
|
|
|
r9_15[12], r9_15[13], r9_15[14]);
|
|
|
|
printk("s6 = %016lx\n", r9_15[15]);
|
|
|
|
}
|
|
|
|
|
|
|
|
printk("a0 = %016lx a1 = %016lx a2 = %016lx\n",
|
|
|
|
regs->r16, regs->r17, regs->r18);
|
|
|
|
printk("a3 = %016lx a4 = %016lx a5 = %016lx\n",
|
|
|
|
regs->r19, regs->r20, regs->r21);
|
|
|
|
printk("t8 = %016lx t9 = %016lx t10= %016lx\n",
|
|
|
|
regs->r22, regs->r23, regs->r24);
|
|
|
|
printk("t11= %016lx pv = %016lx at = %016lx\n",
|
|
|
|
regs->r25, regs->r27, regs->r28);
|
|
|
|
printk("gp = %016lx sp = %p\n", regs->gp, regs+1);
|
|
|
|
#if 0
|
|
|
|
__halt();
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
static char * ireg_name[] = {"v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
|
|
|
|
"t7", "s0", "s1", "s2", "s3", "s4", "s5", "s6",
|
|
|
|
"a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
|
|
|
|
"t10", "t11", "ra", "pv", "at", "gp", "sp", "zero"};
|
|
|
|
#endif
|
|
|
|
|
|
|
|
static void
|
|
|
|
dik_show_code(unsigned int *pc)
|
|
|
|
{
|
|
|
|
long i;
|
|
|
|
|
|
|
|
printk("Code:");
|
|
|
|
for (i = -6; i < 2; i++) {
|
|
|
|
unsigned int insn;
|
|
|
|
if (__get_user(insn, (unsigned int __user *)pc + i))
|
|
|
|
break;
|
|
|
|
printk("%c%08x%c", i ? ' ' : '<', insn, i ? ' ' : '>');
|
|
|
|
}
|
|
|
|
printk("\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
dik_show_trace(unsigned long *sp)
|
|
|
|
{
|
|
|
|
long i = 0;
|
|
|
|
printk("Trace:\n");
|
|
|
|
while (0x1ff8 & (unsigned long) sp) {
|
|
|
|
extern char _stext[], _etext[];
|
|
|
|
unsigned long tmp = *sp;
|
|
|
|
sp++;
|
|
|
|
if (tmp < (unsigned long) &_stext)
|
|
|
|
continue;
|
|
|
|
if (tmp >= (unsigned long) &_etext)
|
|
|
|
continue;
|
2012-12-12 18:18:51 +00:00
|
|
|
printk("[<%lx>] %pSR\n", tmp, (void *)tmp);
|
2005-04-16 22:20:36 +00:00
|
|
|
if (i > 40) {
|
|
|
|
printk(" ...");
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
printk("\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
static int kstack_depth_to_print = 24;
|
|
|
|
|
|
|
|
void show_stack(struct task_struct *task, unsigned long *sp)
|
|
|
|
{
|
|
|
|
unsigned long *stack;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* debugging aid: "show_stack(NULL);" prints the
|
|
|
|
* back trace for this cpu.
|
|
|
|
*/
|
|
|
|
if(sp==NULL)
|
|
|
|
sp=(unsigned long*)&sp;
|
|
|
|
|
|
|
|
stack = sp;
|
|
|
|
for(i=0; i < kstack_depth_to_print; i++) {
|
|
|
|
if (((long) stack & (THREAD_SIZE-1)) == 0)
|
|
|
|
break;
|
2018-01-02 19:00:32 +00:00
|
|
|
if ((i % 4) == 0) {
|
|
|
|
if (i)
|
|
|
|
pr_cont("\n");
|
|
|
|
printk(" ");
|
|
|
|
} else {
|
|
|
|
pr_cont(" ");
|
|
|
|
}
|
|
|
|
pr_cont("%016lx", *stack++);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
2018-01-02 19:00:32 +00:00
|
|
|
pr_cont("\n");
|
2005-04-16 22:20:36 +00:00
|
|
|
dik_show_trace(sp);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
die_if_kernel(char * str, struct pt_regs *regs, long err, unsigned long *r9_15)
|
|
|
|
{
|
|
|
|
if (regs->ps & 8)
|
|
|
|
return;
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
printk("CPU %d ", hard_smp_processor_id());
|
|
|
|
#endif
|
2007-10-19 06:40:41 +00:00
|
|
|
printk("%s(%d): %s %ld\n", current->comm, task_pid_nr(current), str, err);
|
2005-04-16 22:20:36 +00:00
|
|
|
dik_show_regs(regs, r9_15);
|
2013-01-21 06:47:39 +00:00
|
|
|
add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
|
2005-04-16 22:20:36 +00:00
|
|
|
dik_show_trace((unsigned long *)(regs+1));
|
|
|
|
dik_show_code((unsigned int *)regs->pc);
|
|
|
|
|
|
|
|
if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL)) {
|
|
|
|
printk("die_if_kernel recursion detected.\n");
|
|
|
|
local_irq_enable();
|
|
|
|
while (1);
|
|
|
|
}
|
|
|
|
do_exit(SIGSEGV);
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef CONFIG_MATHEMU
|
|
|
|
static long dummy_emul(void) { return 0; }
|
|
|
|
long (*alpha_fp_emul_imprecise)(struct pt_regs *regs, unsigned long writemask)
|
|
|
|
= (void *)dummy_emul;
|
2017-07-19 00:02:04 +00:00
|
|
|
EXPORT_SYMBOL_GPL(alpha_fp_emul_imprecise);
|
2005-04-16 22:20:36 +00:00
|
|
|
long (*alpha_fp_emul) (unsigned long pc)
|
|
|
|
= (void *)dummy_emul;
|
2017-07-19 00:02:04 +00:00
|
|
|
EXPORT_SYMBOL_GPL(alpha_fp_emul);
|
2005-04-16 22:20:36 +00:00
|
|
|
#else
|
|
|
|
long alpha_fp_emul_imprecise(struct pt_regs *regs, unsigned long writemask);
|
|
|
|
long alpha_fp_emul (unsigned long pc);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
