2005-04-16 22:20:36 +00:00
|
|
|
/*
|
|
|
|
* linux/kernel/timer.c
|
|
|
|
*
|
2007-05-08 07:27:59 +00:00
|
|
|
* Kernel internal timers, basic process system calls
|
2005-04-16 22:20:36 +00:00
|
|
|
*
|
|
|
|
* Copyright (C) 1991, 1992 Linus Torvalds
|
|
|
|
*
|
|
|
|
* 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
|
|
|
|
*
|
|
|
|
* 1997-09-10 Updated NTP code according to technical memorandum Jan '96
|
|
|
|
* "A Kernel Model for Precision Timekeeping" by Dave Mills
|
|
|
|
* 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
|
|
|
|
* serialize accesses to xtime/lost_ticks).
|
|
|
|
* Copyright (C) 1998 Andrea Arcangeli
|
|
|
|
* 1999-03-10 Improved NTP compatibility by Ulrich Windl
|
|
|
|
* 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
|
|
|
|
* 2000-10-05 Implemented scalable SMP per-CPU timer handling.
|
|
|
|
* Copyright (C) 2000, 2001, 2002 Ingo Molnar
|
|
|
|
* Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/kernel_stat.h>
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/interrupt.h>
|
|
|
|
#include <linux/percpu.h>
|
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/mm.h>
|
|
|
|
#include <linux/swap.h>
|
2007-10-19 06:40:14 +00:00
|
|
|
#include <linux/pid_namespace.h>
|
2005-04-16 22:20:36 +00:00
|
|
|
#include <linux/notifier.h>
|
|
|
|
#include <linux/thread_info.h>
|
|
|
|
#include <linux/time.h>
|
|
|
|
#include <linux/jiffies.h>
|
|
|
|
#include <linux/posix-timers.h>
|
|
|
|
#include <linux/cpu.h>
|
|
|
|
#include <linux/syscalls.h>
|
2006-01-08 09:02:17 +00:00
|
|
|
#include <linux/delay.h>
|
2007-02-16 09:28:03 +00:00
|
|
|
#include <linux/tick.h>
|
[PATCH] Add debugging feature /proc/timer_stat
Add /proc/timer_stats support: debugging feature to profile timer expiration.
Both the starting site, process/PID and the expiration function is captured.
This allows the quick identification of timer event sources in a system.
Sample output:
# echo 1 > /proc/timer_stats
# cat /proc/timer_stats
Timer Stats Version: v0.1
Sample period: 4.010 s
24, 0 swapper hrtimer_stop_sched_tick (hrtimer_sched_tick)
11, 0 swapper sk_reset_timer (tcp_delack_timer)
6, 0 swapper hrtimer_stop_sched_tick (hrtimer_sched_tick)
2, 1 swapper queue_delayed_work_on (delayed_work_timer_fn)
17, 0 swapper hrtimer_restart_sched_tick (hrtimer_sched_tick)
2, 1 swapper queue_delayed_work_on (delayed_work_timer_fn)
4, 2050 pcscd do_nanosleep (hrtimer_wakeup)
5, 4179 sshd sk_reset_timer (tcp_write_timer)
4, 2248 yum-updatesd schedule_timeout (process_timeout)
18, 0 swapper hrtimer_restart_sched_tick (hrtimer_sched_tick)
3, 0 swapper sk_reset_timer (tcp_delack_timer)
1, 1 swapper neigh_table_init_no_netlink (neigh_periodic_timer)
2, 1 swapper e1000_up (e1000_watchdog)
1, 1 init schedule_timeout (process_timeout)
100 total events, 25.24 events/sec
[ cleanups and hrtimers support from Thomas Gleixner <tglx@linutronix.de> ]
[bunk@stusta.de: nr_entries can become static]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: john stultz <johnstul@us.ibm.com>
Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-16 09:28:13 +00:00
|
|
|
#include <linux/kallsyms.h>
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
#include <asm/uaccess.h>
|
|
|
|
#include <asm/unistd.h>
|
|
|
|
#include <asm/div64.h>
|
|
|
|
#include <asm/timex.h>
|
|
|
|
#include <asm/io.h>
|
|
|
|
|
2005-10-30 23:03:00 +00:00
|
|
|
u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
|
|
|
|
|
|
|
|
EXPORT_SYMBOL(jiffies_64);
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/*
|
|
|
|
* per-CPU timer vector definitions:
|
|
|
|
*/
|
|
|
|
#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
|
|
|
|
#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
|
|
|
|
#define TVN_SIZE (1 << TVN_BITS)
|
|
|
|
#define TVR_SIZE (1 << TVR_BITS)
|
|
|
|
#define TVN_MASK (TVN_SIZE - 1)
|
|
|
|
#define TVR_MASK (TVR_SIZE - 1)
|
|
|
|
|
2008-01-30 12:30:00 +00:00
|
|
|
struct tvec {
|
2005-04-16 22:20:36 +00:00
|
|
|
struct list_head vec[TVN_SIZE];
|
2008-01-30 12:30:00 +00:00
|
|
|
};
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2008-01-30 12:30:00 +00:00
|
|
|
struct tvec_root {
|
2005-04-16 22:20:36 +00:00
|
|
|
struct list_head vec[TVR_SIZE];
|
2008-01-30 12:30:00 +00:00
|
|
|
};
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2008-01-30 12:30:00 +00:00
|
|
|
struct tvec_base {
|
2006-03-31 10:30:30 +00:00
|
|
|
spinlock_t lock;
|
|
|
|
struct timer_list *running_timer;
|
2005-04-16 22:20:36 +00:00
|
|
|
unsigned long timer_jiffies;
|
2008-01-30 12:30:00 +00:00
|
|
|
struct tvec_root tv1;
|
|
|
|
struct tvec tv2;
|
|
|
|
struct tvec tv3;
|
|
|
|
struct tvec tv4;
|
|
|
|
struct tvec tv5;
|
2007-05-08 07:27:44 +00:00
|
|
|
} ____cacheline_aligned;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2008-01-30 12:30:00 +00:00
|
|
|
struct tvec_base boot_tvec_bases;
|
2006-03-31 10:30:30 +00:00
|
|
|
EXPORT_SYMBOL(boot_tvec_bases);
|
2008-01-30 12:30:00 +00:00
|
|
|
static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2007-05-08 07:27:44 +00:00
|
|
|
/*
|
2008-01-30 12:30:00 +00:00
|
|
|
* Note that all tvec_bases are 2 byte aligned and lower bit of
|
2007-05-08 07:27:44 +00:00
|
|
|
* base in timer_list is guaranteed to be zero. Use the LSB for
|
|
|
|
* the new flag to indicate whether the timer is deferrable
|
|
|
|
*/
|
|
|
|
#define TBASE_DEFERRABLE_FLAG (0x1)
|
|
|
|
|
|
|
|
/* Functions below help us manage 'deferrable' flag */
|
2008-01-30 12:30:00 +00:00
|
|
|
static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
|
2007-05-08 07:27:44 +00:00
|
|
|
{
|
2007-05-10 10:16:01 +00:00
|
|
|
return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
|
2007-05-08 07:27:44 +00:00
|
|
|
}
|
|
|
|
|
2008-01-30 12:30:00 +00:00
|
|
|
static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
|
2007-05-08 07:27:44 +00:00
|
|
|
{
|
2008-01-30 12:30:00 +00:00
|
|
|
return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
|
2007-05-08 07:27:44 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline void timer_set_deferrable(struct timer_list *timer)
|
|
|
|
{
|
2008-01-30 12:30:00 +00:00
|
|
|
timer->base = ((struct tvec_base *)((unsigned long)(timer->base) |
|
2007-07-19 08:49:16 +00:00
|
|
|
TBASE_DEFERRABLE_FLAG));
|
2007-05-08 07:27:44 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline void
|
2008-01-30 12:30:00 +00:00
|
|
|
timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
|
2007-05-08 07:27:44 +00:00
|
|
|
{
|
2008-01-30 12:30:00 +00:00
|
|
|
timer->base = (struct tvec_base *)((unsigned long)(new_base) |
|
2007-07-19 08:49:16 +00:00
|
|
|
tbase_get_deferrable(timer->base));
|
2007-05-08 07:27:44 +00:00
|
|
|
}
|
|
|
|
|
2008-11-06 07:42:48 +00:00
|
|
|
static unsigned long round_jiffies_common(unsigned long j, int cpu,
|
|
|
|
bool force_up)
|
2006-12-10 10:21:24 +00:00
|
|
|
{
|
|
|
|
int rem;
|
|
|
|
unsigned long original = j;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We don't want all cpus firing their timers at once hitting the
|
|
|
|
* same lock or cachelines, so we skew each extra cpu with an extra
|
|
|
|
* 3 jiffies. This 3 jiffies came originally from the mm/ code which
|
|
|
|
* already did this.
|
|
|
|
* The skew is done by adding 3*cpunr, then round, then subtract this
|
|
|
|
* extra offset again.
|
|
|
|
*/
|
|
|
|
j += cpu * 3;
|
|
|
|
|
|
|
|
rem = j % HZ;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If the target jiffie is just after a whole second (which can happen
|
|
|
|
* due to delays of the timer irq, long irq off times etc etc) then
|
|
|
|
* we should round down to the whole second, not up. Use 1/4th second
|
|
|
|
* as cutoff for this rounding as an extreme upper bound for this.
|
2008-11-06 07:42:48 +00:00
|
|
|
* But never round down if @force_up is set.
|
2006-12-10 10:21:24 +00:00
|
|
|
*/
|
2008-11-06 07:42:48 +00:00
|
|
|
if (rem < HZ/4 && !force_up) /* round down */
|
2006-12-10 10:21:24 +00:00
|
|
|
j = j - rem;
|
|
|
|
else /* round up */
|
|
|
|
j = j - rem + HZ;
|
|
|
|
|
|
|
|
/* now that we have rounded, subtract the extra skew again */
|
|
|
|
j -= cpu * 3;
|
|
|
|
|
|
|
|
if (j <= jiffies) /* rounding ate our timeout entirely; */
|
|
|
|
return original;
|
|
|
|
return j;
|
|
|
|
}
|
2008-11-06 07:42:48 +00:00
|
|
|
|
|
|
|
/**
|
|
|
|
* __round_jiffies - function to round jiffies to a full second
|
|
|
|
* @j: the time in (absolute) jiffies that should be rounded
|
|
|
|
* @cpu: the processor number on which the timeout will happen
|
|
|
|
*
|
|
|
|
* __round_jiffies() rounds an absolute time in the future (in jiffies)
|
|
|
|
* up or down to (approximately) full seconds. This is useful for timers
|
|
|
|
* for which the exact time they fire does not matter too much, as long as
|
|
|
|
* they fire approximately every X seconds.
|
|
|
|
*
|
|
|
|
* By rounding these timers to whole seconds, all such timers will fire
|
|
|
|
* at the same time, rather than at various times spread out. The goal
|
|
|
|
* of this is to have the CPU wake up less, which saves power.
|
|
|
|
*
|
|
|
|
* The exact rounding is skewed for each processor to avoid all
|
|
|
|
* processors firing at the exact same time, which could lead
|
|
|
|
* to lock contention or spurious cache line bouncing.
|
|
|
|
*
|
|
|
|
* The return value is the rounded version of the @j parameter.
|
|
|
|
*/
|
|
|
|
unsigned long __round_jiffies(unsigned long j, int cpu)
|
|
|
|
{
|
|
|
|
return round_jiffies_common(j, cpu, false);
|
|
|
|
}
|
2006-12-10 10:21:24 +00:00
|
|
|
EXPORT_SYMBOL_GPL(__round_jiffies);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* __round_jiffies_relative - function to round jiffies to a full second
|
|
|
|
* @j: the time in (relative) jiffies that should be rounded
|
|
|
|
* @cpu: the processor number on which the timeout will happen
|
|
|
|
*
|
2007-02-10 09:45:59 +00:00
|
|
|
* __round_jiffies_relative() rounds a time delta in the future (in jiffies)
|
2006-12-10 10:21:24 +00:00
|
|
|
* up or down to (approximately) full seconds. This is useful for timers
|
|
|
|
* for which the exact time they fire does not matter too much, as long as
|
|
|
|
* they fire approximately every X seconds.
|
|
|
|
*
|
|
|
|
* By rounding these timers to whole seconds, all such timers will fire
|
|
|
|
* at the same time, rather than at various times spread out. The goal
|
|
|
|
* of this is to have the CPU wake up less, which saves power.
|
|
|
|
*
|
|
|
|
* The exact rounding is skewed for each processor to avoid all
|
|
|
|
* processors firing at the exact same time, which could lead
|
|
|
|
* to lock contention or spurious cache line bouncing.
|
|
|
|
*
|
2007-02-10 09:45:59 +00:00
|
|
|
* The return value is the rounded version of the @j parameter.
|
2006-12-10 10:21:24 +00:00
|
|
|
*/
|
|
|
|
unsigned long __round_jiffies_relative(unsigned long j, int cpu)
|
|
|
|
{
|
2008-11-06 07:42:48 +00:00
|
|
|
unsigned long j0 = jiffies;
|
|
|
|
|
|
|
|
/* Use j0 because jiffies might change while we run */
|
|
|
|
return round_jiffies_common(j + j0, cpu, false) - j0;
|
2006-12-10 10:21:24 +00:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(__round_jiffies_relative);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* round_jiffies - function to round jiffies to a full second
|
|
|
|
* @j: the time in (absolute) jiffies that should be rounded
|
|
|
|
*
|
2007-02-10 09:45:59 +00:00
|
|
|
* round_jiffies() rounds an absolute time in the future (in jiffies)
|
2006-12-10 10:21:24 +00:00
|
|
|
* up or down to (approximately) full seconds. This is useful for timers
|
|
|
|
* for which the exact time they fire does not matter too much, as long as
|
|
|
|
* they fire approximately every X seconds.
|
|
|
|
*
|
|
|
|
* By rounding these timers to whole seconds, all such timers will fire
|
|
|
|
* at the same time, rather than at various times spread out. The goal
|
|
|
|
* of this is to have the CPU wake up less, which saves power.
|
|
|
|
*
|
2007-02-10 09:45:59 +00:00
|
|
|
* The return value is the rounded version of the @j parameter.
|
2006-12-10 10:21:24 +00:00
|
|
|
*/
|
|
|
|
unsigned long round_jiffies(unsigned long j)
|
|
|
|
{
|
2008-11-06 07:42:48 +00:00
|
|
|
return round_jiffies_common(j, raw_smp_processor_id(), false);
|
2006-12-10 10:21:24 +00:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(round_jiffies);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* round_jiffies_relative - function to round jiffies to a full second
|
|
|
|
* @j: the time in (relative) jiffies that should be rounded
|
|
|
|
*
|
2007-02-10 09:45:59 +00:00
|
|
|
* round_jiffies_relative() rounds a time delta in the future (in jiffies)
|
2006-12-10 10:21:24 +00:00
|
|
|
* up or down to (approximately) full seconds. This is useful for timers
|
|
|
|
* for which the exact time they fire does not matter too much, as long as
|
|
|
|
* they fire approximately every X seconds.
