linux/drivers/media/usb/dvb-usb-v2/af9035.c

2183 lines
56 KiB
C
Raw Normal View History

treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 1 Based on 2 normalized pattern(s): this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option any later version this program is distributed in the hope that it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details you should have received a copy of the gnu general public license along with this program if not write to the free software foundation inc 51 franklin street fifth floor boston ma 02110 1301 usa this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option [no]_[pad]_[ctrl] any later version this program is distributed in the hope that it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details you should have received a copy of the gnu general public license along with this program if not write to the free software foundation inc 51 franklin street fifth floor boston ma 02110 1301 usa extracted by the scancode license scanner the SPDX license identifier GPL-2.0-or-later has been chosen to replace the boilerplate/reference in 176 file(s). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Jilayne Lovejoy <opensource@jilayne.com> Reviewed-by: Steve Winslow <swinslow@gmail.com> Reviewed-by: Allison Randal <allison@lohutok.net> Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190519154040.652910950@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-19 13:51:31 +00:00
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Afatech AF9035 DVB USB driver
*
* Copyright (C) 2009 Antti Palosaari <crope@iki.fi>
* Copyright (C) 2012 Antti Palosaari <crope@iki.fi>
*/
#include "af9035.h"
/* Max transfer size done by I2C transfer functions */
#define MAX_XFER_SIZE 64
DVB_DEFINE_MOD_OPT_ADAPTER_NR(adapter_nr);
static u16 af9035_checksum(const u8 *buf, size_t len)
{
size_t i;
u16 checksum = 0;
for (i = 1; i < len; i++) {
if (i % 2)
checksum += buf[i] << 8;
else
checksum += buf[i];
}
checksum = ~checksum;
return checksum;
}
static int af9035_ctrl_msg(struct dvb_usb_device *d, struct usb_req *req)
{
#define REQ_HDR_LEN 4 /* send header size */
#define ACK_HDR_LEN 3 /* rece header size */
#define CHECKSUM_LEN 2
#define USB_TIMEOUT 2000
struct state *state = d_to_priv(d);
struct usb_interface *intf = d->intf;
int ret, wlen, rlen;
u16 checksum, tmp_checksum;
mutex_lock(&d->usb_mutex);
/* buffer overflow check */
if (req->wlen > (BUF_LEN - REQ_HDR_LEN - CHECKSUM_LEN) ||
req->rlen > (BUF_LEN - ACK_HDR_LEN - CHECKSUM_LEN)) {
dev_err(&intf->dev, "too much data wlen=%d rlen=%d\n",
req->wlen, req->rlen);
ret = -EINVAL;
goto exit;
}
state->buf[0] = REQ_HDR_LEN + req->wlen + CHECKSUM_LEN - 1;
state->buf[1] = req->mbox;
state->buf[2] = req->cmd;
state->buf[3] = state->seq++;
memcpy(&state->buf[REQ_HDR_LEN], req->wbuf, req->wlen);
wlen = REQ_HDR_LEN + req->wlen + CHECKSUM_LEN;
rlen = ACK_HDR_LEN + req->rlen + CHECKSUM_LEN;
/* calc and add checksum */
checksum = af9035_checksum(state->buf, state->buf[0] - 1);
state->buf[state->buf[0] - 1] = (checksum >> 8);
state->buf[state->buf[0] - 0] = (checksum & 0xff);
/* no ack for these packets */
if (req->cmd == CMD_FW_DL)
rlen = 0;
ret = dvb_usbv2_generic_rw_locked(d,
state->buf, wlen, state->buf, rlen);
if (ret)
goto exit;
/* no ack for those packets */
if (req->cmd == CMD_FW_DL)
goto exit;
/* verify checksum */
checksum = af9035_checksum(state->buf, rlen - 2);
tmp_checksum = (state->buf[rlen - 2] << 8) | state->buf[rlen - 1];
if (tmp_checksum != checksum) {
dev_err(&intf->dev, "command=%02x checksum mismatch (%04x != %04x)\n",
req->cmd, tmp_checksum, checksum);
ret = -EIO;
goto exit;
}
/* check status */
if (state->buf[2]) {
/* fw returns status 1 when IR code was not received */
if (req->cmd == CMD_IR_GET || state->buf[2] == 1) {
ret = 1;
goto exit;
}
dev_dbg(&intf->dev, "command=%02x failed fw error=%d\n",
req->cmd, state->buf[2]);
ret = -EIO;
goto exit;
}
/* read request, copy returned data to return buf */
if (req->rlen)
memcpy(req->rbuf, &state->buf[ACK_HDR_LEN], req->rlen);
exit:
mutex_unlock(&d->usb_mutex);
return ret;
}
/* write multiple registers */
static int af9035_wr_regs(struct dvb_usb_device *d, u32 reg, u8 *val, int len)
{
struct usb_interface *intf = d->intf;
u8 wbuf[MAX_XFER_SIZE];
u8 mbox = (reg >> 16) & 0xff;
struct usb_req req = { CMD_MEM_WR, mbox, 6 + len, wbuf, 0, NULL };
if (6 + len > sizeof(wbuf)) {
dev_warn(&intf->dev, "i2c wr: len=%d is too big!\n", len);
return -EOPNOTSUPP;
}
wbuf[0] = len;
wbuf[1] = 2;
wbuf[2] = 0;
wbuf[3] = 0;
wbuf[4] = (reg >> 8) & 0xff;
wbuf[5] = (reg >> 0) & 0xff;
memcpy(&wbuf[6], val, len);
return af9035_ctrl_msg(d, &req);
}
/* read multiple registers */
static int af9035_rd_regs(struct dvb_usb_device *d, u32 reg, u8 *val, int len)
{
u8 wbuf[] = { len, 2, 0, 0, (reg >> 8) & 0xff, reg & 0xff };
u8 mbox = (reg >> 16) & 0xff;
struct usb_req req = { CMD_MEM_RD, mbox, sizeof(wbuf), wbuf, len, val };
return af9035_ctrl_msg(d, &req);
}
/* write single register */
static int af9035_wr_reg(struct dvb_usb_device *d, u32 reg, u8 val)
{
return af9035_wr_regs(d, reg, &val, 1);
}
/* read single register */
static int af9035_rd_reg(struct dvb_usb_device *d, u32 reg, u8 *val)
{
return af9035_rd_regs(d, reg, val, 1);
}
/* write single register with mask */
static int af9035_wr_reg_mask(struct dvb_usb_device *d, u32 reg, u8 val,
u8 mask)
{
int ret;
u8 tmp;
/* no need for read if whole reg is written */
if (mask != 0xff) {
ret = af9035_rd_regs(d, reg, &tmp, 1);
if (ret)
return ret;
val &= mask;
tmp &= ~mask;
val |= tmp;
}
return af9035_wr_regs(d, reg, &val, 1);
}
static int af9035_add_i2c_dev(struct dvb_usb_device *d, const char *type,
u8 addr, void *platform_data, struct i2c_adapter *adapter)
{
int ret, num;
struct state *state = d_to_priv(d);
struct usb_interface *intf = d->intf;
struct i2c_client *client;
struct i2c_board_info board_info = {
.addr = addr,
.platform_data = platform_data,
};
strscpy(board_info.type, type, I2C_NAME_SIZE);
/* find first free client */
for (num = 0; num < AF9035_I2C_CLIENT_MAX; num++) {
if (state->i2c_client[num] == NULL)
break;
}
dev_dbg(&intf->dev, "num=%d\n", num);
if (num == AF9035_I2C_CLIENT_MAX) {
dev_err(&intf->dev, "I2C client out of index\n");
ret = -ENODEV;
goto err;
}
request_module("%s", board_info.type);
/* register I2C device */
client = i2c_new_client_device(adapter, &board_info);
if (!i2c_client_has_driver(client)) {
ret = -ENODEV;
goto err;
}
/* increase I2C driver usage count */
if (!try_module_get(client->dev.driver->owner)) {
i2c_unregister_device(client);
ret = -ENODEV;
goto err;
}
state->i2c_client[num] = client;
return 0;
err:
dev_dbg(&intf->dev, "failed=%d\n", ret);
return ret;
}
static void af9035_del_i2c_dev(struct dvb_usb_device *d)
{
int num;
struct state *state = d_to_priv(d);
struct usb_interface *intf = d->intf;
struct i2c_client *client;
/* find last used client */
num = AF9035_I2C_CLIENT_MAX;
while (num--) {
if (state->i2c_client[num] != NULL)
break;
}
dev_dbg(&intf->dev, "num=%d\n", num);
if (num == -1) {
dev_err(&intf->dev, "I2C client out of index\n");
goto err;
}
client = state->i2c_client[num];
/* decrease I2C driver usage count */
module_put(client->dev.driver->owner);
/* unregister I2C device */
i2c_unregister_device(client);
state->i2c_client[num] = NULL;
return;
err:
dev_dbg(&intf->dev, "failed\n");
}
static int af9035_i2c_master_xfer(struct i2c_adapter *adap,
struct i2c_msg msg[], int num)
{
struct dvb_usb_device *d = i2c_get_adapdata(adap);
struct state *state = d_to_priv(d);
int ret;
if (mutex_lock_interruptible(&d->i2c_mutex) < 0)
return -EAGAIN;
/*
* AF9035 I2C sub header is 5 bytes long. Meaning of those bytes are:
* 0: data len
* 1: I2C addr << 1
* 2: reg addr len
* byte 3 and 4 can be used as reg addr
* 3: reg addr MSB
* used when reg addr len is set to 2
* 4: reg addr LSB
* used when reg addr len is set to 1 or 2
*
* For the simplify we do not use register addr at all.