asmlinkage void
|
|
|
|
do_entArith(unsigned long summary, unsigned long write_mask,
|
|
|
|
struct pt_regs *regs)
|
|
|
|
{
|
|
|
|
long si_code = FPE_FLTINV;
|
|
|
|
|
|
|
|
if (summary & 1) {
|
|
|
|
/* Software-completion summary bit is set, so try to
|
|
|
|
emulate the instruction. If the processor supports
|
|
|
|
precise exceptions, we don't have to search. */
|
|
|
|
if (!amask(AMASK_PRECISE_TRAP))
|
|
|
|
si_code = alpha_fp_emul(regs->pc - 4);
|
|
|
|
else
|
|
|
|
si_code = alpha_fp_emul_imprecise(regs, write_mask);
|
|
|
|
if (si_code == 0)
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
die_if_kernel("Arithmetic fault", regs, 0, NULL);
|
|
|
|
|
2018-04-17 22:37:49 +00:00
|
|
|
send_sig_fault(SIGFPE, si_code, (void __user *) regs->pc, 0, current);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
asmlinkage void
|
|
|
|
do_entIF(unsigned long type, struct pt_regs *regs)
|
|
|
|
{
|
|
|
|
int signo, code;
|
|
|
|
|
2005-06-30 16:02:18 +00:00
|
|
|
if ((regs->ps & ~IPL_MAX) == 0) {
|
2005-04-16 22:20:36 +00:00
|
|
|
if (type == 1) {
|
|
|
|
const unsigned int *data
|
|
|
|
= (const unsigned int *) regs->pc;
|
|
|
|
printk("Kernel bug at %s:%d\n",
|
|
|
|
(const char *)(data[1] | (long)data[2] << 32),
|
|
|
|
data[0]);
|
|
|
|
}
|
2013-07-12 16:36:21 +00:00
|
|
|
#ifdef CONFIG_ALPHA_WTINT
|
|
|
|
if (type == 4) {
|
|
|
|
/* If CALL_PAL WTINT is totally unsupported by the
|
|
|
|
PALcode, e.g. MILO, "emulate" it by overwriting
|
|
|
|
the insn. */
|
|
|
|
unsigned int *pinsn
|
|
|
|
= (unsigned int *) regs->pc - 1;
|
|
|
|
if (*pinsn == PAL_wtint) {
|
|
|
|
*pinsn = 0x47e01400; /* mov 0,$0 */
|
|
|
|
imb();
|
|
|
|
regs->r0 = 0;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif /* ALPHA_WTINT */
|
2005-04-16 22:20:36 +00:00
|
|
|
die_if_kernel((type == 1 ? "Kernel Bug" : "Instruction fault"),
|
|
|
|
regs, type, NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
switch (type) {
|
|
|
|
case 0: /* breakpoint */
|
|
|
|
if (ptrace_cancel_bpt(current)) {
|
|
|
|
regs->pc -= 4; /* make pc point to former bpt */
|
|
|
|
}
|
|
|
|
|
2018-04-17 22:37:49 +00:00
|
|
|
send_sig_fault(SIGTRAP, TRAP_BRKPT, (void __user *)regs->pc, 0,
|
|
|
|
current);
|
2005-04-16 22:20:36 +00:00
|
|
|
return;
|
|
|
|
|
|
|
|
case 1: /* bugcheck */
|
2018-04-17 22:37:49 +00:00
|
|
|
send_sig_fault(SIGTRAP, TRAP_UNK, (void __user *) regs->pc, 0,
|
|
|
|
current);
|
2005-04-16 22:20:36 +00:00
|
|
|
return;
|
|
|
|
|
|
|
|
case 2: /* gentrap */
|
|
|
|
switch ((long) regs->r16) {
|
|
|
|
case GEN_INTOVF:
|
|
|
|
signo = SIGFPE;
|
|
|
|
code = FPE_INTOVF;
|
|
|
|
break;
|
|
|
|
case GEN_INTDIV:
|
|
|
|
signo = SIGFPE;
|
|
|
|
code = FPE_INTDIV;
|
|
|
|
break;
|
|
|
|
case GEN_FLTOVF:
|
|
|
|
signo = SIGFPE;
|
|
|
|
code = FPE_FLTOVF;
|
|
|
|
break;
|
|
|
|
case GEN_FLTDIV:
|
|
|
|
signo = SIGFPE;
|
|
|
|
code = FPE_FLTDIV;
|
|
|
|
break;
|
|
|
|
case GEN_FLTUND:
|
|
|
|
signo = SIGFPE;
|
|
|
|
code = FPE_FLTUND;
|
|
|
|
break;
|
|
|
|
case GEN_FLTINV:
|
|
|
|
signo = SIGFPE;
|
|
|
|
code = FPE_FLTINV;
|
|
|
|
break;
|
|
|
|
case GEN_FLTINE:
|
|
|
|
signo = SIGFPE;
|
|
|
|
code = FPE_FLTRES;
|
|
|
|
break;
|
|
|
|
case GEN_ROPRAND:
|
|
|
|
signo = SIGFPE;
|
2018-04-17 21:04:57 +00:00
|
|
|
code = FPE_FLTUNK;
|
2005-04-16 22:20:36 +00:00
|
|
|
break;
|
|
|
|
|
|
|
|
case GEN_DECOVF:
|
|
|
|
case GEN_DECDIV:
|
|
|
|
case GEN_DECINV:
|
|
|
|
case GEN_ASSERTERR:
|
|
|
|
case GEN_NULPTRERR:
|
|
|
|
case GEN_STKOVF:
|
|
|
|
case GEN_STRLENERR:
|
|
|
|
case GEN_SUBSTRERR:
|
|
|
|
case GEN_RANGERR:
|
|
|
|
case GEN_SUBRNG:
|
|
|
|
case GEN_SUBRNG1:
|
|
|
|
case GEN_SUBRNG2:
|
|
|
|
case GEN_SUBRNG3:
|
|
|
|
case GEN_SUBRNG4:
|
|
|
|
case GEN_SUBRNG5:
|
|
|
|
case GEN_SUBRNG6:
|
|
|
|
case GEN_SUBRNG7:
|
|
|
|
default:
|
|
|
|
signo = SIGTRAP;
|
2018-04-17 22:30:31 +00:00
|
|
|
code = TRAP_UNK;
|
2005-04-16 22:20:36 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2018-04-17 22:37:49 +00:00
|
|
|
send_sig_fault(signo, code, (void __user *) regs->pc, regs->r16,
|
|
|
|
current);
|
2005-04-16 22:20:36 +00:00
|
|
|
return;
|
|
|
|
|
|
|
|
case 4: /* opDEC */
|
|
|
|
if (implver() == IMPLVER_EV4) {
|
|
|
|
long si_code;
|
|
|
|
|
|
|
|
/* The some versions of SRM do not handle
|
|
|
|
the opDEC properly - they return the PC of the
|
|
|
|
opDEC fault, not the instruction after as the
|
|
|
|
Alpha architecture requires. Here we fix it up.
