linux/drivers/scsi/qla2xxx/qla_gs.c

3592 lines
98 KiB
C
Raw Normal View History

/*
* QLogic Fibre Channel HBA Driver
* Copyright (c) 2003-2014 QLogic Corporation
*
* See LICENSE.qla2xxx for copyright and licensing details.
*/
#include "qla_def.h"
[SCSI] qla2xxx: Add LLD target-mode infrastructure for >= 24xx series Add LLD target mode for >= 24xx series HW. This code was originally based on external qla2x00t module based on 8.02.01-k4, and has been refactored to push the bulk of code into mainline qla2xxx.ko LLD -> qla_target.c. The implementation uses internal workqueues for I/O context submission into tcm_qla2xxx code, and includes the struct qla_tgt_func_tmpl API for external interaction to allow qla2xxx LDD to function without direct target-core dependencies: It also enables qla_target.c usage within existing qla2xxx LLD code. This includes: *) Addition of target mode specific members to existing data structures in qla_def.h and struct qla_hw_data->tgt_ops using qla_target.h:struct qla_tgt_func_tmpl *) Addition of struct qla_tgt_func_tmpl and direct calls into qla_target.c logic w/ qlt_* prefixed functions. *) Addition of qla_iocb.c:qla2x00_req_pkt() for ring processing, and qla2x00_issue_marker() for handling request/response queue processing for target mode operation *) Addition of various qla_tgt_mode_enabled() logic checks in qla24xx_nvram_config(), qla2x00_initialize_adapter(), qla2x00_rff_id(), qla2x00_abort_isp(), qla24xx_modify_vp_config(), and qla2x00_vp_abort_isp(). By default the new qlini_mode module parameter is setting initiator-mode to 'enabled' in order for 'modprobe qla2xxx' to continue to function as expected in initiator only mode. Enabling target-mode operation will currently require a: modprobe qla2xxx qlini_mode="disabled" in order to explictly disabled initiator mode and allow target-mode to be enabled via tcm_qla2xxx configfs fabric callers. (nab: Convert to qlini_mode='enabled' by default in qla_target.c) (joern: Remove loop_id from qla_tgt_make_local_sess() arguments + Remove unused s_id + fix s_id endianness bug + simplify qla_tgt_abort_work) (gerard: fix section __exit mismatch in qla_tgt_exit) (arun: Capture ATIO queue during firmware dump + Send SCR in target mode + Target mode review comments) (roland: Don't create duplicate target sessions to address tearing down ACLs with IO in flight + Add missing call to qlt_fc_port_deleted call during qla2x00_schedule_rport_del timeout) Signed-off-by: Nicholas A. Bellinger <nab@linux-iscsi.org> Signed-off-by: Chad Dupuis <chad.dupuis@qlogic.com> Signed-off-by: James Bottomley <JBottomley@Parallels.com>
2012-05-15 18:34:28 +00:00
#include "qla_target.h"
#include <linux/utsname.h>
static int qla2x00_sns_ga_nxt(scsi_qla_host_t *, fc_port_t *);
static int qla2x00_sns_gid_pt(scsi_qla_host_t *, sw_info_t *);
static int qla2x00_sns_gpn_id(scsi_qla_host_t *, sw_info_t *);
static int qla2x00_sns_gnn_id(scsi_qla_host_t *, sw_info_t *);
static int qla2x00_sns_rft_id(scsi_qla_host_t *);
static int qla2x00_sns_rnn_id(scsi_qla_host_t *);
/**
* qla2x00_prep_ms_iocb() - Prepare common MS/CT IOCB fields for SNS CT query.
* @ha: HA context
* @req_size: request size in bytes
* @rsp_size: response size in bytes
*
* Returns a pointer to the @ha's ms_iocb.
*/
void *
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
qla2x00_prep_ms_iocb(scsi_qla_host_t *vha, struct ct_arg *arg)
{
struct qla_hw_data *ha = vha->hw;
ms_iocb_entry_t *ms_pkt;
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
ms_pkt = (ms_iocb_entry_t *)arg->iocb;
memset(ms_pkt, 0, sizeof(ms_iocb_entry_t));
ms_pkt->entry_type = MS_IOCB_TYPE;
ms_pkt->entry_count = 1;
SET_TARGET_ID(ha, ms_pkt->loop_id, SIMPLE_NAME_SERVER);
ms_pkt->control_flags = cpu_to_le16(CF_READ | CF_HEAD_TAG);
ms_pkt->timeout = cpu_to_le16(ha->r_a_tov / 10 * 2);
ms_pkt->cmd_dsd_count = cpu_to_le16(1);
ms_pkt->total_dsd_count = cpu_to_le16(2);
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
ms_pkt->rsp_bytecount = cpu_to_le32(arg->rsp_size);
ms_pkt->req_bytecount = cpu_to_le32(arg->req_size);
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
ms_pkt->dseg_req_address[0] = cpu_to_le32(LSD(arg->req_dma));
ms_pkt->dseg_req_address[1] = cpu_to_le32(MSD(arg->req_dma));
ms_pkt->dseg_req_length = ms_pkt->req_bytecount;
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
ms_pkt->dseg_rsp_address[0] = cpu_to_le32(LSD(arg->rsp_dma));
ms_pkt->dseg_rsp_address[1] = cpu_to_le32(MSD(arg->rsp_dma));
ms_pkt->dseg_rsp_length = ms_pkt->rsp_bytecount;
vha->qla_stats.control_requests++;
return (ms_pkt);
}
/**
* qla24xx_prep_ms_iocb() - Prepare common CT IOCB fields for SNS CT query.
* @ha: HA context
* @req_size: request size in bytes
* @rsp_size: response size in bytes
*
* Returns a pointer to the @ha's ms_iocb.
*/
void *
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
qla24xx_prep_ms_iocb(scsi_qla_host_t *vha, struct ct_arg *arg)
{
struct qla_hw_data *ha = vha->hw;
struct ct_entry_24xx *ct_pkt;
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
ct_pkt = (struct ct_entry_24xx *)arg->iocb;
memset(ct_pkt, 0, sizeof(struct ct_entry_24xx));
ct_pkt->entry_type = CT_IOCB_TYPE;
ct_pkt->entry_count = 1;
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
ct_pkt->nport_handle = cpu_to_le16(arg->nport_handle);
ct_pkt->timeout = cpu_to_le16(ha->r_a_tov / 10 * 2);
ct_pkt->cmd_dsd_count = cpu_to_le16(1);
ct_pkt->rsp_dsd_count = cpu_to_le16(1);
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
ct_pkt->rsp_byte_count = cpu_to_le32(arg->rsp_size);
ct_pkt->cmd_byte_count = cpu_to_le32(arg->req_size);
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
ct_pkt->dseg_0_address[0] = cpu_to_le32(LSD(arg->req_dma));
ct_pkt->dseg_0_address[1] = cpu_to_le32(MSD(arg->req_dma));
ct_pkt->dseg_0_len = ct_pkt->cmd_byte_count;
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
ct_pkt->dseg_1_address[0] = cpu_to_le32(LSD(arg->rsp_dma));
ct_pkt->dseg_1_address[1] = cpu_to_le32(MSD(arg->rsp_dma));
ct_pkt->dseg_1_len = ct_pkt->rsp_byte_count;
ct_pkt->vp_index = vha->vp_idx;
vha->qla_stats.control_requests++;
return (ct_pkt);
}
/**
* qla2x00_prep_ct_req() - Prepare common CT request fields for SNS query.
* @ct_req: CT request buffer
* @cmd: GS command
* @rsp_size: response size in bytes
*
* Returns a pointer to the intitialized @ct_req.
*/
static inline struct ct_sns_req *
qla2x00_prep_ct_req(struct ct_sns_pkt *p, uint16_t cmd, uint16_t rsp_size)
{
memset(p, 0, sizeof(struct ct_sns_pkt));
p->p.req.header.revision = 0x01;
p->p.req.header.gs_type = 0xFC;
p->p.req.header.gs_subtype = 0x02;
p->p.req.command = cpu_to_be16(cmd);
p->p.req.max_rsp_size = cpu_to_be16((rsp_size - 16) / 4);
return &p->p.req;
}
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
int
qla2x00_chk_ms_status(scsi_qla_host_t *vha, ms_iocb_entry_t *ms_pkt,
struct ct_sns_rsp *ct_rsp, const char *routine)
{
int rval;
uint16_t comp_status;
struct qla_hw_data *ha = vha->hw;
bool lid_is_sns = false;
rval = QLA_FUNCTION_FAILED;
if (ms_pkt->entry_status != 0) {
ql_dbg(ql_dbg_disc, vha, 0x2031,
"%s failed, error status (%x) on port_id: %02x%02x%02x.\n",
routine, ms_pkt->entry_status, vha->d_id.b.domain,
vha->d_id.b.area, vha->d_id.b.al_pa);
} else {
if (IS_FWI2_CAPABLE(ha))
comp_status = le16_to_cpu(
((struct ct_entry_24xx *)ms_pkt)->comp_status);
else
comp_status = le16_to_cpu(ms_pkt->status);
switch (comp_status) {
case CS_COMPLETE:
case CS_DATA_UNDERRUN:
case CS_DATA_OVERRUN: /* Overrun? */
if (ct_rsp->header.response !=
cpu_to_be16(CT_ACCEPT_RESPONSE)) {
ql_dbg(ql_dbg_disc + ql_dbg_buffer, vha, 0x2077,
"%s failed rejected request on port_id: %02x%02x%02x Completion status 0x%x, response 0x%x\n",
routine, vha->d_id.b.domain,
vha->d_id.b.area, vha->d_id.b.al_pa,
comp_status, ct_rsp->header.response);
ql_dump_buffer(ql_dbg_disc + ql_dbg_buffer, vha,
0x2078, (uint8_t *)&ct_rsp->header,
sizeof(struct ct_rsp_hdr));
rval = QLA_INVALID_COMMAND;
} else
rval = QLA_SUCCESS;
break;
case CS_PORT_LOGGED_OUT:
if (IS_FWI2_CAPABLE(ha)) {
if (le16_to_cpu(ms_pkt->loop_id.extended) ==
NPH_SNS)
lid_is_sns = true;
} else {
if (le16_to_cpu(ms_pkt->loop_id.extended) ==
SIMPLE_NAME_SERVER)
lid_is_sns = true;
}
if (lid_is_sns) {
ql_dbg(ql_dbg_async, vha, 0x502b,
"%s failed, Name server has logged out",
routine);
rval = QLA_NOT_LOGGED_IN;
set_bit(LOOP_RESYNC_NEEDED, &vha->dpc_flags);
set_bit(LOCAL_LOOP_UPDATE, &vha->dpc_flags);
}
break;
case CS_TIMEOUT:
rval = QLA_FUNCTION_TIMEOUT;
/* drop through */
default:
ql_dbg(ql_dbg_disc, vha, 0x2033,
"%s failed, completion status (%x) on port_id: "
"%02x%02x%02x.\n", routine, comp_status,
vha->d_id.b.domain, vha->d_id.b.area,
vha->d_id.b.al_pa);
break;
}
}
return rval;
}
/**
* qla2x00_ga_nxt() - SNS scan for fabric devices via GA_NXT command.
* @ha: HA context
* @fcport: fcport entry to updated
*
* Returns 0 on success.
*/
int
qla2x00_ga_nxt(scsi_qla_host_t *vha, fc_port_t *fcport)
{
int rval;
ms_iocb_entry_t *ms_pkt;
struct ct_sns_req *ct_req;
struct ct_sns_rsp *ct_rsp;
struct qla_hw_data *ha = vha->hw;
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
struct ct_arg arg;
if (IS_QLA2100(ha) || IS_QLA2200(ha))
return qla2x00_sns_ga_nxt(vha, fcport);
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
arg.iocb = ha->ms_iocb;
arg.req_dma = ha->ct_sns_dma;
arg.rsp_dma = ha->ct_sns_dma;
arg.req_size = GA_NXT_REQ_SIZE;
arg.rsp_size = GA_NXT_RSP_SIZE;
arg.nport_handle = NPH_SNS;
/* Issue GA_NXT */
/* Prepare common MS IOCB */
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
ms_pkt = ha->isp_ops->prep_ms_iocb(vha, &arg);
/* Prepare CT request */
ct_req = qla2x00_prep_ct_req(ha->ct_sns, GA_NXT_CMD,
GA_NXT_RSP_SIZE);
ct_rsp = &ha->ct_sns->p.rsp;
/* Prepare CT arguments -- port_id */
ct_req->req.port_id.port_id[0] = fcport->d_id.b.domain;
ct_req->req.port_id.port_id[1] = fcport->d_id.b.area;
ct_req->req.port_id.port_id[2] = fcport->d_id.b.al_pa;
/* Execute MS IOCB */
rval = qla2x00_issue_iocb(vha, ha->ms_iocb, ha->ms_iocb_dma,
sizeof(ms_iocb_entry_t));
if (rval != QLA_SUCCESS) {
/*EMPTY*/
ql_dbg(ql_dbg_disc, vha, 0x2062,
"GA_NXT issue IOCB failed (%d).\n", rval);
} else if (qla2x00_chk_ms_status(vha, ms_pkt, ct_rsp, "GA_NXT") !=
QLA_SUCCESS) {
rval = QLA_FUNCTION_FAILED;
} else {
/* Populate fc_port_t entry. */
fcport->d_id.b.domain = ct_rsp->rsp.ga_nxt.port_id[0];
fcport->d_id.b.area = ct_rsp->rsp.ga_nxt.port_id[1];
fcport->d_id.b.al_pa = ct_rsp->rsp.ga_nxt.port_id[2];
memcpy(fcport->node_name, ct_rsp->rsp.ga_nxt.node_name,
WWN_SIZE);
memcpy(fcport->port_name, ct_rsp->rsp.ga_nxt.port_name,
WWN_SIZE);
fcport->fc4_type = (ct_rsp->rsp.ga_nxt.fc4_types[2] & BIT_0) ?
FC4_TYPE_FCP_SCSI : FC4_TYPE_OTHER;
if (ct_rsp->rsp.ga_nxt.port_type != NS_N_PORT_TYPE &&
ct_rsp->rsp.ga_nxt.port_type != NS_NL_PORT_TYPE)
fcport->d_id.b.domain = 0xf0;
ql_dbg(ql_dbg_disc, vha, 0x2063,
"GA_NXT entry - nn %8phN pn %8phN "
"port_id=%02x%02x%02x.\n",
fcport->node_name, fcport->port_name,
fcport->d_id.b.domain, fcport->d_id.b.area,
fcport->d_id.b.al_pa);
}
return (rval);
}
static inline int
qla2x00_gid_pt_rsp_size(scsi_qla_host_t *vha)
{
return vha->hw->max_fibre_devices * 4 + 16;
}
/**
* qla2x00_gid_pt() - SNS scan for fabric devices via GID_PT command.
* @ha: HA context
* @list: switch info entries to populate
*
* NOTE: Non-Nx_Ports are not requested.
*
* Returns 0 on success.
*/
int
qla2x00_gid_pt(scsi_qla_host_t *vha, sw_info_t *list)
{
int rval;
uint16_t i;
ms_iocb_entry_t *ms_pkt;
struct ct_sns_req *ct_req;
struct ct_sns_rsp *ct_rsp;
struct ct_sns_gid_pt_data *gid_data;
struct qla_hw_data *ha = vha->hw;
uint16_t gid_pt_rsp_size;
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
struct ct_arg arg;
if (IS_QLA2100(ha) || IS_QLA2200(ha))
return qla2x00_sns_gid_pt(vha, list);
gid_data = NULL;
gid_pt_rsp_size = qla2x00_gid_pt_rsp_size(vha);
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
arg.iocb = ha->ms_iocb;
arg.req_dma = ha->ct_sns_dma;
arg.rsp_dma = ha->ct_sns_dma;
arg.req_size = GID_PT_REQ_SIZE;
arg.rsp_size = gid_pt_rsp_size;
arg.nport_handle = NPH_SNS;
/* Issue GID_PT */
/* Prepare common MS IOCB */
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
ms_pkt = ha->isp_ops->prep_ms_iocb(vha, &arg);
/* Prepare CT request */
ct_req = qla2x00_prep_ct_req(ha->ct_sns, GID_PT_CMD, gid_pt_rsp_size);
ct_rsp = &ha->ct_sns->p.rsp;
/* Prepare CT arguments -- port_type */
ct_req->req.gid_pt.port_type = NS_NX_PORT_TYPE;
/* Execute MS IOCB */
rval = qla2x00_issue_iocb(vha, ha->ms_iocb, ha->ms_iocb_dma,
sizeof(ms_iocb_entry_t));
if (rval != QLA_SUCCESS) {
/*EMPTY*/
ql_dbg(ql_dbg_disc, vha, 0x2055,
"GID_PT issue IOCB failed (%d).\n", rval);
} else if (qla2x00_chk_ms_status(vha, ms_pkt, ct_rsp, "GID_PT") !=
QLA_SUCCESS) {
rval = QLA_FUNCTION_FAILED;
} else {
/* Set port IDs in switch info list. */
for (i = 0; i < ha->max_fibre_devices; i++) {
gid_data = &ct_rsp->rsp.gid_pt.entries[i];
list[i].d_id.b.domain = gid_data->port_id[0];
list[i].d_id.b.area = gid_data->port_id[1];
list[i].d_id.b.al_pa = gid_data->port_id[2];
memset(list[i].fabric_port_name, 0, WWN_SIZE);
list[i].fp_speed = PORT_SPEED_UNKNOWN;
/* Last one exit. */
if (gid_data->control_byte & BIT_7) {
list[i].d_id.b.rsvd_1 = gid_data->control_byte;
break;
}
}
/*
* If we've used all available slots, then the switch is
* reporting back more devices than we can handle with this
* single call. Return a failed status, and let GA_NXT handle
* the overload.
*/
if (i == ha->max_fibre_devices)
rval = QLA_FUNCTION_FAILED;
}
return (rval);
}
/**
* qla2x00_gpn_id() - SNS Get Port Name (GPN_ID) query.
* @ha: HA context
* @list: switch info entries to populate
*
* Returns 0 on success.