|
|
|
|
*
|
|
|
|
* By rounding these timers to whole seconds, all such timers will fire
|
|
|
|
* at the same time, rather than at various times spread out. The goal
|
|
|
|
* of this is to have the CPU wake up less, which saves power.
|
|
|
|
*
|
2007-02-10 09:45:59 +00:00
|
|
|
* The return value is the rounded version of the @j parameter.
|
2006-12-10 10:21:24 +00:00
|
|
|
*/
|
|
|
|
unsigned long round_jiffies_relative(unsigned long j)
|
|
|
|
{
|
|
|
|
return __round_jiffies_relative(j, raw_smp_processor_id());
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(round_jiffies_relative);
|
|
|
|
|
2008-11-06 07:42:48 +00:00
|
|
|
/**
|
|
|
|
* __round_jiffies_up - function to round jiffies up to a full second
|
|
|
|
* @j: the time in (absolute) jiffies that should be rounded
|
|
|
|
* @cpu: the processor number on which the timeout will happen
|
|
|
|
*
|
|
|
|
* This is the same as __round_jiffies() except that it will never
|
|
|
|
* round down. This is useful for timeouts for which the exact time
|
|
|
|
* of firing does not matter too much, as long as they don't fire too
|
|
|
|
* early.
|
|
|
|
*/
|
|
|
|
unsigned long __round_jiffies_up(unsigned long j, int cpu)
|
|
|
|
{
|
|
|
|
return round_jiffies_common(j, cpu, true);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(__round_jiffies_up);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* __round_jiffies_up_relative - function to round jiffies up to a full second
|
|
|
|
* @j: the time in (relative) jiffies that should be rounded
|
|
|
|
* @cpu: the processor number on which the timeout will happen
|
|
|
|
*
|
|
|
|
* This is the same as __round_jiffies_relative() except that it will never
|
|
|
|
* round down. This is useful for timeouts for which the exact time
|
|
|
|
* of firing does not matter too much, as long as they don't fire too
|
|
|
|
* early.
|
|
|
|
*/
|
|
|
|
unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
|
|
|
|
{
|
|
|
|
unsigned long j0 = jiffies;
|
|
|
|
|
|
|
|
/* Use j0 because jiffies might change while we run */
|
|
|
|
return round_jiffies_common(j + j0, cpu, true) - j0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* round_jiffies_up - function to round jiffies up to a full second
|
|
|
|
* @j: the time in (absolute) jiffies that should be rounded
|
|
|
|
*
|
|
|
|
* This is the same as round_jiffies() except that it will never
|
|
|
|
* round down. This is useful for timeouts for which the exact time
|
|
|
|
* of firing does not matter too much, as long as they don't fire too
|
|
|
|
* early.
|
|
|
|
*/
|
|
|
|
unsigned long round_jiffies_up(unsigned long j)
|
|
|
|
{
|
|
|
|
return round_jiffies_common(j, raw_smp_processor_id(), true);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(round_jiffies_up);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* round_jiffies_up_relative - function to round jiffies up to a full second
|
|
|
|
* @j: the time in (relative) jiffies that should be rounded
|
|
|
|
*
|
|
|
|
* This is the same as round_jiffies_relative() except that it will never
|
|
|
|
* round down. This is useful for timeouts for which the exact time
|
|
|
|
* of firing does not matter too much, as long as they don't fire too
|
|
|
|
* early.
|
|
|
|
*/
|
|
|
|
unsigned long round_jiffies_up_relative(unsigned long j)
|
|
|
|
{
|
|
|
|
return __round_jiffies_up_relative(j, raw_smp_processor_id());
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
|
|
|
|
|
2006-12-10 10:21:24 +00:00
|
|
|
|
2008-01-30 12:30:00 +00:00
|
|
|
static inline void set_running_timer(struct tvec_base *base,
|
2005-04-16 22:20:36 +00:00
|
|
|
struct timer_list *timer)
|
|
|
|
{
|
|
|
|
#ifdef CONFIG_SMP
|
2006-03-31 10:30:30 +00:00
|
|
|
base->running_timer = timer;
|
2005-04-16 22:20:36 +00:00
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
2008-01-30 12:30:00 +00:00
|
|
|
static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
|
|
|
unsigned long expires = timer->expires;
|
|
|
|
unsigned long idx = expires - base->timer_jiffies;
|
|
|
|
struct list_head *vec;
|
|
|
|
|
|
|
|
if (idx < TVR_SIZE) {
|
|
|
|
int i = expires & TVR_MASK;
|
|
|
|
vec = base->tv1.vec + i;
|
|
|
|
} else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
|
|
|
|
int i = (expires >> TVR_BITS) & TVN_MASK;
|
|
|
|
vec = base->tv2.vec + i;
|
|
|
|
} else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
|
|
|
|
int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
|
|
|
|
vec = base->tv3.vec + i;
|
|
|
|
} else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
|
|
|
|
int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
|
|
|
|
vec = base->tv4.vec + i;
|
|
|
|
} else if ((signed long) idx < 0) {
|
|
|
|
/*
|
|
|
|
* Can happen if you add a timer with expires == jiffies,
|
|
|
|
* or you set a timer to go off in the past
|
|
|
|
*/
|
|
|
|
vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
|
|
|
|
} else {
|
|
|
|
int i;
|
|
|
|
/* If the timeout is larger than 0xffffffff on 64-bit
|
|
|
|
* architectures then we use the maximum timeout:
|
|
|
|
*/
|
|
|
|
if (idx > 0xffffffffUL) {
|
|
|
|
idx = 0xffffffffUL;
|
|
|
|
expires = idx + base->timer_jiffies;
|
|
|
|
}
|
|
|
|
i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
|
|
|
|
vec = base->tv5.vec + i;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Timers are FIFO:
|
|
|
|
*/
|
|
|
|
list_add_tail(&timer->entry, vec);
|
|
|
|
}
|
|
|
|
|
[PATCH] Add debugging feature /proc/timer_stat
Add /proc/timer_stats support: debugging feature to profile timer expiration.
Both the starting site, process/PID and the expiration function is captured.
This allows the quick identification of timer event sources in a system.
Sample output:
# echo 1 > /proc/timer_stats
# cat /proc/timer_stats
Timer Stats Version: v0.1
Sample period: 4.010 s
24, 0 swapper hrtimer_stop_sched_tick (hrtimer_sched_tick)
11, 0 swapper sk_reset_timer (tcp_delack_timer)
6, 0 swapper hrtimer_stop_sched_tick (hrtimer_sched_tick)
2, 1 swapper queue_delayed_work_on (delayed_work_timer_fn)
17, 0 swapper hrtimer_restart_sched_tick (hrtimer_sched_tick)
2, 1 swapper queue_delayed_work_on (delayed_work_timer_fn)
4, 2050 pcscd do_nanosleep (hrtimer_wakeup)
5, 4179 sshd sk_reset_timer (tcp_write_timer)
4, 2248 yum-updatesd schedule_timeout (process_timeout)
18, 0 swapper hrtimer_restart_sched_tick (hrtimer_sched_tick)
3, 0 swapper sk_reset_timer (tcp_delack_timer)
1, 1 swapper neigh_table_init_no_netlink (neigh_periodic_timer)
2, 1 swapper e1000_up (e1000_watchdog)
1, 1 init schedule_timeout (process_timeout)
100 total events, 25.24 events/sec
[ cleanups and hrtimers support from Thomas Gleixner <tglx@linutronix.de> ]
[bunk@stusta.de: nr_entries can become static]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: john stultz <johnstul@us.ibm.com>
Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-16 09:28:13 +00:00
|
|
|
#ifdef CONFIG_TIMER_STATS
|
|
|
|
void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
|
|
|
|
{
|
|
|
|
if (timer->start_site)
|
|
|
|
return;
|
|
|
|
|
|
|
|
timer->start_site = addr;
|
|
|
|
memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
|
|
|
|
timer->start_pid = current->pid;
|
|
|
|
}
|
2007-07-16 06:40:30 +00:00
|
|
|
|
|
|
|
static void timer_stats_account_timer(struct timer_list *timer)
|
|
|
|
{
|
|
|
|
unsigned int flag = 0;
|
|
|
|
|
|
|
|
if (unlikely(tbase_get_deferrable(timer->base)))
|
|
|
|
flag |= TIMER_STATS_FLAG_DEFERRABLE;
|
|
|
|
|
|
|
|
timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
|
|
|
|
timer->function, timer->start_comm, flag);
|
|
|
|
}
|
|
|
|
|
|
|
|
#else
|
|
|
|
static void timer_stats_account_timer(struct timer_list *timer) {}
|
[PATCH] Add debugging feature /proc/timer_stat
Add /proc/timer_stats support: debugging feature to profile timer expiration.
Both the starting site, process/PID and the expiration function is captured.
This allows the quick identification of timer event sources in a system.
Sample output:
# echo 1 > /proc/timer_stats
# cat /proc/timer_stats
Timer Stats Version: v0.1
Sample period: 4.010 s
24, 0 swapper hrtimer_stop_sched_tick (hrtimer_sched_tick)
11, 0 swapper sk_reset_timer (tcp_delack_timer)
6, 0 swapper hrtimer_stop_sched_tick (hrtimer_sched_tick)
2, 1 swapper queue_delayed_work_on (delayed_work_timer_fn)
17, 0 swapper hrtimer_restart_sched_tick (hrtimer_sched_tick)
2, 1 swapper queue_delayed_work_on (delayed_work_timer_fn)
4, 2050 pcscd do_nanosleep (hrtimer_wakeup)
5, 4179 sshd sk_reset_timer (tcp_write_timer)
4, 2248 yum-updatesd schedule_timeout (process_timeout)
18, 0 swapper hrtimer_restart_sched_tick (hrtimer_sched_tick)
3, 0 swapper sk_reset_timer (tcp_delack_timer)
1, 1 swapper neigh_table_init_no_netlink (neigh_periodic_timer)
2, 1 swapper e1000_up (e1000_watchdog)
1, 1 init schedule_timeout (process_timeout)
100 total events, 25.24 events/sec
[ cleanups and hrtimers support from Thomas Gleixner <tglx@linutronix.de> ]
[bunk@stusta.de: nr_entries can become static]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: john stultz <johnstul@us.ibm.com>
Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-16 09:28:13 +00:00
|
|
|
#endif
|
|
|
|
|
2008-04-30 07:55:03 +00:00
|
|
|
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
|
|
|
|
|
|
|
|
static struct debug_obj_descr timer_debug_descr;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* fixup_init is called when:
|
|
|
|
* - an active object is initialized
|
[PATCH] timers fixes/improvements
This patch tries to solve following problems:
1. del_timer_sync() is racy. The timer can be fired again after
del_timer_sync have checked all cpus and before it will recheck
timer_pending().
2. It has scalability problems. All cpus are scanned to determine
if the timer is running on that cpu.
With this patch del_timer_sync is O(1) and no slower than plain
del_timer(pending_timer), unless it has to actually wait for
completion of the currently running timer.
The only restriction is that the recurring timer should not use
add_timer_on().
3. The timers are not serialized wrt to itself.
If CPU_0 does mod_timer(jiffies+1) while the timer is currently
running on CPU 1, it is quite possible that local interrupt on
CPU_0 will start that timer before it finished on CPU_1.
4. The timers locking is suboptimal. __mod_timer() takes 3 locks
at once and still requires wmb() in del_timer/run_timers.
The new implementation takes 2 locks sequentially and does not
need memory barriers.
Currently ->base != NULL means that the timer is pending. In that case
->base.lock is used to lock the timer. __mod_timer also takes timer->lock
because ->base can be == NULL.
This patch uses timer->entry.next != NULL as indication that the timer is
pending. So it does __list_del(), entry->next = NULL instead of list_del()
when the timer is deleted.
The ->base field is used for hashed locking only, it is initialized
in init_timer() which sets ->base = per_cpu(tvec_bases). When the
tvec_bases.lock is locked, it means that all timers which are tied
to this base via timer->base are locked, and the base itself is locked
too.
So __run_timers/migrate_timers can safely modify all timers which could
be found on ->tvX lists (pending timers).
When the timer's base is locked, and the timer removed from ->entry list
(which means that _run_timers/migrate_timers can't see this timer), it is
possible to set timer->base = NULL and drop the lock: the timer remains
locked.
This patch adds lock_timer_base() helper, which waits for ->base != NULL,
locks the ->base, and checks it is still the same.
__mod_timer() schedules the timer on the local CPU and changes it's base.
However, it does not lock both old and new bases at once. It locks the
timer via lock_timer_base(), deletes the timer, sets ->base = NULL, and
unlocks old base. Then __mod_timer() locks new_base, sets ->base = new_base,
and adds this timer. This simplifies the code, because AB-BA deadlock is not
possible. __mod_timer() also ensures that the timer's base is not changed
while the timer's handler is running on the old base.
__run_timers(), del_timer() do not change ->base anymore, they only clear
pending flag.
So del_timer_sync() can test timer->base->running_timer == timer to detect
whether it is running or not.
We don't need timer_list->lock anymore, this patch kills it.
We also don't need barriers. del_timer() and __run_timers() used smp_wmb()
before clearing timer's pending flag. It was needed because __mod_timer()
did not lock old_base if the timer is not pending, so __mod_timer()->list_add()
could race with del_timer()->list_del(). With this patch these functions are
serialized through base->lock.
One problem. TIMER_INITIALIZER can't use per_cpu(tvec_bases). So this patch
adds global
struct timer_base_s {
spinlock_t lock;
struct timer_list *running_timer;
} __init_timer_base;
which is used by TIMER_INITIALIZER. The corresponding fields in tvec_t_base_s
struct are replaced by struct timer_base_s t_base.