|
|
|
|
We do this by intentionally causing an opDEC
|
|
|
|
fault during the boot sequence and testing if
|
|
|
|
we get the correct PC. If not, we set a flag
|
|
|
|
to correct it every time through. */
|
|
|
|
regs->pc += opDEC_fix;
|
|
|
|
|
|
|
|
/* EV4 does not implement anything except normal
|
|
|
|
rounding. Everything else will come here as
|
|
|
|
an illegal instruction. Emulate them. */
|
|
|
|
si_code = alpha_fp_emul(regs->pc - 4);
|
|
|
|
if (si_code == 0)
|
|
|
|
return;
|
|
|
|
if (si_code > 0) {
|
2018-04-17 22:37:49 +00:00
|
|
|
send_sig_fault(SIGFPE, si_code,
|
|
|
|
(void __user *) regs->pc, 0,
|
|
|
|
current);
|
2005-04-16 22:20:36 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case 3: /* FEN fault */
|
|
|
|
/* Irritating users can call PAL_clrfen to disable the
|
|
|
|
FPU for the process. The kernel will then trap in
|
|
|
|
do_switch_stack and undo_switch_stack when we try
|
|
|
|
to save and restore the FP registers.
|
|
|
|
|
|
|
|
Given that GCC by default generates code that uses the
|
|
|
|
FP registers, PAL_clrfen is not useful except for DoS
|
|
|
|
attacks. So turn the bleeding FPU back on and be done
|
|
|
|
with it. */
|
|
|
|
current_thread_info()->pcb.flags |= 1;
|
|
|
|
__reload_thread(¤t_thread_info()->pcb);
|
|
|
|
return;
|
|
|
|
|
|
|
|
case 5: /* illoc */
|
|
|
|
default: /* unexpected instruction-fault type */
|
|
|
|
;
|
|
|
|
}
|
|
|
|
|
2018-04-17 22:37:49 +00:00
|
|
|
send_sig_fault(SIGILL, ILL_ILLOPC, (void __user *)regs->pc, 0, current);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* There is an ifdef in the PALcode in MILO that enables a
|
|
|
|
"kernel debugging entry point" as an unprivileged call_pal.
|
|
|
|
|
|
|
|
We don't want to have anything to do with it, but unfortunately
|
|
|
|
several versions of MILO included in distributions have it enabled,
|
|
|
|
and if we don't put something on the entry point we'll oops. */
|
|
|
|
|
|
|
|
asmlinkage void
|
|
|
|
do_entDbg(struct pt_regs *regs)
|
|
|
|
{
|
|
|
|
siginfo_t info;
|
|
|
|
|
|
|
|
die_if_kernel("Instruction fault", regs, 0, NULL);
|
|
|
|
|
2018-04-17 20:26:37 +00:00
|
|
|
clear_siginfo(&info);
|
2005-04-16 22:20:36 +00:00
|
|
|
info.si_signo = SIGILL;
|
|
|
|
info.si_errno = 0;
|
|
|
|
info.si_code = ILL_ILLOPC;
|
|
|
|
info.si_addr = (void __user *) regs->pc;
|
|
|
|
force_sig_info(SIGILL, &info, current);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* entUna has a different register layout to be reasonably simple. It
|
|
|
|
* needs access to all the integer registers (the kernel doesn't use
|
|
|
|
* fp-regs), and it needs to have them in order for simpler access.
|
|
|
|
*
|
|
|
|
* Due to the non-standard register layout (and because we don't want
|
|
|
|
* to handle floating-point regs), user-mode unaligned accesses are
|
|
|
|
* handled separately by do_entUnaUser below.
|
|
|
|
*
|
|
|
|
* Oh, btw, we don't handle the "gp" register correctly, but if we fault
|
|
|
|
* on a gp-register unaligned load/store, something is _very_ wrong
|
|
|
|
* in the kernel anyway..