* NOTE: As a firmware knows tuner type there is very small possibility
* there could be some tuner I2C hacks done by firmware and this may
* lead problems if firmware expects those bytes are used.
*
* TODO: Here is few hacks. AF9035 chip integrates AF9033 demodulator.
* IT9135 chip integrates AF9033 demodulator and RF tuner. For dual
* tuner devices, there is also external AF9033 demodulator connected
* via external I2C bus. All AF9033 demod I2C traffic, both single and
* dual tuner configuration, is covered by firmware - actual USB IO
* looks just like a memory access.
* In case of IT913x chip, there is own tuner driver. It is implemented
* currently as a I2C driver, even tuner IP block is likely build
* directly into the demodulator memory space and there is no own I2C
* bus. I2C subsystem does not allow register multiple devices to same
* bus, having same slave address. Due to that we reuse demod address,
* shifted by one bit, on that case.
*
* For IT930x we use a different command and the sub header is
* different as well:
* 0: data len
* 1: I2C bus (0x03 seems to be only value used)
* 2: I2C addr << 1
*/
#define AF9035_IS_I2C_XFER_WRITE_READ(_msg, _num) \
(_num == 2 && !(_msg[0].flags & I2C_M_RD) && (_msg[1].flags & I2C_M_RD))
#define AF9035_IS_I2C_XFER_WRITE(_msg, _num) \
(_num == 1 && !(_msg[0].flags & I2C_M_RD))
#define AF9035_IS_I2C_XFER_READ(_msg, _num) \
(_num == 1 && (_msg[0].flags & I2C_M_RD))
if (AF9035_IS_I2C_XFER_WRITE_READ(msg, num)) {
if (msg[0].len > 40 || msg[1].len > 40) {
/* TODO: correct limits > 40 */
ret = -EOPNOTSUPP;
} else if ((msg[0].addr == state->af9033_i2c_addr[0]) ||
(msg[0].addr == state->af9033_i2c_addr[1])) {
/* demod access via firmware interface */
u32 reg = msg[0].buf[0] << 16 | msg[0].buf[1] << 8 |
msg[0].buf[2];
if (msg[0].addr == state->af9033_i2c_addr[1])
reg |= 0x100000;
ret = af9035_rd_regs(d, reg, &msg[1].buf[0],
msg[1].len);
} else if (state->no_read) {
memset(msg[1].buf, 0, msg[1].len);
ret = 0;
} else {
/* I2C write + read */
u8 buf[MAX_XFER_SIZE];
struct usb_req req = { CMD_I2C_RD, 0, 5 + msg[0].len,
buf, msg[1].len, msg[1].buf };
if (state->chip_type == 0x9306) {
req.cmd = CMD_GENERIC_I2C_RD;
req.wlen = 3 + msg[0].len;
}
req.mbox |= ((msg[0].addr & 0x80) >> 3);
buf[0] = msg[1].len;
if (state->chip_type == 0x9306) {
buf[1] = 0x03; /* I2C bus */
buf[2] = msg[0].addr << 1;
memcpy(&buf[3], msg[0].buf, msg[0].len);
} else {
buf[1] = msg[0].addr << 1;
buf[3] = 0x00; /* reg addr MSB */
buf[4] = 0x00; /* reg addr LSB */
/* Keep prev behavior for write req len > 2*/
if (msg[0].len > 2) {
buf[2] = 0x00; /* reg addr len */
memcpy(&buf[5], msg[0].buf, msg[0].len);
/* Use reg addr fields if write req len <= 2 */
} else {
req.wlen = 5;
buf[2] = msg[0].len;
if (msg[0].len == 2) {
buf[3] = msg[0].buf[0];
buf[4] = msg[0].buf[1];
} else if (msg[0].len == 1) {
buf[4] = msg[0].buf[0];
}
}
}
ret = af9035_ctrl_msg(d, &req);
}
} else if (AF9035_IS_I2C_XFER_WRITE(msg, num)) {
if (msg[0].len > 40) {
/* TODO: correct limits > 40 */
ret = -EOPNOTSUPP;
} else if ((msg[0].addr == state->af9033_i2c_addr[0]) ||
(msg[0].addr == state->af9033_i2c_addr[1])) {
/* demod access via firmware interface */
u32 reg = msg[0].buf[0] << 16 | msg[0].buf[1] << 8 |
msg[0].buf[2];
if (msg[0].addr == state->af9033_i2c_addr[1])
reg |= 0x100000;
ret = (msg[0].len >= 3) ? af9035_wr_regs(d, reg,
&msg[0].buf[3],
msg[0].len - 3)
: -EOPNOTSUPP;
} else {
/* I2C write */
u8 buf[MAX_XFER_SIZE];
struct usb_req req = { CMD_I2C_WR, 0, 5 + msg[0].len,
buf, 0, NULL };
if (state->chip_type == 0x9306) {
req.cmd = CMD_GENERIC_I2C_WR;
req.wlen = 3 + msg[0].len;
}
req.mbox |= ((msg[0].addr & 0x80) >> 3);
buf[0] = msg[0].len;
if (state->chip_type == 0x9306) {
buf[1] = 0x03; /* I2C bus */
buf[2] = msg[0].addr << 1;
memcpy(&buf[3], msg[0].buf, msg[0].len);
} else {
buf[1] = msg[0].addr << 1;
buf[2] = 0x00; /* reg addr len */
buf[3] = 0x00; /* reg addr MSB */
buf[4] = 0x00; /* reg addr LSB */
memcpy(&buf[5], msg[0].buf, msg[0].len);
}
ret = af9035_ctrl_msg(d, &req);
}
} else if (AF9035_IS_I2C_XFER_READ(msg, num)) {
if (msg[0].len > 40) {
/* TODO: correct limits > 40 */
ret = -EOPNOTSUPP;
} else if (state->no_read) {
memset(msg[0].buf, 0, msg[0].len);
ret = 0;
} else {
/* I2C read */
u8 buf[5];
struct usb_req req = { CMD_I2C_RD, 0, sizeof(buf),
buf, msg[0].len, msg[0].buf };
if (state->chip_type == 0x9306) {
req.cmd = CMD_GENERIC_I2C_RD;
req.wlen = 3;
}
req.mbox |= ((msg[0].addr & 0x80) >> 3);
buf[0] = msg[0].len;
if (state->chip_type == 0x9306) {
buf[1] = 0x03; /* I2C bus */
buf[2] = msg[0].addr << 1;
} else {
buf[1] = msg[0].addr << 1;
buf[2] = 0x00; /* reg addr len */
buf[3] = 0x00; /* reg addr MSB */
buf[4] = 0x00; /* reg addr LSB */
}
ret = af9035_ctrl_msg(d, &req);
}
} else {
/*
* We support only three kind of I2C transactions:
* 1) 1 x write + 1 x read (repeated start)
* 2) 1 x write
* 3) 1 x read
*/
ret = -EOPNOTSUPP;
}
mutex_unlock(&d->i2c_mutex);
if (ret < 0)
return ret;
else
return num;
}
static u32 af9035_i2c_functionality(struct i2c_adapter *adapter)
{
return I2C_FUNC_I2C;
}
static struct i2c_algorithm af9035_i2c_algo = {
.master_xfer = af9035_i2c_master_xfer,
.functionality = af9035_i2c_functionality,
};
static int af9035_identify_state(struct dvb_usb_device *d, const char **name)
{
struct state *state = d_to_priv(d);
struct usb_interface *intf = d->intf;
int ret, i, ts_mode_invalid;
unsigned int utmp, eeprom_addr;
u8 tmp;
u8 wbuf[1] = { 1 };
u8 rbuf[4];
struct usb_req req = { CMD_FW_QUERYINFO, 0, sizeof(wbuf), wbuf,
sizeof(rbuf), rbuf };
ret = af9035_rd_regs(d, 0x1222, rbuf, 3);
if (ret < 0)
goto err;
state->chip_version = rbuf[0];
state->chip_type = rbuf[2] << 8 | rbuf[1] << 0;
ret = af9035_rd_reg(d, 0x384f, &state->prechip_version);
if (ret < 0)
goto err;
dev_info(&intf->dev, "prechip_version=%02x chip_version=%02x chip_type=%04x\n",
state->prechip_version, state->chip_version, state->chip_type);
if (state->chip_type == 0x9135) {
if (state->chip_version == 0x02) {
*name = AF9035_FIRMWARE_IT9135_V2;
utmp = 0x00461d;
} else {
*name = AF9035_FIRMWARE_IT9135_V1;
utmp = 0x00461b;
}
/* Check if eeprom exists */
ret = af9035_rd_reg(d, utmp, &tmp);
if (ret < 0)
goto err;
if (tmp == 0x00) {
dev_dbg(&intf->dev, "no eeprom\n");
state->no_eeprom = true;
goto check_firmware_status;
}
eeprom_addr = EEPROM_BASE_IT9135;
} else if (state->chip_type == 0x9306) {
*name = AF9035_FIRMWARE_IT9303;
state->no_eeprom = true;
goto check_firmware_status;
} else {
*name = AF9035_FIRMWARE_AF9035;
eeprom_addr = EEPROM_BASE_AF9035;
}
/* Read and store eeprom */
for (i = 0; i < 256; i += 32) {
ret = af9035_rd_regs(d, eeprom_addr + i, &state->eeprom[i], 32);
if (ret < 0)
goto err;
}
dev_dbg(&intf->dev, "eeprom dump:\n");
for (i = 0; i < 256; i += 16)
dev_dbg(&intf->dev, "%*ph\n", 16, &state->eeprom[i]);
/* check for dual tuner mode */
tmp = state->eeprom[EEPROM_TS_MODE];
ts_mode_invalid = 0;
switch (tmp) {
case 0:
break;
case 1:
case 3:
state->dual_mode = true;
break;
case 5:
if (state->chip_type != 0x9135 && state->chip_type != 0x9306)
state->dual_mode = true; /* AF9035 */
else
ts_mode_invalid = 1;
break;
default:
ts_mode_invalid = 1;
}
dev_dbg(&intf->dev, "ts mode=%d dual mode=%d\n", tmp, state->dual_mode);
if (ts_mode_invalid)
dev_info(&intf->dev, "ts mode=%d not supported, defaulting to single tuner mode!", tmp);
check_firmware_status:
ret = af9035_ctrl_msg(d, &req);
if (ret < 0)
goto err;
dev_dbg(&intf->dev, "reply=%*ph\n", 4, rbuf);
if (rbuf[0] || rbuf[1] || rbuf[2] || rbuf[3])
ret = WARM;
else
ret = COLD;
return ret;
err:
dev_dbg(&intf->dev, "failed=%d\n", ret);
return ret;
}
static int af9035_download_firmware_old(struct dvb_usb_device *d,
const struct firmware *fw)
{
struct usb_interface *intf = d->intf;
int ret, i, j, len;
u8 wbuf[1];
struct usb_req req = { 0, 0, 0, NULL, 0, NULL };
struct usb_req req_fw_dl = { CMD_FW_DL, 0, 0, wbuf, 0, NULL };
u8 hdr_core;
u16 hdr_addr, hdr_data_len, hdr_checksum;
#define MAX_DATA 58
#define HDR_SIZE 7
/*
* Thanks to Daniel Glöckner <daniel-gl@gmx.net> about that info!