*/
int
qla2x00_gpn_id(scsi_qla_host_t *vha, sw_info_t *list)
{
int rval = QLA_SUCCESS;
uint16_t i;
ms_iocb_entry_t *ms_pkt;
struct ct_sns_req *ct_req;
struct ct_sns_rsp *ct_rsp;
struct qla_hw_data *ha = vha->hw;
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
struct ct_arg arg;
if (IS_QLA2100(ha) || IS_QLA2200(ha))
return qla2x00_sns_gpn_id(vha, list);
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
arg.iocb = ha->ms_iocb;
arg.req_dma = ha->ct_sns_dma;
arg.rsp_dma = ha->ct_sns_dma;
arg.req_size = GPN_ID_REQ_SIZE;
arg.rsp_size = GPN_ID_RSP_SIZE;
arg.nport_handle = NPH_SNS;
for (i = 0; i < ha->max_fibre_devices; i++) {
/* Issue GPN_ID */
/* Prepare common MS IOCB */
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
ms_pkt = ha->isp_ops->prep_ms_iocb(vha, &arg);
/* Prepare CT request */
ct_req = qla2x00_prep_ct_req(ha->ct_sns, GPN_ID_CMD,
GPN_ID_RSP_SIZE);
ct_rsp = &ha->ct_sns->p.rsp;
/* Prepare CT arguments -- port_id */
ct_req->req.port_id.port_id[0] = list[i].d_id.b.domain;
ct_req->req.port_id.port_id[1] = list[i].d_id.b.area;
ct_req->req.port_id.port_id[2] = list[i].d_id.b.al_pa;
/* Execute MS IOCB */
rval = qla2x00_issue_iocb(vha, ha->ms_iocb, ha->ms_iocb_dma,
sizeof(ms_iocb_entry_t));
if (rval != QLA_SUCCESS) {
/*EMPTY*/
ql_dbg(ql_dbg_disc, vha, 0x2056,
"GPN_ID issue IOCB failed (%d).\n", rval);
break;
} else if (qla2x00_chk_ms_status(vha, ms_pkt, ct_rsp,
"GPN_ID") != QLA_SUCCESS) {
rval = QLA_FUNCTION_FAILED;
break;
} else {
/* Save portname */
memcpy(list[i].port_name,
ct_rsp->rsp.gpn_id.port_name, WWN_SIZE);
}
/* Last device exit. */
if (list[i].d_id.b.rsvd_1 != 0)
break;
}
return (rval);
}
/**
* qla2x00_gnn_id() - SNS Get Node Name (GNN_ID) query.
* @ha: HA context
* @list: switch info entries to populate
*
* Returns 0 on success.
*/
int
qla2x00_gnn_id(scsi_qla_host_t *vha, sw_info_t *list)
{
int rval = QLA_SUCCESS;
uint16_t i;
struct qla_hw_data *ha = vha->hw;
ms_iocb_entry_t *ms_pkt;
struct ct_sns_req *ct_req;
struct ct_sns_rsp *ct_rsp;
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
struct ct_arg arg;
if (IS_QLA2100(ha) || IS_QLA2200(ha))
return qla2x00_sns_gnn_id(vha, list);
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
arg.iocb = ha->ms_iocb;
arg.req_dma = ha->ct_sns_dma;
arg.rsp_dma = ha->ct_sns_dma;
arg.req_size = GNN_ID_REQ_SIZE;
arg.rsp_size = GNN_ID_RSP_SIZE;
arg.nport_handle = NPH_SNS;
for (i = 0; i < ha->max_fibre_devices; i++) {
/* Issue GNN_ID */
/* Prepare common MS IOCB */
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
ms_pkt = ha->isp_ops->prep_ms_iocb(vha, &arg);
/* Prepare CT request */
ct_req = qla2x00_prep_ct_req(ha->ct_sns, GNN_ID_CMD,
GNN_ID_RSP_SIZE);
ct_rsp = &ha->ct_sns->p.rsp;
/* Prepare CT arguments -- port_id */
ct_req->req.port_id.port_id[0] = list[i].d_id.b.domain;
ct_req->req.port_id.port_id[1] = list[i].d_id.b.area;
ct_req->req.port_id.port_id[2] = list[i].d_id.b.al_pa;
/* Execute MS IOCB */
rval = qla2x00_issue_iocb(vha, ha->ms_iocb, ha->ms_iocb_dma,
sizeof(ms_iocb_entry_t));
if (rval != QLA_SUCCESS) {
/*EMPTY*/
ql_dbg(ql_dbg_disc, vha, 0x2057,
"GNN_ID issue IOCB failed (%d).\n", rval);
break;
} else if (qla2x00_chk_ms_status(vha, ms_pkt, ct_rsp,
"GNN_ID") != QLA_SUCCESS) {
rval = QLA_FUNCTION_FAILED;
break;
} else {
/* Save nodename */
memcpy(list[i].node_name,
ct_rsp->rsp.gnn_id.node_name, WWN_SIZE);
ql_dbg(ql_dbg_disc, vha, 0x2058,
"GID_PT entry - nn %8phN pn %8phN "
"portid=%02x%02x%02x.\n",
list[i].node_name, list[i].port_name,
list[i].d_id.b.domain, list[i].d_id.b.area,
list[i].d_id.b.al_pa);
}
/* Last device exit. */
if (list[i].d_id.b.rsvd_1 != 0)
break;
}
return (rval);
}
/**
* qla2x00_rft_id() - SNS Register FC-4 TYPEs (RFT_ID) supported by the HBA.
* @ha: HA context
*
* Returns 0 on success.
*/
int
qla2x00_rft_id(scsi_qla_host_t *vha)
{
int rval;
struct qla_hw_data *ha = vha->hw;
ms_iocb_entry_t *ms_pkt;
struct ct_sns_req *ct_req;
struct ct_sns_rsp *ct_rsp;
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
struct ct_arg arg;
if (IS_QLA2100(ha) || IS_QLA2200(ha))
return qla2x00_sns_rft_id(vha);
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
arg.iocb = ha->ms_iocb;
arg.req_dma = ha->ct_sns_dma;
arg.rsp_dma = ha->ct_sns_dma;
arg.req_size = RFT_ID_REQ_SIZE;
arg.rsp_size = RFT_ID_RSP_SIZE;
arg.nport_handle = NPH_SNS;
/* Issue RFT_ID */
/* Prepare common MS IOCB */
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
ms_pkt = ha->isp_ops->prep_ms_iocb(vha, &arg);
/* Prepare CT request */
ct_req = qla2x00_prep_ct_req(ha->ct_sns, RFT_ID_CMD,
RFT_ID_RSP_SIZE);
ct_rsp = &ha->ct_sns->p.rsp;
/* Prepare CT arguments -- port_id, FC-4 types */
ct_req->req.rft_id.port_id[0] = vha->d_id.b.domain;
ct_req->req.rft_id.port_id[1] = vha->d_id.b.area;
ct_req->req.rft_id.port_id[2] = vha->d_id.b.al_pa;
ct_req->req.rft_id.fc4_types[2] = 0x01; /* FCP-3 */
if (vha->flags.nvme_enabled)
ct_req->req.rft_id.fc4_types[6] = 1; /* NVMe type 28h */
/* Execute MS IOCB */
rval = qla2x00_issue_iocb(vha, ha->ms_iocb, ha->ms_iocb_dma,
sizeof(ms_iocb_entry_t));
if (rval != QLA_SUCCESS) {
/*EMPTY*/
ql_dbg(ql_dbg_disc, vha, 0x2043,
"RFT_ID issue IOCB failed (%d).\n", rval);
} else if (qla2x00_chk_ms_status(vha, ms_pkt, ct_rsp, "RFT_ID") !=
QLA_SUCCESS) {
rval = QLA_FUNCTION_FAILED;
} else {
ql_dbg(ql_dbg_disc, vha, 0x2044,
"RFT_ID exiting normally.\n");
}
return (rval);
}
/**
* qla2x00_rff_id() - SNS Register FC-4 Features (RFF_ID) supported by the HBA.
* @ha: HA context
*
* Returns 0 on success.
*/
int
qla2x00_rff_id(scsi_qla_host_t *vha, u8 type)
{
int rval;
struct qla_hw_data *ha = vha->hw;
ms_iocb_entry_t *ms_pkt;
struct ct_sns_req *ct_req;
struct ct_sns_rsp *ct_rsp;
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
struct ct_arg arg;
if (IS_QLA2100(ha) || IS_QLA2200(ha)) {
ql_dbg(ql_dbg_disc, vha, 0x2046,
"RFF_ID call not supported on ISP2100/ISP2200.\n");
return (QLA_SUCCESS);
}
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
arg.iocb = ha->ms_iocb;
arg.req_dma = ha->ct_sns_dma;
arg.rsp_dma = ha->ct_sns_dma;
arg.req_size = RFF_ID_REQ_SIZE;
arg.rsp_size = RFF_ID_RSP_SIZE;
arg.nport_handle = NPH_SNS;
/* Issue RFF_ID */
/* Prepare common MS IOCB */
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
ms_pkt = ha->isp_ops->prep_ms_iocb(vha, &arg);
/* Prepare CT request */
ct_req = qla2x00_prep_ct_req(ha->ct_sns, RFF_ID_CMD,
RFF_ID_RSP_SIZE);
ct_rsp = &ha->ct_sns->p.rsp;
/* Prepare CT arguments -- port_id, FC-4 feature, FC-4 type */
ct_req->req.rff_id.port_id[0] = vha->d_id.b.domain;
ct_req->req.rff_id.port_id[1] = vha->d_id.b.area;
ct_req->req.rff_id.port_id[2] = vha->d_id.b.al_pa;
[SCSI] qla2xxx: Add LLD target-mode infrastructure for >= 24xx series Add LLD target mode for >= 24xx series HW. This code was originally based on external qla2x00t module based on 8.02.01-k4, and has been refactored to push the bulk of code into mainline qla2xxx.ko LLD -> qla_target.c. The implementation uses internal workqueues for I/O context submission into tcm_qla2xxx code, and includes the struct qla_tgt_func_tmpl API for external interaction to allow qla2xxx LDD to function without direct target-core dependencies: It also enables qla_target.c usage within existing qla2xxx LLD code. This includes: *) Addition of target mode specific members to existing data structures in qla_def.h and struct qla_hw_data->tgt_ops using qla_target.h:struct qla_tgt_func_tmpl *) Addition of struct qla_tgt_func_tmpl and direct calls into qla_target.c logic w/ qlt_* prefixed functions. *) Addition of qla_iocb.c:qla2x00_req_pkt() for ring processing, and qla2x00_issue_marker() for handling request/response queue processing for target mode operation *) Addition of various qla_tgt_mode_enabled() logic checks in qla24xx_nvram_config(), qla2x00_initialize_adapter(), qla2x00_rff_id(), qla2x00_abort_isp(), qla24xx_modify_vp_config(), and qla2x00_vp_abort_isp(). By default the new qlini_mode module parameter is setting initiator-mode to 'enabled' in order for 'modprobe qla2xxx' to continue to function as expected in initiator only mode. Enabling target-mode operation will currently require a: modprobe qla2xxx qlini_mode="disabled" in order to explictly disabled initiator mode and allow target-mode to be enabled via tcm_qla2xxx configfs fabric callers. (nab: Convert to qlini_mode='enabled' by default in qla_target.c) (joern: Remove loop_id from qla_tgt_make_local_sess() arguments + Remove unused s_id + fix s_id endianness bug + simplify qla_tgt_abort_work) (gerard: fix section __exit mismatch in qla_tgt_exit) (arun: Capture ATIO queue during firmware dump + Send SCR in target mode + Target mode review comments) (roland: Don't create duplicate target sessions to address tearing down ACLs with IO in flight + Add missing call to qlt_fc_port_deleted call during qla2x00_schedule_rport_del timeout) Signed-off-by: Nicholas A. Bellinger <nab@linux-iscsi.org> Signed-off-by: Chad Dupuis <chad.dupuis@qlogic.com> Signed-off-by: James Bottomley <JBottomley@Parallels.com>
2012-05-15 18:34:28 +00:00
qlt_rff_id(vha, ct_req);
ct_req->req.rff_id.fc4_type = type; /* SCSI - FCP */
/* Execute MS IOCB */
rval = qla2x00_issue_iocb(vha, ha->ms_iocb, ha->ms_iocb_dma,
sizeof(ms_iocb_entry_t));
if (rval != QLA_SUCCESS) {
/*EMPTY*/
ql_dbg(ql_dbg_disc, vha, 0x2047,
"RFF_ID issue IOCB failed (%d).\n", rval);
} else if (qla2x00_chk_ms_status(vha, ms_pkt, ct_rsp, "RFF_ID") !=
QLA_SUCCESS) {
rval = QLA_FUNCTION_FAILED;
} else {
ql_dbg(ql_dbg_disc, vha, 0x2048,
"RFF_ID exiting normally.\n");
}
return (rval);
}
/**
* qla2x00_rnn_id() - SNS Register Node Name (RNN_ID) of the HBA.
* @ha: HA context
*
* Returns 0 on success.
*/
int
qla2x00_rnn_id(scsi_qla_host_t *vha)
{
int rval;
struct qla_hw_data *ha = vha->hw;
ms_iocb_entry_t *ms_pkt;
struct ct_sns_req *ct_req;
struct ct_sns_rsp *ct_rsp;
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
struct ct_arg arg;
if (IS_QLA2100(ha) || IS_QLA2200(ha))
return qla2x00_sns_rnn_id(vha);
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
arg.iocb = ha->ms_iocb;
arg.req_dma = ha->ct_sns_dma;
arg.rsp_dma = ha->ct_sns_dma;
arg.req_size = RNN_ID_REQ_SIZE;
arg.rsp_size = RNN_ID_RSP_SIZE;
arg.nport_handle = NPH_SNS;
/* Issue RNN_ID */
/* Prepare common MS IOCB */
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
ms_pkt = ha->isp_ops->prep_ms_iocb(vha, &arg);
/* Prepare CT request */
ct_req = qla2x00_prep_ct_req(ha->ct_sns, RNN_ID_CMD, RNN_ID_RSP_SIZE);
ct_rsp = &ha->ct_sns->p.rsp;
/* Prepare CT arguments -- port_id, node_name */
ct_req->req.rnn_id.port_id[0] = vha->d_id.b.domain;
ct_req->req.rnn_id.port_id[1] = vha->d_id.b.area;
ct_req->req.rnn_id.port_id[2] = vha->d_id.b.al_pa;
memcpy(ct_req->req.rnn_id.node_name, vha->node_name, WWN_SIZE);
/* Execute MS IOCB */
rval = qla2x00_issue_iocb(vha, ha->ms_iocb, ha->ms_iocb_dma,
sizeof(ms_iocb_entry_t));
if (rval != QLA_SUCCESS) {
/*EMPTY*/
ql_dbg(ql_dbg_disc, vha, 0x204d,
"RNN_ID issue IOCB failed (%d).\n", rval);
} else if (qla2x00_chk_ms_status(vha, ms_pkt, ct_rsp, "RNN_ID") !=
QLA_SUCCESS) {
rval = QLA_FUNCTION_FAILED;
} else {
ql_dbg(ql_dbg_disc, vha, 0x204e,
"RNN_ID exiting normally.\n");
}
return (rval);
}
void
qla2x00_get_sym_node_name(scsi_qla_host_t *vha, uint8_t *snn, size_t size)
{
struct qla_hw_data *ha = vha->hw;
if (IS_QLAFX00(ha))
snprintf(snn, size, "%s FW:v%s DVR:v%s", ha->model_number,
ha->mr.fw_version, qla2x00_version_str);
else
snprintf(snn, size,
"%s FW:v%d.%02d.%02d DVR:v%s", ha->model_number,
ha->fw_major_version, ha->fw_minor_version,
ha->fw_subminor_version, qla2x00_version_str);
}
/**
* qla2x00_rsnn_nn() - SNS Register Symbolic Node Name (RSNN_NN) of the HBA.
* @ha: HA context
*
* Returns 0 on success.
*/
int
qla2x00_rsnn_nn(scsi_qla_host_t *vha)
{
int rval;
struct qla_hw_data *ha = vha->hw;
ms_iocb_entry_t *ms_pkt;
struct ct_sns_req *ct_req;
struct ct_sns_rsp *ct_rsp;
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
struct ct_arg arg;
if (IS_QLA2100(ha) || IS_QLA2200(ha)) {
ql_dbg(ql_dbg_disc, vha, 0x2050,
"RSNN_ID call unsupported on ISP2100/ISP2200.\n");
return (QLA_SUCCESS);
}
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
arg.iocb = ha->ms_iocb;
arg.req_dma = ha->ct_sns_dma;
arg.rsp_dma = ha->ct_sns_dma;
arg.req_size = 0;
arg.rsp_size = RSNN_NN_RSP_SIZE;
arg.nport_handle = NPH_SNS;
/* Issue RSNN_NN */
/* Prepare common MS IOCB */
/* Request size adjusted after CT preparation */
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
ms_pkt = ha->isp_ops->prep_ms_iocb(vha, &arg);
/* Prepare CT request */
ct_req = qla2x00_prep_ct_req(ha->ct_sns, RSNN_NN_CMD,
RSNN_NN_RSP_SIZE);
ct_rsp = &ha->ct_sns->p.rsp;
/* Prepare CT arguments -- node_name, symbolic node_name, size */
memcpy(ct_req->req.rsnn_nn.node_name, vha->node_name, WWN_SIZE);
/* Prepare the Symbolic Node Name */
qla2x00_get_sym_node_name(vha, ct_req->req.rsnn_nn.sym_node_name,
sizeof(ct_req->req.rsnn_nn.sym_node_name));
/* Calculate SNN length */
ct_req->req.rsnn_nn.name_len =
(uint8_t)strlen(ct_req->req.rsnn_nn.sym_node_name);
/* Update MS IOCB request */
ms_pkt->req_bytecount =
cpu_to_le32(24 + 1 + ct_req->req.rsnn_nn.name_len);
ms_pkt->dseg_req_length = ms_pkt->req_bytecount;
/* Execute MS IOCB */
rval = qla2x00_issue_iocb(vha, ha->ms_iocb, ha->ms_iocb_dma,
sizeof(ms_iocb_entry_t));
if (rval != QLA_SUCCESS) {
/*EMPTY*/
ql_dbg(ql_dbg_disc, vha, 0x2051,
"RSNN_NN issue IOCB failed (%d).\n", rval);
} else if (qla2x00_chk_ms_status(vha, ms_pkt, ct_rsp, "RSNN_NN") !=
QLA_SUCCESS) {
rval = QLA_FUNCTION_FAILED;
} else {
ql_dbg(ql_dbg_disc, vha, 0x2052,
"RSNN_NN exiting normally.\n");
}
return (rval);
}
/**
* qla2x00_prep_sns_cmd() - Prepare common SNS command request fields for query.
* @ha: HA context
* @cmd: GS command
* @scmd_len: Subcommand length
* @data_size: response size in bytes
*
* Returns a pointer to the @ha's sns_cmd.
*/
static inline struct sns_cmd_pkt *
qla2x00_prep_sns_cmd(scsi_qla_host_t *vha, uint16_t cmd, uint16_t scmd_len,
uint16_t data_size)
{
uint16_t wc;
struct sns_cmd_pkt *sns_cmd;
struct qla_hw_data *ha = vha->hw;
sns_cmd = ha->sns_cmd;
memset(sns_cmd, 0, sizeof(struct sns_cmd_pkt));
wc = data_size / 2; /* Size in 16bit words. */
sns_cmd->p.cmd.buffer_length = cpu_to_le16(wc);
sns_cmd->p.cmd.buffer_address[0] = cpu_to_le32(LSD(ha->sns_cmd_dma));
sns_cmd->p.cmd.buffer_address[1] = cpu_to_le32(MSD(ha->sns_cmd_dma));
sns_cmd->p.cmd.subcommand_length = cpu_to_le16(scmd_len);
sns_cmd->p.cmd.subcommand = cpu_to_le16(cmd);
wc = (data_size - 16) / 4; /* Size in 32bit words. */
sns_cmd->p.cmd.size = cpu_to_le16(wc);
vha->qla_stats.control_requests++;
return (sns_cmd);
}
/**
* qla2x00_sns_ga_nxt() - SNS scan for fabric devices via GA_NXT command.