|
|
|
|
*/
|
|
|
|
struct allregs {
|
|
|
|
unsigned long regs[32];
|
|
|
|
unsigned long ps, pc, gp, a0, a1, a2;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct unaligned_stat {
|
|
|
|
unsigned long count, va, pc;
|
|
|
|
} unaligned[2];
|
|
|
|
|
|
|
|
|
|
|
|
/* Macro for exception fixup code to access integer registers. */
|
2008-06-20 23:28:31 +00:00
|
|
|
#define una_reg(r) (_regs[(r) >= 16 && (r) <= 18 ? (r)+19 : (r)])
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
|
|
|
|
asmlinkage void
|
|
|
|
do_entUna(void * va, unsigned long opcode, unsigned long reg,
|
2005-10-02 19:49:52 +00:00
|
|
|
struct allregs *regs)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
|
|
|
long error, tmp1, tmp2, tmp3, tmp4;
|
2005-10-02 19:49:52 +00:00
|
|
|
unsigned long pc = regs->pc - 4;
|
2008-06-20 23:28:31 +00:00
|
|
|
unsigned long *_regs = regs->regs;
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct exception_table_entry *fixup;
|
|
|
|
|
|
|
|
unaligned[0].count++;
|
|
|
|
unaligned[0].va = (unsigned long) va;
|
|
|
|
unaligned[0].pc = pc;
|
|
|
|
|
|
|
|
/* We don't want to use the generic get/put unaligned macros as
|
|
|
|
we want to trap exceptions. Only if we actually get an
|
|
|
|
exception will we decide whether we should have caught it. */
|
|
|
|
|
|
|
|
switch (opcode) {
|
|
|
|
case 0x0c: /* ldwu */
|
|
|
|
__asm__ __volatile__(
|
|
|
|
"1: ldq_u %1,0(%3)\n"
|
|
|
|
"2: ldq_u %2,1(%3)\n"
|
|
|
|
" extwl %1,%3,%1\n"
|
|
|
|
" extwh %2,%3,%2\n"
|
|
|
|
"3:\n"
|
2017-03-07 09:08:46 +00:00
|
|
|
EXC(1b,3b,%1,%0)
|
|
|
|
EXC(2b,3b,%2,%0)
|
2005-04-16 22:20:36 +00:00
|
|
|
: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
|
|
|
|
: "r"(va), "0"(0));
|
|
|
|
if (error)
|
|
|
|
goto got_exception;
|
|
|
|
una_reg(reg) = tmp1|tmp2;
|
|
|
|
return;
|
|
|
|
|
|
|
|
case 0x28: /* ldl */
|
|
|
|
__asm__ __volatile__(
|
|
|
|
"1: ldq_u %1,0(%3)\n"
|
|
|
|
"2: ldq_u %2,3(%3)\n"
|
|
|
|
" extll %1,%3,%1\n"
|
|
|
|
" extlh %2,%3,%2\n"
|
|
|
|
"3:\n"
|
2017-03-07 09:08:46 +00:00
|
|
|
EXC(1b,3b,%1,%0)
|
|
|
|
EXC(2b,3b,%2,%0)
|
2005-04-16 22:20:36 +00:00
|
|
|
: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
|
|
|
|
: "r"(va), "0"(0));
|
|
|
|
if (error)
|
|
|
|
goto got_exception;
|
|
|
|
una_reg(reg) = (int)(tmp1|tmp2);
|
|
|
|
return;
|
|
|
|
|
|
|
|
case 0x29: /* ldq */
|
|
|
|
__asm__ __volatile__(
|
|
|
|
"1: ldq_u %1,0(%3)\n"
|
|
|
|
"2: ldq_u %2,7(%3)\n"
|
|
|
|
" extql %1,%3,%1\n"
|
|
|
|
" extqh %2,%3,%2\n"
|
|
|
|
"3:\n"
|
2017-03-07 09:08:46 +00:00
|
|
|
EXC(1b,3b,%1,%0)
|
|
|
|
EXC(2b,3b,%2,%0)
|
2005-04-16 22:20:36 +00:00
|
|
|
: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
|
|
|
|
: "r"(va), "0"(0));
|
|
|
|
if (error)
|
|
|
|
goto got_exception;
|
|
|
|
una_reg(reg) = tmp1|tmp2;
|
|
|
|
return;
|
|
|
|
|
|
|
|
/* Note that the store sequences do not indicate that they change
|
|
|
|
memory because it _should_ be affecting nothing in this context.
|
|
|
|
(Otherwise we have other, much larger, problems.) */
|
|
|
|
case 0x0d: /* stw */
|
|
|
|
__asm__ __volatile__(
|
|
|
|
"1: ldq_u %2,1(%5)\n"
|
|
|
|
"2: ldq_u %1,0(%5)\n"
|
|
|
|
" inswh %6,%5,%4\n"
|
|
|
|
" inswl %6,%5,%3\n"
|
|
|
|
" mskwh %2,%5,%2\n"
|
|
|
|
" mskwl %1,%5,%1\n"
|
|
|
|
" or %2,%4,%2\n"
|
|
|
|
" or %1,%3,%1\n"
|
|
|
|
"3: stq_u %2,1(%5)\n"
|
|
|
|
"4: stq_u %1,0(%5)\n"
|
|
|
|
"5:\n"
|
2017-03-07 09:08:46 +00:00
|
|
|
EXC(1b,5b,%2,%0)
|
|
|
|
EXC(2b,5b,%1,%0)
|
|
|
|
EXC(3b,5b,$31,%0)
|
|
|
|
EXC(4b,5b,$31,%0)
|
2005-04-16 22:20:36 +00:00
|
|
|
: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
|
|
|
|
"=&r"(tmp3), "=&r"(tmp4)
|
|
|
|
: "r"(va), "r"(una_reg(reg)), "0"(0));
|
|
|
|
if (error)
|
|
|
|
goto got_exception;
|
|
|
|
return;
|
|
|
|
|
|
|
|
case 0x2c: /* stl */
|
|
|
|
__asm__ __volatile__(
|
|
|
|
"1: ldq_u %2,3(%5)\n"
|
|
|
|
"2: ldq_u %1,0(%5)\n"
|
|
|
|
" inslh %6,%5,%4\n"
|
|
|
|
" insll %6,%5,%3\n"
|
|
|
|
" msklh %2,%5,%2\n"
|
|
|
|
" mskll %1,%5,%1\n"
|
|
|
|
" or %2,%4,%2\n"
|
|
|
|
" or %1,%3,%1\n"
|
|
|
|
"3: stq_u %2,3(%5)\n"
|
|
|
|
"4: stq_u %1,0(%5)\n"
|
|
|
|
"5:\n"
|
2017-03-07 09:08:46 +00:00
|
|
|
EXC(1b,5b,%2,%0)
|
|
|
|
EXC(2b,5b,%1,%0)
|
|
|
|
EXC(3b,5b,$31,%0)
|
|
|
|
EXC(4b,5b,$31,%0)
|
2005-04-16 22:20:36 +00:00
|
|
|
: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
|
|
|
|
"=&r"(tmp3), "=&r"(tmp4)
|
|
|
|
: "r"(va), "r"(una_reg(reg)), "0"(0));
|
|
|
|
if (error)
|
|
|
|
goto got_exception;
|
|
|
|
return;
|
|
|
|
|
|
|
|