It is indeed ugly. But this can't have scalability problems. The global
__init_timer_base.lock is used only when __mod_timer() is called for the first
time AND the timer was compile time initialized. After that the timer migrates
to the local CPU.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Renaud Lienhart <renaud.lienhart@free.fr>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 07:08:56 +00:00
|
|
|
*/
|
2008-04-30 07:55:03 +00:00
|
|
|
static int timer_fixup_init(void *addr, enum debug_obj_state state)
|
|
|
|
{
|
|
|
|
struct timer_list *timer = addr;
|
|
|
|
|
|
|
|
switch (state) {
|
|
|
|
case ODEBUG_STATE_ACTIVE:
|
|
|
|
del_timer_sync(timer);
|
|
|
|
debug_object_init(timer, &timer_debug_descr);
|
|
|
|
return 1;
|
|
|
|
default:
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* fixup_activate is called when:
|
|
|
|
* - an active object is activated
|
|
|
|
* - an unknown object is activated (might be a statically initialized object)
|
|
|
|
*/
|
|
|
|
static int timer_fixup_activate(void *addr, enum debug_obj_state state)
|
|
|
|
{
|
|
|
|
struct timer_list *timer = addr;
|
|
|
|
|
|
|
|
switch (state) {
|
|
|
|
|
|
|
|
case ODEBUG_STATE_NOTAVAILABLE:
|
|
|
|
/*
|
|
|
|
* This is not really a fixup. The timer was
|
|
|
|
* statically initialized. We just make sure that it
|
|
|
|
* is tracked in the object tracker.
|
|
|
|
*/
|
|
|
|
if (timer->entry.next == NULL &&
|
|
|
|
timer->entry.prev == TIMER_ENTRY_STATIC) {
|
|
|
|
debug_object_init(timer, &timer_debug_descr);
|
|
|
|
debug_object_activate(timer, &timer_debug_descr);
|
|
|
|
return 0;
|
|
|
|
} else {
|
|
|
|
WARN_ON_ONCE(1);
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
case ODEBUG_STATE_ACTIVE:
|
|
|
|
WARN_ON(1);
|
|
|
|
|
|
|
|
default:
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* fixup_free is called when:
|
|
|
|
* - an active object is freed
|
|
|
|
*/
|
|
|
|
static int timer_fixup_free(void *addr, enum debug_obj_state state)
|
|
|
|
{
|
|
|
|
struct timer_list *timer = addr;
|
|
|
|
|
|
|
|
switch (state) {
|
|
|
|
case ODEBUG_STATE_ACTIVE:
|
|
|
|
del_timer_sync(timer);
|
|
|
|
debug_object_free(timer, &timer_debug_descr);
|
|
|
|
return 1;
|
|
|
|
default:
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct debug_obj_descr timer_debug_descr = {
|
|
|
|
.name = "timer_list",
|
|
|
|
.fixup_init = timer_fixup_init,
|
|
|
|
.fixup_activate = timer_fixup_activate,
|
|
|
|
.fixup_free = timer_fixup_free,
|
|
|
|
};
|
|
|
|
|
|
|
|
static inline void debug_timer_init(struct timer_list *timer)
|
|
|
|
{
|
|
|
|
debug_object_init(timer, &timer_debug_descr);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void debug_timer_activate(struct timer_list *timer)
|
|
|
|
{
|
|
|
|
debug_object_activate(timer, &timer_debug_descr);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void debug_timer_deactivate(struct timer_list *timer)
|
|
|
|
{
|
|
|
|
debug_object_deactivate(timer, &timer_debug_descr);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void debug_timer_free(struct timer_list *timer)
|
|
|
|
{
|
|
|
|
debug_object_free(timer, &timer_debug_descr);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void __init_timer(struct timer_list *timer);
|
|
|
|
|
|
|
|
void init_timer_on_stack(struct timer_list *timer)
|
|
|
|
{
|
|
|
|
debug_object_init_on_stack(timer, &timer_debug_descr);
|
|
|
|
__init_timer(timer);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(init_timer_on_stack);
|
|
|
|
|
|
|
|
void destroy_timer_on_stack(struct timer_list *timer)
|
|
|
|
{
|
|
|
|
debug_object_free(timer, &timer_debug_descr);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
|
|
|
|
|
|
|
|
#else
|
|
|
|
static inline void debug_timer_init(struct timer_list *timer) { }
|
|
|
|
static inline void debug_timer_activate(struct timer_list *timer) { }
|
|
|
|
static inline void debug_timer_deactivate(struct timer_list *timer) { }
|
|
|
|
#endif
|
|
|
|
|
|
|
|
static void __init_timer(struct timer_list *timer)
|
[PATCH] timers fixes/improvements
This patch tries to solve following problems:
1. del_timer_sync() is racy. The timer can be fired again after
del_timer_sync have checked all cpus and before it will recheck
timer_pending().
2. It has scalability problems. All cpus are scanned to determine
if the timer is running on that cpu.
With this patch del_timer_sync is O(1) and no slower than plain
del_timer(pending_timer), unless it has to actually wait for
completion of the currently running timer.
The only restriction is that the recurring timer should not use
add_timer_on().
3. The timers are not serialized wrt to itself.
If CPU_0 does mod_timer(jiffies+1) while the timer is currently
running on CPU 1, it is quite possible that local interrupt on
CPU_0 will start that timer before it finished on CPU_1.
4. The timers locking is suboptimal. __mod_timer() takes 3 locks
at once and still requires wmb() in del_timer/run_timers.
The new implementation takes 2 locks sequentially and does not
need memory barriers.
Currently ->base != NULL means that the timer is pending. In that case
->base.lock is used to lock the timer. __mod_timer also takes timer->lock
because ->base can be == NULL.
This patch uses timer->entry.next != NULL as indication that the timer is
pending. So it does __list_del(), entry->next = NULL instead of list_del()
when the timer is deleted.
The ->base field is used for hashed locking only, it is initialized
in init_timer() which sets ->base = per_cpu(tvec_bases). When the
tvec_bases.lock is locked, it means that all timers which are tied
to this base via timer->base are locked, and the base itself is locked
too.
So __run_timers/migrate_timers can safely modify all timers which could
be found on ->tvX lists (pending timers).
When the timer's base is locked, and the timer removed from ->entry list
(which means that _run_timers/migrate_timers can't see this timer), it is
possible to set timer->base = NULL and drop the lock: the timer remains
locked.
This patch adds lock_timer_base() helper, which waits for ->base != NULL,
locks the ->base, and checks it is still the same.
__mod_timer() schedules the timer on the local CPU and changes it's base.
However, it does not lock both old and new bases at once. It locks the
timer via lock_timer_base(), deletes the timer, sets ->base = NULL, and
unlocks old base. Then __mod_timer() locks new_base, sets ->base = new_base,
and adds this timer. This simplifies the code, because AB-BA deadlock is not
possible. __mod_timer() also ensures that the timer's base is not changed
while the timer's handler is running on the old base.
__run_timers(), del_timer() do not change ->base anymore, they only clear
pending flag.
So del_timer_sync() can test timer->base->running_timer == timer to detect
whether it is running or not.
We don't need timer_list->lock anymore, this patch kills it.
We also don't need barriers. del_timer() and __run_timers() used smp_wmb()
before clearing timer's pending flag. It was needed because __mod_timer()
did not lock old_base if the timer is not pending, so __mod_timer()->list_add()
could race with del_timer()->list_del(). With this patch these functions are
serialized through base->lock.
One problem. TIMER_INITIALIZER can't use per_cpu(tvec_bases). So this patch
adds global
struct timer_base_s {
spinlock_t lock;
struct timer_list *running_timer;
} __init_timer_base;
which is used by TIMER_INITIALIZER. The corresponding fields in tvec_t_base_s
struct are replaced by struct timer_base_s t_base.
It is indeed ugly. But this can't have scalability problems. The global
__init_timer_base.lock is used only when __mod_timer() is called for the first
time AND the timer was compile time initialized. After that the timer migrates
to the local CPU.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Renaud Lienhart <renaud.lienhart@free.fr>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 07:08:56 +00:00
|
|
|
{
|
|
|
|
timer->entry.next = NULL;
|
[PATCH] Define __raw_get_cpu_var and use it
There are several instances of per_cpu(foo, raw_smp_processor_id()), which
is semantically equivalent to __get_cpu_var(foo) but without the warning
that smp_processor_id() can give if CONFIG_DEBUG_PREEMPT is enabled. For
those architectures with optimized per-cpu implementations, namely ia64,
powerpc, s390, sparc64 and x86_64, per_cpu() turns into more and slower
code than __get_cpu_var(), so it would be preferable to use __get_cpu_var
on those platforms.
This defines a __raw_get_cpu_var(x) macro which turns into per_cpu(x,
raw_smp_processor_id()) on architectures that use the generic per-cpu
implementation, and turns into __get_cpu_var(x) on the architectures that
have an optimized per-cpu implementation.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Acked-by: David S. Miller <davem@davemloft.net>
Acked-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-25 12:47:14 +00:00
|
|
|
timer->base = __raw_get_cpu_var(tvec_bases);
|
[PATCH] Add debugging feature /proc/timer_stat
Add /proc/timer_stats support: debugging feature to profile timer expiration.
Both the starting site, process/PID and the expiration function is captured.
This allows the quick identification of timer event sources in a system.
Sample output:
# echo 1 > /proc/timer_stats
# cat /proc/timer_stats
Timer Stats Version: v0.1
Sample period: 4.010 s
24, 0 swapper hrtimer_stop_sched_tick (hrtimer_sched_tick)
11, 0 swapper sk_reset_timer (tcp_delack_timer)
6, 0 swapper hrtimer_stop_sched_tick (hrtimer_sched_tick)
2, 1 swapper queue_delayed_work_on (delayed_work_timer_fn)
17, 0 swapper hrtimer_restart_sched_tick (hrtimer_sched_tick)
2, 1 swapper queue_delayed_work_on (delayed_work_timer_fn)
4, 2050 pcscd do_nanosleep (hrtimer_wakeup)
5, 4179 sshd sk_reset_timer (tcp_write_timer)
4, 2248 yum-updatesd schedule_timeout (process_timeout)
18, 0 swapper hrtimer_restart_sched_tick (hrtimer_sched_tick)
3, 0 swapper sk_reset_timer (tcp_delack_timer)
1, 1 swapper neigh_table_init_no_netlink (neigh_periodic_timer)
2, 1 swapper e1000_up (e1000_watchdog)
1, 1 init schedule_timeout (process_timeout)
100 total events, 25.24 events/sec
[ cleanups and hrtimers support from Thomas Gleixner <tglx@linutronix.de> ]
[bunk@stusta.de: nr_entries can become static]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: john stultz <johnstul@us.ibm.com>
Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-16 09:28:13 +00:00
|
|
|
#ifdef CONFIG_TIMER_STATS
|
|
|
|
timer->start_site = NULL;
|
|
|
|
timer->start_pid = -1;
|
|
|
|
memset(timer->start_comm, 0, TASK_COMM_LEN);
|
|
|
|
#endif
|
[PATCH] timers fixes/improvements
This patch tries to solve following problems:
1. del_timer_sync() is racy. The timer can be fired again after
del_timer_sync have checked all cpus and before it will recheck
timer_pending().
2. It has scalability problems. All cpus are scanned to determine
if the timer is running on that cpu.
With this patch del_timer_sync is O(1) and no slower than plain
del_timer(pending_timer), unless it has to actually wait for
completion of the currently running timer.
The only restriction is that the recurring timer should not use
add_timer_on().
3. The timers are not serialized wrt to itself.
If CPU_0 does mod_timer(jiffies+1) while the timer is currently
running on CPU 1, it is quite possible that local interrupt on
CPU_0 will start that timer before it finished on CPU_1.
4. The timers locking is suboptimal. __mod_timer() takes 3 locks
at once and still requires wmb() in del_timer/run_timers.
The new implementation takes 2 locks sequentially and does not
need memory barriers.
Currently ->base != NULL means that the timer is pending. In that case
->base.lock is used to lock the timer. __mod_timer also takes timer->lock
because ->base can be == NULL.
This patch uses timer->entry.next != NULL as indication that the timer is
pending. So it does __list_del(), entry->next = NULL instead of list_del()
when the timer is deleted.
The ->base field is used for hashed locking only, it is initialized
in init_timer() which sets ->base = per_cpu(tvec_bases). When the
tvec_bases.lock is locked, it means that all timers which are tied
to this base via timer->base are locked, and the base itself is locked
too.
So __run_timers/migrate_timers can safely modify all timers which could
be found on ->tvX lists (pending timers).
When the timer's base is locked, and the timer removed from ->entry list
(which means that _run_timers/migrate_timers can't see this timer), it is
possible to set timer->base = NULL and drop the lock: the timer remains
locked.
This patch adds lock_timer_base() helper, which waits for ->base != NULL,
locks the ->base, and checks it is still the same.
__mod_timer() schedules the timer on the local CPU and changes it's base.
However, it does not lock both old and new bases at once. It locks the
timer via lock_timer_base(), deletes the timer, sets ->base = NULL, and
unlocks old base. Then __mod_timer() locks new_base, sets ->base = new_base,
and adds this timer. This simplifies the code, because AB-BA deadlock is not
possible. __mod_timer() also ensures that the timer's base is not changed
while the timer's handler is running on the old base.
__run_timers(), del_timer() do not change ->base anymore, they only clear
pending flag.
So del_timer_sync() can test timer->base->running_timer == timer to detect
whether it is running or not.
We don't need timer_list->lock anymore, this patch kills it.
We also don't need barriers. del_timer() and __run_timers() used smp_wmb()
before clearing timer's pending flag. It was needed because __mod_timer()
did not lock old_base if the timer is not pending, so __mod_timer()->list_add()
could race with del_timer()->list_del(). With this patch these functions are
serialized through base->lock.
One problem. TIMER_INITIALIZER can't use per_cpu(tvec_bases). So this patch
adds global
struct timer_base_s {
spinlock_t lock;
struct timer_list *running_timer;
} __init_timer_base;
which is used by TIMER_INITIALIZER. The corresponding fields in tvec_t_base_s
struct are replaced by struct timer_base_s t_base.
It is indeed ugly. But this can't have scalability problems. The global
__init_timer_base.lock is used only when __mod_timer() is called for the first
time AND the timer was compile time initialized. After that the timer migrates
to the local CPU.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Renaud Lienhart <renaud.lienhart@free.fr>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 07:08:56 +00:00
|
|
|
}
|
2008-04-30 07:55:03 +00:00
|
|
|
|
|
|
|
/**
|
|
|
|
* init_timer - initialize a timer.
|
|
|
|
* @timer: the timer to be initialized
|
|
|
|
*
|
|
|
|
* init_timer() must be done to a timer prior calling *any* of the
|
|
|
|
* other timer functions.
|
|
|
|
*/
|
|
|
|
void init_timer(struct timer_list *timer)
|
|
|
|
{
|
|
|
|
debug_timer_init(timer);
|
|
|
|
__init_timer(timer);
|
|
|
|
}
|
[PATCH] timers fixes/improvements
This patch tries to solve following problems:
1. del_timer_sync() is racy. The timer can be fired again after
del_timer_sync have checked all cpus and before it will recheck
timer_pending().
2. It has scalability problems. All cpus are scanned to determine
if the timer is running on that cpu.
With this patch del_timer_sync is O(1) and no slower than plain
del_timer(pending_timer), unless it has to actually wait for
completion of the currently running timer.
The only restriction is that the recurring timer should not use
add_timer_on().
3. The timers are not serialized wrt to itself.
If CPU_0 does mod_timer(jiffies+1) while the timer is currently
running on CPU 1, it is quite possible that local interrupt on
CPU_0 will start that timer before it finished on CPU_1.
4. The timers locking is suboptimal. __mod_timer() takes 3 locks
at once and still requires wmb() in del_timer/run_timers.
The new implementation takes 2 locks sequentially and does not
need memory barriers.
Currently ->base != NULL means that the timer is pending. In that case
->base.lock is used to lock the timer. __mod_timer also takes timer->lock
because ->base can be == NULL.