*
* byte 0: MCS 51 core
* There are two inside the AF9035 (1=Link and 2=OFDM) with separate
* address spaces
* byte 1-2: Big endian destination address
* byte 3-4: Big endian number of data bytes following the header
* byte 5-6: Big endian header checksum, apparently ignored by the chip
* Calculated as ~(h[0]*256+h[1]+h[2]*256+h[3]+h[4]*256)
*/
for (i = fw->size; i > HDR_SIZE;) {
hdr_core = fw->data[fw->size - i + 0];
hdr_addr = fw->data[fw->size - i + 1] << 8;
hdr_addr |= fw->data[fw->size - i + 2] << 0;
hdr_data_len = fw->data[fw->size - i + 3] << 8;
hdr_data_len |= fw->data[fw->size - i + 4] << 0;
hdr_checksum = fw->data[fw->size - i + 5] << 8;
hdr_checksum |= fw->data[fw->size - i + 6] << 0;
dev_dbg(&intf->dev, "core=%d addr=%04x data_len=%d checksum=%04x\n",
hdr_core, hdr_addr, hdr_data_len, hdr_checksum);
if (((hdr_core != 1) && (hdr_core != 2)) ||
(hdr_data_len > i)) {
dev_dbg(&intf->dev, "bad firmware\n");
break;
}
/* download begin packet */
req.cmd = CMD_FW_DL_BEGIN;
ret = af9035_ctrl_msg(d, &req);
if (ret < 0)
goto err;
/* download firmware packet(s) */
for (j = HDR_SIZE + hdr_data_len; j > 0; j -= MAX_DATA) {
len = j;
if (len > MAX_DATA)
len = MAX_DATA;
req_fw_dl.wlen = len;
req_fw_dl.wbuf = (u8 *) &fw->data[fw->size - i +
HDR_SIZE + hdr_data_len - j];
ret = af9035_ctrl_msg(d, &req_fw_dl);
if (ret < 0)
goto err;
}
/* download end packet */
req.cmd = CMD_FW_DL_END;
ret = af9035_ctrl_msg(d, &req);
if (ret < 0)
goto err;
i -= hdr_data_len + HDR_SIZE;
dev_dbg(&intf->dev, "data uploaded=%zu\n", fw->size - i);
}
/* print warn if firmware is bad, continue and see what happens */
if (i)
dev_warn(&intf->dev, "bad firmware\n");
return 0;
err:
dev_dbg(&intf->dev, "failed=%d\n", ret);
return ret;
}
static int af9035_download_firmware_new(struct dvb_usb_device *d,
const struct firmware *fw)
{
struct usb_interface *intf = d->intf;
int ret, i, i_prev;
struct usb_req req_fw_dl = { CMD_FW_SCATTER_WR, 0, 0, NULL, 0, NULL };
#define HDR_SIZE 7
/*
* There seems to be following firmware header. Meaning of bytes 0-3
* is unknown.
*
* 0: 3
* 1: 0, 1
* 2: 0
* 3: 1, 2, 3
* 4: addr MSB
* 5: addr LSB
* 6: count of data bytes ?
*/
for (i = HDR_SIZE, i_prev = 0; i <= fw->size; i++) {
if (i == fw->size ||
(fw->data[i + 0] == 0x03 &&
(fw->data[i + 1] == 0x00 ||
fw->data[i + 1] == 0x01) &&
fw->data[i + 2] == 0x00)) {
req_fw_dl.wlen = i - i_prev;
req_fw_dl.wbuf = (u8 *) &fw->data[i_prev];
i_prev = i;
ret = af9035_ctrl_msg(d, &req_fw_dl);
if (ret < 0)
goto err;
dev_dbg(&intf->dev, "data uploaded=%d\n", i);
}
}
return 0;
err:
dev_dbg(&intf->dev, "failed=%d\n", ret);
return ret;
}
static int af9035_download_firmware(struct dvb_usb_device *d,
const struct firmware *fw)
{
struct usb_interface *intf = d->intf;
struct state *state = d_to_priv(d);
int ret;
u8 wbuf[1];
u8 rbuf[4];
u8 tmp;
struct usb_req req = { 0, 0, 0, NULL, 0, NULL };
struct usb_req req_fw_ver = { CMD_FW_QUERYINFO, 0, 1, wbuf, 4, rbuf };
dev_dbg(&intf->dev, "\n");
/*
* In case of dual tuner configuration we need to do some extra
* initialization in order to download firmware to slave demod too,
* which is done by master demod.
* Master feeds also clock and controls power via GPIO.
*/
if (state->dual_mode) {
/* configure gpioh1, reset & power slave demod */
ret = af9035_wr_reg_mask(d, 0x00d8b0, 0x01, 0x01);
if (ret < 0)
goto err;
ret = af9035_wr_reg_mask(d, 0x00d8b1, 0x01, 0x01);
if (ret < 0)
goto err;
ret = af9035_wr_reg_mask(d, 0x00d8af, 0x00, 0x01);
if (ret < 0)
goto err;
usleep_range(10000, 50000);
ret = af9035_wr_reg_mask(d, 0x00d8af, 0x01, 0x01);
if (ret < 0)
goto err;
/* tell the slave I2C address */
tmp = state->eeprom[EEPROM_2ND_DEMOD_ADDR];
/* Use default I2C address if eeprom has no address set */
if (!tmp)
tmp = 0x1d << 1; /* 8-bit format used by chip */
if ((state->chip_type == 0x9135) ||
(state->chip_type == 0x9306)) {
ret = af9035_wr_reg(d, 0x004bfb, tmp);
if (ret < 0)
goto err;
} else {
ret = af9035_wr_reg(d, 0x00417f, tmp);
if (ret < 0)
goto err;
/* enable clock out */
ret = af9035_wr_reg_mask(d, 0x00d81a, 0x01, 0x01);
if (ret < 0)
goto err;
}
}
if (fw->data[0] == 0x01)
ret = af9035_download_firmware_old(d, fw);
else
ret = af9035_download_firmware_new(d, fw);
if (ret < 0)
goto err;
/* firmware loaded, request boot */
req.cmd = CMD_FW_BOOT;
ret = af9035_ctrl_msg(d, &req);
if (ret < 0)
goto err;
/* ensure firmware starts */
wbuf[0] = 1;
ret = af9035_ctrl_msg(d, &req_fw_ver);
if (ret < 0)
goto err;
if (!(rbuf[0] || rbuf[1] || rbuf[2] || rbuf[3])) {
dev_err(&intf->dev, "firmware did not run\n");
ret = -ENODEV;
goto err;
}
dev_info(&intf->dev, "firmware version=%d.%d.%d.%d",
rbuf[0], rbuf[1], rbuf[2], rbuf[3]);
return 0;
err:
dev_dbg(&intf->dev, "failed=%d\n", ret);
return ret;
}
static int af9035_read_config(struct dvb_usb_device *d)
{
struct usb_interface *intf = d->intf;
struct state *state = d_to_priv(d);
int ret, i;
u8 tmp;
u16 tmp16;
/* Demod I2C address */
state->af9033_i2c_addr[0] = 0x1c;
state->af9033_i2c_addr[1] = 0x1d;
state->af9033_config[0].adc_multiplier = AF9033_ADC_MULTIPLIER_2X;
state->af9033_config[1].adc_multiplier = AF9033_ADC_MULTIPLIER_2X;
state->af9033_config[0].ts_mode = AF9033_TS_MODE_USB;
state->af9033_config[1].ts_mode = AF9033_TS_MODE_SERIAL;
state->it930x_addresses = 0;
if (state->chip_type == 0x9135) {
/* feed clock for integrated RF tuner */
state->af9033_config[0].dyn0_clk = true;
state->af9033_config[1].dyn0_clk = true;
if (state->chip_version == 0x02) {
state->af9033_config[0].tuner = AF9033_TUNER_IT9135_60;
state->af9033_config[1].tuner = AF9033_TUNER_IT9135_60;
} else {
state->af9033_config[0].tuner = AF9033_TUNER_IT9135_38;
state->af9033_config[1].tuner = AF9033_TUNER_IT9135_38;
}
if (state->no_eeprom) {
/* Remote controller to NEC polling by default */
state->ir_mode = 0x05;
state->ir_type = 0x00;
goto skip_eeprom;
}
} else if (state->chip_type == 0x9306) {
/*
* IT930x is an USB bridge, only single demod-single tuner
* configurations seen so far.