case 0x2d: /* stq */
|
|
|
|
__asm__ __volatile__(
|
|
|
|
"1: ldq_u %2,7(%5)\n"
|
|
|
|
"2: ldq_u %1,0(%5)\n"
|
|
|
|
" insqh %6,%5,%4\n"
|
|
|
|
" insql %6,%5,%3\n"
|
|
|
|
" mskqh %2,%5,%2\n"
|
|
|
|
" mskql %1,%5,%1\n"
|
|
|
|
" or %2,%4,%2\n"
|
|
|
|
" or %1,%3,%1\n"
|
|
|
|
"3: stq_u %2,7(%5)\n"
|
|
|
|
"4: stq_u %1,0(%5)\n"
|
|
|
|
"5:\n"
|
2017-03-07 09:08:46 +00:00
|
|
|
EXC(1b,5b,%2,%0)
|
|
|
|
EXC(2b,5b,%1,%0)
|
|
|
|
EXC(3b,5b,$31,%0)
|
|
|
|
EXC(4b,5b,$31,%0)
|
2005-04-16 22:20:36 +00:00
|
|
|
: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
|
|
|
|
"=&r"(tmp3), "=&r"(tmp4)
|
|
|
|
: "r"(va), "r"(una_reg(reg)), "0"(0));
|
|
|
|
if (error)
|
|
|
|
goto got_exception;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2009-03-31 22:23:36 +00:00
|
|
|
printk("Bad unaligned kernel access at %016lx: %p %lx %lu\n",
|
2005-04-16 22:20:36 +00:00
|
|
|
pc, va, opcode, reg);
|
|
|
|
do_exit(SIGSEGV);
|
|
|
|
|
|
|
|
got_exception:
|
|
|
|
/* Ok, we caught the exception, but we don't want it. Is there
|
|
|
|
someone to pass it along to? */
|
|
|
|
if ((fixup = search_exception_tables(pc)) != 0) {
|
|
|
|
unsigned long newpc;
|
|
|
|
newpc = fixup_exception(una_reg, fixup, pc);
|
|
|
|
|
|
|
|
printk("Forwarding unaligned exception at %lx (%lx)\n",
|
|
|
|
pc, newpc);
|
|
|
|
|
2005-10-02 19:49:52 +00:00
|
|
|
regs->pc = newpc;
|
2005-04-16 22:20:36 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Yikes! No one to forward the exception to.
|
|
|
|
* Since the registers are in a weird format, dump them ourselves.
|
|
|
|
*/
|
|
|
|
|
|
|
|
printk("%s(%d): unhandled unaligned exception\n",
|
2007-10-19 06:40:41 +00:00
|
|
|
current->comm, task_pid_nr(current));
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
printk("pc = [<%016lx>] ra = [<%016lx>] ps = %04lx\n",
|
2005-10-02 19:49:52 +00:00
|
|
|
pc, una_reg(26), regs->ps);
|
2005-04-16 22:20:36 +00:00
|
|
|
printk("r0 = %016lx r1 = %016lx r2 = %016lx\n",
|
|
|
|
una_reg(0), una_reg(1), una_reg(2));
|
|
|
|
printk("r3 = %016lx r4 = %016lx r5 = %016lx\n",
|
|
|
|
una_reg(3), una_reg(4), una_reg(5));
|
|
|
|
printk("r6 = %016lx r7 = %016lx r8 = %016lx\n",
|
|
|
|
una_reg(6), una_reg(7), una_reg(8));
|
|
|
|
printk("r9 = %016lx r10= %016lx r11= %016lx\n",
|
|
|
|
una_reg(9), una_reg(10), una_reg(11));
|
|
|
|
printk("r12= %016lx r13= %016lx r14= %016lx\n",
|
|
|
|
una_reg(12), una_reg(13), una_reg(14));
|
|
|
|
printk("r15= %016lx\n", una_reg(15));
|
|
|
|
printk("r16= %016lx r17= %016lx r18= %016lx\n",
|
|
|
|
una_reg(16), una_reg(17), una_reg(18));
|
|
|
|
printk("r19= %016lx r20= %016lx r21= %016lx\n",
|
|
|
|
una_reg(19), una_reg(20), una_reg(21));
|
|
|
|
printk("r22= %016lx r23= %016lx r24= %016lx\n",
|
|
|
|
una_reg(22), una_reg(23), una_reg(24));
|
|
|
|
printk("r25= %016lx r27= %016lx r28= %016lx\n",
|
|
|
|
una_reg(25), una_reg(27), una_reg(28));
|
2005-10-02 19:49:52 +00:00
|
|
|
printk("gp = %016lx sp = %p\n", regs->gp, regs+1);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
dik_show_code((unsigned int *)pc);
|
2005-10-02 19:49:52 +00:00
|
|
|
dik_show_trace((unsigned long *)(regs+1));
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL)) {
|
|
|
|
printk("die_if_kernel recursion detected.\n");
|
|
|
|
local_irq_enable();
|
|
|
|
while (1);
|
|
|
|
}
|
|
|
|
do_exit(SIGSEGV);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Convert an s-floating point value in memory format to the
|
|
|
|
* corresponding value in register format. The exponent
|
|
|
|
* needs to be remapped to preserve non-finite values
|
|
|
|
* (infinities, not-a-numbers, denormals).
|
|
|
|
*/
|
|
|
|
static inline unsigned long
|
|
|
|
s_mem_to_reg (unsigned long s_mem)
|
|
|
|
{
|
|
|
|
unsigned long frac = (s_mem >> 0) & 0x7fffff;
|
|
|
|
unsigned long sign = (s_mem >> 31) & 0x1;
|
|
|
|
unsigned long exp_msb = (s_mem >> 30) & 0x1;
|
|
|
|
unsigned long exp_low = (s_mem >> 23) & 0x7f;
|
|
|
|
unsigned long exp;
|
|
|
|
|
|
|
|
exp = (exp_msb << 10) | exp_low; /* common case */
|
|
|
|
if (exp_msb) {
|
|
|
|
if (exp_low == 0x7f) {
|
|
|
|
exp = 0x7ff;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if (exp_low == 0x00) {
|
|
|
|
exp = 0x000;
|
|
|
|
} else {
|
|
|
|
exp |= (0x7 << 7);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return (sign << 63) | (exp << 52) | (frac << 29);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Convert an s-floating point value in register format to the
|
|
|
|
* corresponding value in memory format.