This patch uses timer->entry.next != NULL as indication that the timer is
pending. So it does __list_del(), entry->next = NULL instead of list_del()
when the timer is deleted.
The ->base field is used for hashed locking only, it is initialized
in init_timer() which sets ->base = per_cpu(tvec_bases). When the
tvec_bases.lock is locked, it means that all timers which are tied
to this base via timer->base are locked, and the base itself is locked
too.
So __run_timers/migrate_timers can safely modify all timers which could
be found on ->tvX lists (pending timers).
When the timer's base is locked, and the timer removed from ->entry list
(which means that _run_timers/migrate_timers can't see this timer), it is
possible to set timer->base = NULL and drop the lock: the timer remains
locked.
This patch adds lock_timer_base() helper, which waits for ->base != NULL,
locks the ->base, and checks it is still the same.
__mod_timer() schedules the timer on the local CPU and changes it's base.
However, it does not lock both old and new bases at once. It locks the
timer via lock_timer_base(), deletes the timer, sets ->base = NULL, and
unlocks old base. Then __mod_timer() locks new_base, sets ->base = new_base,
and adds this timer. This simplifies the code, because AB-BA deadlock is not
possible. __mod_timer() also ensures that the timer's base is not changed
while the timer's handler is running on the old base.
__run_timers(), del_timer() do not change ->base anymore, they only clear
pending flag.
So del_timer_sync() can test timer->base->running_timer == timer to detect
whether it is running or not.
We don't need timer_list->lock anymore, this patch kills it.
We also don't need barriers. del_timer() and __run_timers() used smp_wmb()
before clearing timer's pending flag. It was needed because __mod_timer()
did not lock old_base if the timer is not pending, so __mod_timer()->list_add()
could race with del_timer()->list_del(). With this patch these functions are
serialized through base->lock.
One problem. TIMER_INITIALIZER can't use per_cpu(tvec_bases). So this patch
adds global
struct timer_base_s {
spinlock_t lock;
struct timer_list *running_timer;
} __init_timer_base;
which is used by TIMER_INITIALIZER. The corresponding fields in tvec_t_base_s
struct are replaced by struct timer_base_s t_base.
It is indeed ugly. But this can't have scalability problems. The global
__init_timer_base.lock is used only when __mod_timer() is called for the first
time AND the timer was compile time initialized. After that the timer migrates
to the local CPU.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Renaud Lienhart <renaud.lienhart@free.fr>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 07:08:56 +00:00
|
|
|
EXPORT_SYMBOL(init_timer);
|
|
|
|
|
2008-02-08 12:19:53 +00:00
|
|
|
void init_timer_deferrable(struct timer_list *timer)
|
2007-05-08 07:27:44 +00:00
|
|
|
{
|
|
|
|
init_timer(timer);
|
|
|
|
timer_set_deferrable(timer);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(init_timer_deferrable);
|
|
|
|
|
[PATCH] timers fixes/improvements
This patch tries to solve following problems:
1. del_timer_sync() is racy. The timer can be fired again after
del_timer_sync have checked all cpus and before it will recheck
timer_pending().
2. It has scalability problems. All cpus are scanned to determine
if the timer is running on that cpu.
With this patch del_timer_sync is O(1) and no slower than plain
del_timer(pending_timer), unless it has to actually wait for
completion of the currently running timer.
The only restriction is that the recurring timer should not use
add_timer_on().
3. The timers are not serialized wrt to itself.
If CPU_0 does mod_timer(jiffies+1) while the timer is currently
running on CPU 1, it is quite possible that local interrupt on
CPU_0 will start that timer before it finished on CPU_1.
4. The timers locking is suboptimal. __mod_timer() takes 3 locks
at once and still requires wmb() in del_timer/run_timers.
The new implementation takes 2 locks sequentially and does not
need memory barriers.
Currently ->base != NULL means that the timer is pending. In that case
->base.lock is used to lock the timer. __mod_timer also takes timer->lock
because ->base can be == NULL.
This patch uses timer->entry.next != NULL as indication that the timer is
pending. So it does __list_del(), entry->next = NULL instead of list_del()
when the timer is deleted.
The ->base field is used for hashed locking only, it is initialized
in init_timer() which sets ->base = per_cpu(tvec_bases). When the
tvec_bases.lock is locked, it means that all timers which are tied
to this base via timer->base are locked, and the base itself is locked
too.
So __run_timers/migrate_timers can safely modify all timers which could
be found on ->tvX lists (pending timers).
When the timer's base is locked, and the timer removed from ->entry list
(which means that _run_timers/migrate_timers can't see this timer), it is
possible to set timer->base = NULL and drop the lock: the timer remains
locked.
This patch adds lock_timer_base() helper, which waits for ->base != NULL,
locks the ->base, and checks it is still the same.
__mod_timer() schedules the timer on the local CPU and changes it's base.
However, it does not lock both old and new bases at once. It locks the
timer via lock_timer_base(), deletes the timer, sets ->base = NULL, and
unlocks old base. Then __mod_timer() locks new_base, sets ->base = new_base,
and adds this timer. This simplifies the code, because AB-BA deadlock is not
possible. __mod_timer() also ensures that the timer's base is not changed
while the timer's handler is running on the old base.
__run_timers(), del_timer() do not change ->base anymore, they only clear
pending flag.
So del_timer_sync() can test timer->base->running_timer == timer to detect
whether it is running or not.
We don't need timer_list->lock anymore, this patch kills it.
We also don't need barriers. del_timer() and __run_timers() used smp_wmb()
before clearing timer's pending flag. It was needed because __mod_timer()
did not lock old_base if the timer is not pending, so __mod_timer()->list_add()
could race with del_timer()->list_del(). With this patch these functions are
serialized through base->lock.
One problem. TIMER_INITIALIZER can't use per_cpu(tvec_bases). So this patch
adds global
struct timer_base_s {
spinlock_t lock;
struct timer_list *running_timer;
} __init_timer_base;
which is used by TIMER_INITIALIZER. The corresponding fields in tvec_t_base_s
struct are replaced by struct timer_base_s t_base.
It is indeed ugly. But this can't have scalability problems. The global
__init_timer_base.lock is used only when __mod_timer() is called for the first
time AND the timer was compile time initialized. After that the timer migrates
to the local CPU.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Renaud Lienhart <renaud.lienhart@free.fr>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 07:08:56 +00:00
|
|
|
static inline void detach_timer(struct timer_list *timer,
|
[PATCH] Add debugging feature /proc/timer_stat
Add /proc/timer_stats support: debugging feature to profile timer expiration.
Both the starting site, process/PID and the expiration function is captured.
This allows the quick identification of timer event sources in a system.
Sample output:
# echo 1 > /proc/timer_stats
# cat /proc/timer_stats
Timer Stats Version: v0.1
Sample period: 4.010 s
24, 0 swapper hrtimer_stop_sched_tick (hrtimer_sched_tick)
11, 0 swapper sk_reset_timer (tcp_delack_timer)
6, 0 swapper hrtimer_stop_sched_tick (hrtimer_sched_tick)
2, 1 swapper queue_delayed_work_on (delayed_work_timer_fn)
17, 0 swapper hrtimer_restart_sched_tick (hrtimer_sched_tick)
2, 1 swapper queue_delayed_work_on (delayed_work_timer_fn)
4, 2050 pcscd do_nanosleep (hrtimer_wakeup)
5, 4179 sshd sk_reset_timer (tcp_write_timer)
4, 2248 yum-updatesd schedule_timeout (process_timeout)
18, 0 swapper hrtimer_restart_sched_tick (hrtimer_sched_tick)
3, 0 swapper sk_reset_timer (tcp_delack_timer)
1, 1 swapper neigh_table_init_no_netlink (neigh_periodic_timer)
2, 1 swapper e1000_up (e1000_watchdog)
1, 1 init schedule_timeout (process_timeout)
100 total events, 25.24 events/sec
[ cleanups and hrtimers support from Thomas Gleixner <tglx@linutronix.de> ]
[bunk@stusta.de: nr_entries can become static]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: john stultz <johnstul@us.ibm.com>
Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-16 09:28:13 +00:00
|
|
|
int clear_pending)
|
[PATCH] timers fixes/improvements
This patch tries to solve following problems:
1. del_timer_sync() is racy. The timer can be fired again after
del_timer_sync have checked all cpus and before it will recheck
timer_pending().
2. It has scalability problems. All cpus are scanned to determine
if the timer is running on that cpu.
With this patch del_timer_sync is O(1) and no slower than plain
del_timer(pending_timer), unless it has to actually wait for
completion of the currently running timer.
The only restriction is that the recurring timer should not use
add_timer_on().
3. The timers are not serialized wrt to itself.
If CPU_0 does mod_timer(jiffies+1) while the timer is currently
running on CPU 1, it is quite possible that local interrupt on
CPU_0 will start that timer before it finished on CPU_1.
4. The timers locking is suboptimal. __mod_timer() takes 3 locks
at once and still requires wmb() in del_timer/run_timers.
The new implementation takes 2 locks sequentially and does not
need memory barriers.
Currently ->base != NULL means that the timer is pending. In that case
->base.lock is used to lock the timer. __mod_timer also takes timer->lock
because ->base can be == NULL.
This patch uses timer->entry.next != NULL as indication that the timer is
pending. So it does __list_del(), entry->next = NULL instead of list_del()
when the timer is deleted.
The ->base field is used for hashed locking only, it is initialized
in init_timer() which sets ->base = per_cpu(tvec_bases). When the
tvec_bases.lock is locked, it means that all timers which are tied
to this base via timer->base are locked, and the base itself is locked
too.
So __run_timers/migrate_timers can safely modify all timers which could
be found on ->tvX lists (pending timers).
When the timer's base is locked, and the timer removed from ->entry list
(which means that _run_timers/migrate_timers can't see this timer), it is
possible to set timer->base = NULL and drop the lock: the timer remains
locked.
This patch adds lock_timer_base() helper, which waits for ->base != NULL,
locks the ->base, and checks it is still the same.
__mod_timer() schedules the timer on the local CPU and changes it's base.
However, it does not lock both old and new bases at once. It locks the
timer via lock_timer_base(), deletes the timer, sets ->base = NULL, and
unlocks old base. Then __mod_timer() locks new_base, sets ->base = new_base,
and adds this timer. This simplifies the code, because AB-BA deadlock is not
possible. __mod_timer() also ensures that the timer's base is not changed
while the timer's handler is running on the old base.
__run_timers(), del_timer() do not change ->base anymore, they only clear
pending flag.
So del_timer_sync() can test timer->base->running_timer == timer to detect
whether it is running or not.
We don't need timer_list->lock anymore, this patch kills it.
We also don't need barriers. del_timer() and __run_timers() used smp_wmb()
before clearing timer's pending flag. It was needed because __mod_timer()
did not lock old_base if the timer is not pending, so __mod_timer()->list_add()
could race with del_timer()->list_del(). With this patch these functions are
serialized through base->lock.
One problem. TIMER_INITIALIZER can't use per_cpu(tvec_bases). So this patch
adds global
struct timer_base_s {
spinlock_t lock;
struct timer_list *running_timer;
} __init_timer_base;
which is used by TIMER_INITIALIZER. The corresponding fields in tvec_t_base_s
struct are replaced by struct timer_base_s t_base.
It is indeed ugly. But this can't have scalability problems. The global
__init_timer_base.lock is used only when __mod_timer() is called for the first
time AND the timer was compile time initialized. After that the timer migrates
to the local CPU.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Renaud Lienhart <renaud.lienhart@free.fr>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 07:08:56 +00:00
|
|
|
{
|
|
|
|
struct list_head *entry = &timer->entry;
|
|
|
|
|
2008-04-30 07:55:03 +00:00
|
|
|
debug_timer_deactivate(timer);
|
|
|
|
|
[PATCH] timers fixes/improvements
This patch tries to solve following problems:
1. del_timer_sync() is racy. The timer can be fired again after
del_timer_sync have checked all cpus and before it will recheck
timer_pending().
2. It has scalability problems. All cpus are scanned to determine
if the timer is running on that cpu.
With this patch del_timer_sync is O(1) and no slower than plain
del_timer(pending_timer), unless it has to actually wait for
completion of the currently running timer.
The only restriction is that the recurring timer should not use
add_timer_on().
3. The timers are not serialized wrt to itself.
If CPU_0 does mod_timer(jiffies+1) while the timer is currently
running on CPU 1, it is quite possible that local interrupt on
CPU_0 will start that timer before it finished on CPU_1.
4. The timers locking is suboptimal. __mod_timer() takes 3 locks
at once and still requires wmb() in del_timer/run_timers.
The new implementation takes 2 locks sequentially and does not
need memory barriers.
Currently ->base != NULL means that the timer is pending. In that case
->base.lock is used to lock the timer. __mod_timer also takes timer->lock
because ->base can be == NULL.
This patch uses timer->entry.next != NULL as indication that the timer is
pending. So it does __list_del(), entry->next = NULL instead of list_del()
when the timer is deleted.
The ->base field is used for hashed locking only, it is initialized
in init_timer() which sets ->base = per_cpu(tvec_bases). When the
tvec_bases.lock is locked, it means that all timers which are tied
to this base via timer->base are locked, and the base itself is locked
too.
So __run_timers/migrate_timers can safely modify all timers which could
be found on ->tvX lists (pending timers).
When the timer's base is locked, and the timer removed from ->entry list
(which means that _run_timers/migrate_timers can't see this timer), it is
possible to set timer->base = NULL and drop the lock: the timer remains
locked.
This patch adds lock_timer_base() helper, which waits for ->base != NULL,
locks the ->base, and checks it is still the same.
__mod_timer() schedules the timer on the local CPU and changes it's base.
However, it does not lock both old and new bases at once. It locks the
timer via lock_timer_base(), deletes the timer, sets ->base = NULL, and
unlocks old base. Then __mod_timer() locks new_base, sets ->base = new_base,
and adds this timer. This simplifies the code, because AB-BA deadlock is not
possible. __mod_timer() also ensures that the timer's base is not changed
while the timer's handler is running on the old base.
__run_timers(), del_timer() do not change ->base anymore, they only clear
pending flag.
So del_timer_sync() can test timer->base->running_timer == timer to detect
whether it is running or not.
We don't need timer_list->lock anymore, this patch kills it.
We also don't need barriers. del_timer() and __run_timers() used smp_wmb()
before clearing timer's pending flag. It was needed because __mod_timer()
did not lock old_base if the timer is not pending, so __mod_timer()->list_add()
could race with del_timer()->list_del(). With this patch these functions are
serialized through base->lock.
One problem. TIMER_INITIALIZER can't use per_cpu(tvec_bases). So this patch
adds global
struct timer_base_s {
spinlock_t lock;
struct timer_list *running_timer;
} __init_timer_base;
which is used by TIMER_INITIALIZER. The corresponding fields in tvec_t_base_s
struct are replaced by struct timer_base_s t_base.