*/
if ((le16_to_cpu(d->udev->descriptor.idVendor) == USB_VID_AVERMEDIA) &&
(le16_to_cpu(d->udev->descriptor.idProduct) == USB_PID_AVERMEDIA_TD310)) {
state->it930x_addresses = 1;
}
return 0;
}
/* Remote controller */
state->ir_mode = state->eeprom[EEPROM_IR_MODE];
state->ir_type = state->eeprom[EEPROM_IR_TYPE];
if (state->dual_mode) {
/* Read 2nd demodulator I2C address. 8-bit format on eeprom */
tmp = state->eeprom[EEPROM_2ND_DEMOD_ADDR];
if (tmp)
state->af9033_i2c_addr[1] = tmp >> 1;
dev_dbg(&intf->dev, "2nd demod I2C addr=%02x\n",
state->af9033_i2c_addr[1]);
}
for (i = 0; i < state->dual_mode + 1; i++) {
unsigned int eeprom_offset = 0;
/* tuner */
tmp = state->eeprom[EEPROM_1_TUNER_ID + eeprom_offset];
dev_dbg(&intf->dev, "[%d]tuner=%02x\n", i, tmp);
/* tuner sanity check */
if (state->chip_type == 0x9135) {
if (state->chip_version == 0x02) {
/* IT9135 BX (v2) */
switch (tmp) {
case AF9033_TUNER_IT9135_60:
case AF9033_TUNER_IT9135_61:
case AF9033_TUNER_IT9135_62:
state->af9033_config[i].tuner = tmp;
break;
}
} else {
/* IT9135 AX (v1) */
switch (tmp) {
case AF9033_TUNER_IT9135_38:
case AF9033_TUNER_IT9135_51:
case AF9033_TUNER_IT9135_52:
state->af9033_config[i].tuner = tmp;
break;
}
}
} else {
/* AF9035 */
state->af9033_config[i].tuner = tmp;
}
if (state->af9033_config[i].tuner != tmp) {
dev_info(&intf->dev, "[%d] overriding tuner from %02x to %02x\n",
i, tmp, state->af9033_config[i].tuner);
}
switch (state->af9033_config[i].tuner) {
case AF9033_TUNER_TUA9001:
case AF9033_TUNER_FC0011:
case AF9033_TUNER_MXL5007T:
case AF9033_TUNER_TDA18218:
case AF9033_TUNER_FC2580:
case AF9033_TUNER_FC0012:
state->af9033_config[i].spec_inv = 1;
break;
case AF9033_TUNER_IT9135_38:
case AF9033_TUNER_IT9135_51:
case AF9033_TUNER_IT9135_52:
case AF9033_TUNER_IT9135_60:
case AF9033_TUNER_IT9135_61:
case AF9033_TUNER_IT9135_62:
break;
default:
dev_warn(&intf->dev, "tuner id=%02x not supported, please report!",
tmp);
}
/* disable dual mode if driver does not support it */
if (i == 1)
switch (state->af9033_config[i].tuner) {
case AF9033_TUNER_FC0012:
case AF9033_TUNER_IT9135_38:
case AF9033_TUNER_IT9135_51:
case AF9033_TUNER_IT9135_52:
case AF9033_TUNER_IT9135_60:
case AF9033_TUNER_IT9135_61:
case AF9033_TUNER_IT9135_62:
case AF9033_TUNER_MXL5007T:
break;
default:
state->dual_mode = false;
dev_info(&intf->dev, "driver does not support 2nd tuner and will disable it");
}
/* tuner IF frequency */
tmp = state->eeprom[EEPROM_1_IF_L + eeprom_offset];
tmp16 = tmp << 0;
tmp = state->eeprom[EEPROM_1_IF_H + eeprom_offset];
tmp16 |= tmp << 8;
dev_dbg(&intf->dev, "[%d]IF=%d\n", i, tmp16);
eeprom_offset += 0x10; /* shift for the 2nd tuner params */
}
skip_eeprom:
/* get demod clock */
ret = af9035_rd_reg(d, 0x00d800, &tmp);
if (ret < 0)
goto err;
tmp = (tmp >> 0) & 0x0f;
for (i = 0; i < ARRAY_SIZE(state->af9033_config); i++) {
if (state->chip_type == 0x9135)
state->af9033_config[i].clock = clock_lut_it9135[tmp];
else
state->af9033_config[i].clock = clock_lut_af9035[tmp];
}
state->no_read = false;
/* Some MXL5007T devices cannot properly handle tuner I2C read ops. */
if (state->af9033_config[0].tuner == AF9033_TUNER_MXL5007T &&
le16_to_cpu(d->udev->descriptor.idVendor) == USB_VID_AVERMEDIA)
switch (le16_to_cpu(d->udev->descriptor.idProduct)) {
case USB_PID_AVERMEDIA_A867:
case USB_PID_AVERMEDIA_TWINSTAR:
dev_info(&intf->dev,
"Device may have issues with I2C read operations. Enabling fix.\n");
state->no_read = true;
break;
}
return 0;
err:
dev_dbg(&intf->dev, "failed=%d\n", ret);
return ret;
}
static int af9035_tua9001_tuner_callback(struct dvb_usb_device *d,
int cmd, int arg)
{
struct usb_interface *intf = d->intf;
int ret;
u8 val;
dev_dbg(&intf->dev, "cmd=%d arg=%d\n", cmd, arg);
/*
* CEN always enabled by hardware wiring
* RESETN GPIOT3
* RXEN GPIOT2
*/
switch (cmd) {
case TUA9001_CMD_RESETN:
if (arg)
val = 0x00;
else
val = 0x01;
ret = af9035_wr_reg_mask(d, 0x00d8e7, val, 0x01);
if (ret < 0)
goto err;
break;
case TUA9001_CMD_RXEN:
if (arg)
val = 0x01;
else
val = 0x00;
ret = af9035_wr_reg_mask(d, 0x00d8eb, val, 0x01);
if (ret < 0)
goto err;
break;
}
return 0;
err:
dev_dbg(&intf->dev, "failed=%d\n", ret);
return ret;
}
static int af9035_fc0011_tuner_callback(struct dvb_usb_device *d,
int cmd, int arg)
{
struct usb_interface *intf = d->intf;
int ret;
switch (cmd) {
case FC0011_FE_CALLBACK_POWER:
/* Tuner enable */
ret = af9035_wr_reg_mask(d, 0xd8eb, 1, 1);
if (ret < 0)
goto err;
ret = af9035_wr_reg_mask(d, 0xd8ec, 1, 1);
if (ret < 0)
goto err;
ret = af9035_wr_reg_mask(d, 0xd8ed, 1, 1);
if (ret < 0)
goto err;
/* LED */
ret = af9035_wr_reg_mask(d, 0xd8d0, 1, 1);
if (ret < 0)
goto err;
ret = af9035_wr_reg_mask(d, 0xd8d1, 1, 1);
if (ret < 0)
goto err;
usleep_range(10000, 50000);
break;
case FC0011_FE_CALLBACK_RESET:
ret = af9035_wr_reg(d, 0xd8e9, 1);
if (ret < 0)
goto err;
ret = af9035_wr_reg(d, 0xd8e8, 1);
if (ret < 0)
goto err;
ret = af9035_wr_reg(d, 0xd8e7, 1);
if (ret < 0)
goto err;
usleep_range(10000, 20000);
ret = af9035_wr_reg(d, 0xd8e7, 0);
if (ret < 0)
goto err;
usleep_range(10000, 20000);
break;
default:
ret = -EINVAL;
goto err;
}
return 0;
err:
dev_dbg(&intf->dev, "failed=%d\n", ret);
return ret;
}
static int af9035_tuner_callback(struct dvb_usb_device *d, int cmd, int arg)
{
struct state *state = d_to_priv(d);
switch (state->af9033_config[0].tuner) {
case AF9033_TUNER_FC0011:
return af9035_fc0011_tuner_callback(d, cmd, arg);
case AF9033_TUNER_TUA9001:
return af9035_tua9001_tuner_callback(d, cmd, arg);
default:
break;
}
return 0;
}
static int af9035_frontend_callback(void *adapter_priv, int component,
int cmd, int arg)
{
struct i2c_adapter *adap = adapter_priv;
struct dvb_usb_device *d = i2c_get_adapdata(adap);
struct usb_interface *intf = d->intf;
dev_dbg(&intf->dev, "component=%d cmd=%d arg=%d\n",
component, cmd, arg);
switch (component) {
case DVB_FRONTEND_COMPONENT_TUNER:
return af9035_tuner_callback(d, cmd, arg);
default:
break;
}
return 0;
}
static int af9035_get_adapter_count(struct dvb_usb_device *d)
{
struct state *state = d_to_priv(d);
return state->dual_mode + 1;
}
static int af9035_frontend_attach(struct dvb_usb_adapter *adap)
{
struct state *state = adap_to_priv(adap);
struct dvb_usb_device *d = adap_to_d(adap);
struct usb_interface *intf = d->intf;
int ret;
dev_dbg(&intf->dev, "adap->id=%d\n", adap->id);
if (!state->af9033_config[adap->id].tuner) {
/* unsupported tuner */
ret = -ENODEV;
goto err;
}
state->af9033_config[adap->id].fe = &adap->fe[0];
state->af9033_config[adap->id].ops = &state->ops;
ret = af9035_add_i2c_dev(d, "af9033", state->af9033_i2c_addr[adap->id],