|
|
|
|
*/
|
|
|
|
static inline unsigned long
|
|
|
|
s_reg_to_mem (unsigned long s_reg)
|
|
|
|
{
|
|
|
|
return ((s_reg >> 62) << 30) | ((s_reg << 5) >> 34);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Handle user-level unaligned fault. Handling user-level unaligned
|
|
|
|
* faults is *extremely* slow and produces nasty messages. A user
|
|
|
|
* program *should* fix unaligned faults ASAP.
|
|
|
|
*
|
|
|
|
* Notice that we have (almost) the regular kernel stack layout here,
|
|
|
|
* so finding the appropriate registers is a little more difficult
|
|
|
|
* than in the kernel case.
|
|
|
|
*
|
|
|
|
* Finally, we handle regular integer load/stores only. In
|
|
|
|
* particular, load-linked/store-conditionally and floating point
|
|
|
|
* load/stores are not supported. The former make no sense with
|
|
|
|
* unaligned faults (they are guaranteed to fail) and I don't think
|
|
|
|
* the latter will occur in any decent program.
|
|
|
|
*
|
|
|
|
* Sigh. We *do* have to handle some FP operations, because GCC will
|
|
|
|
* uses them as temporary storage for integer memory to memory copies.
|
|
|
|
* However, we need to deal with stt/ldt and sts/lds only.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define OP_INT_MASK ( 1L << 0x28 | 1L << 0x2c /* ldl stl */ \
|
|
|
|
| 1L << 0x29 | 1L << 0x2d /* ldq stq */ \
|
|
|
|
| 1L << 0x0c | 1L << 0x0d /* ldwu stw */ \
|
|
|
|
| 1L << 0x0a | 1L << 0x0e ) /* ldbu stb */
|
|
|
|
|
|
|
|
#define OP_WRITE_MASK ( 1L << 0x26 | 1L << 0x27 /* sts stt */ \
|
|
|
|
| 1L << 0x2c | 1L << 0x2d /* stl stq */ \
|
|
|
|
| 1L << 0x0d | 1L << 0x0e ) /* stw stb */
|
|
|
|
|
|
|
|
#define R(x) ((size_t) &((struct pt_regs *)0)->x)
|
|
|
|
|
|
|
|
static int unauser_reg_offsets[32] = {
|
|
|
|
R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), R(r8),
|
|
|
|
/* r9 ... r15 are stored in front of regs. */
|
|
|
|
-56, -48, -40, -32, -24, -16, -8,
|
|
|
|
R(r16), R(r17), R(r18),
|
|
|
|
R(r19), R(r20), R(r21), R(r22), R(r23), R(r24), R(r25), R(r26),
|
|
|
|
R(r27), R(r28), R(gp),
|
|
|
|
0, 0
|
|
|
|
};
|
|
|
|
|
|
|
|
#undef R
|
|
|
|
|
|
|
|
asmlinkage void
|
|
|
|
do_entUnaUser(void __user * va, unsigned long opcode,
|
|
|
|
unsigned long reg, struct pt_regs *regs)
|
|
|
|
{
|
2010-03-01 18:25:49 +00:00
|
|
|
static DEFINE_RATELIMIT_STATE(ratelimit, 5 * HZ, 5);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
unsigned long tmp1, tmp2, tmp3, tmp4;
|
|
|
|
unsigned long fake_reg, *reg_addr = &fake_reg;
|
2018-04-17 22:37:49 +00:00
|
|
|
int si_code;
|
2005-04-16 22:20:36 +00:00
|
|
|
long error;
|
|
|
|
|
|
|
|
/* Check the UAC bits to decide what the user wants us to do
|
|
|
|
with the unaliged access. */
|
|
|
|
|
2012-10-20 14:52:23 +00:00
|
|
|
if (!(current_thread_info()->status & TS_UAC_NOPRINT)) {
|
2010-03-01 18:25:49 +00:00
|
|
|
if (__ratelimit(&ratelimit)) {
|
2005-04-16 22:20:36 +00:00
|
|
|
printk("%s(%d): unaligned trap at %016lx: %p %lx %ld\n",
|
2007-10-19 06:40:41 +00:00
|
|
|
current->comm, task_pid_nr(current),
|
2005-04-16 22:20:36 +00:00
|
|
|
regs->pc - 4, va, opcode, reg);
|
|
|
|
}
|
|
|
|
}
|
2012-10-20 14:52:23 +00:00
|
|
|
if ((current_thread_info()->status & TS_UAC_SIGBUS))
|
2005-04-16 22:20:36 +00:00
|
|
|
goto give_sigbus;
|
|
|
|
/* Not sure why you'd want to use this, but... */
|
2012-10-20 14:52:23 +00:00
|
|
|
if ((current_thread_info()->status & TS_UAC_NOFIX))
|
2005-04-16 22:20:36 +00:00
|
|
|
return;
|
|
|
|
|
|
|
|
/* Don't bother reading ds in the access check since we already
|
|
|
|
know that this came from the user. Also rely on the fact that
|
|
|
|