It is indeed ugly. But this can't have scalability problems. The global
__init_timer_base.lock is used only when __mod_timer() is called for the first
time AND the timer was compile time initialized. After that the timer migrates
to the local CPU.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Renaud Lienhart <renaud.lienhart@free.fr>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 07:08:56 +00:00
|
|
|
__list_del(entry->prev, entry->next);
|
|
|
|
if (clear_pending)
|
|
|
|
entry->next = NULL;
|
|
|
|
entry->prev = LIST_POISON2;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2006-03-31 10:30:30 +00:00
|
|
|
* We are using hashed locking: holding per_cpu(tvec_bases).lock
|
[PATCH] timers fixes/improvements
This patch tries to solve following problems:
1. del_timer_sync() is racy. The timer can be fired again after
del_timer_sync have checked all cpus and before it will recheck
timer_pending().
2. It has scalability problems. All cpus are scanned to determine
if the timer is running on that cpu.
With this patch del_timer_sync is O(1) and no slower than plain
del_timer(pending_timer), unless it has to actually wait for
completion of the currently running timer.
The only restriction is that the recurring timer should not use
add_timer_on().
3. The timers are not serialized wrt to itself.
If CPU_0 does mod_timer(jiffies+1) while the timer is currently
running on CPU 1, it is quite possible that local interrupt on
CPU_0 will start that timer before it finished on CPU_1.
4. The timers locking is suboptimal. __mod_timer() takes 3 locks
at once and still requires wmb() in del_timer/run_timers.
The new implementation takes 2 locks sequentially and does not
need memory barriers.
Currently ->base != NULL means that the timer is pending. In that case
->base.lock is used to lock the timer. __mod_timer also takes timer->lock
because ->base can be == NULL.
This patch uses timer->entry.next != NULL as indication that the timer is
pending. So it does __list_del(), entry->next = NULL instead of list_del()
when the timer is deleted.
The ->base field is used for hashed locking only, it is initialized
in init_timer() which sets ->base = per_cpu(tvec_bases). When the
tvec_bases.lock is locked, it means that all timers which are tied
to this base via timer->base are locked, and the base itself is locked
too.
So __run_timers/migrate_timers can safely modify all timers which could
be found on ->tvX lists (pending timers).
When the timer's base is locked, and the timer removed from ->entry list
(which means that _run_timers/migrate_timers can't see this timer), it is
possible to set timer->base = NULL and drop the lock: the timer remains
locked.
This patch adds lock_timer_base() helper, which waits for ->base != NULL,
locks the ->base, and checks it is still the same.
__mod_timer() schedules the timer on the local CPU and changes it's base.
However, it does not lock both old and new bases at once. It locks the
timer via lock_timer_base(), deletes the timer, sets ->base = NULL, and
unlocks old base. Then __mod_timer() locks new_base, sets ->base = new_base,
and adds this timer. This simplifies the code, because AB-BA deadlock is not
possible. __mod_timer() also ensures that the timer's base is not changed
while the timer's handler is running on the old base.
__run_timers(), del_timer() do not change ->base anymore, they only clear
pending flag.
So del_timer_sync() can test timer->base->running_timer == timer to detect
whether it is running or not.
We don't need timer_list->lock anymore, this patch kills it.
We also don't need barriers. del_timer() and __run_timers() used smp_wmb()
before clearing timer's pending flag. It was needed because __mod_timer()
did not lock old_base if the timer is not pending, so __mod_timer()->list_add()
could race with del_timer()->list_del(). With this patch these functions are
serialized through base->lock.
One problem. TIMER_INITIALIZER can't use per_cpu(tvec_bases). So this patch
adds global
struct timer_base_s {
spinlock_t lock;
struct timer_list *running_timer;
} __init_timer_base;
which is used by TIMER_INITIALIZER. The corresponding fields in tvec_t_base_s
struct are replaced by struct timer_base_s t_base.
It is indeed ugly. But this can't have scalability problems. The global
__init_timer_base.lock is used only when __mod_timer() is called for the first
time AND the timer was compile time initialized. After that the timer migrates
to the local CPU.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Renaud Lienhart <renaud.lienhart@free.fr>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 07:08:56 +00:00
|
|
|
* means that all timers which are tied to this base via timer->base are
|
|
|
|
* locked, and the base itself is locked too.
|
|
|
|
*
|
|
|
|
* So __run_timers/migrate_timers can safely modify all timers which could
|
|
|
|
* be found on ->tvX lists.
|
|
|
|
*
|
|
|
|
* When the timer's base is locked, and the timer removed from list, it is
|
|
|
|
* possible to set timer->base = NULL and drop the lock: the timer remains
|
|
|
|
* locked.
|
|
|
|
*/
|
2008-01-30 12:30:00 +00:00
|
|
|
static struct tvec_base *lock_timer_base(struct timer_list *timer,
|
[PATCH] timers fixes/improvements
This patch tries to solve following problems:
1. del_timer_sync() is racy. The timer can be fired again after
del_timer_sync have checked all cpus and before it will recheck
timer_pending().
2. It has scalability problems. All cpus are scanned to determine
if the timer is running on that cpu.
With this patch del_timer_sync is O(1) and no slower than plain
del_timer(pending_timer), unless it has to actually wait for
completion of the currently running timer.
The only restriction is that the recurring timer should not use
add_timer_on().
3. The timers are not serialized wrt to itself.
If CPU_0 does mod_timer(jiffies+1) while the timer is currently
running on CPU 1, it is quite possible that local interrupt on
CPU_0 will start that timer before it finished on CPU_1.
4. The timers locking is suboptimal. __mod_timer() takes 3 locks
at once and still requires wmb() in del_timer/run_timers.
The new implementation takes 2 locks sequentially and does not
need memory barriers.
Currently ->base != NULL means that the timer is pending. In that case
->base.lock is used to lock the timer. __mod_timer also takes timer->lock
because ->base can be == NULL.
This patch uses timer->entry.next != NULL as indication that the timer is
pending. So it does __list_del(), entry->next = NULL instead of list_del()
when the timer is deleted.
The ->base field is used for hashed locking only, it is initialized
in init_timer() which sets ->base = per_cpu(tvec_bases). When the
tvec_bases.lock is locked, it means that all timers which are tied
to this base via timer->base are locked, and the base itself is locked
too.
So __run_timers/migrate_timers can safely modify all timers which could
be found on ->tvX lists (pending timers).
When the timer's base is locked, and the timer removed from ->entry list
(which means that _run_timers/migrate_timers can't see this timer), it is
possible to set timer->base = NULL and drop the lock: the timer remains
locked.
This patch adds lock_timer_base() helper, which waits for ->base != NULL,
locks the ->base, and checks it is still the same.
__mod_timer() schedules the timer on the local CPU and changes it's base.
However, it does not lock both old and new bases at once. It locks the
timer via lock_timer_base(), deletes the timer, sets ->base = NULL, and
unlocks old base. Then __mod_timer() locks new_base, sets ->base = new_base,
and adds this timer. This simplifies the code, because AB-BA deadlock is not
possible. __mod_timer() also ensures that the timer's base is not changed
while the timer's handler is running on the old base.
__run_timers(), del_timer() do not change ->base anymore, they only clear
pending flag.
So del_timer_sync() can test timer->base->running_timer == timer to detect
whether it is running or not.
We don't need timer_list->lock anymore, this patch kills it.
We also don't need barriers. del_timer() and __run_timers() used smp_wmb()
before clearing timer's pending flag. It was needed because __mod_timer()
did not lock old_base if the timer is not pending, so __mod_timer()->list_add()
could race with del_timer()->list_del(). With this patch these functions are
serialized through base->lock.
One problem. TIMER_INITIALIZER can't use per_cpu(tvec_bases). So this patch
adds global
struct timer_base_s {
spinlock_t lock;
struct timer_list *running_timer;
} __init_timer_base;
which is used by TIMER_INITIALIZER. The corresponding fields in tvec_t_base_s
struct are replaced by struct timer_base_s t_base.
It is indeed ugly. But this can't have scalability problems. The global
__init_timer_base.lock is used only when __mod_timer() is called for the first
time AND the timer was compile time initialized. After that the timer migrates
to the local CPU.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Renaud Lienhart <renaud.lienhart@free.fr>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 07:08:56 +00:00
|
|
|
unsigned long *flags)
|
2006-09-29 08:59:36 +00:00
|
|
|
__acquires(timer->base->lock)
|
[PATCH] timers fixes/improvements
This patch tries to solve following problems:
1. del_timer_sync() is racy. The timer can be fired again after
del_timer_sync have checked all cpus and before it will recheck
timer_pending().
2. It has scalability problems. All cpus are scanned to determine
if the timer is running on that cpu.
With this patch del_timer_sync is O(1) and no slower than plain
del_timer(pending_timer), unless it has to actually wait for
completion of the currently running timer.
The only restriction is that the recurring timer should not use
add_timer_on().
3. The timers are not serialized wrt to itself.
If CPU_0 does mod_timer(jiffies+1) while the timer is currently
running on CPU 1, it is quite possible that local interrupt on
CPU_0 will start that timer before it finished on CPU_1.
4. The timers locking is suboptimal. __mod_timer() takes 3 locks
at once and still requires wmb() in del_timer/run_timers.
The new implementation takes 2 locks sequentially and does not
need memory barriers.
Currently ->base != NULL means that the timer is pending. In that case
->base.lock is used to lock the timer. __mod_timer also takes timer->lock
because ->base can be == NULL.
This patch uses timer->entry.next != NULL as indication that the timer is
pending. So it does __list_del(), entry->next = NULL instead of list_del()
when the timer is deleted.
The ->base field is used for hashed locking only, it is initialized
in init_timer() which sets ->base = per_cpu(tvec_bases). When the
tvec_bases.lock is locked, it means that all timers which are tied
to this base via timer->base are locked, and the base itself is locked
too.
So __run_timers/migrate_timers can safely modify all timers which could
be found on ->tvX lists (pending timers).
When the timer's base is locked, and the timer removed from ->entry list
(which means that _run_timers/migrate_timers can't see this timer), it is
possible to set timer->base = NULL and drop the lock: the timer remains
locked.
This patch adds lock_timer_base() helper, which waits for ->base != NULL,
locks the ->base, and checks it is still the same.
__mod_timer() schedules the timer on the local CPU and changes it's base.
However, it does not lock both old and new bases at once. It locks the
timer via lock_timer_base(), deletes the timer, sets ->base = NULL, and
unlocks old base. Then __mod_timer() locks new_base, sets ->base = new_base,
and adds this timer. This simplifies the code, because AB-BA deadlock is not
possible. __mod_timer() also ensures that the timer's base is not changed
while the timer's handler is running on the old base.
__run_timers(), del_timer() do not change ->base anymore, they only clear
pending flag.
So del_timer_sync() can test timer->base->running_timer == timer to detect
whether it is running or not.
We don't need timer_list->lock anymore, this patch kills it.
We also don't need barriers. del_timer() and __run_timers() used smp_wmb()
before clearing timer's pending flag. It was needed because __mod_timer()
did not lock old_base if the timer is not pending, so __mod_timer()->list_add()
could race with del_timer()->list_del(). With this patch these functions are
serialized through base->lock.
One problem. TIMER_INITIALIZER can't use per_cpu(tvec_bases). So this patch
adds global
struct timer_base_s {
spinlock_t lock;
struct timer_list *running_timer;
} __init_timer_base;
which is used by TIMER_INITIALIZER. The corresponding fields in tvec_t_base_s
struct are replaced by struct timer_base_s t_base.
It is indeed ugly. But this can't have scalability problems. The global
__init_timer_base.lock is used only when __mod_timer() is called for the first
time AND the timer was compile time initialized. After that the timer migrates
to the local CPU.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Renaud Lienhart <renaud.lienhart@free.fr>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 07:08:56 +00:00
|
|
|
{
|
2008-01-30 12:30:00 +00:00
|
|
|
struct tvec_base *base;
|
[PATCH] timers fixes/improvements
This patch tries to solve following problems:
1. del_timer_sync() is racy. The timer can be fired again after
del_timer_sync have checked all cpus and before it will recheck
timer_pending().
2. It has scalability problems. All cpus are scanned to determine
if the timer is running on that cpu.
With this patch del_timer_sync is O(1) and no slower than plain
del_timer(pending_timer), unless it has to actually wait for
completion of the currently running timer.
The only restriction is that the recurring timer should not use
add_timer_on().
3. The timers are not serialized wrt to itself.
If CPU_0 does mod_timer(jiffies+1) while the timer is currently
running on CPU 1, it is quite possible that local interrupt on
CPU_0 will start that timer before it finished on CPU_1.
4. The timers locking is suboptimal. __mod_timer() takes 3 locks
at once and still requires wmb() in del_timer/run_timers.
The new implementation takes 2 locks sequentially and does not
need memory barriers.
Currently ->base != NULL means that the timer is pending. In that case
->base.lock is used to lock the timer. __mod_timer also takes timer->lock
because ->base can be == NULL.
This patch uses timer->entry.next != NULL as indication that the timer is
pending. So it does __list_del(), entry->next = NULL instead of list_del()
when the timer is deleted.
The ->base field is used for hashed locking only, it is initialized
in init_timer() which sets ->base = per_cpu(tvec_bases). When the
tvec_bases.lock is locked, it means that all timers which are tied
to this base via timer->base are locked, and the base itself is locked
too.
So __run_timers/migrate_timers can safely modify all timers which could
be found on ->tvX lists (pending timers).
When the timer's base is locked, and the timer removed from ->entry list
(which means that _run_timers/migrate_timers can't see this timer), it is
possible to set timer->base = NULL and drop the lock: the timer remains
locked.
This patch adds lock_timer_base() helper, which waits for ->base != NULL,
locks the ->base, and checks it is still the same.
__mod_timer() schedules the timer on the local CPU and changes it's base.
However, it does not lock both old and new bases at once. It locks the
timer via lock_timer_base(), deletes the timer, sets ->base = NULL, and
unlocks old base. Then __mod_timer() locks new_base, sets ->base = new_base,
and adds this timer. This simplifies the code, because AB-BA deadlock is not
possible. __mod_timer() also ensures that the timer's base is not changed
while the timer's handler is running on the old base.
__run_timers(), del_timer() do not change ->base anymore, they only clear
pending flag.
So del_timer_sync() can test timer->base->running_timer == timer to detect
whether it is running or not.
We don't need timer_list->lock anymore, this patch kills it.
We also don't need barriers. del_timer() and __run_timers() used smp_wmb()
before clearing timer's pending flag. It was needed because __mod_timer()
did not lock old_base if the timer is not pending, so __mod_timer()->list_add()
could race with del_timer()->list_del(). With this patch these functions are
serialized through base->lock.
One problem. TIMER_INITIALIZER can't use per_cpu(tvec_bases). So this patch
adds global
struct timer_base_s {
spinlock_t lock;
struct timer_list *running_timer;
} __init_timer_base;
which is used by TIMER_INITIALIZER. The corresponding fields in tvec_t_base_s
struct are replaced by struct timer_base_s t_base.