&state->af9033_config[adap->id], &d->i2c_adap);
if (ret)
goto err;
if (adap->fe[0] == NULL) {
ret = -ENODEV;
goto err;
}
/* disable I2C-gate */
adap->fe[0]->ops.i2c_gate_ctrl = NULL;
adap->fe[0]->callback = af9035_frontend_callback;
return 0;
err:
dev_dbg(&intf->dev, "failed=%d\n", ret);
return ret;
}
/*
* The I2C speed register is calculated with:
* I2C speed register = (1000000000 / (24.4 * 16 * I2C_speed))
*
* The default speed register for it930x is 7, with means a
* speed of ~366 kbps
*/
#define I2C_SPEED_366K 7
static int it930x_frontend_attach(struct dvb_usb_adapter *adap)
{
struct state *state = adap_to_priv(adap);
struct dvb_usb_device *d = adap_to_d(adap);
struct usb_interface *intf = d->intf;
int ret;
struct si2168_config si2168_config;
struct i2c_adapter *adapter;
dev_dbg(&intf->dev, "adap->id=%d\n", adap->id);
/* I2C master bus 2 clock speed 366k */
ret = af9035_wr_reg(d, 0x00f6a7, I2C_SPEED_366K);
if (ret < 0)
goto err;
/* I2C master bus 1,3 clock speed 366k */
ret = af9035_wr_reg(d, 0x00f103, I2C_SPEED_366K);
if (ret < 0)
goto err;
/* set gpio11 low */
ret = af9035_wr_reg_mask(d, 0xd8d4, 0x01, 0x01);
if (ret < 0)
goto err;
ret = af9035_wr_reg_mask(d, 0xd8d5, 0x01, 0x01);
if (ret < 0)
goto err;
ret = af9035_wr_reg_mask(d, 0xd8d3, 0x01, 0x01);
if (ret < 0)
goto err;
/* Tuner enable using gpiot2_en, gpiot2_on and gpiot2_o (reset) */
ret = af9035_wr_reg_mask(d, 0xd8b8, 0x01, 0x01);
if (ret < 0)
goto err;
ret = af9035_wr_reg_mask(d, 0xd8b9, 0x01, 0x01);
if (ret < 0)
goto err;
ret = af9035_wr_reg_mask(d, 0xd8b7, 0x00, 0x01);
if (ret < 0)
goto err;
msleep(200);
ret = af9035_wr_reg_mask(d, 0xd8b7, 0x01, 0x01);
if (ret < 0)
goto err;
memset(&si2168_config, 0, sizeof(si2168_config));
si2168_config.i2c_adapter = &adapter;
si2168_config.fe = &adap->fe[0];
si2168_config.ts_mode = SI2168_TS_SERIAL;
state->af9033_config[adap->id].fe = &adap->fe[0];
state->af9033_config[adap->id].ops = &state->ops;
ret = af9035_add_i2c_dev(d, "si2168",
it930x_addresses_table[state->it930x_addresses].frontend_i2c_addr,
&si2168_config, &d->i2c_adap);
if (ret)
goto err;
if (adap->fe[0] == NULL) {
ret = -ENODEV;
goto err;
}
state->i2c_adapter_demod = adapter;
return 0;
err:
dev_dbg(&intf->dev, "failed=%d\n", ret);
return ret;
}
static int af9035_frontend_detach(struct dvb_usb_adapter *adap)
{
struct state *state = adap_to_priv(adap);
struct dvb_usb_device *d = adap_to_d(adap);
struct usb_interface *intf = d->intf;
dev_dbg(&intf->dev, "adap->id=%d\n", adap->id);
if (adap->id == 1) {
if (state->i2c_client[1])
af9035_del_i2c_dev(d);
} else if (adap->id == 0) {
if (state->i2c_client[0])
af9035_del_i2c_dev(d);
}
return 0;
}
static const struct fc0011_config af9035_fc0011_config = {
.i2c_address = 0x60,
};
static struct mxl5007t_config af9035_mxl5007t_config[] = {
{
.xtal_freq_hz = MxL_XTAL_24_MHZ,
.if_freq_hz = MxL_IF_4_57_MHZ,
.invert_if = 0,
.loop_thru_enable = 0,
.clk_out_enable = 0,
.clk_out_amp = MxL_CLKOUT_AMP_0_94V,
}, {
.xtal_freq_hz = MxL_XTAL_24_MHZ,
.if_freq_hz = MxL_IF_4_57_MHZ,
.invert_if = 0,
.loop_thru_enable = 1,
.clk_out_enable = 1,
.clk_out_amp = MxL_CLKOUT_AMP_0_94V,
}
};
static struct tda18218_config af9035_tda18218_config = {
.i2c_address = 0x60,
.i2c_wr_max = 21,
};
static const struct fc0012_config af9035_fc0012_config[] = {
{
.i2c_address = 0x63,
.xtal_freq = FC_XTAL_36_MHZ,
.dual_master = true,
.loop_through = true,
.clock_out = true,
}, {
.i2c_address = 0x63 | 0x80, /* I2C bus select hack */
.xtal_freq = FC_XTAL_36_MHZ,
.dual_master = true,
}
};
static int af9035_tuner_attach(struct dvb_usb_adapter *adap)
{
struct state *state = adap_to_priv(adap);
struct dvb_usb_device *d = adap_to_d(adap);
struct usb_interface *intf = d->intf;
int ret;
struct dvb_frontend *fe;
struct i2c_msg msg[1];
u8 tuner_addr;
dev_dbg(&intf->dev, "adap->id=%d\n", adap->id);
/*
* XXX: Hack used in that function: we abuse unused I2C address bit [7]
* to carry info about used I2C bus for dual tuner configuration.
*/
switch (state->af9033_config[adap->id].tuner) {
case AF9033_TUNER_TUA9001: {
struct tua9001_platform_data tua9001_pdata = {
.dvb_frontend = adap->fe[0],
};
/*
* AF9035 gpiot3 = TUA9001 RESETN
* AF9035 gpiot2 = TUA9001 RXEN
*/
/* configure gpiot2 and gpiot2 as output */
ret = af9035_wr_reg_mask(d, 0x00d8ec, 0x01, 0x01);
if (ret < 0)
goto err;
ret = af9035_wr_reg_mask(d, 0x00d8ed, 0x01, 0x01);
if (ret < 0)
goto err;
ret = af9035_wr_reg_mask(d, 0x00d8e8, 0x01, 0x01);
if (ret < 0)
goto err;
ret = af9035_wr_reg_mask(d, 0x00d8e9, 0x01, 0x01);
if (ret < 0)
goto err;
/* attach tuner */
ret = af9035_add_i2c_dev(d, "tua9001", 0x60, &tua9001_pdata,
&d->i2c_adap);
if (ret)
goto err;
fe = adap->fe[0];
break;
}
case AF9033_TUNER_FC0011:
fe = dvb_attach(fc0011_attach, adap->fe[0],
&d->i2c_adap, &af9035_fc0011_config);
break;
case AF9033_TUNER_MXL5007T:
if (adap->id == 0) {
ret = af9035_wr_reg(d, 0x00d8e0, 1);
if (ret < 0)
goto err;
ret = af9035_wr_reg(d, 0x00d8e1, 1);
if (ret < 0)
goto err;
ret = af9035_wr_reg(d, 0x00d8df, 0);
if (ret < 0)
goto err;
msleep(30);
ret = af9035_wr_reg(d, 0x00d8df, 1);
if (ret < 0)
goto err;
msleep(300);
ret = af9035_wr_reg(d, 0x00d8c0, 1);
if (ret < 0)
goto err;
ret = af9035_wr_reg(d, 0x00d8c1, 1);
if (ret < 0)
goto err;
ret = af9035_wr_reg(d, 0x00d8bf, 0);
if (ret < 0)
goto err;
ret = af9035_wr_reg(d, 0x00d8b4, 1);
if (ret < 0)
goto err;
ret = af9035_wr_reg(d, 0x00d8b5, 1);
if (ret < 0)
goto err;
ret = af9035_wr_reg(d, 0x00d8b3, 1);
if (ret < 0)
goto err;
tuner_addr = 0x60;
} else {
tuner_addr = 0x60 | 0x80; /* I2C bus hack */
}
/* attach tuner */
fe = dvb_attach(mxl5007t_attach, adap->fe[0], &d->i2c_adap,
tuner_addr, &af9035_mxl5007t_config[adap->id]);
break;
case AF9033_TUNER_TDA18218:
/* attach tuner */
fe = dvb_attach(tda18218_attach, adap->fe[0],
&d->i2c_adap, &af9035_tda18218_config);
break;
case AF9033_TUNER_FC2580: {
struct fc2580_platform_data fc2580_pdata = {
.dvb_frontend = adap->fe[0],
};
/* Tuner enable using gpiot2_o, gpiot2_en and gpiot2_on */
ret = af9035_wr_reg_mask(d, 0xd8eb, 0x01, 0x01);
if (ret < 0)
goto err;
ret = af9035_wr_reg_mask(d, 0xd8ec, 0x01, 0x01);
if (ret < 0)
goto err;
ret = af9035_wr_reg_mask(d, 0xd8ed, 0x01, 0x01);
if (ret < 0)
goto err;
usleep_range(10000, 50000);
/* attach tuner */
ret = af9035_add_i2c_dev(d, "fc2580", 0x56, &fc2580_pdata,
&d->i2c_adap);
if (ret)
goto err;
fe = adap->fe[0];
break;
}
case AF9033_TUNER_FC0012:
/*
* AF9035 gpiot2 = FC0012 enable
* XXX: there seems to be something on gpioh8 too, but on my
* my test I didn't find any difference.