* @ha: HA context
* @fcport: fcport entry to updated
*
* This command uses the old Exectute SNS Command mailbox routine.
*
* Returns 0 on success.
*/
static int
qla2x00_sns_ga_nxt(scsi_qla_host_t *vha, fc_port_t *fcport)
{
int rval = QLA_SUCCESS;
struct qla_hw_data *ha = vha->hw;
struct sns_cmd_pkt *sns_cmd;
/* Issue GA_NXT. */
/* Prepare SNS command request. */
sns_cmd = qla2x00_prep_sns_cmd(vha, GA_NXT_CMD, GA_NXT_SNS_SCMD_LEN,
GA_NXT_SNS_DATA_SIZE);
/* Prepare SNS command arguments -- port_id. */
sns_cmd->p.cmd.param[0] = fcport->d_id.b.al_pa;
sns_cmd->p.cmd.param[1] = fcport->d_id.b.area;
sns_cmd->p.cmd.param[2] = fcport->d_id.b.domain;
/* Execute SNS command. */
rval = qla2x00_send_sns(vha, ha->sns_cmd_dma, GA_NXT_SNS_CMD_SIZE / 2,
sizeof(struct sns_cmd_pkt));
if (rval != QLA_SUCCESS) {
/*EMPTY*/
ql_dbg(ql_dbg_disc, vha, 0x205f,
"GA_NXT Send SNS failed (%d).\n", rval);
} else if (sns_cmd->p.gan_data[8] != 0x80 ||
sns_cmd->p.gan_data[9] != 0x02) {
ql_dbg(ql_dbg_disc + ql_dbg_buffer, vha, 0x2084,
"GA_NXT failed, rejected request ga_nxt_rsp:\n");
ql_dump_buffer(ql_dbg_disc + ql_dbg_buffer, vha, 0x2074,
sns_cmd->p.gan_data, 16);
rval = QLA_FUNCTION_FAILED;
} else {
/* Populate fc_port_t entry. */
fcport->d_id.b.domain = sns_cmd->p.gan_data[17];
fcport->d_id.b.area = sns_cmd->p.gan_data[18];
fcport->d_id.b.al_pa = sns_cmd->p.gan_data[19];
memcpy(fcport->node_name, &sns_cmd->p.gan_data[284], WWN_SIZE);
memcpy(fcport->port_name, &sns_cmd->p.gan_data[20], WWN_SIZE);
if (sns_cmd->p.gan_data[16] != NS_N_PORT_TYPE &&
sns_cmd->p.gan_data[16] != NS_NL_PORT_TYPE)
fcport->d_id.b.domain = 0xf0;
ql_dbg(ql_dbg_disc, vha, 0x2061,
"GA_NXT entry - nn %8phN pn %8phN "
"port_id=%02x%02x%02x.\n",
fcport->node_name, fcport->port_name,
fcport->d_id.b.domain, fcport->d_id.b.area,
fcport->d_id.b.al_pa);
}
return (rval);
}
/**
* qla2x00_sns_gid_pt() - SNS scan for fabric devices via GID_PT command.
* @ha: HA context
* @list: switch info entries to populate
*
* This command uses the old Exectute SNS Command mailbox routine.
*
* NOTE: Non-Nx_Ports are not requested.
*
* Returns 0 on success.
*/
static int
qla2x00_sns_gid_pt(scsi_qla_host_t *vha, sw_info_t *list)
{
int rval;
struct qla_hw_data *ha = vha->hw;
uint16_t i;
uint8_t *entry;
struct sns_cmd_pkt *sns_cmd;
uint16_t gid_pt_sns_data_size;
gid_pt_sns_data_size = qla2x00_gid_pt_rsp_size(vha);
/* Issue GID_PT. */
/* Prepare SNS command request. */
sns_cmd = qla2x00_prep_sns_cmd(vha, GID_PT_CMD, GID_PT_SNS_SCMD_LEN,
gid_pt_sns_data_size);
/* Prepare SNS command arguments -- port_type. */
sns_cmd->p.cmd.param[0] = NS_NX_PORT_TYPE;
/* Execute SNS command. */
rval = qla2x00_send_sns(vha, ha->sns_cmd_dma, GID_PT_SNS_CMD_SIZE / 2,
sizeof(struct sns_cmd_pkt));
if (rval != QLA_SUCCESS) {
/*EMPTY*/
ql_dbg(ql_dbg_disc, vha, 0x206d,
"GID_PT Send SNS failed (%d).\n", rval);
} else if (sns_cmd->p.gid_data[8] != 0x80 ||
sns_cmd->p.gid_data[9] != 0x02) {
ql_dbg(ql_dbg_disc, vha, 0x202f,
"GID_PT failed, rejected request, gid_rsp:\n");
ql_dump_buffer(ql_dbg_disc + ql_dbg_buffer, vha, 0x2081,
sns_cmd->p.gid_data, 16);
rval = QLA_FUNCTION_FAILED;
} else {
/* Set port IDs in switch info list. */
for (i = 0; i < ha->max_fibre_devices; i++) {
entry = &sns_cmd->p.gid_data[(i * 4) + 16];
list[i].d_id.b.domain = entry[1];
list[i].d_id.b.area = entry[2];
list[i].d_id.b.al_pa = entry[3];
/* Last one exit. */
if (entry[0] & BIT_7) {
list[i].d_id.b.rsvd_1 = entry[0];
break;
}
}
/*
* If we've used all available slots, then the switch is
* reporting back more devices that we can handle with this
* single call. Return a failed status, and let GA_NXT handle
* the overload.
*/
if (i == ha->max_fibre_devices)
rval = QLA_FUNCTION_FAILED;
}
return (rval);
}
/**
* qla2x00_sns_gpn_id() - SNS Get Port Name (GPN_ID) query.
* @ha: HA context
* @list: switch info entries to populate
*
* This command uses the old Exectute SNS Command mailbox routine.
*
* Returns 0 on success.
*/
static int
qla2x00_sns_gpn_id(scsi_qla_host_t *vha, sw_info_t *list)
{
int rval = QLA_SUCCESS;
struct qla_hw_data *ha = vha->hw;
uint16_t i;
struct sns_cmd_pkt *sns_cmd;
for (i = 0; i < ha->max_fibre_devices; i++) {
/* Issue GPN_ID */
/* Prepare SNS command request. */
sns_cmd = qla2x00_prep_sns_cmd(vha, GPN_ID_CMD,
GPN_ID_SNS_SCMD_LEN, GPN_ID_SNS_DATA_SIZE);
/* Prepare SNS command arguments -- port_id. */
sns_cmd->p.cmd.param[0] = list[i].d_id.b.al_pa;
sns_cmd->p.cmd.param[1] = list[i].d_id.b.area;
sns_cmd->p.cmd.param[2] = list[i].d_id.b.domain;
/* Execute SNS command. */
rval = qla2x00_send_sns(vha, ha->sns_cmd_dma,
GPN_ID_SNS_CMD_SIZE / 2, sizeof(struct sns_cmd_pkt));
if (rval != QLA_SUCCESS) {
/*EMPTY*/
ql_dbg(ql_dbg_disc, vha, 0x2032,
"GPN_ID Send SNS failed (%d).\n", rval);
} else if (sns_cmd->p.gpn_data[8] != 0x80 ||
sns_cmd->p.gpn_data[9] != 0x02) {
ql_dbg(ql_dbg_disc + ql_dbg_buffer, vha, 0x207e,
"GPN_ID failed, rejected request, gpn_rsp:\n");
ql_dump_buffer(ql_dbg_disc + ql_dbg_buffer, vha, 0x207f,
sns_cmd->p.gpn_data, 16);
rval = QLA_FUNCTION_FAILED;
} else {
/* Save portname */
memcpy(list[i].port_name, &sns_cmd->p.gpn_data[16],
WWN_SIZE);
}
/* Last device exit. */
if (list[i].d_id.b.rsvd_1 != 0)
break;
}
return (rval);
}
/**
* qla2x00_sns_gnn_id() - SNS Get Node Name (GNN_ID) query.
* @ha: HA context
* @list: switch info entries to populate
*
* This command uses the old Exectute SNS Command mailbox routine.
*
* Returns 0 on success.
*/
static int
qla2x00_sns_gnn_id(scsi_qla_host_t *vha, sw_info_t *list)
{
int rval = QLA_SUCCESS;
struct qla_hw_data *ha = vha->hw;
uint16_t i;
struct sns_cmd_pkt *sns_cmd;
for (i = 0; i < ha->max_fibre_devices; i++) {
/* Issue GNN_ID */
/* Prepare SNS command request. */
sns_cmd = qla2x00_prep_sns_cmd(vha, GNN_ID_CMD,
GNN_ID_SNS_SCMD_LEN, GNN_ID_SNS_DATA_SIZE);
/* Prepare SNS command arguments -- port_id. */
sns_cmd->p.cmd.param[0] = list[i].d_id.b.al_pa;
sns_cmd->p.cmd.param[1] = list[i].d_id.b.area;
sns_cmd->p.cmd.param[2] = list[i].d_id.b.domain;
/* Execute SNS command. */
rval = qla2x00_send_sns(vha, ha->sns_cmd_dma,
GNN_ID_SNS_CMD_SIZE / 2, sizeof(struct sns_cmd_pkt));
if (rval != QLA_SUCCESS) {
/*EMPTY*/
ql_dbg(ql_dbg_disc, vha, 0x203f,
"GNN_ID Send SNS failed (%d).\n", rval);
} else if (sns_cmd->p.gnn_data[8] != 0x80 ||
sns_cmd->p.gnn_data[9] != 0x02) {
ql_dbg(ql_dbg_disc + ql_dbg_buffer, vha, 0x2082,
"GNN_ID failed, rejected request, gnn_rsp:\n");
ql_dump_buffer(ql_dbg_disc + ql_dbg_buffer, vha, 0x207a,
sns_cmd->p.gnn_data, 16);
rval = QLA_FUNCTION_FAILED;
} else {
/* Save nodename */
memcpy(list[i].node_name, &sns_cmd->p.gnn_data[16],
WWN_SIZE);
ql_dbg(ql_dbg_disc, vha, 0x206e,
"GID_PT entry - nn %8phN pn %8phN "
"port_id=%02x%02x%02x.\n",
list[i].node_name, list[i].port_name,
list[i].d_id.b.domain, list[i].d_id.b.area,
list[i].d_id.b.al_pa);
}
/* Last device exit. */
if (list[i].d_id.b.rsvd_1 != 0)
break;
}
return (rval);
}
/**
* qla2x00_snd_rft_id() - SNS Register FC-4 TYPEs (RFT_ID) supported by the HBA.
* @ha: HA context
*
* This command uses the old Exectute SNS Command mailbox routine.
*
* Returns 0 on success.
*/
static int
qla2x00_sns_rft_id(scsi_qla_host_t *vha)
{
int rval;
struct qla_hw_data *ha = vha->hw;
struct sns_cmd_pkt *sns_cmd;
/* Issue RFT_ID. */
/* Prepare SNS command request. */
sns_cmd = qla2x00_prep_sns_cmd(vha, RFT_ID_CMD, RFT_ID_SNS_SCMD_LEN,
RFT_ID_SNS_DATA_SIZE);
/* Prepare SNS command arguments -- port_id, FC-4 types */
sns_cmd->p.cmd.param[0] = vha->d_id.b.al_pa;
sns_cmd->p.cmd.param[1] = vha->d_id.b.area;
sns_cmd->p.cmd.param[2] = vha->d_id.b.domain;
sns_cmd->p.cmd.param[5] = 0x01; /* FCP-3 */
/* Execute SNS command. */
rval = qla2x00_send_sns(vha, ha->sns_cmd_dma, RFT_ID_SNS_CMD_SIZE / 2,
sizeof(struct sns_cmd_pkt));
if (rval != QLA_SUCCESS) {
/*EMPTY*/
ql_dbg(ql_dbg_disc, vha, 0x2060,
"RFT_ID Send SNS failed (%d).\n", rval);
} else if (sns_cmd->p.rft_data[8] != 0x80 ||
sns_cmd->p.rft_data[9] != 0x02) {
ql_dbg(ql_dbg_disc + ql_dbg_buffer, vha, 0x2083,
"RFT_ID failed, rejected request rft_rsp:\n");
ql_dump_buffer(ql_dbg_disc + ql_dbg_buffer, vha, 0x2080,
sns_cmd->p.rft_data, 16);
rval = QLA_FUNCTION_FAILED;
} else {
ql_dbg(ql_dbg_disc, vha, 0x2073,
"RFT_ID exiting normally.\n");
}
return (rval);
}
/**
* qla2x00_sns_rnn_id() - SNS Register Node Name (RNN_ID) of the HBA.
* HBA.
* @ha: HA context
*
* This command uses the old Exectute SNS Command mailbox routine.
*
* Returns 0 on success.
*/
static int
qla2x00_sns_rnn_id(scsi_qla_host_t *vha)
{
int rval;
struct qla_hw_data *ha = vha->hw;
struct sns_cmd_pkt *sns_cmd;
/* Issue RNN_ID. */
/* Prepare SNS command request. */
sns_cmd = qla2x00_prep_sns_cmd(vha, RNN_ID_CMD, RNN_ID_SNS_SCMD_LEN,
RNN_ID_SNS_DATA_SIZE);
/* Prepare SNS command arguments -- port_id, nodename. */
sns_cmd->p.cmd.param[0] = vha->d_id.b.al_pa;
sns_cmd->p.cmd.param[1] = vha->d_id.b.area;
sns_cmd->p.cmd.param[2] = vha->d_id.b.domain;
sns_cmd->p.cmd.param[4] = vha->node_name[7];
sns_cmd->p.cmd.param[5] = vha->node_name[6];
sns_cmd->p.cmd.param[6] = vha->node_name[5];
sns_cmd->p.cmd.param[7] = vha->node_name[4];
sns_cmd->p.cmd.param[8] = vha->node_name[3];
sns_cmd->p.cmd.param[9] = vha->node_name[2];
sns_cmd->p.cmd.param[10] = vha->node_name[1];
sns_cmd->p.cmd.param[11] = vha->node_name[0];
/* Execute SNS command. */
rval = qla2x00_send_sns(vha, ha->sns_cmd_dma, RNN_ID_SNS_CMD_SIZE / 2,
sizeof(struct sns_cmd_pkt));
if (rval != QLA_SUCCESS) {
/*EMPTY*/
ql_dbg(ql_dbg_disc, vha, 0x204a,
"RNN_ID Send SNS failed (%d).\n", rval);
} else if (sns_cmd->p.rnn_data[8] != 0x80 ||
sns_cmd->p.rnn_data[9] != 0x02) {
ql_dbg(ql_dbg_disc + ql_dbg_buffer, vha, 0x207b,
"RNN_ID failed, rejected request, rnn_rsp:\n");
ql_dump_buffer(ql_dbg_disc + ql_dbg_buffer, vha, 0x207c,
sns_cmd->p.rnn_data, 16);
rval = QLA_FUNCTION_FAILED;
} else {
ql_dbg(ql_dbg_disc, vha, 0x204c,
"RNN_ID exiting normally.\n");
}
return (rval);
}
/**
* qla2x00_mgmt_svr_login() - Login to fabric Management Service.
* @ha: HA context
*
* Returns 0 on success.
*/
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
int
qla2x00_mgmt_svr_login(scsi_qla_host_t *vha)
{
int ret, rval;
uint16_t mb[MAILBOX_REGISTER_COUNT];
struct qla_hw_data *ha = vha->hw;
ret = QLA_SUCCESS;
if (vha->flags.management_server_logged_in)
return ret;
rval = ha->isp_ops->fabric_login(vha, vha->mgmt_svr_loop_id, 0xff, 0xff,
0xfa, mb, BIT_1);
if (rval != QLA_SUCCESS || mb[0] != MBS_COMMAND_COMPLETE) {
if (rval == QLA_MEMORY_ALLOC_FAILED)
ql_dbg(ql_dbg_disc, vha, 0x2085,
"Failed management_server login: loopid=%x "
"rval=%d\n", vha->mgmt_svr_loop_id, rval);
else
ql_dbg(ql_dbg_disc, vha, 0x2024,
"Failed management_server login: loopid=%x "
"mb[0]=%x mb[1]=%x mb[2]=%x mb[6]=%x mb[7]=%x.\n",
vha->mgmt_svr_loop_id, mb[0], mb[1], mb[2], mb[6],
mb[7]);
ret = QLA_FUNCTION_FAILED;
} else
vha->flags.management_server_logged_in = 1;
return ret;
}
/**
* qla2x00_prep_ms_fdmi_iocb() - Prepare common MS IOCB fields for FDMI query.
* @ha: HA context
* @req_size: request size in bytes
* @rsp_size: response size in bytes
*
* Returns a pointer to the @ha's ms_iocb.
*/
void *
qla2x00_prep_ms_fdmi_iocb(scsi_qla_host_t *vha, uint32_t req_size,
uint32_t rsp_size)
{
ms_iocb_entry_t *ms_pkt;
struct qla_hw_data *ha = vha->hw;
ms_pkt = ha->ms_iocb;
memset(ms_pkt, 0, sizeof(ms_iocb_entry_t));
ms_pkt->entry_type = MS_IOCB_TYPE;
ms_pkt->entry_count = 1;
SET_TARGET_ID(ha, ms_pkt->loop_id, vha->mgmt_svr_loop_id);
ms_pkt->control_flags = cpu_to_le16(CF_READ | CF_HEAD_TAG);
ms_pkt->timeout = cpu_to_le16(ha->r_a_tov / 10 * 2);
ms_pkt->cmd_dsd_count = cpu_to_le16(1);
ms_pkt->total_dsd_count = cpu_to_le16(2);
ms_pkt->rsp_bytecount = cpu_to_le32(rsp_size);
ms_pkt->req_bytecount = cpu_to_le32(req_size);
ms_pkt->dseg_req_address[0] = cpu_to_le32(LSD(ha->ct_sns_dma));
ms_pkt->dseg_req_address[1] = cpu_to_le32(MSD(ha->ct_sns_dma));
ms_pkt->dseg_req_length = ms_pkt->req_bytecount;
ms_pkt->dseg_rsp_address[0] = cpu_to_le32(LSD(ha->ct_sns_dma));
ms_pkt->dseg_rsp_address[1] = cpu_to_le32(MSD(ha->ct_sns_dma));
ms_pkt->dseg_rsp_length = ms_pkt->rsp_bytecount;
return ms_pkt;
}
/**
* qla24xx_prep_ms_fdmi_iocb() - Prepare common MS IOCB fields for FDMI query.