the page at TASK_SIZE is unmapped and so can't be touched anyway. */
|
2016-12-27 07:23:46 +00:00
|
|
|
if ((unsigned long)va >= TASK_SIZE)
|
2005-04-16 22:20:36 +00:00
|
|
|
goto give_sigsegv;
|
|
|
|
|
|
|
|
++unaligned[1].count;
|
|
|
|
unaligned[1].va = (unsigned long)va;
|
|
|
|
unaligned[1].pc = regs->pc - 4;
|
|
|
|
|
|
|
|
if ((1L << opcode) & OP_INT_MASK) {
|
|
|
|
/* it's an integer load/store */
|
|
|
|
if (reg < 30) {
|
|
|
|
reg_addr = (unsigned long *)
|
|
|
|
((char *)regs + unauser_reg_offsets[reg]);
|
|
|
|
} else if (reg == 30) {
|
|
|
|
/* usp in PAL regs */
|
|
|
|
fake_reg = rdusp();
|
|
|
|
} else {
|
|
|
|
/* zero "register" */
|
|
|
|
fake_reg = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* We don't want to use the generic get/put unaligned macros as
|
|
|
|
we want to trap exceptions. Only if we actually get an
|
|
|
|
exception will we decide whether we should have caught it. */
|
|
|
|
|
|
|
|
switch (opcode) {
|
|
|
|
case 0x0c: /* ldwu */
|
|
|
|
__asm__ __volatile__(
|
|
|
|
"1: ldq_u %1,0(%3)\n"
|
|
|
|
"2: ldq_u %2,1(%3)\n"
|
|
|
|
" extwl %1,%3,%1\n"
|
|
|
|
" extwh %2,%3,%2\n"
|
|
|
|
"3:\n"
|
2017-03-07 09:08:46 +00:00
|
|
|
EXC(1b,3b,%1,%0)
|
|
|
|
EXC(2b,3b,%2,%0)
|
2005-04-16 22:20:36 +00:00
|
|
|
: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
|
|
|
|
: "r"(va), "0"(0));
|
|
|
|
if (error)
|
|
|
|
goto give_sigsegv;
|
|
|
|
*reg_addr = tmp1|tmp2;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case 0x22: /* lds */
|
|
|
|
__asm__ __volatile__(
|
|
|
|
"1: ldq_u %1,0(%3)\n"
|
|
|
|
"2: ldq_u %2,3(%3)\n"
|
|
|
|
" extll %1,%3,%1\n"
|
|
|
|
" extlh %2,%3,%2\n"
|
|
|
|
"3:\n"
|
2017-03-07 09:08:46 +00:00
|
|
|
EXC(1b,3b,%1,%0)
|
|
|
|
EXC(2b,3b,%2,%0)
|
2005-04-16 22:20:36 +00:00
|
|
|
: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
|
|
|
|
: "r"(va), "0"(0));
|
|
|
|
if (error)
|
|
|
|
goto give_sigsegv;
|
|
|
|
alpha_write_fp_reg(reg, s_mem_to_reg((int)(tmp1|tmp2)));
|
|
|
|
return;
|
|
|
|
|
|
|
|
case 0x23: /* ldt */
|
|
|
|
__asm__ __volatile__(
|
|
|
|
"1: ldq_u %1,0(%3)\n"
|
|
|
|
"2: ldq_u %2,7(%3)\n"
|
|
|
|
" extql %1,%3,%1\n"
|
|
|
|
" extqh %2,%3,%2\n"
|
|
|
|
"3:\n"
|
2017-03-07 09:08:46 +00:00
|
|
|
EXC(1b,3b,%1,%0)
|
|
|
|
EXC(2b,3b,%2,%0)
|
2005-04-16 22:20:36 +00:00
|
|
|
: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
|
|
|
|
: "r"(va), "0"(0));
|
|
|
|
if (error)
|
|
|
|
goto give_sigsegv;
|
|
|
|
alpha_write_fp_reg(reg, tmp1|tmp2);
|
|
|
|
return;
|
|
|
|
|
|
|
|
case 0x28: /* ldl */
|
|
|
|
__asm__ __volatile__(
|
|
|
|
"1: ldq_u %1,0(%3)\n"
|
|
|
|
"2: ldq_u %2,3(%3)\n"
|
|
|
|
" extll %1,%3,%1\n"
|
|
|
|
" extlh %2,%3,%2\n"
|
|
|
|
"3:\n"
|
2017-03-07 09:08:46 +00:00
|
|
|
EXC(1b,3b,%1,%0)
|
|
|
|
EXC(2b,3b,%2,%0)
|
2005-04-16 22:20:36 +00:00
|
|
|
: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
|
|
|
|
: "r"(va), "0"(0));
|
|
|
|
if (error)
|
|
|
|
goto give_sigsegv;
|
|
|
|
*reg_addr = (int)(tmp1|tmp2);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case 0x29: /* ldq */
|
|
|
|
__asm__ __volatile__(
|
|
|
|
"1: ldq_u %1,0(%3)\n"
|
|
|
|
"2: ldq_u %2,7(%3)\n"
|
|
|
|
" extql %1,%3,%1\n"
|
|
|
|
" extqh %2,%3,%2\n"
|
|
|
|
"3:\n"
|
2017-03-07 09:08:46 +00:00
|
|
|
EXC(1b,3b,%1,%0)
|
|
|
|
EXC(2b,3b,%2,%0)
|
2005-04-16 22:20:36 +00:00
|
|
|
: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
|
|
|
|
: "r"(va), "0"(0));
|
|
|
|
if (error)
|
|
|
|
goto give_sigsegv;
|
|
|
|
*reg_addr = tmp1|tmp2;
|
|
|
|
break;
|
|
|
|
|
|
|
|
/* Note that the store sequences do not indicate that they change
|
|
|
|
memory because it _should_ be affecting nothing in this context.