*/
if (adap->id == 0) {
/* configure gpiot2 as output and high */
ret = af9035_wr_reg_mask(d, 0xd8eb, 0x01, 0x01);
if (ret < 0)
goto err;
ret = af9035_wr_reg_mask(d, 0xd8ec, 0x01, 0x01);
if (ret < 0)
goto err;
ret = af9035_wr_reg_mask(d, 0xd8ed, 0x01, 0x01);
if (ret < 0)
goto err;
} else {
/*
* FIXME: That belongs for the FC0012 driver.
* Write 02 to FC0012 master tuner register 0d directly
* in order to make slave tuner working.
*/
msg[0].addr = 0x63;
msg[0].flags = 0;
msg[0].len = 2;
msg[0].buf = "\x0d\x02";
ret = i2c_transfer(&d->i2c_adap, msg, 1);
if (ret < 0)
goto err;
}
usleep_range(10000, 50000);
fe = dvb_attach(fc0012_attach, adap->fe[0], &d->i2c_adap,
&af9035_fc0012_config[adap->id]);
break;
case AF9033_TUNER_IT9135_38:
case AF9033_TUNER_IT9135_51:
case AF9033_TUNER_IT9135_52:
case AF9033_TUNER_IT9135_60:
case AF9033_TUNER_IT9135_61:
case AF9033_TUNER_IT9135_62:
{
struct platform_device *pdev;
const char *name;
struct it913x_platform_data it913x_pdata = {
.regmap = state->af9033_config[adap->id].regmap,
.fe = adap->fe[0],
};
switch (state->af9033_config[adap->id].tuner) {
case AF9033_TUNER_IT9135_38:
case AF9033_TUNER_IT9135_51:
case AF9033_TUNER_IT9135_52:
name = "it9133ax-tuner";
break;
case AF9033_TUNER_IT9135_60:
case AF9033_TUNER_IT9135_61:
case AF9033_TUNER_IT9135_62:
name = "it9133bx-tuner";
break;
default:
ret = -ENODEV;
goto err;
}
if (state->dual_mode) {
if (adap->id == 0)
it913x_pdata.role = IT913X_ROLE_DUAL_MASTER;
else
it913x_pdata.role = IT913X_ROLE_DUAL_SLAVE;
} else {
it913x_pdata.role = IT913X_ROLE_SINGLE;
}
request_module("%s", "it913x");
pdev = platform_device_register_data(&d->intf->dev, name,
PLATFORM_DEVID_AUTO,
&it913x_pdata,
sizeof(it913x_pdata));
if (IS_ERR(pdev) || !pdev->dev.driver) {
ret = -ENODEV;
goto err;
}
if (!try_module_get(pdev->dev.driver->owner)) {
platform_device_unregister(pdev);
ret = -ENODEV;
goto err;
}
state->platform_device_tuner[adap->id] = pdev;
fe = adap->fe[0];
break;
}
default:
fe = NULL;
}
if (fe == NULL) {
ret = -ENODEV;
goto err;
}
return 0;
err:
dev_dbg(&intf->dev, "failed=%d\n", ret);
return ret;
}
static int it930x_tuner_attach(struct dvb_usb_adapter *adap)
{
struct state *state = adap_to_priv(adap);
struct dvb_usb_device *d = adap_to_d(adap);
struct usb_interface *intf = d->intf;
int ret;
struct si2157_config si2157_config;
dev_dbg(&intf->dev, "adap->id=%d\n", adap->id);
memset(&si2157_config, 0, sizeof(si2157_config));
si2157_config.fe = adap->fe[0];
/*
* HACK: The Logilink VG0022A and TerraTec TC2 Stick have
* a bug: when the si2157 firmware that came with the device
* is replaced by a new one, the I2C transfers to the tuner
* will return just 0xff.
*
* Probably, the vendor firmware has some patch specifically
* designed for this device. So, we can't replace by the
* generic firmware. The right solution would be to extract
* the si2157 firmware from the original driver and ask the
* driver to load the specifically designed firmware, but,
* while we don't have that, the next best solution is to just
* keep the original firmware at the device.
*/
if ((le16_to_cpu(d->udev->descriptor.idVendor) == USB_VID_DEXATEK &&
le16_to_cpu(d->udev->descriptor.idProduct) == 0x0100) ||
(le16_to_cpu(d->udev->descriptor.idVendor) == USB_VID_TERRATEC &&
le16_to_cpu(d->udev->descriptor.idProduct) == USB_PID_TERRATEC_CINERGY_TC2_STICK))
si2157_config.dont_load_firmware = true;
si2157_config.if_port = it930x_addresses_table[state->it930x_addresses].tuner_if_port;
ret = af9035_add_i2c_dev(d, "si2157",
it930x_addresses_table[state->it930x_addresses].tuner_i2c_addr,
&si2157_config, state->i2c_adapter_demod);
if (ret)
goto err;
return 0;
err:
dev_dbg(&intf->dev, "failed=%d\n", ret);
return ret;
}
static int it930x_tuner_detach(struct dvb_usb_adapter *adap)
{
struct state *state = adap_to_priv(adap);
struct dvb_usb_device *d = adap_to_d(adap);
struct usb_interface *intf = d->intf;
dev_dbg(&intf->dev, "adap->id=%d\n", adap->id);
if (adap->id == 1) {
if (state->i2c_client[3])
af9035_del_i2c_dev(d);
} else if (adap->id == 0) {
if (state->i2c_client[1])
af9035_del_i2c_dev(d);
}
return 0;
}
static int af9035_tuner_detach(struct dvb_usb_adapter *adap)
{
struct state *state = adap_to_priv(adap);
struct dvb_usb_device *d = adap_to_d(adap);
struct usb_interface *intf = d->intf;
dev_dbg(&intf->dev, "adap->id=%d\n", adap->id);
switch (state->af9033_config[adap->id].tuner) {
case AF9033_TUNER_TUA9001:
case AF9033_TUNER_FC2580:
if (adap->id == 1) {
if (state->i2c_client[3])
af9035_del_i2c_dev(d);
} else if (adap->id == 0) {
if (state->i2c_client[1])
af9035_del_i2c_dev(d);
}
break;
case AF9033_TUNER_IT9135_38:
case AF9033_TUNER_IT9135_51:
case AF9033_TUNER_IT9135_52:
case AF9033_TUNER_IT9135_60:
case AF9033_TUNER_IT9135_61:
case AF9033_TUNER_IT9135_62:
{
struct platform_device *pdev;
pdev = state->platform_device_tuner[adap->id];
if (pdev) {
module_put(pdev->dev.driver->owner);
platform_device_unregister(pdev);
}
break;
}
}
return 0;
}
static int af9035_init(struct dvb_usb_device *d)
{
struct state *state = d_to_priv(d);
struct usb_interface *intf = d->intf;
int ret, i;
u16 frame_size = (d->udev->speed == USB_SPEED_FULL ? 5 : 87) * 188 / 4;
u8 packet_size = (d->udev->speed == USB_SPEED_FULL ? 64 : 512) / 4;
struct reg_val_mask tab[] = {
{ 0x80f99d, 0x01, 0x01 },
{ 0x80f9a4, 0x01, 0x01 },
{ 0x00dd11, 0x00, 0x20 },
{ 0x00dd11, 0x00, 0x40 },
{ 0x00dd13, 0x00, 0x20 },
{ 0x00dd13, 0x00, 0x40 },
{ 0x00dd11, 0x20, 0x20 },
{ 0x00dd88, (frame_size >> 0) & 0xff, 0xff},
{ 0x00dd89, (frame_size >> 8) & 0xff, 0xff},
{ 0x00dd0c, packet_size, 0xff},
{ 0x00dd11, state->dual_mode << 6, 0x40 },
{ 0x00dd8a, (frame_size >> 0) & 0xff, 0xff},
{ 0x00dd8b, (frame_size >> 8) & 0xff, 0xff},
{ 0x00dd0d, packet_size, 0xff },
{ 0x80f9a3, state->dual_mode, 0x01 },
{ 0x80f9cd, state->dual_mode, 0x01 },
{ 0x80f99d, 0x00, 0x01 },
{ 0x80f9a4, 0x00, 0x01 },
};
dev_dbg(&intf->dev, "USB speed=%d frame_size=%04x packet_size=%02x\n",
d->udev->speed, frame_size, packet_size);