* @ha: HA context
* @req_size: request size in bytes
* @rsp_size: response size in bytes
*
* Returns a pointer to the @ha's ms_iocb.
*/
void *
qla24xx_prep_ms_fdmi_iocb(scsi_qla_host_t *vha, uint32_t req_size,
uint32_t rsp_size)
{
struct ct_entry_24xx *ct_pkt;
struct qla_hw_data *ha = vha->hw;
ct_pkt = (struct ct_entry_24xx *)ha->ms_iocb;
memset(ct_pkt, 0, sizeof(struct ct_entry_24xx));
ct_pkt->entry_type = CT_IOCB_TYPE;
ct_pkt->entry_count = 1;
ct_pkt->nport_handle = cpu_to_le16(vha->mgmt_svr_loop_id);
ct_pkt->timeout = cpu_to_le16(ha->r_a_tov / 10 * 2);
ct_pkt->cmd_dsd_count = cpu_to_le16(1);
ct_pkt->rsp_dsd_count = cpu_to_le16(1);
ct_pkt->rsp_byte_count = cpu_to_le32(rsp_size);
ct_pkt->cmd_byte_count = cpu_to_le32(req_size);
ct_pkt->dseg_0_address[0] = cpu_to_le32(LSD(ha->ct_sns_dma));
ct_pkt->dseg_0_address[1] = cpu_to_le32(MSD(ha->ct_sns_dma));
ct_pkt->dseg_0_len = ct_pkt->cmd_byte_count;
ct_pkt->dseg_1_address[0] = cpu_to_le32(LSD(ha->ct_sns_dma));
ct_pkt->dseg_1_address[1] = cpu_to_le32(MSD(ha->ct_sns_dma));
ct_pkt->dseg_1_len = ct_pkt->rsp_byte_count;
ct_pkt->vp_index = vha->vp_idx;
return ct_pkt;
}
static inline ms_iocb_entry_t *
qla2x00_update_ms_fdmi_iocb(scsi_qla_host_t *vha, uint32_t req_size)
{
struct qla_hw_data *ha = vha->hw;
ms_iocb_entry_t *ms_pkt = ha->ms_iocb;
struct ct_entry_24xx *ct_pkt = (struct ct_entry_24xx *)ha->ms_iocb;
if (IS_FWI2_CAPABLE(ha)) {
ct_pkt->cmd_byte_count = cpu_to_le32(req_size);
ct_pkt->dseg_0_len = ct_pkt->cmd_byte_count;
} else {
ms_pkt->req_bytecount = cpu_to_le32(req_size);
ms_pkt->dseg_req_length = ms_pkt->req_bytecount;
}
return ms_pkt;
}
/**
* qla2x00_prep_ct_req() - Prepare common CT request fields for SNS query.
* @ct_req: CT request buffer
* @cmd: GS command
* @rsp_size: response size in bytes
*
* Returns a pointer to the intitialized @ct_req.
*/
static inline struct ct_sns_req *
qla2x00_prep_ct_fdmi_req(struct ct_sns_pkt *p, uint16_t cmd,
uint16_t rsp_size)
{
memset(p, 0, sizeof(struct ct_sns_pkt));
p->p.req.header.revision = 0x01;
p->p.req.header.gs_type = 0xFA;
p->p.req.header.gs_subtype = 0x10;
p->p.req.command = cpu_to_be16(cmd);
p->p.req.max_rsp_size = cpu_to_be16((rsp_size - 16) / 4);
return &p->p.req;
}
/**
* qla2x00_fdmi_rhba() -
* @ha: HA context
*
* Returns 0 on success.
*/
static int
qla2x00_fdmi_rhba(scsi_qla_host_t *vha)
{
int rval, alen;
uint32_t size, sn;
ms_iocb_entry_t *ms_pkt;
struct ct_sns_req *ct_req;
struct ct_sns_rsp *ct_rsp;
void *entries;
struct ct_fdmi_hba_attr *eiter;
struct qla_hw_data *ha = vha->hw;
/* Issue RHBA */
/* Prepare common MS IOCB */
/* Request size adjusted after CT preparation */
ms_pkt = ha->isp_ops->prep_ms_fdmi_iocb(vha, 0, RHBA_RSP_SIZE);
/* Prepare CT request */
ct_req = qla2x00_prep_ct_fdmi_req(ha->ct_sns, RHBA_CMD, RHBA_RSP_SIZE);
ct_rsp = &ha->ct_sns->p.rsp;
/* Prepare FDMI command arguments -- attribute block, attributes. */
memcpy(ct_req->req.rhba.hba_identifier, vha->port_name, WWN_SIZE);
ct_req->req.rhba.entry_count = cpu_to_be32(1);
memcpy(ct_req->req.rhba.port_name, vha->port_name, WWN_SIZE);
size = 2 * WWN_SIZE + 4 + 4;
/* Attributes */
ct_req->req.rhba.attrs.count =
cpu_to_be32(FDMI_HBA_ATTR_COUNT);
entries = ct_req->req.rhba.hba_identifier;
/* Nodename. */
eiter = entries + size;
eiter->type = cpu_to_be16(FDMI_HBA_NODE_NAME);
eiter->len = cpu_to_be16(4 + WWN_SIZE);
memcpy(eiter->a.node_name, vha->node_name, WWN_SIZE);
size += 4 + WWN_SIZE;
ql_dbg(ql_dbg_disc, vha, 0x2025,
"NodeName = %8phN.\n", eiter->a.node_name);
/* Manufacturer. */
eiter = entries + size;
eiter->type = cpu_to_be16(FDMI_HBA_MANUFACTURER);
alen = strlen(QLA2XXX_MANUFACTURER);
snprintf(eiter->a.manufacturer, sizeof(eiter->a.manufacturer),
"%s", "QLogic Corporation");
alen += 4 - (alen & 3);
eiter->len = cpu_to_be16(4 + alen);
size += 4 + alen;
ql_dbg(ql_dbg_disc, vha, 0x2026,
"Manufacturer = %s.\n", eiter->a.manufacturer);
/* Serial number. */
eiter = entries + size;
eiter->type = cpu_to_be16(FDMI_HBA_SERIAL_NUMBER);
if (IS_FWI2_CAPABLE(ha))
qla2xxx_get_vpd_field(vha, "SN", eiter->a.serial_num,
sizeof(eiter->a.serial_num));
else {
sn = ((ha->serial0 & 0x1f) << 16) |
(ha->serial2 << 8) | ha->serial1;
snprintf(eiter->a.serial_num, sizeof(eiter->a.serial_num),
"%c%05d", 'A' + sn / 100000, sn % 100000);
}
alen = strlen(eiter->a.serial_num);
alen += 4 - (alen & 3);
eiter->len = cpu_to_be16(4 + alen);
size += 4 + alen;
ql_dbg(ql_dbg_disc, vha, 0x2027,
"Serial no. = %s.\n", eiter->a.serial_num);
/* Model name. */
eiter = entries + size;
eiter->type = cpu_to_be16(FDMI_HBA_MODEL);
snprintf(eiter->a.model, sizeof(eiter->a.model),
"%s", ha->model_number);
alen = strlen(eiter->a.model);
alen += 4 - (alen & 3);
eiter->len = cpu_to_be16(4 + alen);
size += 4 + alen;
ql_dbg(ql_dbg_disc, vha, 0x2028,
"Model Name = %s.\n", eiter->a.model);
/* Model description. */
eiter = entries + size;
eiter->type = cpu_to_be16(FDMI_HBA_MODEL_DESCRIPTION);
snprintf(eiter->a.model_desc, sizeof(eiter->a.model_desc),
"%s", ha->model_desc);
alen = strlen(eiter->a.model_desc);
alen += 4 - (alen & 3);
eiter->len = cpu_to_be16(4 + alen);
size += 4 + alen;
ql_dbg(ql_dbg_disc, vha, 0x2029,
"Model Desc = %s.\n", eiter->a.model_desc);
/* Hardware version. */
eiter = entries + size;
eiter->type = cpu_to_be16(FDMI_HBA_HARDWARE_VERSION);
if (!IS_FWI2_CAPABLE(ha)) {
snprintf(eiter->a.hw_version, sizeof(eiter->a.hw_version),
"HW:%s", ha->adapter_id);
} else if (qla2xxx_get_vpd_field(vha, "MN", eiter->a.hw_version,
sizeof(eiter->a.hw_version))) {
;
} else if (qla2xxx_get_vpd_field(vha, "EC", eiter->a.hw_version,
sizeof(eiter->a.hw_version))) {
;
} else {
snprintf(eiter->a.hw_version, sizeof(eiter->a.hw_version),
"HW:%s", ha->adapter_id);
}
alen = strlen(eiter->a.hw_version);
alen += 4 - (alen & 3);
eiter->len = cpu_to_be16(4 + alen);
size += 4 + alen;
ql_dbg(ql_dbg_disc, vha, 0x202a,
"Hardware ver = %s.\n", eiter->a.hw_version);
/* Driver version. */
eiter = entries + size;
eiter->type = cpu_to_be16(FDMI_HBA_DRIVER_VERSION);
snprintf(eiter->a.driver_version, sizeof(eiter->a.driver_version),
"%s", qla2x00_version_str);
alen = strlen(eiter->a.driver_version);
alen += 4 - (alen & 3);
eiter->len = cpu_to_be16(4 + alen);
size += 4 + alen;
ql_dbg(ql_dbg_disc, vha, 0x202b,
"Driver ver = %s.\n", eiter->a.driver_version);
/* Option ROM version. */
eiter = entries + size;
eiter->type = cpu_to_be16(FDMI_HBA_OPTION_ROM_VERSION);
snprintf(eiter->a.orom_version, sizeof(eiter->a.orom_version),
"%d.%02d", ha->bios_revision[1], ha->bios_revision[0]);
alen = strlen(eiter->a.orom_version);
alen += 4 - (alen & 3);
eiter->len = cpu_to_be16(4 + alen);
size += 4 + alen;
ql_dbg(ql_dbg_disc, vha , 0x202c,
"Optrom vers = %s.\n", eiter->a.orom_version);
/* Firmware version */
eiter = entries + size;
eiter->type = cpu_to_be16(FDMI_HBA_FIRMWARE_VERSION);
ha->isp_ops->fw_version_str(vha, eiter->a.fw_version,
sizeof(eiter->a.fw_version));
alen = strlen(eiter->a.fw_version);
alen += 4 - (alen & 3);
eiter->len = cpu_to_be16(4 + alen);
size += 4 + alen;
ql_dbg(ql_dbg_disc, vha, 0x202d,
"Firmware vers = %s.\n", eiter->a.fw_version);
/* Update MS request size. */
qla2x00_update_ms_fdmi_iocb(vha, size + 16);
ql_dbg(ql_dbg_disc, vha, 0x202e,
"RHBA identifier = %8phN size=%d.\n",
ct_req->req.rhba.hba_identifier, size);
ql_dump_buffer(ql_dbg_disc + ql_dbg_buffer, vha, 0x2076,
entries, size);
/* Execute MS IOCB */
rval = qla2x00_issue_iocb(vha, ha->ms_iocb, ha->ms_iocb_dma,
sizeof(ms_iocb_entry_t));
if (rval != QLA_SUCCESS) {
/*EMPTY*/
ql_dbg(ql_dbg_disc, vha, 0x2030,
"RHBA issue IOCB failed (%d).\n", rval);
} else if (qla2x00_chk_ms_status(vha, ms_pkt, ct_rsp, "RHBA") !=
QLA_SUCCESS) {
rval = QLA_FUNCTION_FAILED;
if (ct_rsp->header.reason_code == CT_REASON_CANNOT_PERFORM &&
ct_rsp->header.explanation_code ==
CT_EXPL_ALREADY_REGISTERED) {
ql_dbg(ql_dbg_disc, vha, 0x2034,
"HBA already registered.\n");
rval = QLA_ALREADY_REGISTERED;
} else {
ql_dbg(ql_dbg_disc, vha, 0x20ad,
"RHBA FDMI registration failed, CT Reason code: 0x%x, CT Explanation 0x%x\n",
ct_rsp->header.reason_code,
ct_rsp->header.explanation_code);
}
} else {
ql_dbg(ql_dbg_disc, vha, 0x2035,
"RHBA exiting normally.\n");
}
return rval;
}
/**
* qla2x00_fdmi_rpa() -
* @ha: HA context
*
* Returns 0 on success.
*/
static int
qla2x00_fdmi_rpa(scsi_qla_host_t *vha)
{
int rval, alen;
uint32_t size;
struct qla_hw_data *ha = vha->hw;
ms_iocb_entry_t *ms_pkt;
struct ct_sns_req *ct_req;
struct ct_sns_rsp *ct_rsp;
void *entries;
struct ct_fdmi_port_attr *eiter;
struct init_cb_24xx *icb24 = (struct init_cb_24xx *)ha->init_cb;
struct new_utsname *p_sysid = NULL;
/* Issue RPA */
/* Prepare common MS IOCB */
/* Request size adjusted after CT preparation */
ms_pkt = ha->isp_ops->prep_ms_fdmi_iocb(vha, 0, RPA_RSP_SIZE);
/* Prepare CT request */
ct_req = qla2x00_prep_ct_fdmi_req(ha->ct_sns, RPA_CMD,
RPA_RSP_SIZE);
ct_rsp = &ha->ct_sns->p.rsp;
/* Prepare FDMI command arguments -- attribute block, attributes. */
memcpy(ct_req->req.rpa.port_name, vha->port_name, WWN_SIZE);
size = WWN_SIZE + 4;
/* Attributes */
ct_req->req.rpa.attrs.count = cpu_to_be32(FDMI_PORT_ATTR_COUNT);
entries = ct_req->req.rpa.port_name;
/* FC4 types. */
eiter = entries + size;
eiter->type = cpu_to_be16(FDMI_PORT_FC4_TYPES);
eiter->len = cpu_to_be16(4 + 32);
eiter->a.fc4_types[2] = 0x01;
size += 4 + 32;
ql_dbg(ql_dbg_disc, vha, 0x2039,
"FC4_TYPES=%02x %02x.\n",
eiter->a.fc4_types[2],
eiter->a.fc4_types[1]);
/* Supported speed. */
eiter = entries + size;
eiter->type = cpu_to_be16(FDMI_PORT_SUPPORT_SPEED);
eiter->len = cpu_to_be16(4 + 4);
if (IS_CNA_CAPABLE(ha))
eiter->a.sup_speed = cpu_to_be32(
FDMI_PORT_SPEED_10GB);
else if (IS_QLA27XX(ha))
eiter->a.sup_speed = cpu_to_be32(
FDMI_PORT_SPEED_32GB|
FDMI_PORT_SPEED_16GB|
FDMI_PORT_SPEED_8GB);
else if (IS_QLA2031(ha))
eiter->a.sup_speed = cpu_to_be32(
FDMI_PORT_SPEED_16GB|
FDMI_PORT_SPEED_8GB|
FDMI_PORT_SPEED_4GB);
else if (IS_QLA25XX(ha))
eiter->a.sup_speed = cpu_to_be32(
FDMI_PORT_SPEED_8GB|
FDMI_PORT_SPEED_4GB|
FDMI_PORT_SPEED_2GB|
FDMI_PORT_SPEED_1GB);
else if (IS_QLA24XX_TYPE(ha))
eiter->a.sup_speed = cpu_to_be32(
FDMI_PORT_SPEED_4GB|
FDMI_PORT_SPEED_2GB|
FDMI_PORT_SPEED_1GB);
else if (IS_QLA23XX(ha))
eiter->a.sup_speed = cpu_to_be32(
FDMI_PORT_SPEED_2GB|
FDMI_PORT_SPEED_1GB);
else
eiter->a.sup_speed = cpu_to_be32(
FDMI_PORT_SPEED_1GB);
size += 4 + 4;
ql_dbg(ql_dbg_disc, vha, 0x203a,
"Supported_Speed=%x.\n", eiter->a.sup_speed);
/* Current speed. */
eiter = entries + size;
eiter->type = cpu_to_be16(FDMI_PORT_CURRENT_SPEED);
eiter->len = cpu_to_be16(4 + 4);
switch (ha->link_data_rate) {
case PORT_SPEED_1GB:
eiter->a.cur_speed =
cpu_to_be32(FDMI_PORT_SPEED_1GB);
break;
case PORT_SPEED_2GB:
eiter->a.cur_speed =
cpu_to_be32(FDMI_PORT_SPEED_2GB);
break;
case PORT_SPEED_4GB:
eiter->a.cur_speed =
cpu_to_be32(FDMI_PORT_SPEED_4GB);
break;
case PORT_SPEED_8GB:
eiter->a.cur_speed =
cpu_to_be32(FDMI_PORT_SPEED_8GB);
break;
case PORT_SPEED_10GB:
eiter->a.cur_speed =
cpu_to_be32(FDMI_PORT_SPEED_10GB);
break;
case PORT_SPEED_16GB:
eiter->a.cur_speed =
cpu_to_be32(FDMI_PORT_SPEED_16GB);
break;
case PORT_SPEED_32GB:
eiter->a.cur_speed =
cpu_to_be32(FDMI_PORT_SPEED_32GB);
break;
default:
eiter->a.cur_speed =
cpu_to_be32(FDMI_PORT_SPEED_UNKNOWN);
break;
}
size += 4 + 4;
ql_dbg(ql_dbg_disc, vha, 0x203b,
"Current_Speed=%x.\n", eiter->a.cur_speed);
/* Max frame size. */
eiter = entries + size;
eiter->type = cpu_to_be16(FDMI_PORT_MAX_FRAME_SIZE);
eiter->len = cpu_to_be16(4 + 4);
eiter->a.max_frame_size = IS_FWI2_CAPABLE(ha) ?
le16_to_cpu(icb24->frame_payload_size) :
le16_to_cpu(ha->init_cb->frame_payload_size);
eiter->a.max_frame_size = cpu_to_be32(eiter->a.max_frame_size);
size += 4 + 4;
ql_dbg(ql_dbg_disc, vha, 0x203c,
"Max_Frame_Size=%x.\n", eiter->a.max_frame_size);
/* OS device name. */
eiter = entries + size;
eiter->type = cpu_to_be16(FDMI_PORT_OS_DEVICE_NAME);
snprintf(eiter->a.os_dev_name, sizeof(eiter->a.os_dev_name),
"%s:host%lu", QLA2XXX_DRIVER_NAME, vha->host_no);
alen = strlen(eiter->a.os_dev_name);
alen += 4 - (alen & 3);
eiter->len = cpu_to_be16(4 + alen);
size += 4 + alen;
ql_dbg(ql_dbg_disc, vha, 0x204b,
"OS_Device_Name=%s.\n", eiter->a.os_dev_name);
/* Hostname. */
eiter = entries + size;
eiter->type = cpu_to_be16(FDMI_PORT_HOST_NAME);
p_sysid = utsname();
if (p_sysid) {
snprintf(eiter->a.host_name, sizeof(eiter->a.host_name),
"%s", p_sysid->nodename);
} else {
snprintf(eiter->a.host_name, sizeof(eiter->a.host_name),
"%s", fc_host_system_hostname(vha->host));
}
alen = strlen(eiter->a.host_name);
alen += 4 - (alen & 3);
eiter->len = cpu_to_be16(4 + alen);
size += 4 + alen;
ql_dbg(ql_dbg_disc, vha, 0x203d, "HostName=%s.\n", eiter->a.host_name);
/* Update MS request size. */
qla2x00_update_ms_fdmi_iocb(vha, size + 16);
ql_dbg(ql_dbg_disc, vha, 0x203e,
"RPA portname %016llx, size = %d.\n",
wwn_to_u64(ct_req->req.rpa.port_name), size);
ql_dump_buffer(ql_dbg_disc + ql_dbg_buffer, vha, 0x2079,
entries, size);
/* Execute MS IOCB */
rval = qla2x00_issue_iocb(vha, ha->ms_iocb, ha->ms_iocb_dma,
sizeof(ms_iocb_entry_t));
if (rval != QLA_SUCCESS) {
/*EMPTY*/
ql_dbg(ql_dbg_disc, vha, 0x2040,
"RPA issue IOCB failed (%d).\n", rval);
} else if (qla2x00_chk_ms_status(vha, ms_pkt, ct_rsp, "RPA") !=
QLA_SUCCESS) {
rval = QLA_FUNCTION_FAILED;
if (ct_rsp->header.reason_code == CT_REASON_CANNOT_PERFORM &&
ct_rsp->header.explanation_code ==
CT_EXPL_ALREADY_REGISTERED) {
ql_dbg(ql_dbg_disc, vha, 0x20cd,
"RPA already registered.\n");
rval = QLA_ALREADY_REGISTERED;
}
} else {
ql_dbg(ql_dbg_disc, vha, 0x2041,
"RPA exiting normally.\n");
}
return rval;
}
/**
* qla2x00_fdmiv2_rhba() -
* @ha: HA context
*
* Returns 0 on success.