|
|
|
|
(Otherwise we have other, much larger, problems.) */
|
|
|
|
case 0x0d: /* stw */
|
|
|
|
__asm__ __volatile__(
|
|
|
|
"1: ldq_u %2,1(%5)\n"
|
|
|
|
"2: ldq_u %1,0(%5)\n"
|
|
|
|
" inswh %6,%5,%4\n"
|
|
|
|
" inswl %6,%5,%3\n"
|
|
|
|
" mskwh %2,%5,%2\n"
|
|
|
|
" mskwl %1,%5,%1\n"
|
|
|
|
" or %2,%4,%2\n"
|
|
|
|
" or %1,%3,%1\n"
|
|
|
|
"3: stq_u %2,1(%5)\n"
|
|
|
|
"4: stq_u %1,0(%5)\n"
|
|
|
|
"5:\n"
|
2017-03-07 09:08:46 +00:00
|
|
|
EXC(1b,5b,%2,%0)
|
|
|
|
EXC(2b,5b,%1,%0)
|
|
|
|
EXC(3b,5b,$31,%0)
|
|
|
|
EXC(4b,5b,$31,%0)
|
2005-04-16 22:20:36 +00:00
|
|
|
: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
|
|
|
|
"=&r"(tmp3), "=&r"(tmp4)
|
|
|
|
: "r"(va), "r"(*reg_addr), "0"(0));
|
|
|
|
if (error)
|
|
|
|
goto give_sigsegv;
|
|
|
|
return;
|
|
|
|
|
|
|
|
case 0x26: /* sts */
|
|
|
|
fake_reg = s_reg_to_mem(alpha_read_fp_reg(reg));
|
|
|
|
/* FALLTHRU */
|
|
|
|
|
|
|
|
case 0x2c: /* stl */
|
|
|
|
__asm__ __volatile__(
|
|
|
|
"1: ldq_u %2,3(%5)\n"
|
|
|
|
"2: ldq_u %1,0(%5)\n"
|
|
|
|
" inslh %6,%5,%4\n"
|
|
|
|
" insll %6,%5,%3\n"
|
|
|
|
" msklh %2,%5,%2\n"
|
|
|
|
" mskll %1,%5,%1\n"
|
|
|
|
" or %2,%4,%2\n"
|
|
|
|
" or %1,%3,%1\n"
|
|
|
|
"3: stq_u %2,3(%5)\n"
|
|
|
|
"4: stq_u %1,0(%5)\n"
|
|
|
|
"5:\n"
|
2017-03-07 09:08:46 +00:00
|
|
|
EXC(1b,5b,%2,%0)
|
|
|
|
EXC(2b,5b,%1,%0)
|
|
|
|
EXC(3b,5b,$31,%0)
|
|
|
|
EXC(4b,5b,$31,%0)
|
2005-04-16 22:20:36 +00:00
|
|
|
: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
|
|
|
|
"=&r"(tmp3), "=&r"(tmp4)
|
|
|
|
: "r"(va), "r"(*reg_addr), "0"(0));
|
|
|
|
if (error)
|
|
|
|
goto give_sigsegv;
|
|
|
|
return;
|
|
|
|
|
|
|
|
case 0x27: /* stt */
|
|
|
|
fake_reg = alpha_read_fp_reg(reg);
|
|
|
|
/* FALLTHRU */
|
|
|
|
|
|
|
|
case 0x2d: /* stq */
|
|
|
|
__asm__ __volatile__(
|
|
|
|
"1: ldq_u %2,7(%5)\n"
|
|
|
|
"2: ldq_u %1,0(%5)\n"
|
|
|
|
" insqh %6,%5,%4\n"
|
|
|
|
" insql %6,%5,%3\n"
|
|
|
|
" mskqh %2,%5,%2\n"
|
|
|
|
" mskql %1,%5,%1\n"
|
|
|
|
" or %2,%4,%2\n"
|
|
|
|
" or %1,%3,%1\n"
|
|
|
|
"3: stq_u %2,7(%5)\n"
|
|
|
|
"4: stq_u %1,0(%5)\n"
|
|
|
|
"5:\n"
|
2017-03-07 09:08:46 +00:00
|
|
|
EXC(1b,5b,%2,%0)
|
|
|
|
EXC(2b,5b,%1,%0)
|
|
|
|
EXC(3b,5b,$31,%0)
|
|
|
|
EXC(4b,5b,$31,%0)
|
2005-04-16 22:20:36 +00:00
|
|
|
: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
|
|
|
|
"=&r"(tmp3), "=&r"(tmp4)
|
|
|
|
: "r"(va), "r"(*reg_addr), "0"(0));
|
|
|
|
if (error)
|
|
|
|
goto give_sigsegv;
|
|
|
|
return;
|
|
|
|
|
|
|
|
default:
|
|
|
|
/* What instruction were you trying to use, exactly? */
|
|
|
|
goto give_sigbus;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Only integer loads should get here; everyone else returns early. */
|
|
|
|
if (reg == 30)
|
|
|
|
wrusp(fake_reg);
|
|
|
|
return;
|
|
|
|
|
|
|
|
give_sigsegv:
|
|
|
|
regs->pc -= 4; /* make pc point to faulting insn */
|
|
|
|
|
|
|
|
/* We need to replicate some of the logic in mm/fault.c,
|
|
|
|
since we don't have access to the fault code in the
|
|
|
|
exception handling return path. */
|
2016-12-27 07:23:46 +00:00
|
|
|
if ((unsigned long)va >= TASK_SIZE)
|
2018-04-17 22:37:49 +00:00
|
|
|
si_code = SEGV_ACCERR;
|
2005-04-16 22:20:36 +00:00
|
|
|
else {
|
|
|
|
struct mm_struct *mm = current->mm;
|
|
|
|
down_read(&mm->mmap_sem);
|
|
|
|
if (find_vma(mm, (unsigned long)va))
|
2018-04-17 22:37:49 +00:00
|
|
|
si_code = SEGV_ACCERR;
|
2005-04-16 22:20:36 +00:00
|
|
|
else
|
2018-04-17 22:37:49 +00:00
|
|
|
si_code = SEGV_MAPERR;
|
2005-04-16 22:20:36 +00:00
|
|
|
up_read(&mm->mmap_sem);
|
|
|
|
}
|
2018-04-17 22:37:49 +00:00
|
|
|
send_sig_fault(SIGSEGV, si_code, va, 0, current);
|
2005-04-16 22:20:36 +00:00
|
|
|
return;
|
|
|
|
|
|
|
|
give_sigbus:
|
|
|
|
regs->pc -= 4;
|
2018-04-17 22:37:49 +00:00
|
|
|
send_sig_fault(SIGBUS, BUS_ADRALN, va, 0, current);
|
2005-04-16 22:20:36 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2013-06-17 19:43:14 +00:00
|
|
|
void
|
2005-04-16 22:20:36 +00:00
|
|
|
trap_init(void)
|
|
|
|
{
|
|
|
|
/* Tell PAL-code what global pointer we want in the kernel. */
|
|
|
|
register unsigned long gptr __asm__("$29");
|
|
|
|
wrkgp(gptr);
|
|
|
|
|
|
|
|
/* Hack for Multia (UDB) and JENSEN: some of their SRMs have
|
|
|
|
a bug in the handling of the opDEC fault. Fix it up if so. */
|
|
|
|
if (implver() == IMPLVER_EV4)
|
|
|
|
opDEC_check();
|
|
|
|
|
|
|
|
wrent(entArith, 1);
|
|
|
|
wrent(entMM, 2);
|
|
|
|
wrent(entIF, 3);
|
|
|
|
wrent(entUna, 4);
|
|
|
|
wrent(entSys, 5);
|
|
|
|
wrent(entDbg, 6);
|
|
|
|
}
|