It is indeed ugly. But this can't have scalability problems. The global
__init_timer_base.lock is used only when __mod_timer() is called for the first
time AND the timer was compile time initialized. After that the timer migrates
to the local CPU.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Renaud Lienhart <renaud.lienhart@free.fr>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 07:08:56 +00:00
|
|
|
|
|
|
|
for (;;) {
|
2008-01-30 12:30:00 +00:00
|
|
|
struct tvec_base *prelock_base = timer->base;
|
2007-05-08 07:27:44 +00:00
|
|
|
base = tbase_get_base(prelock_base);
|
[PATCH] timers fixes/improvements
This patch tries to solve following problems:
1. del_timer_sync() is racy. The timer can be fired again after
del_timer_sync have checked all cpus and before it will recheck
timer_pending().
2. It has scalability problems. All cpus are scanned to determine
if the timer is running on that cpu.
With this patch del_timer_sync is O(1) and no slower than plain
del_timer(pending_timer), unless it has to actually wait for
completion of the currently running timer.
The only restriction is that the recurring timer should not use
add_timer_on().
3. The timers are not serialized wrt to itself.
If CPU_0 does mod_timer(jiffies+1) while the timer is currently
running on CPU 1, it is quite possible that local interrupt on
CPU_0 will start that timer before it finished on CPU_1.
4. The timers locking is suboptimal. __mod_timer() takes 3 locks
at once and still requires wmb() in del_timer/run_timers.
The new implementation takes 2 locks sequentially and does not
need memory barriers.
Currently ->base != NULL means that the timer is pending. In that case
->base.lock is used to lock the timer. __mod_timer also takes timer->lock
because ->base can be == NULL.
This patch uses timer->entry.next != NULL as indication that the timer is
pending. So it does __list_del(), entry->next = NULL instead of list_del()
when the timer is deleted.
The ->base field is used for hashed locking only, it is initialized
in init_timer() which sets ->base = per_cpu(tvec_bases). When the
tvec_bases.lock is locked, it means that all timers which are tied
to this base via timer->base are locked, and the base itself is locked
too.
So __run_timers/migrate_timers can safely modify all timers which could
be found on ->tvX lists (pending timers).
When the timer's base is locked, and the timer removed from ->entry list
(which means that _run_timers/migrate_timers can't see this timer), it is
possible to set timer->base = NULL and drop the lock: the timer remains
locked.
This patch adds lock_timer_base() helper, which waits for ->base != NULL,
locks the ->base, and checks it is still the same.
__mod_timer() schedules the timer on the local CPU and changes it's base.
However, it does not lock both old and new bases at once. It locks the
timer via lock_timer_base(), deletes the timer, sets ->base = NULL, and
unlocks old base. Then __mod_timer() locks new_base, sets ->base = new_base,
and adds this timer. This simplifies the code, because AB-BA deadlock is not
possible. __mod_timer() also ensures that the timer's base is not changed
while the timer's handler is running on the old base.
__run_timers(), del_timer() do not change ->base anymore, they only clear
pending flag.
So del_timer_sync() can test timer->base->running_timer == timer to detect
whether it is running or not.
We don't need timer_list->lock anymore, this patch kills it.
We also don't need barriers. del_timer() and __run_timers() used smp_wmb()
before clearing timer's pending flag. It was needed because __mod_timer()
did not lock old_base if the timer is not pending, so __mod_timer()->list_add()
could race with del_timer()->list_del(). With this patch these functions are
serialized through base->lock.
One problem. TIMER_INITIALIZER can't use per_cpu(tvec_bases). So this patch
adds global
struct timer_base_s {
spinlock_t lock;
struct timer_list *running_timer;
} __init_timer_base;
which is used by TIMER_INITIALIZER. The corresponding fields in tvec_t_base_s
struct are replaced by struct timer_base_s t_base.
It is indeed ugly. But this can't have scalability problems. The global
__init_timer_base.lock is used only when __mod_timer() is called for the first
time AND the timer was compile time initialized. After that the timer migrates
to the local CPU.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Renaud Lienhart <renaud.lienhart@free.fr>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 07:08:56 +00:00
|
|
|
if (likely(base != NULL)) {
|
|
|
|
spin_lock_irqsave(&base->lock, *flags);
|
2007-05-08 07:27:44 +00:00
|
|
|
if (likely(prelock_base == timer->base))
|
[PATCH] timers fixes/improvements
This patch tries to solve following problems:
1. del_timer_sync() is racy. The timer can be fired again after
del_timer_sync have checked all cpus and before it will recheck
timer_pending().
2. It has scalability problems. All cpus are scanned to determine
if the timer is running on that cpu.
With this patch del_timer_sync is O(1) and no slower than plain
del_timer(pending_timer), unless it has to actually wait for
completion of the currently running timer.
The only restriction is that the recurring timer should not use
add_timer_on().
3. The timers are not serialized wrt to itself.
If CPU_0 does mod_timer(jiffies+1) while the timer is currently
running on CPU 1, it is quite possible that local interrupt on
CPU_0 will start that timer before it finished on CPU_1.
4. The timers locking is suboptimal. __mod_timer() takes 3 locks
at once and still requires wmb() in del_timer/run_timers.
The new implementation takes 2 locks sequentially and does not
need memory barriers.
Currently ->base != NULL means that the timer is pending. In that case
->base.lock is used to lock the timer. __mod_timer also takes timer->lock
because ->base can be == NULL.
This patch uses timer->entry.next != NULL as indication that the timer is
pending. So it does __list_del(), entry->next = NULL instead of list_del()
when the timer is deleted.
The ->base field is used for hashed locking only, it is initialized
in init_timer() which sets ->base = per_cpu(tvec_bases). When the
tvec_bases.lock is locked, it means that all timers which are tied
to this base via timer->base are locked, and the base itself is locked
too.
So __run_timers/migrate_timers can safely modify all timers which could
be found on ->tvX lists (pending timers).
When the timer's base is locked, and the timer removed from ->entry list
(which means that _run_timers/migrate_timers can't see this timer), it is
possible to set timer->base = NULL and drop the lock: the timer remains
locked.
This patch adds lock_timer_base() helper, which waits for ->base != NULL,
locks the ->base, and checks it is still the same.
__mod_timer() schedules the timer on the local CPU and changes it's base.
However, it does not lock both old and new bases at once. It locks the
timer via lock_timer_base(), deletes the timer, sets ->base = NULL, and
unlocks old base. Then __mod_timer() locks new_base, sets ->base = new_base,
and adds this timer. This simplifies the code, because AB-BA deadlock is not
possible. __mod_timer() also ensures that the timer's base is not changed
while the timer's handler is running on the old base.
__run_timers(), del_timer() do not change ->base anymore, they only clear
pending flag.
So del_timer_sync() can test timer->base->running_timer == timer to detect
whether it is running or not.
We don't need timer_list->lock anymore, this patch kills it.
We also don't need barriers. del_timer() and __run_timers() used smp_wmb()
before clearing timer's pending flag. It was needed because __mod_timer()
did not lock old_base if the timer is not pending, so __mod_timer()->list_add()
could race with del_timer()->list_del(). With this patch these functions are
serialized through base->lock.
One problem. TIMER_INITIALIZER can't use per_cpu(tvec_bases). So this patch
adds global
struct timer_base_s {
spinlock_t lock;
struct timer_list *running_timer;
} __init_timer_base;
which is used by TIMER_INITIALIZER. The corresponding fields in tvec_t_base_s
struct are replaced by struct timer_base_s t_base.
It is indeed ugly. But this can't have scalability problems. The global
__init_timer_base.lock is used only when __mod_timer() is called for the first
time AND the timer was compile time initialized. After that the timer migrates
to the local CPU.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Renaud Lienhart <renaud.lienhart@free.fr>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 07:08:56 +00:00
|
|
|
return base;
|
|
|
|
/* The timer has migrated to another CPU */
|
|
|
|
spin_unlock_irqrestore(&base->lock, *flags);
|
|
|
|
}
|
|
|
|
cpu_relax();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
int __mod_timer(struct timer_list *timer, unsigned long expires)
|
|
|
|
{
|
2008-01-30 12:30:00 +00:00
|
|
|
struct tvec_base *base, *new_base;
|
2005-04-16 22:20:36 +00:00
|
|
|
unsigned long flags;
|
|
|
|
int ret = 0;
|
|
|
|
|
[PATCH] Add debugging feature /proc/timer_stat
Add /proc/timer_stats support: debugging feature to profile timer expiration.
Both the starting site, process/PID and the expiration function is captured.
This allows the quick identification of timer event sources in a system.
Sample output:
# echo 1 > /proc/timer_stats
# cat /proc/timer_stats
Timer Stats Version: v0.1
Sample period: 4.010 s
24, 0 swapper hrtimer_stop_sched_tick (hrtimer_sched_tick)
11, 0 swapper sk_reset_timer (tcp_delack_timer)
6, 0 swapper hrtimer_stop_sched_tick (hrtimer_sched_tick)
2, 1 swapper queue_delayed_work_on (delayed_work_timer_fn)
17, 0 swapper hrtimer_restart_sched_tick (hrtimer_sched_tick)
2, 1 swapper queue_delayed_work_on (delayed_work_timer_fn)
4, 2050 pcscd do_nanosleep (hrtimer_wakeup)
5, 4179 sshd sk_reset_timer (tcp_write_timer)
4, 2248 yum-updatesd schedule_timeout (process_timeout)
18, 0 swapper hrtimer_restart_sched_tick (hrtimer_sched_tick)
3, 0 swapper sk_reset_timer (tcp_delack_timer)
1, 1 swapper neigh_table_init_no_netlink (neigh_periodic_timer)
2, 1 swapper e1000_up (e1000_watchdog)
1, 1 init schedule_timeout (process_timeout)
100 total events, 25.24 events/sec
[ cleanups and hrtimers support from Thomas Gleixner <tglx@linutronix.de> ]
[bunk@stusta.de: nr_entries can become static]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: john stultz <johnstul@us.ibm.com>
Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-16 09:28:13 +00:00
|
|
|
timer_stats_timer_set_start_info(timer);
|
2005-04-16 22:20:36 +00:00
|
|
|
BUG_ON(!timer->function);
|
|
|
|
|
[PATCH] timers fixes/improvements
This patch tries to solve following problems:
1. del_timer_sync() is racy. The timer can be fired again after
del_timer_sync have checked all cpus and before it will recheck
timer_pending().
2. It has scalability problems. All cpus are scanned to determine
if the timer is running on that cpu.
With this patch del_timer_sync is O(1) and no slower than plain
del_timer(pending_timer), unless it has to actually wait for
completion of the currently running timer.
The only restriction is that the recurring timer should not use
add_timer_on().
3. The timers are not serialized wrt to itself.
If CPU_0 does mod_timer(jiffies+1) while the timer is currently
running on CPU 1, it is quite possible that local interrupt on
CPU_0 will start that timer before it finished on CPU_1.
4. The timers locking is suboptimal. __mod_timer() takes 3 locks
at once and still requires wmb() in del_timer/run_timers.
The new implementation takes 2 locks sequentially and does not
need memory barriers.
Currently ->base != NULL means that the timer is pending. In that case
->base.lock is used to lock the timer. __mod_timer also takes timer->lock
because ->base can be == NULL.
This patch uses timer->entry.next != NULL as indication that the timer is
pending. So it does __list_del(), entry->next = NULL instead of list_del()
when the timer is deleted.
The ->base field is used for hashed locking only, it is initialized
in init_timer() which sets ->base = per_cpu(tvec_bases). When the
tvec_bases.lock is locked, it means that all timers which are tied
to this base via timer->base are locked, and the base itself is locked
too.
So __run_timers/migrate_timers can safely modify all timers which could
be found on ->tvX lists (pending timers).
When the timer's base is locked, and the timer removed from ->entry list
(which means that _run_timers/migrate_timers can't see this timer), it is
possible to set timer->base = NULL and drop the lock: the timer remains
locked.
This patch adds lock_timer_base() helper, which waits for ->base != NULL,
locks the ->base, and checks it is still the same.
__mod_timer() schedules the timer on the local CPU and changes it's base.
However, it does not lock both old and new bases at once. It locks the
timer via lock_timer_base(), deletes the timer, sets ->base = NULL, and
unlocks old base. Then __mod_timer() locks new_base, sets ->base = new_base,
and adds this timer. This simplifies the code, because AB-BA deadlock is not
possible. __mod_timer() also ensures that the timer's base is not changed
while the timer's handler is running on the old base.
__run_timers(), del_timer() do not change ->base anymore, they only clear
pending flag.
So del_timer_sync() can test timer->base->running_timer == timer to detect
whether it is running or not.
We don't need timer_list->lock anymore, this patch kills it.
We also don't need barriers. del_timer() and __run_timers() used smp_wmb()
before clearing timer's pending flag. It was needed because __mod_timer()
did not lock old_base if the timer is not pending, so __mod_timer()->list_add()
could race with del_timer()->list_del(). With this patch these functions are
serialized through base->lock.
One problem. TIMER_INITIALIZER can't use per_cpu(tvec_bases). So this patch
adds global
struct timer_base_s {
spinlock_t lock;
struct timer_list *running_timer;
} __init_timer_base;
which is used by TIMER_INITIALIZER. The corresponding fields in tvec_t_base_s
struct are replaced by struct timer_base_s t_base.
It is indeed ugly. But this can't have scalability problems. The global
__init_timer_base.lock is used only when __mod_timer() is called for the first
time AND the timer was compile time initialized. After that the timer migrates
to the local CPU.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Renaud Lienhart <renaud.lienhart@free.fr>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 07:08:56 +00:00
|
|
|
base = lock_timer_base(timer, &flags);
|
|
|
|
|
|
|
|
if (timer_pending(timer)) {
|
|
|
|
detach_timer(timer, 0);
|
|
|
|
ret = 1;
|
|
|
|
}
|
|
|
|
|
2008-04-30 07:55:03 +00:00
|
|
|
debug_timer_activate(timer);
|
|
|
|
|
2006-03-24 11:15:54 +00:00
|
|
|
new_base = __get_cpu_var(tvec_bases);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2006-03-31 10:30:30 +00:00
|
|
|
if (base != new_base) {
|
2005-04-16 22:20:36 +00:00
|
|
|
/*
|
[PATCH] timers fixes/improvements
This patch tries to solve following problems:
1. del_timer_sync() is racy. The timer can be fired again after
del_timer_sync have checked all cpus and before it will recheck
timer_pending().
2. It has scalability problems. All cpus are scanned to determine
if the timer is running on that cpu.
With this patch del_timer_sync is O(1) and no slower than plain
del_timer(pending_timer), unless it has to actually wait for
completion of the currently running timer.
The only restriction is that the recurring timer should not use
add_timer_on().