*/
static int
qla2x00_fdmiv2_rhba(scsi_qla_host_t *vha)
{
int rval, alen;
uint32_t size, sn;
ms_iocb_entry_t *ms_pkt;
struct ct_sns_req *ct_req;
struct ct_sns_rsp *ct_rsp;
void *entries;
struct ct_fdmiv2_hba_attr *eiter;
struct qla_hw_data *ha = vha->hw;
struct init_cb_24xx *icb24 = (struct init_cb_24xx *)ha->init_cb;
struct new_utsname *p_sysid = NULL;
/* Issue RHBA */
/* Prepare common MS IOCB */
/* Request size adjusted after CT preparation */
ms_pkt = ha->isp_ops->prep_ms_fdmi_iocb(vha, 0, RHBA_RSP_SIZE);
/* Prepare CT request */
ct_req = qla2x00_prep_ct_fdmi_req(ha->ct_sns, RHBA_CMD,
RHBA_RSP_SIZE);
ct_rsp = &ha->ct_sns->p.rsp;
/* Prepare FDMI command arguments -- attribute block, attributes. */
memcpy(ct_req->req.rhba2.hba_identifier, vha->port_name, WWN_SIZE);
ct_req->req.rhba2.entry_count = cpu_to_be32(1);
memcpy(ct_req->req.rhba2.port_name, vha->port_name, WWN_SIZE);
size = 2 * WWN_SIZE + 4 + 4;
/* Attributes */
ct_req->req.rhba2.attrs.count = cpu_to_be32(FDMIV2_HBA_ATTR_COUNT);
entries = ct_req->req.rhba2.hba_identifier;
/* Nodename. */
eiter = entries + size;
eiter->type = cpu_to_be16(FDMI_HBA_NODE_NAME);
eiter->len = cpu_to_be16(4 + WWN_SIZE);
memcpy(eiter->a.node_name, vha->node_name, WWN_SIZE);
size += 4 + WWN_SIZE;
ql_dbg(ql_dbg_disc, vha, 0x207d,
"NodeName = %016llx.\n", wwn_to_u64(eiter->a.node_name));
/* Manufacturer. */
eiter = entries + size;
eiter->type = cpu_to_be16(FDMI_HBA_MANUFACTURER);
snprintf(eiter->a.manufacturer, sizeof(eiter->a.manufacturer),
"%s", "QLogic Corporation");
eiter->a.manufacturer[strlen("QLogic Corporation")] = '\0';
alen = strlen(eiter->a.manufacturer);
alen += 4 - (alen & 3);
eiter->len = cpu_to_be16(4 + alen);
size += 4 + alen;
ql_dbg(ql_dbg_disc, vha, 0x20a5,
"Manufacturer = %s.\n", eiter->a.manufacturer);
/* Serial number. */
eiter = entries + size;
eiter->type = cpu_to_be16(FDMI_HBA_SERIAL_NUMBER);
if (IS_FWI2_CAPABLE(ha))
qla2xxx_get_vpd_field(vha, "SN", eiter->a.serial_num,
sizeof(eiter->a.serial_num));
else {
sn = ((ha->serial0 & 0x1f) << 16) |
(ha->serial2 << 8) | ha->serial1;
snprintf(eiter->a.serial_num, sizeof(eiter->a.serial_num),
"%c%05d", 'A' + sn / 100000, sn % 100000);
}
alen = strlen(eiter->a.serial_num);
alen += 4 - (alen & 3);
eiter->len = cpu_to_be16(4 + alen);
size += 4 + alen;
ql_dbg(ql_dbg_disc, vha, 0x20a6,
"Serial no. = %s.\n", eiter->a.serial_num);
/* Model name. */
eiter = entries + size;
eiter->type = cpu_to_be16(FDMI_HBA_MODEL);
snprintf(eiter->a.model, sizeof(eiter->a.model),
"%s", ha->model_number);
alen = strlen(eiter->a.model);
alen += 4 - (alen & 3);
eiter->len = cpu_to_be16(4 + alen);
size += 4 + alen;
ql_dbg(ql_dbg_disc, vha, 0x20a7,
"Model Name = %s.\n", eiter->a.model);
/* Model description. */
eiter = entries + size;
eiter->type = cpu_to_be16(FDMI_HBA_MODEL_DESCRIPTION);
snprintf(eiter->a.model_desc, sizeof(eiter->a.model_desc),
"%s", ha->model_desc);
alen = strlen(eiter->a.model_desc);
alen += 4 - (alen & 3);
eiter->len = cpu_to_be16(4 + alen);
size += 4 + alen;
ql_dbg(ql_dbg_disc, vha, 0x20a8,
"Model Desc = %s.\n", eiter->a.model_desc);
/* Hardware version. */
eiter = entries + size;
eiter->type = cpu_to_be16(FDMI_HBA_HARDWARE_VERSION);
if (!IS_FWI2_CAPABLE(ha)) {
snprintf(eiter->a.hw_version, sizeof(eiter->a.hw_version),
"HW:%s", ha->adapter_id);
} else if (qla2xxx_get_vpd_field(vha, "MN", eiter->a.hw_version,
sizeof(eiter->a.hw_version))) {
;
} else if (qla2xxx_get_vpd_field(vha, "EC", eiter->a.hw_version,
sizeof(eiter->a.hw_version))) {
;
} else {
snprintf(eiter->a.hw_version, sizeof(eiter->a.hw_version),
"HW:%s", ha->adapter_id);
}
alen = strlen(eiter->a.hw_version);
alen += 4 - (alen & 3);
eiter->len = cpu_to_be16(4 + alen);
size += 4 + alen;
ql_dbg(ql_dbg_disc, vha, 0x20a9,
"Hardware ver = %s.\n", eiter->a.hw_version);
/* Driver version. */
eiter = entries + size;
eiter->type = cpu_to_be16(FDMI_HBA_DRIVER_VERSION);
snprintf(eiter->a.driver_version, sizeof(eiter->a.driver_version),
"%s", qla2x00_version_str);
alen = strlen(eiter->a.driver_version);
alen += 4 - (alen & 3);
eiter->len = cpu_to_be16(4 + alen);
size += 4 + alen;
ql_dbg(ql_dbg_disc, vha, 0x20aa,
"Driver ver = %s.\n", eiter->a.driver_version);
/* Option ROM version. */
eiter = entries + size;
eiter->type = cpu_to_be16(FDMI_HBA_OPTION_ROM_VERSION);
snprintf(eiter->a.orom_version, sizeof(eiter->a.orom_version),
"%d.%02d", ha->bios_revision[1], ha->bios_revision[0]);
alen = strlen(eiter->a.orom_version);
alen += 4 - (alen & 3);
eiter->len = cpu_to_be16(4 + alen);
size += 4 + alen;
ql_dbg(ql_dbg_disc, vha , 0x20ab,
"Optrom version = %d.%02d.\n", eiter->a.orom_version[1],
eiter->a.orom_version[0]);
/* Firmware version */
eiter = entries + size;
eiter->type = cpu_to_be16(FDMI_HBA_FIRMWARE_VERSION);
ha->isp_ops->fw_version_str(vha, eiter->a.fw_version,
sizeof(eiter->a.fw_version));
alen = strlen(eiter->a.fw_version);
alen += 4 - (alen & 3);
eiter->len = cpu_to_be16(4 + alen);
size += 4 + alen;
ql_dbg(ql_dbg_disc, vha, 0x20ac,
"Firmware vers = %s.\n", eiter->a.fw_version);
/* OS Name and Version */
eiter = entries + size;
eiter->type = cpu_to_be16(FDMI_HBA_OS_NAME_AND_VERSION);
p_sysid = utsname();
if (p_sysid) {
snprintf(eiter->a.os_version, sizeof(eiter->a.os_version),
"%s %s %s",
p_sysid->sysname, p_sysid->release, p_sysid->version);
} else {
snprintf(eiter->a.os_version, sizeof(eiter->a.os_version),
"%s %s", "Linux", fc_host_system_hostname(vha->host));
}
alen = strlen(eiter->a.os_version);
alen += 4 - (alen & 3);
eiter->len = cpu_to_be16(4 + alen);
size += 4 + alen;
ql_dbg(ql_dbg_disc, vha, 0x20ae,
"OS Name and Version = %s.\n", eiter->a.os_version);
/* MAX CT Payload Length */
eiter = entries + size;
eiter->type = cpu_to_be16(FDMI_HBA_MAXIMUM_CT_PAYLOAD_LENGTH);
eiter->a.max_ct_len = IS_FWI2_CAPABLE(ha) ?
le16_to_cpu(icb24->frame_payload_size) :
le16_to_cpu(ha->init_cb->frame_payload_size);
eiter->a.max_ct_len = cpu_to_be32(eiter->a.max_ct_len);
eiter->len = cpu_to_be16(4 + 4);
size += 4 + 4;
ql_dbg(ql_dbg_disc, vha, 0x20af,
"CT Payload Length = 0x%x.\n", eiter->a.max_ct_len);
/* Node Sybolic Name */
eiter = entries + size;
eiter->type = cpu_to_be16(FDMI_HBA_NODE_SYMBOLIC_NAME);
qla2x00_get_sym_node_name(vha, eiter->a.sym_name,
sizeof(eiter->a.sym_name));
alen = strlen(eiter->a.sym_name);
alen += 4 - (alen & 3);
eiter->len = cpu_to_be16(4 + alen);
size += 4 + alen;
ql_dbg(ql_dbg_disc, vha, 0x20b0,
"Symbolic Name = %s.\n", eiter->a.sym_name);
/* Vendor Id */
eiter = entries + size;
eiter->type = cpu_to_be16(FDMI_HBA_VENDOR_ID);
eiter->a.vendor_id = cpu_to_be32(0x1077);
eiter->len = cpu_to_be16(4 + 4);
size += 4 + 4;
ql_dbg(ql_dbg_disc, vha, 0x20b1,
"Vendor Id = %x.\n", eiter->a.vendor_id);
/* Num Ports */
eiter = entries + size;
eiter->type = cpu_to_be16(FDMI_HBA_NUM_PORTS);
eiter->a.num_ports = cpu_to_be32(1);
eiter->len = cpu_to_be16(4 + 4);
size += 4 + 4;
ql_dbg(ql_dbg_disc, vha, 0x20b2,
"Port Num = %x.\n", eiter->a.num_ports);
/* Fabric Name */
eiter = entries + size;
eiter->type = cpu_to_be16(FDMI_HBA_FABRIC_NAME);
memcpy(eiter->a.fabric_name, vha->fabric_node_name, WWN_SIZE);
eiter->len = cpu_to_be16(4 + WWN_SIZE);
size += 4 + WWN_SIZE;
ql_dbg(ql_dbg_disc, vha, 0x20b3,
"Fabric Name = %016llx.\n", wwn_to_u64(eiter->a.fabric_name));
/* BIOS Version */
eiter = entries + size;
eiter->type = cpu_to_be16(FDMI_HBA_BOOT_BIOS_NAME);
snprintf(eiter->a.bios_name, sizeof(eiter->a.bios_name),
"BIOS %d.%02d", ha->bios_revision[1], ha->bios_revision[0]);
alen = strlen(eiter->a.bios_name);
alen += 4 - (alen & 3);
eiter->len = cpu_to_be16(4 + alen);
size += 4 + alen;
ql_dbg(ql_dbg_disc, vha, 0x20b4,
"BIOS Name = %s\n", eiter->a.bios_name);
/* Vendor Identifier */
eiter = entries + size;
eiter->type = cpu_to_be16(FDMI_HBA_TYPE_VENDOR_IDENTIFIER);
snprintf(eiter->a.vendor_identifier, sizeof(eiter->a.vendor_identifier),
"%s", "QLGC");
alen = strlen(eiter->a.vendor_identifier);
alen += 4 - (alen & 3);
eiter->len = cpu_to_be16(4 + alen);
size += 4 + alen;
ql_dbg(ql_dbg_disc, vha, 0x201b,
"Vendor Identifier = %s.\n", eiter->a.vendor_identifier);
/* Update MS request size. */
qla2x00_update_ms_fdmi_iocb(vha, size + 16);
ql_dbg(ql_dbg_disc, vha, 0x20b5,
"RHBA identifier = %016llx.\n",
wwn_to_u64(ct_req->req.rhba2.hba_identifier));
ql_dump_buffer(ql_dbg_disc + ql_dbg_buffer, vha, 0x20b6,
entries, size);
/* Execute MS IOCB */
rval = qla2x00_issue_iocb(vha, ha->ms_iocb, ha->ms_iocb_dma,
sizeof(ms_iocb_entry_t));
if (rval != QLA_SUCCESS) {
/*EMPTY*/
ql_dbg(ql_dbg_disc, vha, 0x20b7,
"RHBA issue IOCB failed (%d).\n", rval);
} else if (qla2x00_chk_ms_status(vha, ms_pkt, ct_rsp, "RHBA") !=
QLA_SUCCESS) {
rval = QLA_FUNCTION_FAILED;
if (ct_rsp->header.reason_code == CT_REASON_CANNOT_PERFORM &&
ct_rsp->header.explanation_code ==
CT_EXPL_ALREADY_REGISTERED) {
ql_dbg(ql_dbg_disc, vha, 0x20b8,
"HBA already registered.\n");
rval = QLA_ALREADY_REGISTERED;
} else {
ql_dbg(ql_dbg_disc, vha, 0x2016,
"RHBA FDMI v2 failed, CT Reason code: 0x%x, CT Explanation 0x%x\n",
ct_rsp->header.reason_code,
ct_rsp->header.explanation_code);
}
} else {
ql_dbg(ql_dbg_disc, vha, 0x20b9,
"RHBA FDMI V2 exiting normally.\n");
}
return rval;
}
/**
* qla2x00_fdmi_dhba() -
* @ha: HA context
*
* Returns 0 on success.
*/
static int
qla2x00_fdmi_dhba(scsi_qla_host_t *vha)
{
int rval;
struct qla_hw_data *ha = vha->hw;
ms_iocb_entry_t *ms_pkt;
struct ct_sns_req *ct_req;
struct ct_sns_rsp *ct_rsp;
/* Issue RPA */
/* Prepare common MS IOCB */
ms_pkt = ha->isp_ops->prep_ms_fdmi_iocb(vha, DHBA_REQ_SIZE,
DHBA_RSP_SIZE);
/* Prepare CT request */
ct_req = qla2x00_prep_ct_fdmi_req(ha->ct_sns, DHBA_CMD, DHBA_RSP_SIZE);
ct_rsp = &ha->ct_sns->p.rsp;
/* Prepare FDMI command arguments -- portname. */
memcpy(ct_req->req.dhba.port_name, vha->port_name, WWN_SIZE);
ql_dbg(ql_dbg_disc, vha, 0x2036,
"DHBA portname = %8phN.\n", ct_req->req.dhba.port_name);
/* Execute MS IOCB */
rval = qla2x00_issue_iocb(vha, ha->ms_iocb, ha->ms_iocb_dma,
sizeof(ms_iocb_entry_t));
if (rval != QLA_SUCCESS) {
/*EMPTY*/
ql_dbg(ql_dbg_disc, vha, 0x2037,
"DHBA issue IOCB failed (%d).\n", rval);
} else if (qla2x00_chk_ms_status(vha, ms_pkt, ct_rsp, "DHBA") !=
QLA_SUCCESS) {
rval = QLA_FUNCTION_FAILED;
} else {
ql_dbg(ql_dbg_disc, vha, 0x2038,
"DHBA exiting normally.\n");
}
return rval;
}
/**
* qla2x00_fdmiv2_rpa() -
* @ha: HA context
*
* Returns 0 on success.