/* init endpoints */
for (i = 0; i < ARRAY_SIZE(tab); i++) {
ret = af9035_wr_reg_mask(d, tab[i].reg, tab[i].val,
tab[i].mask);
if (ret < 0)
goto err;
}
return 0;
err:
dev_dbg(&intf->dev, "failed=%d\n", ret);
return ret;
}
static int it930x_init(struct dvb_usb_device *d)
{
struct state *state = d_to_priv(d);
struct usb_interface *intf = d->intf;
int ret, i;
u16 frame_size = (d->udev->speed == USB_SPEED_FULL ? 5 : 816) * 188 / 4;
u8 packet_size = (d->udev->speed == USB_SPEED_FULL ? 64 : 512) / 4;
struct reg_val_mask tab[] = {
{ 0x00da1a, 0x00, 0x01 }, /* ignore_sync_byte */
{ 0x00f41f, 0x04, 0x04 }, /* dvbt_inten */
{ 0x00da10, 0x00, 0x01 }, /* mpeg_full_speed */
{ 0x00f41a, 0x01, 0x01 }, /* dvbt_en */
{ 0x00da1d, 0x01, 0x01 }, /* mp2_sw_rst, reset EP4 */
{ 0x00dd11, 0x00, 0x20 }, /* ep4_tx_en, disable EP4 */
{ 0x00dd13, 0x00, 0x20 }, /* ep4_tx_nak, disable EP4 NAK */
{ 0x00dd11, 0x20, 0x20 }, /* ep4_tx_en, enable EP4 */
{ 0x00dd11, 0x00, 0x40 }, /* ep5_tx_en, disable EP5 */
{ 0x00dd13, 0x00, 0x40 }, /* ep5_tx_nak, disable EP5 NAK */
{ 0x00dd11, state->dual_mode << 6, 0x40 }, /* enable EP5 */
{ 0x00dd88, (frame_size >> 0) & 0xff, 0xff},
{ 0x00dd89, (frame_size >> 8) & 0xff, 0xff},
{ 0x00dd0c, packet_size, 0xff},
{ 0x00dd8a, (frame_size >> 0) & 0xff, 0xff},
{ 0x00dd8b, (frame_size >> 8) & 0xff, 0xff},
{ 0x00dd0d, packet_size, 0xff },
{ 0x00da1d, 0x00, 0x01 }, /* mp2_sw_rst, disable */
{ 0x00d833, 0x01, 0xff }, /* slew rate ctrl: slew rate boosts */
{ 0x00d830, 0x00, 0xff }, /* Bit 0 of output driving control */
{ 0x00d831, 0x01, 0xff }, /* Bit 1 of output driving control */
{ 0x00d832, 0x00, 0xff }, /* Bit 2 of output driving control */
/* suspend gpio1 for TS-C */
{ 0x00d8b0, 0x01, 0xff }, /* gpio1 */
{ 0x00d8b1, 0x01, 0xff }, /* gpio1 */
{ 0x00d8af, 0x00, 0xff }, /* gpio1 */
/* suspend gpio7 for TS-D */
{ 0x00d8c4, 0x01, 0xff }, /* gpio7 */
{ 0x00d8c5, 0x01, 0xff }, /* gpio7 */
{ 0x00d8c3, 0x00, 0xff }, /* gpio7 */
/* suspend gpio13 for TS-B */
{ 0x00d8dc, 0x01, 0xff }, /* gpio13 */
{ 0x00d8dd, 0x01, 0xff }, /* gpio13 */
{ 0x00d8db, 0x00, 0xff }, /* gpio13 */
/* suspend gpio14 for TS-E */
{ 0x00d8e4, 0x01, 0xff }, /* gpio14 */
{ 0x00d8e5, 0x01, 0xff }, /* gpio14 */
{ 0x00d8e3, 0x00, 0xff }, /* gpio14 */
/* suspend gpio15 for TS-A */
{ 0x00d8e8, 0x01, 0xff }, /* gpio15 */
{ 0x00d8e9, 0x01, 0xff }, /* gpio15 */
{ 0x00d8e7, 0x00, 0xff }, /* gpio15 */
{ 0x00da58, 0x00, 0x01 }, /* ts_in_src, serial */
{ 0x00da73, 0x01, 0xff }, /* ts0_aggre_mode */
{ 0x00da78, 0x47, 0xff }, /* ts0_sync_byte */
{ 0x00da4c, 0x01, 0xff }, /* ts0_en */
{ 0x00da5a, 0x1f, 0xff }, /* ts_fail_ignore */
};
dev_dbg(&intf->dev, "USB speed=%d frame_size=%04x packet_size=%02x\n",
d->udev->speed, frame_size, packet_size);
/* init endpoints */
for (i = 0; i < ARRAY_SIZE(tab); i++) {
ret = af9035_wr_reg_mask(d, tab[i].reg,
tab[i].val, tab[i].mask);
if (ret < 0)
goto err;
}
return 0;
err:
dev_dbg(&intf->dev, "failed=%d\n", ret);
return ret;
}
#if IS_ENABLED(CONFIG_RC_CORE)
static int af9035_rc_query(struct dvb_usb_device *d)
{
struct usb_interface *intf = d->intf;
int ret;
enum rc_proto proto;
u32 key;
u8 buf[4];
struct usb_req req = { CMD_IR_GET, 0, 0, NULL, 4, buf };
ret = af9035_ctrl_msg(d, &req);
if (ret == 1)
return 0;
else if (ret < 0)
goto err;
if ((buf[2] + buf[3]) == 0xff) {
if ((buf[0] + buf[1]) == 0xff) {
/* NEC standard 16bit */
key = RC_SCANCODE_NEC(buf[0], buf[2]);
proto = RC_PROTO_NEC;
} else {
/* NEC extended 24bit */
key = RC_SCANCODE_NECX(buf[0] << 8 | buf[1], buf[2]);
proto = RC_PROTO_NECX;
}
} else {
/* NEC full code 32bit */
key = RC_SCANCODE_NEC32(buf[0] << 24 | buf[1] << 16 |
buf[2] << 8 | buf[3]);
proto = RC_PROTO_NEC32;
}
dev_dbg(&intf->dev, "%*ph\n", 4, buf);
rc_keydown(d->rc_dev, proto, key, 0);
return 0;
err:
dev_dbg(&intf->dev, "failed=%d\n", ret);
return ret;
}
static int af9035_get_rc_config(struct dvb_usb_device *d, struct dvb_usb_rc *rc)
{
struct state *state = d_to_priv(d);
struct usb_interface *intf = d->intf;
dev_dbg(&intf->dev, "ir_mode=%02x ir_type=%02x\n",
state->ir_mode, state->ir_type);
/* don't activate rc if in HID mode or if not available */
if (state->ir_mode == 0x05) {
switch (state->ir_type) {
case 0: /* NEC */
default:
rc->allowed_protos = RC_PROTO_BIT_NEC |
RC_PROTO_BIT_NECX | RC_PROTO_BIT_NEC32;
break;
case 1: /* RC6 */
rc->allowed_protos = RC_PROTO_BIT_RC6_MCE;
break;
}
rc->query = af9035_rc_query;
rc->interval = 500;
/* load empty to enable rc */
if (!rc->map_name)
rc->map_name = RC_MAP_EMPTY;
}
return 0;
}
#else
#define af9035_get_rc_config NULL
#endif
static int af9035_get_stream_config(struct dvb_frontend *fe, u8 *ts_type,
struct usb_data_stream_properties *stream)
{
struct dvb_usb_device *d = fe_to_d(fe);
struct usb_interface *intf = d->intf;
dev_dbg(&intf->dev, "adap=%d\n", fe_to_adap(fe)->id);
if (d->udev->speed == USB_SPEED_FULL)
stream->u.bulk.buffersize = 5 * 188;
return 0;
}
static int af9035_pid_filter_ctrl(struct dvb_usb_adapter *adap, int onoff)
{
struct state *state = adap_to_priv(adap);
return state->ops.pid_filter_ctrl(adap->fe[0], onoff);
}
static int af9035_pid_filter(struct dvb_usb_adapter *adap, int index, u16 pid,
int onoff)
{
struct state *state = adap_to_priv(adap);
return state->ops.pid_filter(adap->fe[0], index, pid, onoff);
}
static int af9035_probe(struct usb_interface *intf,
const struct usb_device_id *id)
{
struct usb_device *udev = interface_to_usbdev(intf);
char manufacturer[sizeof("Afatech")];
memset(manufacturer, 0, sizeof(manufacturer));
usb_string(udev, udev->descriptor.iManufacturer,
manufacturer, sizeof(manufacturer));
/*
* There is two devices having same ID but different chipset. One uses
* AF9015 and the other IT9135 chipset. Only difference seen on lsusb
* is iManufacturer string.
*
* idVendor 0x0ccd TerraTec Electronic GmbH
* idProduct 0x0099
* bcdDevice 2.00
* iManufacturer 1 Afatech
* iProduct 2 DVB-T 2
*
* idVendor 0x0ccd TerraTec Electronic GmbH
* idProduct 0x0099
* bcdDevice 2.00
* iManufacturer 1 ITE Technologies, Inc.