3. The timers are not serialized wrt to itself.
If CPU_0 does mod_timer(jiffies+1) while the timer is currently
running on CPU 1, it is quite possible that local interrupt on
CPU_0 will start that timer before it finished on CPU_1.
4. The timers locking is suboptimal. __mod_timer() takes 3 locks
at once and still requires wmb() in del_timer/run_timers.
The new implementation takes 2 locks sequentially and does not
need memory barriers.
Currently ->base != NULL means that the timer is pending. In that case
->base.lock is used to lock the timer. __mod_timer also takes timer->lock
because ->base can be == NULL.
This patch uses timer->entry.next != NULL as indication that the timer is
pending. So it does __list_del(), entry->next = NULL instead of list_del()
when the timer is deleted.
The ->base field is used for hashed locking only, it is initialized
in init_timer() which sets ->base = per_cpu(tvec_bases). When the
tvec_bases.lock is locked, it means that all timers which are tied
to this base via timer->base are locked, and the base itself is locked
too.
So __run_timers/migrate_timers can safely modify all timers which could
be found on ->tvX lists (pending timers).
When the timer's base is locked, and the timer removed from ->entry list
(which means that _run_timers/migrate_timers can't see this timer), it is
possible to set timer->base = NULL and drop the lock: the timer remains
locked.
This patch adds lock_timer_base() helper, which waits for ->base != NULL,
locks the ->base, and checks it is still the same.
__mod_timer() schedules the timer on the local CPU and changes it's base.
However, it does not lock both old and new bases at once. It locks the
timer via lock_timer_base(), deletes the timer, sets ->base = NULL, and
unlocks old base. Then __mod_timer() locks new_base, sets ->base = new_base,
and adds this timer. This simplifies the code, because AB-BA deadlock is not
possible. __mod_timer() also ensures that the timer's base is not changed
while the timer's handler is running on the old base.
__run_timers(), del_timer() do not change ->base anymore, they only clear
pending flag.
So del_timer_sync() can test timer->base->running_timer == timer to detect
whether it is running or not.
We don't need timer_list->lock anymore, this patch kills it.
We also don't need barriers. del_timer() and __run_timers() used smp_wmb()
before clearing timer's pending flag. It was needed because __mod_timer()
did not lock old_base if the timer is not pending, so __mod_timer()->list_add()
could race with del_timer()->list_del(). With this patch these functions are
serialized through base->lock.
One problem. TIMER_INITIALIZER can't use per_cpu(tvec_bases). So this patch
adds global
struct timer_base_s {
spinlock_t lock;
struct timer_list *running_timer;
} __init_timer_base;
which is used by TIMER_INITIALIZER. The corresponding fields in tvec_t_base_s
struct are replaced by struct timer_base_s t_base.
It is indeed ugly. But this can't have scalability problems. The global
__init_timer_base.lock is used only when __mod_timer() is called for the first
time AND the timer was compile time initialized. After that the timer migrates
to the local CPU.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Renaud Lienhart <renaud.lienhart@free.fr>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 07:08:56 +00:00
|
|
|
* We are trying to schedule the timer on the local CPU.
|
|
|
|
* However we can't change timer's base while it is running,
|
|
|
|
* otherwise del_timer_sync() can't detect that the timer's
|
|
|
|
* handler yet has not finished. This also guarantees that
|
|
|
|
* the timer is serialized wrt itself.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
2006-03-31 10:30:31 +00:00
|
|
|
if (likely(base->running_timer != timer)) {
|
[PATCH] timers fixes/improvements
This patch tries to solve following problems:
1. del_timer_sync() is racy. The timer can be fired again after
del_timer_sync have checked all cpus and before it will recheck
timer_pending().
2. It has scalability problems. All cpus are scanned to determine
if the timer is running on that cpu.
With this patch del_timer_sync is O(1) and no slower than plain
del_timer(pending_timer), unless it has to actually wait for
completion of the currently running timer.
The only restriction is that the recurring timer should not use
add_timer_on().
3. The timers are not serialized wrt to itself.
If CPU_0 does mod_timer(jiffies+1) while the timer is currently
running on CPU 1, it is quite possible that local interrupt on
CPU_0 will start that timer before it finished on CPU_1.
4. The timers locking is suboptimal. __mod_timer() takes 3 locks
at once and still requires wmb() in del_timer/run_timers.
The new implementation takes 2 locks sequentially and does not
need memory barriers.
Currently ->base != NULL means that the timer is pending. In that case
->base.lock is used to lock the timer. __mod_timer also takes timer->lock
because ->base can be == NULL.
This patch uses timer->entry.next != NULL as indication that the timer is
pending. So it does __list_del(), entry->next = NULL instead of list_del()
when the timer is deleted.
The ->base field is used for hashed locking only, it is initialized
in init_timer() which sets ->base = per_cpu(tvec_bases). When the
tvec_bases.lock is locked, it means that all timers which are tied
to this base via timer->base are locked, and the base itself is locked
too.
So __run_timers/migrate_timers can safely modify all timers which could
be found on ->tvX lists (pending timers).
When the timer's base is locked, and the timer removed from ->entry list
(which means that _run_timers/migrate_timers can't see this timer), it is
possible to set timer->base = NULL and drop the lock: the timer remains
locked.
This patch adds lock_timer_base() helper, which waits for ->base != NULL,
locks the ->base, and checks it is still the same.
__mod_timer() schedules the timer on the local CPU and changes it's base.
However, it does not lock both old and new bases at once. It locks the
timer via lock_timer_base(), deletes the timer, sets ->base = NULL, and
unlocks old base. Then __mod_timer() locks new_base, sets ->base = new_base,
and adds this timer. This simplifies the code, because AB-BA deadlock is not
possible. __mod_timer() also ensures that the timer's base is not changed
while the timer's handler is running on the old base.
__run_timers(), del_timer() do not change ->base anymore, they only clear
pending flag.
So del_timer_sync() can test timer->base->running_timer == timer to detect
whether it is running or not.
We don't need timer_list->lock anymore, this patch kills it.
We also don't need barriers. del_timer() and __run_timers() used smp_wmb()
before clearing timer's pending flag. It was needed because __mod_timer()
did not lock old_base if the timer is not pending, so __mod_timer()->list_add()
could race with del_timer()->list_del(). With this patch these functions are
serialized through base->lock.
One problem. TIMER_INITIALIZER can't use per_cpu(tvec_bases). So this patch
adds global
struct timer_base_s {
spinlock_t lock;
struct timer_list *running_timer;
} __init_timer_base;
which is used by TIMER_INITIALIZER. The corresponding fields in tvec_t_base_s
struct are replaced by struct timer_base_s t_base.
It is indeed ugly. But this can't have scalability problems. The global
__init_timer_base.lock is used only when __mod_timer() is called for the first
time AND the timer was compile time initialized. After that the timer migrates
to the local CPU.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Renaud Lienhart <renaud.lienhart@free.fr>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 07:08:56 +00:00
|
|
|
/* See the comment in lock_timer_base() */
|
2007-05-08 07:27:44 +00:00
|
|
|
timer_set_base(timer, NULL);
|
[PATCH] timers fixes/improvements
This patch tries to solve following problems:
1. del_timer_sync() is racy. The timer can be fired again after
del_timer_sync have checked all cpus and before it will recheck
timer_pending().
2. It has scalability problems. All cpus are scanned to determine
if the timer is running on that cpu.
With this patch del_timer_sync is O(1) and no slower than plain
del_timer(pending_timer), unless it has to actually wait for
completion of the currently running timer.
The only restriction is that the recurring timer should not use
add_timer_on().
3. The timers are not serialized wrt to itself.
If CPU_0 does mod_timer(jiffies+1) while the timer is currently
running on CPU 1, it is quite possible that local interrupt on
CPU_0 will start that timer before it finished on CPU_1.
4. The timers locking is suboptimal. __mod_timer() takes 3 locks
at once and still requires wmb() in del_timer/run_timers.
The new implementation takes 2 locks sequentially and does not
need memory barriers.
Currently ->base != NULL means that the timer is pending. In that case
->base.lock is used to lock the timer. __mod_timer also takes timer->lock
because ->base can be == NULL.
This patch uses timer->entry.next != NULL as indication that the timer is
pending. So it does __list_del(), entry->next = NULL instead of list_del()
when the timer is deleted.
The ->base field is used for hashed locking only, it is initialized
in init_timer() which sets ->base = per_cpu(tvec_bases). When the
tvec_bases.lock is locked, it means that all timers which are tied
to this base via timer->base are locked, and the base itself is locked
too.
So __run_timers/migrate_timers can safely modify all timers which could
be found on ->tvX lists (pending timers).
When the timer's base is locked, and the timer removed from ->entry list
(which means that _run_timers/migrate_timers can't see this timer), it is
possible to set timer->base = NULL and drop the lock: the timer remains
locked.
This patch adds lock_timer_base() helper, which waits for ->base != NULL,
locks the ->base, and checks it is still the same.
__mod_timer() schedules the timer on the local CPU and changes it's base.
However, it does not lock both old and new bases at once. It locks the
timer via lock_timer_base(), deletes the timer, sets ->base = NULL, and
unlocks old base. Then __mod_timer() locks new_base, sets ->base = new_base,
and adds this timer. This simplifies the code, because AB-BA deadlock is not
possible. __mod_timer() also ensures that the timer's base is not changed
while the timer's handler is running on the old base.
__run_timers(), del_timer() do not change ->base anymore, they only clear
pending flag.
So del_timer_sync() can test timer->base->running_timer == timer to detect
whether it is running or not.
We don't need timer_list->lock anymore, this patch kills it.
We also don't need barriers. del_timer() and __run_timers() used smp_wmb()
before clearing timer's pending flag. It was needed because __mod_timer()
did not lock old_base if the timer is not pending, so __mod_timer()->list_add()
could race with del_timer()->list_del(). With this patch these functions are
serialized through base->lock.
One problem. TIMER_INITIALIZER can't use per_cpu(tvec_bases). So this patch
adds global
struct timer_base_s {
spinlock_t lock;
struct timer_list *running_timer;
} __init_timer_base;
which is used by TIMER_INITIALIZER. The corresponding fields in tvec_t_base_s
struct are replaced by struct timer_base_s t_base.
It is indeed ugly. But this can't have scalability problems. The global
__init_timer_base.lock is used only when __mod_timer() is called for the first
time AND the timer was compile time initialized. After that the timer migrates
to the local CPU.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Renaud Lienhart <renaud.lienhart@free.fr>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 07:08:56 +00:00
|
|
|
spin_unlock(&base->lock);
|
2006-03-31 10:30:31 +00:00
|
|
|
base = new_base;
|
|
|
|
spin_lock(&base->lock);
|
2007-05-08 07:27:44 +00:00
|
|
|
timer_set_base(timer, base);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
timer->expires = expires;
|
2006-03-31 10:30:31 +00:00
|
|
|
internal_add_timer(base, timer);
|
|
|
|
spin_unlock_irqrestore(&base->lock, flags);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
EXPORT_SYMBOL(__mod_timer);
|
|
|
|
|
2006-09-29 08:59:46 +00:00
|
|
|
/**
|
2005-04-16 22:20:36 +00:00
|
|
|
* add_timer_on - start a timer on a particular CPU
|
|
|
|
* @timer: the timer to be added
|
|
|
|
* @cpu: the CPU to start it on
|
|
|
|
*
|
|
|
|
* This is not very scalable on SMP. Double adds are not possible.
|
|
|
|
*/
|
|
|
|
void add_timer_on(struct timer_list *timer, int cpu)
|
|
|
|
{
|
2008-01-30 12:30:00 +00:00
|
|
|
struct tvec_base *base = per_cpu(tvec_bases, cpu);
|
2007-07-19 08:49:16 +00:00
|
|
|
unsigned long flags;
|
[PATCH] timers fixes/improvements
This patch tries to solve following problems:
1. del_timer_sync() is racy. The timer can be fired again after
del_timer_sync have checked all cpus and before it will recheck
timer_pending().
2. It has scalability problems. All cpus are scanned to determine
if the timer is running on that cpu.
With this patch del_timer_sync is O(1) and no slower than plain
del_timer(pending_timer), unless it has to actually wait for
completion of the currently running timer.
The only restriction is that the recurring timer should not use
add_timer_on().
3. The timers are not serialized wrt to itself.
If CPU_0 does mod_timer(jiffies+1) while the timer is currently
running on CPU 1, it is quite possible that local interrupt on
CPU_0 will start that timer before it finished on CPU_1.
4. The timers locking is suboptimal. __mod_timer() takes 3 locks
at once and still requires wmb() in del_timer/run_timers.
The new implementation takes 2 locks sequentially and does not
need memory barriers.
Currently ->base != NULL means that the timer is pending. In that case
->base.lock is used to lock the timer. __mod_timer also takes timer->lock
because ->base can be == NULL.
This patch uses timer->entry.next != NULL as indication that the timer is
pending. So it does __list_del(), entry->next = NULL instead of list_del()
when the timer is deleted.
The ->base field is used for hashed locking only, it is initialized
in init_timer() which sets ->base = per_cpu(tvec_bases). When the
tvec_bases.lock is locked, it means that all timers which are tied
to this base via timer->base are locked, and the base itself is locked
too.
So __run_timers/migrate_timers can safely modify all timers which could
be found on ->tvX lists (pending timers).
When the timer's base is locked, and the timer removed from ->entry list
(which means that _run_timers/migrate_timers can't see this timer), it is
possible to set timer->base = NULL and drop the lock: the timer remains
locked.
This patch adds lock_timer_base() helper, which waits for ->base != NULL,
locks the ->base, and checks it is still the same.
__mod_timer() schedules the timer on the local CPU and changes it's base.
However, it does not lock both old and new bases at once. It locks the
timer via lock_timer_base(), deletes the timer, sets ->base = NULL, and
unlocks old base. Then __mod_timer() locks new_base, sets ->base = new_base,
and adds this timer. This simplifies the code, because AB-BA deadlock is not
possible. __mod_timer() also ensures that the timer's base is not changed
while the timer's handler is running on the old base.
__run_timers(), del_timer() do not change ->base anymore, they only clear
pending flag.
So del_timer_sync() can test timer->base->running_timer == timer to detect
whether it is running or not.
We don't need timer_list->lock anymore, this patch kills it.
We also don't need barriers. del_timer() and __run_timers() used smp_wmb()
before clearing timer's pending flag. It was needed because __mod_timer()
did not lock old_base if the timer is not pending, so __mod_timer()->list_add()
could race with del_timer()->list_del(). With this patch these functions are
serialized through base->lock.
One problem. TIMER_INITIALIZER can't use per_cpu(tvec_bases). So this patch
adds global
struct timer_base_s {
spinlock_t lock;
struct timer_list *running_timer;
} __init_timer_base;
which is used by TIMER_INITIALIZER. The corresponding fields in tvec_t_base_s
struct are replaced by struct timer_base_s t_base.