*/
static int
qla2x00_fdmiv2_rpa(scsi_qla_host_t *vha)
{
int rval, alen;
uint32_t size;
struct qla_hw_data *ha = vha->hw;
ms_iocb_entry_t *ms_pkt;
struct ct_sns_req *ct_req;
struct ct_sns_rsp *ct_rsp;
void *entries;
struct ct_fdmiv2_port_attr *eiter;
struct init_cb_24xx *icb24 = (struct init_cb_24xx *)ha->init_cb;
struct new_utsname *p_sysid = NULL;
/* Issue RPA */
/* Prepare common MS IOCB */
/* Request size adjusted after CT preparation */
ms_pkt = ha->isp_ops->prep_ms_fdmi_iocb(vha, 0, RPA_RSP_SIZE);
/* Prepare CT request */
ct_req = qla2x00_prep_ct_fdmi_req(ha->ct_sns, RPA_CMD, RPA_RSP_SIZE);
ct_rsp = &ha->ct_sns->p.rsp;
/* Prepare FDMI command arguments -- attribute block, attributes. */
memcpy(ct_req->req.rpa2.port_name, vha->port_name, WWN_SIZE);
size = WWN_SIZE + 4;
/* Attributes */
ct_req->req.rpa2.attrs.count = cpu_to_be32(FDMIV2_PORT_ATTR_COUNT);
entries = ct_req->req.rpa2.port_name;
/* FC4 types. */
eiter = entries + size;
eiter->type = cpu_to_be16(FDMI_PORT_FC4_TYPES);
eiter->len = cpu_to_be16(4 + 32);
eiter->a.fc4_types[2] = 0x01;
size += 4 + 32;
ql_dbg(ql_dbg_disc, vha, 0x20ba,
"FC4_TYPES=%02x %02x.\n",
eiter->a.fc4_types[2],
eiter->a.fc4_types[1]);
if (vha->flags.nvme_enabled) {
eiter->a.fc4_types[6] = 1; /* NVMe type 28h */
ql_dbg(ql_dbg_disc, vha, 0x211f,
"NVME FC4 Type = %02x 0x0 0x0 0x0 0x0 0x0.\n",
eiter->a.fc4_types[6]);
}
/* Supported speed. */
eiter = entries + size;
eiter->type = cpu_to_be16(FDMI_PORT_SUPPORT_SPEED);
eiter->len = cpu_to_be16(4 + 4);
if (IS_CNA_CAPABLE(ha))
eiter->a.sup_speed = cpu_to_be32(
FDMI_PORT_SPEED_10GB);
else if (IS_QLA27XX(ha))
eiter->a.sup_speed = cpu_to_be32(
FDMI_PORT_SPEED_32GB|
FDMI_PORT_SPEED_16GB|
FDMI_PORT_SPEED_8GB);
else if (IS_QLA2031(ha))
eiter->a.sup_speed = cpu_to_be32(
FDMI_PORT_SPEED_16GB|
FDMI_PORT_SPEED_8GB|
FDMI_PORT_SPEED_4GB);
else if (IS_QLA25XX(ha))
eiter->a.sup_speed = cpu_to_be32(
FDMI_PORT_SPEED_8GB|
FDMI_PORT_SPEED_4GB|
FDMI_PORT_SPEED_2GB|
FDMI_PORT_SPEED_1GB);
else if (IS_QLA24XX_TYPE(ha))
eiter->a.sup_speed = cpu_to_be32(
FDMI_PORT_SPEED_4GB|
FDMI_PORT_SPEED_2GB|
FDMI_PORT_SPEED_1GB);
else if (IS_QLA23XX(ha))
eiter->a.sup_speed = cpu_to_be32(
FDMI_PORT_SPEED_2GB|
FDMI_PORT_SPEED_1GB);
else
eiter->a.sup_speed = cpu_to_be32(
FDMI_PORT_SPEED_1GB);
size += 4 + 4;
ql_dbg(ql_dbg_disc, vha, 0x20bb,
"Supported Port Speed = %x.\n", eiter->a.sup_speed);
/* Current speed. */
eiter = entries + size;
eiter->type = cpu_to_be16(FDMI_PORT_CURRENT_SPEED);
eiter->len = cpu_to_be16(4 + 4);
switch (ha->link_data_rate) {
case PORT_SPEED_1GB:
eiter->a.cur_speed = cpu_to_be32(FDMI_PORT_SPEED_1GB);
break;
case PORT_SPEED_2GB:
eiter->a.cur_speed = cpu_to_be32(FDMI_PORT_SPEED_2GB);
break;
case PORT_SPEED_4GB:
eiter->a.cur_speed = cpu_to_be32(FDMI_PORT_SPEED_4GB);
break;
case PORT_SPEED_8GB:
eiter->a.cur_speed = cpu_to_be32(FDMI_PORT_SPEED_8GB);
break;
case PORT_SPEED_10GB:
eiter->a.cur_speed = cpu_to_be32(FDMI_PORT_SPEED_10GB);
break;
case PORT_SPEED_16GB:
eiter->a.cur_speed = cpu_to_be32(FDMI_PORT_SPEED_16GB);
break;
case PORT_SPEED_32GB:
eiter->a.cur_speed = cpu_to_be32(FDMI_PORT_SPEED_32GB);
break;
default:
eiter->a.cur_speed = cpu_to_be32(FDMI_PORT_SPEED_UNKNOWN);
break;
}
size += 4 + 4;
ql_dbg(ql_dbg_disc, vha, 0x2017,
"Current_Speed = %x.\n", eiter->a.cur_speed);
/* Max frame size. */
eiter = entries + size;
eiter->type = cpu_to_be16(FDMI_PORT_MAX_FRAME_SIZE);
eiter->len = cpu_to_be16(4 + 4);
eiter->a.max_frame_size = IS_FWI2_CAPABLE(ha) ?
le16_to_cpu(icb24->frame_payload_size):
le16_to_cpu(ha->init_cb->frame_payload_size);
eiter->a.max_frame_size = cpu_to_be32(eiter->a.max_frame_size);
size += 4 + 4;
ql_dbg(ql_dbg_disc, vha, 0x20bc,
"Max_Frame_Size = %x.\n", eiter->a.max_frame_size);
/* OS device name. */
eiter = entries + size;
eiter->type = cpu_to_be16(FDMI_PORT_OS_DEVICE_NAME);
alen = strlen(QLA2XXX_DRIVER_NAME);
snprintf(eiter->a.os_dev_name, sizeof(eiter->a.os_dev_name),
"%s:host%lu", QLA2XXX_DRIVER_NAME, vha->host_no);
alen += 4 - (alen & 3);
eiter->len = cpu_to_be16(4 + alen);
size += 4 + alen;
ql_dbg(ql_dbg_disc, vha, 0x20be,
"OS_Device_Name = %s.\n", eiter->a.os_dev_name);
/* Hostname. */
eiter = entries + size;
eiter->type = cpu_to_be16(FDMI_PORT_HOST_NAME);
p_sysid = utsname();
if (p_sysid) {
snprintf(eiter->a.host_name, sizeof(eiter->a.host_name),
"%s", p_sysid->nodename);
} else {
snprintf(eiter->a.host_name, sizeof(eiter->a.host_name),
"%s", fc_host_system_hostname(vha->host));
}
alen = strlen(eiter->a.host_name);
alen += 4 - (alen & 3);
eiter->len = cpu_to_be16(4 + alen);
size += 4 + alen;
ql_dbg(ql_dbg_disc, vha, 0x201a,
"HostName=%s.\n", eiter->a.host_name);
/* Node Name */
eiter = entries + size;
eiter->type = cpu_to_be16(FDMI_PORT_NODE_NAME);
memcpy(eiter->a.node_name, vha->node_name, WWN_SIZE);
eiter->len = cpu_to_be16(4 + WWN_SIZE);
size += 4 + WWN_SIZE;
ql_dbg(ql_dbg_disc, vha, 0x20c0,
"Node Name = %016llx.\n", wwn_to_u64(eiter->a.node_name));
/* Port Name */
eiter = entries + size;
eiter->type = cpu_to_be16(FDMI_PORT_NAME);
memcpy(eiter->a.port_name, vha->port_name, WWN_SIZE);
eiter->len = cpu_to_be16(4 + WWN_SIZE);
size += 4 + WWN_SIZE;
ql_dbg(ql_dbg_disc, vha, 0x20c1,
"Port Name = %016llx.\n", wwn_to_u64(eiter->a.port_name));
/* Port Symbolic Name */
eiter = entries + size;
eiter->type = cpu_to_be16(FDMI_PORT_SYM_NAME);
qla2x00_get_sym_node_name(vha, eiter->a.port_sym_name,
sizeof(eiter->a.port_sym_name));
alen = strlen(eiter->a.port_sym_name);
alen += 4 - (alen & 3);
eiter->len = cpu_to_be16(4 + alen);
size += 4 + alen;
ql_dbg(ql_dbg_disc, vha, 0x20c2,
"port symbolic name = %s\n", eiter->a.port_sym_name);
/* Port Type */
eiter = entries + size;
eiter->type = cpu_to_be16(FDMI_PORT_TYPE);
eiter->a.port_type = cpu_to_be32(NS_NX_PORT_TYPE);
eiter->len = cpu_to_be16(4 + 4);
size += 4 + 4;
ql_dbg(ql_dbg_disc, vha, 0x20c3,
"Port Type = %x.\n", eiter->a.port_type);
/* Class of Service */
eiter = entries + size;
eiter->type = cpu_to_be16(FDMI_PORT_SUPP_COS);
eiter->a.port_supported_cos = cpu_to_be32(FC_CLASS_3);
eiter->len = cpu_to_be16(4 + 4);
size += 4 + 4;
ql_dbg(ql_dbg_disc, vha, 0x20c4,
"Supported COS = %08x\n", eiter->a.port_supported_cos);
/* Port Fabric Name */
eiter = entries + size;
eiter->type = cpu_to_be16(FDMI_PORT_FABRIC_NAME);
memcpy(eiter->a.fabric_name, vha->fabric_node_name, WWN_SIZE);
eiter->len = cpu_to_be16(4 + WWN_SIZE);
size += 4 + WWN_SIZE;
ql_dbg(ql_dbg_disc, vha, 0x20c5,
"Fabric Name = %016llx.\n", wwn_to_u64(eiter->a.fabric_name));
/* FC4_type */
eiter = entries + size;
eiter->type = cpu_to_be16(FDMI_PORT_FC4_TYPE);
eiter->a.port_fc4_type[0] = 0;
eiter->a.port_fc4_type[1] = 0;
eiter->a.port_fc4_type[2] = 1;
eiter->a.port_fc4_type[3] = 0;
eiter->len = cpu_to_be16(4 + 32);
size += 4 + 32;
ql_dbg(ql_dbg_disc, vha, 0x20c6,
"Port Active FC4 Type = %02x %02x.\n",
eiter->a.port_fc4_type[2], eiter->a.port_fc4_type[1]);
if (vha->flags.nvme_enabled) {
eiter->a.port_fc4_type[4] = 0;
eiter->a.port_fc4_type[5] = 0;
eiter->a.port_fc4_type[6] = 1; /* NVMe type 28h */
ql_dbg(ql_dbg_disc, vha, 0x2120,
"NVME Port Active FC4 Type = %02x 0x0 0x0 0x0 0x0 0x0.\n",
eiter->a.port_fc4_type[6]);
}
/* Port State */
eiter = entries + size;
eiter->type = cpu_to_be16(FDMI_PORT_STATE);
eiter->a.port_state = cpu_to_be32(1);
eiter->len = cpu_to_be16(4 + 4);
size += 4 + 4;
ql_dbg(ql_dbg_disc, vha, 0x20c7,
"Port State = %x.\n", eiter->a.port_state);
/* Number of Ports */
eiter = entries + size;
eiter->type = cpu_to_be16(FDMI_PORT_COUNT);
eiter->a.num_ports = cpu_to_be32(1);
eiter->len = cpu_to_be16(4 + 4);
size += 4 + 4;
ql_dbg(ql_dbg_disc, vha, 0x20c8,
"Number of ports = %x.\n", eiter->a.num_ports);
/* Port Id */
eiter = entries + size;
eiter->type = cpu_to_be16(FDMI_PORT_ID);
eiter->a.port_id = cpu_to_be32(vha->d_id.b24);
eiter->len = cpu_to_be16(4 + 4);
size += 4 + 4;
ql_dbg(ql_dbg_disc, vha, 0x201c,
"Port Id = %x.\n", eiter->a.port_id);
/* Update MS request size. */
qla2x00_update_ms_fdmi_iocb(vha, size + 16);
ql_dbg(ql_dbg_disc, vha, 0x2018,
"RPA portname= %8phN size=%d.\n", ct_req->req.rpa.port_name, size);
ql_dump_buffer(ql_dbg_disc + ql_dbg_buffer, vha, 0x20ca,
entries, size);
/* Execute MS IOCB */
rval = qla2x00_issue_iocb(vha, ha->ms_iocb, ha->ms_iocb_dma,
sizeof(ms_iocb_entry_t));
if (rval != QLA_SUCCESS) {
/*EMPTY*/
ql_dbg(ql_dbg_disc, vha, 0x20cb,
"RPA FDMI v2 issue IOCB failed (%d).\n", rval);
} else if (qla2x00_chk_ms_status(vha, ms_pkt, ct_rsp, "RPA") !=
QLA_SUCCESS) {
rval = QLA_FUNCTION_FAILED;
if (ct_rsp->header.reason_code == CT_REASON_CANNOT_PERFORM &&
ct_rsp->header.explanation_code ==
CT_EXPL_ALREADY_REGISTERED) {
ql_dbg(ql_dbg_disc, vha, 0x20ce,
"RPA FDMI v2 already registered\n");
rval = QLA_ALREADY_REGISTERED;
} else {
ql_dbg(ql_dbg_disc, vha, 0x2020,
"RPA FDMI v2 failed, CT Reason code: 0x%x, CT Explanation 0x%x\n",
ct_rsp->header.reason_code,
ct_rsp->header.explanation_code);
}
} else {
ql_dbg(ql_dbg_disc, vha, 0x20cc,
"RPA FDMI V2 exiting normally.\n");
}
return rval;
}
/**
* qla2x00_fdmi_register() -
* @ha: HA context
*
* Returns 0 on success.
*/
int
qla2x00_fdmi_register(scsi_qla_host_t *vha)
{
int rval = QLA_FUNCTION_FAILED;
struct qla_hw_data *ha = vha->hw;
if (IS_QLA2100(ha) || IS_QLA2200(ha) ||
IS_QLAFX00(ha))
return QLA_FUNCTION_FAILED;
rval = qla2x00_mgmt_svr_login(vha);
if (rval)
return rval;
rval = qla2x00_fdmiv2_rhba(vha);
if (rval) {
if (rval != QLA_ALREADY_REGISTERED)
goto try_fdmi;
rval = qla2x00_fdmi_dhba(vha);
if (rval)
goto try_fdmi;
rval = qla2x00_fdmiv2_rhba(vha);
if (rval)
goto try_fdmi;
}
rval = qla2x00_fdmiv2_rpa(vha);
if (rval)
goto try_fdmi;
goto out;
try_fdmi:
rval = qla2x00_fdmi_rhba(vha);
if (rval) {
if (rval != QLA_ALREADY_REGISTERED)
return rval;
rval = qla2x00_fdmi_dhba(vha);
if (rval)
return rval;
rval = qla2x00_fdmi_rhba(vha);
if (rval)
return rval;
}
rval = qla2x00_fdmi_rpa(vha);
out:
return rval;
}
/**
* qla2x00_gfpn_id() - SNS Get Fabric Port Name (GFPN_ID) query.
* @ha: HA context
* @list: switch info entries to populate
*
* Returns 0 on success.
*/
int
qla2x00_gfpn_id(scsi_qla_host_t *vha, sw_info_t *list)
{
int rval = QLA_SUCCESS;
uint16_t i;
struct qla_hw_data *ha = vha->hw;
ms_iocb_entry_t *ms_pkt;
struct ct_sns_req *ct_req;
struct ct_sns_rsp *ct_rsp;
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
struct ct_arg arg;
if (!IS_IIDMA_CAPABLE(ha))
return QLA_FUNCTION_FAILED;
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
arg.iocb = ha->ms_iocb;
arg.req_dma = ha->ct_sns_dma;
arg.rsp_dma = ha->ct_sns_dma;
arg.req_size = GFPN_ID_REQ_SIZE;
arg.rsp_size = GFPN_ID_RSP_SIZE;
arg.nport_handle = NPH_SNS;
for (i = 0; i < ha->max_fibre_devices; i++) {
/* Issue GFPN_ID */
/* Prepare common MS IOCB */
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
ms_pkt = ha->isp_ops->prep_ms_iocb(vha, &arg);
/* Prepare CT request */
ct_req = qla2x00_prep_ct_req(ha->ct_sns, GFPN_ID_CMD,
GFPN_ID_RSP_SIZE);
ct_rsp = &ha->ct_sns->p.rsp;
/* Prepare CT arguments -- port_id */
ct_req->req.port_id.port_id[0] = list[i].d_id.b.domain;
ct_req->req.port_id.port_id[1] = list[i].d_id.b.area;
ct_req->req.port_id.port_id[2] = list[i].d_id.b.al_pa;
/* Execute MS IOCB */
rval = qla2x00_issue_iocb(vha, ha->ms_iocb, ha->ms_iocb_dma,
sizeof(ms_iocb_entry_t));
if (rval != QLA_SUCCESS) {
/*EMPTY*/
ql_dbg(ql_dbg_disc, vha, 0x2023,
"GFPN_ID issue IOCB failed (%d).\n", rval);
break;
} else if (qla2x00_chk_ms_status(vha, ms_pkt, ct_rsp,
"GFPN_ID") != QLA_SUCCESS) {
rval = QLA_FUNCTION_FAILED;
break;
} else {
/* Save fabric portname */
memcpy(list[i].fabric_port_name,
ct_rsp->rsp.gfpn_id.port_name, WWN_SIZE);
}
/* Last device exit. */
if (list[i].d_id.b.rsvd_1 != 0)
break;
}
return (rval);
}
static inline struct ct_sns_req *
qla24xx_prep_ct_fm_req(struct ct_sns_pkt *p, uint16_t cmd,
uint16_t rsp_size)
{
memset(p, 0, sizeof(struct ct_sns_pkt));
p->p.req.header.revision = 0x01;
p->p.req.header.gs_type = 0xFA;
p->p.req.header.gs_subtype = 0x01;
p->p.req.command = cpu_to_be16(cmd);
p->p.req.max_rsp_size = cpu_to_be16((rsp_size - 16) / 4);
return &p->p.req;
}
/**
* qla2x00_gpsc() - FCS Get Port Speed Capabilities (GPSC) query.
* @ha: HA context
* @list: switch info entries to populate
*
* Returns 0 on success.