* iProduct 2 DVB-T TV Stick
*/
if ((le16_to_cpu(udev->descriptor.idVendor) == USB_VID_TERRATEC) &&
(le16_to_cpu(udev->descriptor.idProduct) == 0x0099)) {
if (!strcmp("Afatech", manufacturer)) {
dev_dbg(&udev->dev, "rejecting device\n");
return -ENODEV;
}
}
return dvb_usbv2_probe(intf, id);
}
/* interface 0 is used by DVB-T receiver and
interface 1 is for remote controller (HID) */
static const struct dvb_usb_device_properties af9035_props = {
.driver_name = KBUILD_MODNAME,
.owner = THIS_MODULE,
.adapter_nr = adapter_nr,
.size_of_priv = sizeof(struct state),
.generic_bulk_ctrl_endpoint = 0x02,
.generic_bulk_ctrl_endpoint_response = 0x81,
.identify_state = af9035_identify_state,
.download_firmware = af9035_download_firmware,
.i2c_algo = &af9035_i2c_algo,
.read_config = af9035_read_config,
.frontend_attach = af9035_frontend_attach,
.frontend_detach = af9035_frontend_detach,
.tuner_attach = af9035_tuner_attach,
.tuner_detach = af9035_tuner_detach,
.init = af9035_init,
.get_rc_config = af9035_get_rc_config,
.get_stream_config = af9035_get_stream_config,
.get_adapter_count = af9035_get_adapter_count,
.adapter = {
{
.caps = DVB_USB_ADAP_HAS_PID_FILTER |
DVB_USB_ADAP_PID_FILTER_CAN_BE_TURNED_OFF,
.pid_filter_count = 32,
.pid_filter_ctrl = af9035_pid_filter_ctrl,
.pid_filter = af9035_pid_filter,
.stream = DVB_USB_STREAM_BULK(0x84, 6, 87 * 188),
}, {
.caps = DVB_USB_ADAP_HAS_PID_FILTER |
DVB_USB_ADAP_PID_FILTER_CAN_BE_TURNED_OFF,
.pid_filter_count = 32,
.pid_filter_ctrl = af9035_pid_filter_ctrl,
.pid_filter = af9035_pid_filter,
.stream = DVB_USB_STREAM_BULK(0x85, 6, 87 * 188),
},
},
};
static const struct dvb_usb_device_properties it930x_props = {
.driver_name = KBUILD_MODNAME,
.owner = THIS_MODULE,
.adapter_nr = adapter_nr,
.size_of_priv = sizeof(struct state),
.generic_bulk_ctrl_endpoint = 0x02,
.generic_bulk_ctrl_endpoint_response = 0x81,
.identify_state = af9035_identify_state,
.download_firmware = af9035_download_firmware,
.i2c_algo = &af9035_i2c_algo,
.read_config = af9035_read_config,
.frontend_attach = it930x_frontend_attach,
.frontend_detach = af9035_frontend_detach,
.tuner_attach = it930x_tuner_attach,
.tuner_detach = it930x_tuner_detach,
.init = it930x_init,
.get_stream_config = af9035_get_stream_config,
.get_adapter_count = af9035_get_adapter_count,
.adapter = {
{
.stream = DVB_USB_STREAM_BULK(0x84, 4, 816 * 188),
}, {
.stream = DVB_USB_STREAM_BULK(0x85, 4, 816 * 188),
},
},
};
static const struct usb_device_id af9035_id_table[] = {
/* AF9035 devices */
{ DVB_USB_DEVICE(USB_VID_AFATECH, USB_PID_AFATECH_AF9035_9035,
&af9035_props, "Afatech AF9035 reference design", NULL) },
{ DVB_USB_DEVICE(USB_VID_AFATECH, USB_PID_AFATECH_AF9035_1000,
&af9035_props, "Afatech AF9035 reference design", NULL) },
{ DVB_USB_DEVICE(USB_VID_AFATECH, USB_PID_AFATECH_AF9035_1001,
&af9035_props, "Afatech AF9035 reference design", NULL) },
{ DVB_USB_DEVICE(USB_VID_AFATECH, USB_PID_AFATECH_AF9035_1002,
&af9035_props, "Afatech AF9035 reference design", NULL) },
{ DVB_USB_DEVICE(USB_VID_AFATECH, USB_PID_AFATECH_AF9035_1003,
&af9035_props, "Afatech AF9035 reference design", NULL) },
{ DVB_USB_DEVICE(USB_VID_TERRATEC, USB_PID_TERRATEC_CINERGY_T_STICK,
&af9035_props, "TerraTec Cinergy T Stick", NULL) },
{ DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_A835,
&af9035_props, "AVerMedia AVerTV Volar HD/PRO (A835)", NULL) },
{ DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_B835,
&af9035_props, "AVerMedia AVerTV Volar HD/PRO (A835)", NULL) },
{ DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_1867,
&af9035_props, "AVerMedia HD Volar (A867)", NULL) },
{ DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_A867,
&af9035_props, "AVerMedia HD Volar (A867)", NULL) },
{ DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_TWINSTAR,
&af9035_props, "AVerMedia Twinstar (A825)", NULL) },
{ DVB_USB_DEVICE(USB_VID_ASUS, USB_PID_ASUS_U3100MINI_PLUS,
&af9035_props, "Asus U3100Mini Plus", NULL) },
{ DVB_USB_DEVICE(USB_VID_TERRATEC, 0x00aa,
&af9035_props, "TerraTec Cinergy T Stick (rev. 2)", NULL) },
{ DVB_USB_DEVICE(USB_VID_AVERMEDIA, 0x0337,
&af9035_props, "AVerMedia HD Volar (A867)", NULL) },
{ DVB_USB_DEVICE(USB_VID_GTEK, USB_PID_EVOLVEO_XTRATV_STICK,
&af9035_props, "EVOLVEO XtraTV stick", NULL) },
/* IT9135 devices */
{ DVB_USB_DEVICE(USB_VID_ITETECH, USB_PID_ITETECH_IT9135,
&af9035_props, "ITE 9135 Generic", RC_MAP_IT913X_V1) },
{ DVB_USB_DEVICE(USB_VID_ITETECH, USB_PID_ITETECH_IT9135_9005,
&af9035_props, "ITE 9135(9005) Generic", RC_MAP_IT913X_V2) },
{ DVB_USB_DEVICE(USB_VID_ITETECH, USB_PID_ITETECH_IT9135_9006,
&af9035_props, "ITE 9135(9006) Generic", RC_MAP_IT913X_V1) },
{ DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_A835B_1835,
&af9035_props, "Avermedia A835B(1835)", RC_MAP_IT913X_V2) },
{ DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_A835B_2835,
&af9035_props, "Avermedia A835B(2835)", RC_MAP_IT913X_V2) },
{ DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_A835B_3835,
&af9035_props, "Avermedia A835B(3835)", RC_MAP_IT913X_V2) },
{ DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_A835B_4835,
&af9035_props, "Avermedia A835B(4835)", RC_MAP_IT913X_V2) },
{ DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_TD110,
&af9035_props, "Avermedia AverTV Volar HD 2 (TD110)", RC_MAP_AVERMEDIA_RM_KS) },
{ DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_H335,
&af9035_props, "Avermedia H335", RC_MAP_IT913X_V2) },
{ DVB_USB_DEVICE(USB_VID_KWORLD_2, USB_PID_KWORLD_UB499_2T_T09,
&af9035_props, "Kworld UB499-2T T09", RC_MAP_IT913X_V1) },
{ DVB_USB_DEVICE(USB_VID_KWORLD_2, USB_PID_SVEON_STV22_IT9137,
&af9035_props, "Sveon STV22 Dual DVB-T HDTV",
RC_MAP_IT913X_V1) },
{ DVB_USB_DEVICE(USB_VID_KWORLD_2, USB_PID_CTVDIGDUAL_V2,
&af9035_props, "Digital Dual TV Receiver CTVDIGDUAL_V2",
RC_MAP_IT913X_V1) },
{ DVB_USB_DEVICE(USB_VID_TERRATEC, USB_PID_TERRATEC_T1,
&af9035_props, "TerraTec T1", RC_MAP_IT913X_V1) },
/* XXX: that same ID [0ccd:0099] is used by af9015 driver too */
{ DVB_USB_DEVICE(USB_VID_TERRATEC, 0x0099,
&af9035_props, "TerraTec Cinergy T Stick Dual RC (rev. 2)",
NULL) },
{ DVB_USB_DEVICE(USB_VID_LEADTEK, 0x6a05,
&af9035_props, "Leadtek WinFast DTV Dongle Dual", NULL) },
{ DVB_USB_DEVICE(USB_VID_HAUPPAUGE, 0xf900,
&af9035_props, "Hauppauge WinTV-MiniStick 2", NULL) },
{ DVB_USB_DEVICE(USB_VID_PCTV, USB_PID_PCTV_78E,
&af9035_props, "PCTV AndroiDTV (78e)", RC_MAP_IT913X_V1) },
{ DVB_USB_DEVICE(USB_VID_PCTV, USB_PID_PCTV_79E,
&af9035_props, "PCTV microStick (79e)", RC_MAP_IT913X_V2) },
/* IT930x devices */
{ DVB_USB_DEVICE(USB_VID_ITETECH, USB_PID_ITETECH_IT9303,
&it930x_props, "ITE 9303 Generic", NULL) },
{ DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_TD310,
&it930x_props, "AVerMedia TD310 DVB-T2", NULL) },
{ DVB_USB_DEVICE(USB_VID_DEXATEK, 0x0100,
&it930x_props, "Logilink VG0022A", NULL) },
{ DVB_USB_DEVICE(USB_VID_TERRATEC, USB_PID_TERRATEC_CINERGY_TC2_STICK,
&it930x_props, "TerraTec Cinergy TC2 Stick", NULL) },
{ }
};
MODULE_DEVICE_TABLE(usb, af9035_id_table);
static struct usb_driver af9035_usb_driver = {
.name = KBUILD_MODNAME,
.id_table = af9035_id_table,
.probe = af9035_probe,
.disconnect = dvb_usbv2_disconnect,
.suspend = dvb_usbv2_suspend,
.resume = dvb_usbv2_resume,
.reset_resume = dvb_usbv2_reset_resume,
.no_dynamic_id = 1,
.soft_unbind = 1,
};
module_usb_driver(af9035_usb_driver);
MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
MODULE_DESCRIPTION("Afatech AF9035 driver");
MODULE_LICENSE("GPL");
MODULE_FIRMWARE(AF9035_FIRMWARE_AF9035);
MODULE_FIRMWARE(AF9035_FIRMWARE_IT9135_V1);
MODULE_FIRMWARE(AF9035_FIRMWARE_IT9135_V2);
MODULE_FIRMWARE(AF9035_FIRMWARE_IT9303);