*/
int
qla2x00_gpsc(scsi_qla_host_t *vha, sw_info_t *list)
{
int rval;
uint16_t i;
struct qla_hw_data *ha = vha->hw;
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
ms_iocb_entry_t *ms_pkt;
struct ct_sns_req *ct_req;
struct ct_sns_rsp *ct_rsp;
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
struct ct_arg arg;
if (!IS_IIDMA_CAPABLE(ha))
return QLA_FUNCTION_FAILED;
if (!ha->flags.gpsc_supported)
return QLA_FUNCTION_FAILED;
rval = qla2x00_mgmt_svr_login(vha);
if (rval)
return rval;
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
arg.iocb = ha->ms_iocb;
arg.req_dma = ha->ct_sns_dma;
arg.rsp_dma = ha->ct_sns_dma;
arg.req_size = GPSC_REQ_SIZE;
arg.rsp_size = GPSC_RSP_SIZE;
arg.nport_handle = vha->mgmt_svr_loop_id;
for (i = 0; i < ha->max_fibre_devices; i++) {
/* Issue GFPN_ID */
/* Prepare common MS IOCB */
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
ms_pkt = qla24xx_prep_ms_iocb(vha, &arg);
/* Prepare CT request */
ct_req = qla24xx_prep_ct_fm_req(ha->ct_sns, GPSC_CMD,
GPSC_RSP_SIZE);
ct_rsp = &ha->ct_sns->p.rsp;
/* Prepare CT arguments -- port_name */
memcpy(ct_req->req.gpsc.port_name, list[i].fabric_port_name,
WWN_SIZE);
/* Execute MS IOCB */
rval = qla2x00_issue_iocb(vha, ha->ms_iocb, ha->ms_iocb_dma,
sizeof(ms_iocb_entry_t));
if (rval != QLA_SUCCESS) {
/*EMPTY*/
ql_dbg(ql_dbg_disc, vha, 0x2059,
"GPSC issue IOCB failed (%d).\n", rval);
} else if ((rval = qla2x00_chk_ms_status(vha, ms_pkt, ct_rsp,
"GPSC")) != QLA_SUCCESS) {
/* FM command unsupported? */
if (rval == QLA_INVALID_COMMAND &&
(ct_rsp->header.reason_code ==
CT_REASON_INVALID_COMMAND_CODE ||
ct_rsp->header.reason_code ==
CT_REASON_COMMAND_UNSUPPORTED)) {
ql_dbg(ql_dbg_disc, vha, 0x205a,
"GPSC command unsupported, disabling "
"query.\n");
ha->flags.gpsc_supported = 0;
rval = QLA_FUNCTION_FAILED;
break;
}
rval = QLA_FUNCTION_FAILED;
} else {
/* Save port-speed */
switch (be16_to_cpu(ct_rsp->rsp.gpsc.speed)) {
case BIT_15:
list[i].fp_speed = PORT_SPEED_1GB;
break;
case BIT_14:
list[i].fp_speed = PORT_SPEED_2GB;
break;
case BIT_13:
list[i].fp_speed = PORT_SPEED_4GB;
break;
case BIT_12:
list[i].fp_speed = PORT_SPEED_10GB;
break;
case BIT_11:
list[i].fp_speed = PORT_SPEED_8GB;
break;
case BIT_10:
list[i].fp_speed = PORT_SPEED_16GB;
break;
case BIT_8:
list[i].fp_speed = PORT_SPEED_32GB;
break;
}
ql_dbg(ql_dbg_disc, vha, 0x205b,
"GPSC ext entry - fpn "
"%8phN speeds=%04x speed=%04x.\n",
list[i].fabric_port_name,
be16_to_cpu(ct_rsp->rsp.gpsc.speeds),
be16_to_cpu(ct_rsp->rsp.gpsc.speed));
}
/* Last device exit. */
if (list[i].d_id.b.rsvd_1 != 0)
break;
}
return (rval);
}
/**
* qla2x00_gff_id() - SNS Get FC-4 Features (GFF_ID) query.
*
* @ha: HA context
* @list: switch info entries to populate
*
*/
void
qla2x00_gff_id(scsi_qla_host_t *vha, sw_info_t *list)
{
int rval;
uint16_t i;
ms_iocb_entry_t *ms_pkt;
struct ct_sns_req *ct_req;
struct ct_sns_rsp *ct_rsp;
struct qla_hw_data *ha = vha->hw;
uint8_t fcp_scsi_features = 0;
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
struct ct_arg arg;
for (i = 0; i < ha->max_fibre_devices; i++) {
/* Set default FC4 Type as UNKNOWN so the default is to
* Process this port */
list[i].fc4_type = FC4_TYPE_UNKNOWN;
/* Do not attempt GFF_ID if we are not FWI_2 capable */
if (!IS_FWI2_CAPABLE(ha))
continue;
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
arg.iocb = ha->ms_iocb;
arg.req_dma = ha->ct_sns_dma;
arg.rsp_dma = ha->ct_sns_dma;
arg.req_size = GFF_ID_REQ_SIZE;
arg.rsp_size = GFF_ID_RSP_SIZE;
arg.nport_handle = NPH_SNS;
/* Prepare common MS IOCB */
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
ms_pkt = ha->isp_ops->prep_ms_iocb(vha, &arg);
/* Prepare CT request */
ct_req = qla2x00_prep_ct_req(ha->ct_sns, GFF_ID_CMD,
GFF_ID_RSP_SIZE);
ct_rsp = &ha->ct_sns->p.rsp;
/* Prepare CT arguments -- port_id */
ct_req->req.port_id.port_id[0] = list[i].d_id.b.domain;
ct_req->req.port_id.port_id[1] = list[i].d_id.b.area;
ct_req->req.port_id.port_id[2] = list[i].d_id.b.al_pa;
/* Execute MS IOCB */
rval = qla2x00_issue_iocb(vha, ha->ms_iocb, ha->ms_iocb_dma,
sizeof(ms_iocb_entry_t));
if (rval != QLA_SUCCESS) {
ql_dbg(ql_dbg_disc, vha, 0x205c,
"GFF_ID issue IOCB failed (%d).\n", rval);
} else if (qla2x00_chk_ms_status(vha, ms_pkt, ct_rsp,
"GFF_ID") != QLA_SUCCESS) {
ql_dbg(ql_dbg_disc, vha, 0x205d,
"GFF_ID IOCB status had a failure status code.\n");
} else {
fcp_scsi_features =
ct_rsp->rsp.gff_id.fc4_features[GFF_FCP_SCSI_OFFSET];
fcp_scsi_features &= 0x0f;
if (fcp_scsi_features)
list[i].fc4_type = FC4_TYPE_FCP_SCSI;
else
list[i].fc4_type = FC4_TYPE_OTHER;
list[i].fc4f_nvme =
ct_rsp->rsp.gff_id.fc4_features[GFF_NVME_OFFSET];
list[i].fc4f_nvme &= 0xf;
}
/* Last device exit. */
if (list[i].d_id.b.rsvd_1 != 0)
break;
}
}
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
/* GID_PN completion processing. */
void qla24xx_handle_gidpn_event(scsi_qla_host_t *vha, struct event_arg *ea)
{
fc_port_t *fcport = ea->fcport;
ql_dbg(ql_dbg_disc, vha, 0x201d,
"%s %8phC login state %d\n",
__func__, fcport->port_name, fcport->fw_login_state);
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
if (ea->sp->gen2 != fcport->login_gen) {
/* PLOGI/PRLI/LOGO came in while cmd was out.*/
ql_dbg(ql_dbg_disc, vha, 0x201e,
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
"%s %8phC generation changed rscn %d|%d login %d|%d \n",
__func__, fcport->port_name, fcport->last_rscn_gen,
fcport->rscn_gen, fcport->last_login_gen, fcport->login_gen);
return;
}
if (!ea->rc) {
if (ea->sp->gen1 == fcport->rscn_gen) {
fcport->scan_state = QLA_FCPORT_FOUND;
fcport->flags |= FCF_FABRIC_DEVICE;
if (fcport->d_id.b24 == ea->id.b24) {
/* cable plugged into the same place */
switch (vha->host->active_mode) {
case MODE_TARGET:
/* NOOP. let the other guy login to us.*/
break;
case MODE_INITIATOR:
case MODE_DUAL:
default:
ql_dbg(ql_dbg_disc, vha, 0x201f,
"%s %d %8phC post %s\n", __func__,
__LINE__, fcport->port_name,
(atomic_read(&fcport->state) ==
FCS_ONLINE) ? "gpdb" : "gnl");
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
if (atomic_read(&fcport->state) ==
FCS_ONLINE)
qla24xx_post_gpdb_work(vha,
fcport, PDO_FORCE_ADISC);
else
qla24xx_post_gnl_work(vha,
fcport);
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
break;
}
} else { /* fcport->d_id.b24 != ea->id.b24 */
fcport->d_id.b24 = ea->id.b24;
if (fcport->deleted != QLA_SESS_DELETED) {
ql_dbg(ql_dbg_disc, vha, 0x2021,
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
"%s %d %8phC post del sess\n",
__func__, __LINE__, fcport->port_name);
qlt_schedule_sess_for_deletion_lock(fcport);
}
}
} else { /* ea->sp->gen1 != fcport->rscn_gen */
ql_dbg(ql_dbg_disc, vha, 0x2022,
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
"%s %d %8phC post gidpn\n",
__func__, __LINE__, fcport->port_name);
/* rscn came in while cmd was out */
qla24xx_post_gidpn_work(vha, fcport);
}
} else { /* ea->rc */
/* cable pulled */
if (ea->sp->gen1 == fcport->rscn_gen) {
if (ea->sp->gen2 == fcport->login_gen) {
ql_dbg(ql_dbg_disc, vha, 0x2042,
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
"%s %d %8phC post del sess\n", __func__,
__LINE__, fcport->port_name);
qlt_schedule_sess_for_deletion_lock(fcport);
} else {
ql_dbg(ql_dbg_disc, vha, 0x2045,
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
"%s %d %8phC login\n", __func__, __LINE__,
fcport->port_name);
qla24xx_fcport_handle_login(vha, fcport);
}
} else {
ql_dbg(ql_dbg_disc, vha, 0x2049,
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
"%s %d %8phC post gidpn\n", __func__, __LINE__,
fcport->port_name);
qla24xx_post_gidpn_work(vha, fcport);
}
}
} /* gidpn_event */
static void qla2x00_async_gidpn_sp_done(void *s, int res)
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
{
struct srb *sp = s;
struct scsi_qla_host *vha = sp->vha;
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
fc_port_t *fcport = sp->fcport;
u8 *id = fcport->ct_desc.ct_sns->p.rsp.rsp.gid_pn.port_id;
struct event_arg ea;
fcport->flags &= ~FCF_ASYNC_SENT;
memset(&ea, 0, sizeof(ea));
ea.fcport = fcport;
ea.id.b.domain = id[0];
ea.id.b.area = id[1];
ea.id.b.al_pa = id[2];
ea.sp = sp;
ea.rc = res;
ea.event = FCME_GIDPN_DONE;
if (res == QLA_FUNCTION_TIMEOUT) {
ql_dbg(ql_dbg_disc, sp->vha, 0xffff,
"Async done-%s WWPN %8phC timed out.\n",
sp->name, fcport->port_name);
qla24xx_post_gidpn_work(sp->vha, fcport);
sp->free(sp);
return;
} else if (res) {
ql_dbg(ql_dbg_disc, sp->vha, 0xffff,
"Async done-%s fail res %x, WWPN %8phC\n",
sp->name, res, fcport->port_name);
} else {
ql_dbg(ql_dbg_disc, vha, 0x204f,
"Async done-%s good WWPN %8phC ID %3phC\n",
sp->name, fcport->port_name, id);
}
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
qla2x00_fcport_event_handler(vha, &ea);
sp->free(sp);
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
}
int qla24xx_async_gidpn(scsi_qla_host_t *vha, fc_port_t *fcport)
{
int rval = QLA_FUNCTION_FAILED;
struct ct_sns_req *ct_req;
srb_t *sp;
if (!vha->flags.online)
goto done;
fcport->flags |= FCF_ASYNC_SENT;
fcport->disc_state = DSC_GID_PN;
fcport->scan_state = QLA_FCPORT_SCAN;
sp = qla2x00_get_sp(vha, fcport, GFP_ATOMIC);
if (!sp)
goto done;
sp->type = SRB_CT_PTHRU_CMD;
sp->name = "gidpn";
sp->gen1 = fcport->rscn_gen;
sp->gen2 = fcport->login_gen;
qla2x00_init_timer(sp, qla2x00_get_async_timeout(vha) + 2);
/* CT_IU preamble */
ct_req = qla2x00_prep_ct_req(fcport->ct_desc.ct_sns, GID_PN_CMD,
GID_PN_RSP_SIZE);
/* GIDPN req */
memcpy(ct_req->req.gid_pn.port_name, fcport->port_name,
WWN_SIZE);
/* req & rsp use the same buffer */
sp->u.iocb_cmd.u.ctarg.req = fcport->ct_desc.ct_sns;
sp->u.iocb_cmd.u.ctarg.req_dma = fcport->ct_desc.ct_sns_dma;
sp->u.iocb_cmd.u.ctarg.rsp = fcport->ct_desc.ct_sns;
sp->u.iocb_cmd.u.ctarg.rsp_dma = fcport->ct_desc.ct_sns_dma;
sp->u.iocb_cmd.u.ctarg.req_size = GID_PN_REQ_SIZE;
sp->u.iocb_cmd.u.ctarg.rsp_size = GID_PN_RSP_SIZE;
sp->u.iocb_cmd.u.ctarg.nport_handle = NPH_SNS;
sp->u.iocb_cmd.timeout = qla2x00_async_iocb_timeout;
sp->done = qla2x00_async_gidpn_sp_done;
rval = qla2x00_start_sp(sp);
if (rval != QLA_SUCCESS)
goto done_free_sp;
ql_dbg(ql_dbg_disc, vha, 0x20a4,
"Async-%s - %8phC hdl=%x loopid=%x portid %02x%02x%02x.\n",
sp->name, fcport->port_name,
sp->handle, fcport->loop_id, fcport->d_id.b.domain,
fcport->d_id.b.area, fcport->d_id.b.al_pa);
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
return rval;
done_free_sp:
sp->free(sp);
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
done:
fcport->flags &= ~FCF_ASYNC_SENT;
return rval;
}
int qla24xx_post_gidpn_work(struct scsi_qla_host *vha, fc_port_t *fcport)
{
struct qla_work_evt *e;
int ls;
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
ls = atomic_read(&vha->loop_state);
if (((ls != LOOP_READY) && (ls != LOOP_UP)) ||
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
test_bit(UNLOADING, &vha->dpc_flags))
return 0;
e = qla2x00_alloc_work(vha, QLA_EVT_GIDPN);
if (!e)
return QLA_FUNCTION_FAILED;
e->u.fcport.fcport = fcport;
return qla2x00_post_work(vha, e);
}
int qla24xx_post_gpsc_work(struct scsi_qla_host *vha, fc_port_t *fcport)
{
struct qla_work_evt *e;
e = qla2x00_alloc_work(vha, QLA_EVT_GPSC);
if (!e)
return QLA_FUNCTION_FAILED;
e->u.fcport.fcport = fcport;
return qla2x00_post_work(vha, e);
}
static void qla24xx_async_gpsc_sp_done(void *s, int res)
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
{
struct srb *sp = s;
struct scsi_qla_host *vha = sp->vha;
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
struct qla_hw_data *ha = vha->hw;
fc_port_t *fcport = sp->fcport;
struct ct_sns_rsp *ct_rsp;
struct event_arg ea;
ct_rsp = &fcport->ct_desc.ct_sns->p.rsp;
ql_dbg(ql_dbg_disc, vha, 0x2053,
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
"Async done-%s res %x, WWPN %8phC \n",
sp->name, res, fcport->port_name);
fcport->flags &= ~FCF_ASYNC_SENT;
if (res == (DID_ERROR << 16)) {
/* entry status error */
goto done;
} else if (res) {
if ((ct_rsp->header.reason_code ==
CT_REASON_INVALID_COMMAND_CODE) ||
(ct_rsp->header.reason_code ==
CT_REASON_COMMAND_UNSUPPORTED)) {
ql_dbg(ql_dbg_disc, vha, 0x2019,
"GPSC command unsupported, disabling query.\n");
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
ha->flags.gpsc_supported = 0;
res = QLA_SUCCESS;
}
} else {
switch (be16_to_cpu(ct_rsp->rsp.gpsc.speed)) {
case BIT_15:
fcport->fp_speed = PORT_SPEED_1GB;
break;
case BIT_14:
fcport->fp_speed = PORT_SPEED_2GB;
break;
case BIT_13:
fcport->fp_speed = PORT_SPEED_4GB;
break;
case BIT_12:
fcport->fp_speed = PORT_SPEED_10GB;
break;
case BIT_11:
fcport->fp_speed = PORT_SPEED_8GB;
break;
case BIT_10:
fcport->fp_speed = PORT_SPEED_16GB;
break;
case BIT_8:
fcport->fp_speed = PORT_SPEED_32GB;
break;
}
ql_dbg(ql_dbg_disc, vha, 0x2054,
"Async-%s OUT WWPN %8phC speeds=%04x speed=%04x.\n",
sp->name, fcport->fabric_port_name,
be16_to_cpu(ct_rsp->rsp.gpsc.speeds),
be16_to_cpu(ct_rsp->rsp.gpsc.speed));
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
}
done:
memset(&ea, 0, sizeof(ea));
ea.event = FCME_GPSC_DONE;
ea.rc = res;
ea.fcport = fcport;
qla2x00_fcport_event_handler(vha, &ea);
sp->free(sp);
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
}
int qla24xx_async_gpsc(scsi_qla_host_t *vha, fc_port_t *fcport)
{
int rval = QLA_FUNCTION_FAILED;
struct ct_sns_req *ct_req;
srb_t *sp;
if (!vha->flags.online)
goto done;
fcport->flags |= FCF_ASYNC_SENT;
sp = qla2x00_get_sp(vha, fcport, GFP_KERNEL);
if (!sp)
goto done;
sp->type = SRB_CT_PTHRU_CMD;
sp->name = "gpsc";
sp->gen1 = fcport->rscn_gen;
sp->gen2 = fcport->login_gen;
qla2x00_init_timer(sp, qla2x00_get_async_timeout(vha) + 2);
/* CT_IU preamble */
ct_req = qla24xx_prep_ct_fm_req(fcport->ct_desc.ct_sns, GPSC_CMD,
GPSC_RSP_SIZE);
/* GPSC req */
memcpy(ct_req->req.gpsc.port_name, fcport->fabric_port_name,
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
WWN_SIZE);
sp->u.iocb_cmd.u.ctarg.req = fcport->ct_desc.ct_sns;
sp->u.iocb_cmd.u.ctarg.req_dma = fcport->ct_desc.ct_sns_dma;
sp->u.iocb_cmd.u.ctarg.rsp = fcport->ct_desc.ct_sns;
sp->u.iocb_cmd.u.ctarg.rsp_dma = fcport->ct_desc.ct_sns_dma;
sp->u.iocb_cmd.u.ctarg.req_size = GPSC_REQ_SIZE;
sp->u.iocb_cmd.u.ctarg.rsp_size = GPSC_RSP_SIZE;
sp->u.iocb_cmd.u.ctarg.nport_handle = vha->mgmt_svr_loop_id;
sp->u.iocb_cmd.timeout = qla2x00_async_iocb_timeout;
sp->done = qla24xx_async_gpsc_sp_done;
rval = qla2x00_start_sp(sp);
if (rval != QLA_SUCCESS)
goto done_free_sp;
ql_dbg(ql_dbg_disc, vha, 0x205e,
"Async-%s %8phC hdl=%x loopid=%x portid=%02x%02x%02x.\n",
sp->name, fcport->port_name, sp->handle,
fcport->loop_id, fcport->d_id.b.domain,
fcport->d_id.b.area, fcport->d_id.b.al_pa);
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
return rval;
done_free_sp:
sp->free(sp);
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
done:
fcport->flags &= ~FCF_ASYNC_SENT;
return rval;
}
int qla24xx_post_gpnid_work(struct scsi_qla_host *vha, port_id_t *id)
{
struct qla_work_evt *e;
if (test_bit(UNLOADING, &vha->dpc_flags))
return 0;
e = qla2x00_alloc_work(vha, QLA_EVT_GPNID);
if (!e)
return QLA_FUNCTION_FAILED;
e->u.gpnid.id = *id;
return qla2x00_post_work(vha, e);
}
void qla24xx_async_gpnid_done(scsi_qla_host_t *vha, srb_t *sp)
{
if (sp->u.iocb_cmd.u.ctarg.req) {
dma_free_coherent(&vha->hw->pdev->dev,
sizeof(struct ct_sns_pkt),
sp->u.iocb_cmd.u.ctarg.req,
sp->u.iocb_cmd.u.ctarg.req_dma);
sp->u.iocb_cmd.u.ctarg.req = NULL;
}
if (sp->u.iocb_cmd.u.ctarg.rsp) {
dma_free_coherent(&vha->hw->pdev->dev,
sizeof(struct ct_sns_pkt),
sp->u.iocb_cmd.u.ctarg.rsp,
sp->u.iocb_cmd.u.ctarg.rsp_dma);
sp->u.iocb_cmd.u.ctarg.rsp = NULL;
}
sp->free(sp);
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
}
void qla24xx_handle_gpnid_event(scsi_qla_host_t *vha, struct event_arg *ea)
{
fc_port_t *fcport, *conflict, *t;
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
ql_dbg(ql_dbg_disc, vha, 0xffff,
"%s %d port_id: %06x\n",
__func__, __LINE__, ea->id.b24);
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
if (ea->rc) {
/* cable is disconnected */
list_for_each_entry_safe(fcport, t, &vha->vp_fcports, list) {
if (fcport->d_id.b24 == ea->id.b24) {
ql_dbg(ql_dbg_disc, vha, 0xffff,
"%s %d %8phC DS %d\n",
__func__, __LINE__,
fcport->port_name,
fcport->disc_state);
fcport->scan_state = QLA_FCPORT_SCAN;
switch (fcport->disc_state) {
case DSC_DELETED:
case DSC_DELETE_PEND:
break;
default:
ql_dbg(ql_dbg_disc, vha, 0xffff,
"%s %d %8phC post del sess\n",
__func__, __LINE__,
fcport->port_name);
qlt_schedule_sess_for_deletion_lock
(fcport);
break;
}
}
}
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
} else {
/* cable is connected */
fcport = qla2x00_find_fcport_by_wwpn(vha, ea->port_name, 1);
if (fcport) {
list_for_each_entry_safe(conflict, t, &vha->vp_fcports,
list) {
if ((conflict->d_id.b24 == ea->id.b24) &&
(fcport != conflict)) {
/* 2 fcports with conflict Nport ID or
* an existing fcport is having nport ID
* conflict with new fcport.
*/
ql_dbg(ql_dbg_disc, vha, 0xffff,
"%s %d %8phC DS %d\n",
__func__, __LINE__,
conflict->port_name,
conflict->disc_state);
conflict->scan_state = QLA_FCPORT_SCAN;
switch (conflict->disc_state) {
case DSC_DELETED:
case DSC_DELETE_PEND:
break;
default:
ql_dbg(ql_dbg_disc, vha, 0xffff,
"%s %d %8phC post del sess\n",
__func__, __LINE__,
conflict->port_name);
qlt_schedule_sess_for_deletion_lock
(conflict);
break;
}
}
}
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
fcport->rscn_gen++;
fcport->scan_state = QLA_FCPORT_FOUND;
fcport->flags |= FCF_FABRIC_DEVICE;
switch (fcport->disc_state) {
case DSC_LOGIN_COMPLETE:
/* recheck session is still intact. */
ql_dbg(ql_dbg_disc, vha, 0x210d,
"%s %d %8phC revalidate session with ADISC\n",
__func__, __LINE__, fcport->port_name);
qla24xx_post_gpdb_work(vha, fcport,
PDO_FORCE_ADISC);
break;
case DSC_DELETED:
ql_dbg(ql_dbg_disc, vha, 0x210d,
"%s %d %8phC login\n", __func__, __LINE__,
fcport->port_name);
fcport->d_id = ea->id;
qla24xx_fcport_handle_login(vha, fcport);
break;
case DSC_DELETE_PEND:
fcport->d_id = ea->id;
break;
default:
fcport->d_id = ea->id;
break;
}
} else {
list_for_each_entry_safe(conflict, t, &vha->vp_fcports,
list) {
if (conflict->d_id.b24 == ea->id.b24) {
/* 2 fcports with conflict Nport ID or
* an existing fcport is having nport ID
* conflict with new fcport.
*/
ql_dbg(ql_dbg_disc, vha, 0xffff,
"%s %d %8phC DS %d\n",
__func__, __LINE__,
conflict->port_name,
conflict->disc_state);
conflict->scan_state = QLA_FCPORT_SCAN;
switch (conflict->disc_state) {
case DSC_DELETED:
case DSC_DELETE_PEND:
break;
default:
ql_dbg(ql_dbg_disc, vha, 0xffff,
"%s %d %8phC post del sess\n",
__func__, __LINE__,
conflict->port_name);
qlt_schedule_sess_for_deletion_lock
(conflict);
break;
}
}
}
/* create new fcport */
ql_dbg(ql_dbg_disc, vha, 0x2065,
"%s %d %8phC post new sess\n",
__func__, __LINE__, ea->port_name);
qla24xx_post_newsess_work(vha, &ea->id,
ea->port_name, NULL);
}
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
}
}
static void qla2x00_async_gpnid_sp_done(void *s, int res)
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
{
struct srb *sp = s;
struct scsi_qla_host *vha = sp->vha;
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
struct ct_sns_req *ct_req =
(struct ct_sns_req *)sp->u.iocb_cmd.u.ctarg.req;
struct ct_sns_rsp *ct_rsp =
(struct ct_sns_rsp *)sp->u.iocb_cmd.u.ctarg.rsp;
struct event_arg ea;
struct qla_work_evt *e;
unsigned long flags;
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
if (res)
ql_dbg(ql_dbg_disc, vha, 0x2066,
"Async done-%s fail res %x rscn gen %d ID %3phC. %8phC\n",
sp->name, res, sp->gen1, ct_req->req.port_id.port_id,
ct_rsp->rsp.gpn_id.port_name);
else
ql_dbg(ql_dbg_disc, vha, 0x2066,
"Async done-%s good rscn gen %d ID %3phC. %8phC\n",
sp->name, sp->gen1, ct_req->req.port_id.port_id,
ct_rsp->rsp.gpn_id.port_name);
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
memset(&ea, 0, sizeof(ea));
memcpy(ea.port_name, ct_rsp->rsp.gpn_id.port_name, WWN_SIZE);
ea.sp = sp;
ea.id.b.domain = ct_req->req.port_id.port_id[0];
ea.id.b.area = ct_req->req.port_id.port_id[1];
ea.id.b.al_pa = ct_req->req.port_id.port_id[2];
ea.rc = res;
ea.event = FCME_GPNID_DONE;
spin_lock_irqsave(&vha->hw->tgt.sess_lock, flags);
list_del(&sp->elem);
spin_unlock_irqrestore(&vha->hw->tgt.sess_lock, flags);
if (res) {
if (res == QLA_FUNCTION_TIMEOUT) {
qla24xx_post_gpnid_work(sp->vha, &ea.id);
sp->free(sp);
return;
}
} else if (sp->gen1) {
/* There was another RSCN for this Nport ID */
qla24xx_post_gpnid_work(sp->vha, &ea.id);
sp->free(sp);
return;
}
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
qla2x00_fcport_event_handler(vha, &ea);
e = qla2x00_alloc_work(vha, QLA_EVT_GPNID_DONE);
if (!e) {
/* please ignore kernel warning. otherwise, we have mem leak. */
if (sp->u.iocb_cmd.u.ctarg.req) {
dma_free_coherent(&vha->hw->pdev->dev,
sizeof(struct ct_sns_pkt),
sp->u.iocb_cmd.u.ctarg.req,
sp->u.iocb_cmd.u.ctarg.req_dma);
sp->u.iocb_cmd.u.ctarg.req = NULL;
}
if (sp->u.iocb_cmd.u.ctarg.rsp) {
dma_free_coherent(&vha->hw->pdev->dev,
sizeof(struct ct_sns_pkt),
sp->u.iocb_cmd.u.ctarg.rsp,
sp->u.iocb_cmd.u.ctarg.rsp_dma);
sp->u.iocb_cmd.u.ctarg.rsp = NULL;
}
sp->free(sp);
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
return;
}
e->u.iosb.sp = sp;
qla2x00_post_work(vha, e);
}
/* Get WWPN with Nport ID. */
int qla24xx_async_gpnid(scsi_qla_host_t *vha, port_id_t *id)
{
int rval = QLA_FUNCTION_FAILED;
struct ct_sns_req *ct_req;
srb_t *sp, *tsp;
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
struct ct_sns_pkt *ct_sns;
unsigned long flags;
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
if (!vha->flags.online)
goto done;
sp = qla2x00_get_sp(vha, NULL, GFP_KERNEL);
if (!sp)
goto done;
sp->type = SRB_CT_PTHRU_CMD;
sp->name = "gpnid";
sp->u.iocb_cmd.u.ctarg.id = *id;
sp->gen1 = 0;
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
qla2x00_init_timer(sp, qla2x00_get_async_timeout(vha) + 2);
spin_lock_irqsave(&vha->hw->tgt.sess_lock, flags);
list_for_each_entry(tsp, &vha->gpnid_list, elem) {
if (tsp->u.iocb_cmd.u.ctarg.id.b24 == id->b24) {
tsp->gen1++;
spin_unlock_irqrestore(&vha->hw->tgt.sess_lock, flags);
sp->free(sp);
goto done;
}
}
list_add_tail(&sp->elem, &vha->gpnid_list);
spin_unlock_irqrestore(&vha->hw->tgt.sess_lock, flags);
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
sp->u.iocb_cmd.u.ctarg.req = dma_alloc_coherent(&vha->hw->pdev->dev,
sizeof(struct ct_sns_pkt), &sp->u.iocb_cmd.u.ctarg.req_dma,
GFP_KERNEL);
if (!sp->u.iocb_cmd.u.ctarg.req) {
ql_log(ql_log_warn, vha, 0xd041,
"Failed to allocate ct_sns request.\n");
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
goto done_free_sp;
}
sp->u.iocb_cmd.u.ctarg.rsp = dma_alloc_coherent(&vha->hw->pdev->dev,
sizeof(struct ct_sns_pkt), &sp->u.iocb_cmd.u.ctarg.rsp_dma,
GFP_KERNEL);
if (!sp->u.iocb_cmd.u.ctarg.rsp) {
ql_log(ql_log_warn, vha, 0xd042,
"Failed to allocate ct_sns request.\n");
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
goto done_free_sp;
}
ct_sns = (struct ct_sns_pkt *)sp->u.iocb_cmd.u.ctarg.rsp;
memset(ct_sns, 0, sizeof(*ct_sns));
ct_sns = (struct ct_sns_pkt *)sp->u.iocb_cmd.u.ctarg.req;
/* CT_IU preamble */
ct_req = qla2x00_prep_ct_req(ct_sns, GPN_ID_CMD, GPN_ID_RSP_SIZE);
/* GPN_ID req */
ct_req->req.port_id.port_id[0] = id->b.domain;
ct_req->req.port_id.port_id[1] = id->b.area;
ct_req->req.port_id.port_id[2] = id->b.al_pa;
sp->u.iocb_cmd.u.ctarg.req_size = GPN_ID_REQ_SIZE;
sp->u.iocb_cmd.u.ctarg.rsp_size = GPN_ID_RSP_SIZE;
sp->u.iocb_cmd.u.ctarg.nport_handle = NPH_SNS;
sp->u.iocb_cmd.timeout = qla2x00_async_iocb_timeout;
sp->done = qla2x00_async_gpnid_sp_done;
rval = qla2x00_start_sp(sp);
if (rval != QLA_SUCCESS)
goto done_free_sp;
ql_dbg(ql_dbg_disc, vha, 0x2067,
"Async-%s hdl=%x ID %3phC.\n", sp->name,
sp->handle, ct_req->req.port_id.port_id);
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
return rval;
done_free_sp:
if (sp->u.iocb_cmd.u.ctarg.req) {
dma_free_coherent(&vha->hw->pdev->dev,
sizeof(struct ct_sns_pkt),
sp->u.iocb_cmd.u.ctarg.req,
sp->u.iocb_cmd.u.ctarg.req_dma);
sp->u.iocb_cmd.u.ctarg.req = NULL;
}
if (sp->u.iocb_cmd.u.ctarg.rsp) {
dma_free_coherent(&vha->hw->pdev->dev,
sizeof(struct ct_sns_pkt),
sp->u.iocb_cmd.u.ctarg.rsp,
sp->u.iocb_cmd.u.ctarg.rsp_dma);
sp->u.iocb_cmd.u.ctarg.rsp = NULL;
}
sp->free(sp);
qla2xxx: Add framework for async fabric discovery Currently code performs a full scan of the fabric for every RSCN. Its an expensive process in a noisy large SAN. This patch optimizes expensive fabric discovery process by scanning switch for the affected port when RSCN is received. Currently Initiator Mode code makes login/logout decision without knowledge of target mode. This causes driver and firmware to go out-of-sync. This framework synchronizes both initiator mode personality and target mode personality in making login/logout decision. This patch adds following capabilities in the driver - Send Notification Acknowledgement asynchronously. - Update session/fcport state asynchronously. - Create a session or fcport struct asynchronously. - Send GNL asynchronously. The command will ask FW to provide a list of FC Port entries FW knows about. - Send GPDB asynchronously. The command will ask FW to provide detail data of an FC Port FW knows about or perform ADISC to verify the state of the session. - Send GPNID asynchronously. The command will ask switch to provide WWPN for provided NPort ID. - Send GPSC asynchronously. The command will ask switch to provide registered port speed for provided WWPN. - Send GIDPN asynchronously. The command will ask the switch to provide Nport ID for provided WWPN. - In driver unload path, schedule all session for deletion and wait for deletion to complete before allowing driver unload to proceed. Signed-off-by: Quinn Tran <quinn.tran@cavium.com> Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com> [ bvanassche: fixed spelling in patch description ] Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2017-01-20 06:28:00 +00:00
done:
return rval;
}
void qla24xx_handle_gffid_event(scsi_qla_host_t *vha, struct event_arg *ea)
{
fc_port_t *fcport = ea->fcport;
qla24xx_post_gnl_work(vha, fcport);
}
void qla24xx_async_gffid_sp_done(void *s, int res)
{
struct srb *sp = s;
struct scsi_qla_host *vha = sp->vha;
fc_port_t *fcport = sp->fcport;
struct ct_sns_rsp *ct_rsp;
struct event_arg ea;
ql_dbg(ql_dbg_disc, vha, 0x2133,
"Async done-%s res %x ID %x. %8phC\n",
sp->name, res, fcport->d_id.b24, fcport->port_name);
fcport->flags &= ~FCF_ASYNC_SENT;
ct_rsp = &fcport->ct_desc.ct_sns->p.rsp;
/*
* FC-GS-7, 5.2.3.12 FC-4 Features - format
* The format of the FC-4 Features object, as defined by the FC-4,
* Shall be an array of 4-bit values, one for each type code value
*/
if (!res) {
if (ct_rsp->rsp.gff_id.fc4_features[GFF_FCP_SCSI_OFFSET] & 0xf) {
/* w1 b00:03 */
fcport->fc4_type =
ct_rsp->rsp.gff_id.fc4_features[GFF_FCP_SCSI_OFFSET];
fcport->fc4_type &= 0xf;
}
if (ct_rsp->rsp.gff_id.fc4_features[GFF_NVME_OFFSET] & 0xf) {
/* w5 [00:03]/28h */
fcport->fc4f_nvme =
ct_rsp->rsp.gff_id.fc4_features[GFF_NVME_OFFSET];
fcport->fc4f_nvme &= 0xf;
}
}
memset(&ea, 0, sizeof(ea));
ea.sp = sp;
ea.fcport = sp->fcport;
ea.rc = res;
ea.event = FCME_GFFID_DONE;
qla2x00_fcport_event_handler(vha, &ea);
sp->free(sp);
}
/* Get FC4 Feature with Nport ID. */
int qla24xx_async_gffid(scsi_qla_host_t *vha, fc_port_t *fcport)
{
int rval = QLA_FUNCTION_FAILED;
struct ct_sns_req *ct_req;
srb_t *sp;
if (!vha->flags.online)
return rval;
sp = qla2x00_get_sp(vha, fcport, GFP_KERNEL);
if (!sp)
return rval;
fcport->flags |= FCF_ASYNC_SENT;
sp->type = SRB_CT_PTHRU_CMD;
sp->name = "gffid";
sp->gen1 = fcport->rscn_gen;
sp->gen2 = fcport->login_gen;
qla2x00_init_timer(sp, qla2x00_get_async_timeout(vha) + 2);
/* CT_IU preamble */
ct_req = qla2x00_prep_ct_req(fcport->ct_desc.ct_sns, GFF_ID_CMD,
GFF_ID_RSP_SIZE);
ct_req->req.gff_id.port_id[0] = fcport->d_id.b.domain;
ct_req->req.gff_id.port_id[1] = fcport->d_id.b.area;
ct_req->req.gff_id.port_id[2] = fcport->d_id.b.al_pa;
sp->u.iocb_cmd.u.ctarg.req = fcport->ct_desc.ct_sns;
sp->u.iocb_cmd.u.ctarg.req_dma = fcport->ct_desc.ct_sns_dma;
sp->u.iocb_cmd.u.ctarg.rsp = fcport->ct_desc.ct_sns;
sp->u.iocb_cmd.u.ctarg.rsp_dma = fcport->ct_desc.ct_sns_dma;
sp->u.iocb_cmd.u.ctarg.req_size = GFF_ID_REQ_SIZE;
sp->u.iocb_cmd.u.ctarg.rsp_size = GFF_ID_RSP_SIZE;
sp->u.iocb_cmd.u.ctarg.nport_handle = NPH_SNS;
sp->u.iocb_cmd.timeout = qla2x00_async_iocb_timeout;
sp->done = qla24xx_async_gffid_sp_done;
rval = qla2x00_start_sp(sp);
if (rval != QLA_SUCCESS)
goto done_free_sp;
ql_dbg(ql_dbg_disc, vha, 0x2132,
"Async-%s hdl=%x %8phC.\n", sp->name,
sp->handle, fcport->port_name);
return rval;
done_free_sp:
sp->free(sp);
fcport->flags &= ~FCF_ASYNC_SENT;
return rval;
}