It is indeed ugly. But this can't have scalability problems. The global
__init_timer_base.lock is used only when __mod_timer() is called for the first
time AND the timer was compile time initialized. After that the timer migrates
to the local CPU.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Renaud Lienhart <renaud.lienhart@free.fr>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 07:08:56 +00:00
|
|
|
|
[PATCH] Add debugging feature /proc/timer_stat
Add /proc/timer_stats support: debugging feature to profile timer expiration.
Both the starting site, process/PID and the expiration function is captured.
This allows the quick identification of timer event sources in a system.
Sample output:
# echo 1 > /proc/timer_stats
# cat /proc/timer_stats
Timer Stats Version: v0.1
Sample period: 4.010 s
24, 0 swapper hrtimer_stop_sched_tick (hrtimer_sched_tick)
11, 0 swapper sk_reset_timer (tcp_delack_timer)
6, 0 swapper hrtimer_stop_sched_tick (hrtimer_sched_tick)
2, 1 swapper queue_delayed_work_on (delayed_work_timer_fn)
17, 0 swapper hrtimer_restart_sched_tick (hrtimer_sched_tick)
2, 1 swapper queue_delayed_work_on (delayed_work_timer_fn)
4, 2050 pcscd do_nanosleep (hrtimer_wakeup)
5, 4179 sshd sk_reset_timer (tcp_write_timer)
4, 2248 yum-updatesd schedule_timeout (process_timeout)
18, 0 swapper hrtimer_restart_sched_tick (hrtimer_sched_tick)
3, 0 swapper sk_reset_timer (tcp_delack_timer)
1, 1 swapper neigh_table_init_no_netlink (neigh_periodic_timer)
2, 1 swapper e1000_up (e1000_watchdog)
1, 1 init schedule_timeout (process_timeout)
100 total events, 25.24 events/sec
[ cleanups and hrtimers support from Thomas Gleixner <tglx@linutronix.de> ]
[bunk@stusta.de: nr_entries can become static]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: john stultz <johnstul@us.ibm.com>
Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-16 09:28:13 +00:00
|
|
|
timer_stats_timer_set_start_info(timer);
|
2007-07-19 08:49:16 +00:00
|
|
|
BUG_ON(timer_pending(timer) || !timer->function);
|
2006-03-31 10:30:30 +00:00
|
|
|
spin_lock_irqsave(&base->lock, flags);
|
2007-05-08 07:27:44 +00:00
|
|
|
timer_set_base(timer, base);
|
2008-04-30 07:55:03 +00:00
|
|
|
debug_timer_activate(timer);
|
2005-04-16 22:20:36 +00:00
|
|
|
internal_add_timer(base, timer);
|
2008-03-22 08:20:24 +00:00
|
|
|
/*
|
|
|
|
* Check whether the other CPU is idle and needs to be
|
|
|
|
* triggered to reevaluate the timer wheel when nohz is
|
|
|
|
* active. We are protected against the other CPU fiddling
|
|
|
|
* with the timer by holding the timer base lock. This also
|
|
|
|
* makes sure that a CPU on the way to idle can not evaluate
|
|
|
|
* the timer wheel.
|
|
|
|
*/
|
|
|
|
wake_up_idle_cpu(cpu);
|
2006-03-31 10:30:30 +00:00
|
|
|
spin_unlock_irqrestore(&base->lock, flags);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2006-09-29 08:59:46 +00:00
|
|
|
/**
|
2005-04-16 22:20:36 +00:00
|
|
|
* mod_timer - modify a timer's timeout
|
|
|
|
* @timer: the timer to be modified
|
2006-09-29 08:59:46 +00:00
|
|
|
* @expires: new timeout in jiffies
|
2005-04-16 22:20:36 +00:00
|
|
|
*
|
2007-02-10 09:45:59 +00:00
|
|
|
* mod_timer() is a more efficient way to update the expire field of an
|
2005-04-16 22:20:36 +00:00
|
|
|
* active timer (if the timer is inactive it will be activated)
|
|
|
|
*
|
|
|
|
* mod_timer(timer, expires) is equivalent to:
|
|
|
|
*
|
|
|
|
* del_timer(timer); timer->expires = expires; add_timer(timer);
|
|
|
|
*
|
|
|
|
* Note that if there are multiple unserialized concurrent users of the
|
|
|
|
* same timer, then mod_timer() is the only safe way to modify the timeout,
|
|
|
|
* since add_timer() cannot modify an already running timer.
|
|
|
|
*
|
|
|
|
* The function returns whether it has modified a pending timer or not.
|
|
|
|
* (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
|
|
|
|
* active timer returns 1.)
|
|
|
|
*/
|
|
|
|
int mod_timer(struct timer_list *timer, unsigned long expires)
|
|
|
|
{
|
|
|
|
BUG_ON(!timer->function);
|
|
|
|
|
[PATCH] Add debugging feature /proc/timer_stat
Add /proc/timer_stats support: debugging feature to profile timer expiration.
Both the starting site, process/PID and the expiration function is captured.
This allows the quick identification of timer event sources in a system.
Sample output:
# echo 1 > /proc/timer_stats
# cat /proc/timer_stats
Timer Stats Version: v0.1
Sample period: 4.010 s
24, 0 swapper hrtimer_stop_sched_tick (hrtimer_sched_tick)
11, 0 swapper sk_reset_timer (tcp_delack_timer)
6, 0 swapper hrtimer_stop_sched_tick (hrtimer_sched_tick)
2, 1 swapper queue_delayed_work_on (delayed_work_timer_fn)
17, 0 swapper hrtimer_restart_sched_tick (hrtimer_sched_tick)
2, 1 swapper queue_delayed_work_on (delayed_work_timer_fn)
4, 2050 pcscd do_nanosleep (hrtimer_wakeup)
5, 4179 sshd sk_reset_timer (tcp_write_timer)
4, 2248 yum-updatesd schedule_timeout (process_timeout)
18, 0 swapper hrtimer_restart_sched_tick (hrtimer_sched_tick)
3, 0 swapper sk_reset_timer (tcp_delack_timer)
1, 1 swapper neigh_table_init_no_netlink (neigh_periodic_timer)
2, 1 swapper e1000_up (e1000_watchdog)
1, 1 init schedule_timeout (process_timeout)
100 total events, 25.24 events/sec
[ cleanups and hrtimers support from Thomas Gleixner <tglx@linutronix.de> ]
[bunk@stusta.de: nr_entries can become static]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: john stultz <johnstul@us.ibm.com>
Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-16 09:28:13 +00:00
|
|
|
timer_stats_timer_set_start_info(timer);
|
2005-04-16 22:20:36 +00:00
|
|
|
/*
|
|
|
|
* This is a common optimization triggered by the
|
|
|
|
* networking code - if the timer is re-modified
|
|
|
|
* to be the same thing then just return:
|
|
|
|
*/
|
|
|
|
if (timer->expires == expires && timer_pending(timer))
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
return __mod_timer(timer, expires);
|
|
|
|
}
|
|
|
|
|
|
|
|
EXPORT_SYMBOL(mod_timer);
|
|
|
|
|
2006-09-29 08:59:46 +00:00
|
|
|
/**
|
2005-04-16 22:20:36 +00:00
|
|
|
* del_timer - deactive a timer.
|
|
|
|
* @timer: the timer to be deactivated
|
|
|
|
*
|
|
|
|
* del_timer() deactivates a timer - this works on both active and inactive
|
|
|
|
* timers.
|
|
|
|
*
|
|
|
|
* The function returns whether it has deactivated a pending timer or not.
|
|
|
|
* (ie. del_timer() of an inactive timer returns 0, del_timer() of an
|
|
|
|
* active timer returns 1.)
|
|
|
|
*/
|
|
|
|
int del_timer(struct timer_list *timer)
|
|
|
|
{
|
2008-01-30 12:30:00 +00:00
|
|
|
struct tvec_base *base;
|
2005-04-16 22:20:36 +00:00
|
|
|
unsigned long flags;
|
[PATCH] timers fixes/improvements
This patch tries to solve following problems:
1. del_timer_sync() is racy. The timer can be fired again after
del_timer_sync have checked all cpus and before it will recheck
timer_pending().
2. It has scalability problems. All cpus are scanned to determine
if the timer is running on that cpu.
With this patch del_timer_sync is O(1) and no slower than plain
del_timer(pending_timer), unless it has to actually wait for
completion of the currently running timer.
The only restriction is that the recurring timer should not use
add_timer_on().
3. The timers are not serialized wrt to itself.
If CPU_0 does mod_timer(jiffies+1) while the timer is currently
running on CPU 1, it is quite possible that local interrupt on
CPU_0 will start that timer before it finished on CPU_1.
4. The timers locking is suboptimal. __mod_timer() takes 3 locks
at once and still requires wmb() in del_timer/run_timers.
The new implementation takes 2 locks sequentially and does not
need memory barriers.
Currently ->base != NULL means that the timer is pending. In that case
->base.lock is used to lock the timer. __mod_timer also takes timer->lock
because ->base can be == NULL.
This patch uses timer->entry.next != NULL as indication that the timer is
pending. So it does __list_del(), entry->next = NULL instead of list_del()
when the timer is deleted.
The ->base field is used for hashed locking only, it is initialized
in init_timer() which sets ->base = per_cpu(tvec_bases). When the
tvec_bases.lock is locked, it means that all timers which are tied
to this base via timer->base are locked, and the base itself is locked
too.
So __run_timers/migrate_timers can safely modify all timers which could
be found on ->tvX lists (pending timers).
When the timer's base is locked, and the timer removed from ->entry list
(which means that _run_timers/migrate_timers can't see this timer), it is
possible to set timer->base = NULL and drop the lock: the timer remains
locked.
This patch adds lock_timer_base() helper, which waits for ->base != NULL,
locks the ->base, and checks it is still the same.
__mod_timer() schedules the timer on the local CPU and changes it's base.
However, it does not lock both old and new bases at once. It locks the
timer via lock_timer_base(), deletes the timer, sets ->base = NULL, and
unlocks old base. Then __mod_timer() locks new_base, sets ->base = new_base,
and adds this timer. This simplifies the code, because AB-BA deadlock is not
possible. __mod_timer() also ensures that the timer's base is not changed
while the timer's handler is running on the old base.
__run_timers(), del_timer() do not change ->base anymore, they only clear
pending flag.
So del_timer_sync() can test timer->base->running_timer == timer to detect
whether it is running or not.
We don't need timer_list->lock anymore, this patch kills it.
We also don't need barriers. del_timer() and __run_timers() used smp_wmb()
before clearing timer's pending flag. It was needed because __mod_timer()
did not lock old_base if the timer is not pending, so __mod_timer()->list_add()
could race with del_timer()->list_del(). With this patch these functions are
serialized through base->lock.
One problem. TIMER_INITIALIZER can't use per_cpu(tvec_bases). So this patch
adds global
struct timer_base_s {
spinlock_t lock;
struct timer_list *running_timer;
} __init_timer_base;
which is used by TIMER_INITIALIZER. The corresponding fields in tvec_t_base_s
struct are replaced by struct timer_base_s t_base.
It is indeed ugly. But this can't have scalability problems. The global
__init_timer_base.lock is used only when __mod_timer() is called for the first
time AND the timer was compile time initialized. After that the timer migrates
to the local CPU.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Renaud Lienhart <renaud.lienhart@free.fr>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 07:08:56 +00:00
|
|
|
int ret = 0;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
[PATCH] Add debugging feature /proc/timer_stat
Add /proc/timer_stats support: debugging feature to profile timer expiration.
Both the starting site, process/PID and the expiration function is captured.
This allows the quick identification of timer event sources in a system.
Sample output:
# echo 1 > /proc/timer_stats
# cat /proc/timer_stats
Timer Stats Version: v0.1
Sample period: 4.010 s
24, 0 swapper hrtimer_stop_sched_tick (hrtimer_sched_tick)
11, 0 swapper sk_reset_timer (tcp_delack_timer)
6, 0 swapper hrtimer_stop_sched_tick (hrtimer_sched_tick)
2, 1 swapper queue_delayed_work_on (delayed_work_timer_fn)
17, 0 swapper hrtimer_restart_sched_tick (hrtimer_sched_tick)
2, 1 swapper queue_delayed_work_on (delayed_work_timer_fn)
4, 2050 pcscd do_nanosleep (hrtimer_wakeup)
5, 4179 sshd sk_reset_timer (tcp_write_timer)
4, 2248 yum-updatesd schedule_timeout (process_timeout)
18, 0 swapper hrtimer_restart_sched_tick (hrtimer_sched_tick)
3, 0 swapper sk_reset_timer (tcp_delack_timer)
1, 1 swapper neigh_table_init_no_netlink (neigh_periodic_timer)
2, 1 swapper e1000_up (e1000_watchdog)
1, 1 init schedule_timeout (process_timeout)
100 total events, 25.24 events/sec
[ cleanups and hrtimers support from Thomas Gleixner <tglx@linutronix.de> ]
[bunk@stusta.de: nr_entries can become static]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: john stultz <johnstul@us.ibm.com>
Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-16 09:28:13 +00:00
|
|
|
timer_stats_timer_clear_start_info(timer);
|
[PATCH] timers fixes/improvements
This patch tries to solve following problems:
1. del_timer_sync() is racy. The timer can be fired again after
del_timer_sync have checked all cpus and before it will recheck
timer_pending().
2. It has scalability problems. All cpus are scanned to determine
if the timer is running on that cpu.
With this patch del_timer_sync is O(1) and no slower than plain
del_timer(pending_timer), unless it has to actually wait for
completion of the currently running timer.
The only restriction is that the recurring timer should not use
add_timer_on().
3. The timers are not serialized wrt to itself.
If CPU_0 does mod_timer(jiffies+1) while the timer is currently
running on CPU 1, it is quite possible that local interrupt on
CPU_0 will start that timer before it finished on CPU_1.
4. The timers locking is suboptimal. __mod_timer() takes 3 locks
at once and still requires wmb() in del_timer/run_timers.
The new implementation takes 2 locks sequentially and does not
need memory barriers.
Currently ->base != NULL means that the timer is pending. In that case
->base.lock is used to lock the timer. __mod_timer also takes timer->lock
because ->base can be == NULL.
This patch uses timer->entry.next != NULL as indication that the timer is
pending. So it does __list_del(), entry->next = NULL instead of list_del()
when the timer is deleted.
The ->base field is used for hashed locking only, it is initialized
in init_timer() which sets ->base = per_cpu(tvec_bases). When the
tvec_bases.lock is locked, it means that all timers which are tied
to this base via timer->base are locked, and the base itself is locked
too.
So __run_timers/migrate_timers can safely modify all timers which could
be found on ->tvX lists (pending timers).
When the timer's base is locked, and the timer removed from ->entry list
(which means that _run_timers/migrate_timers can't see this timer), it is
possible to set timer->base = NULL and drop the lock: the timer remains
locked.
This patch adds lock_timer_base() helper, which waits for ->base != NULL,
locks the ->base, and checks it is still the same.
__mod_timer() schedules the timer on the local CPU and changes it's base.
However, it does not lock both old and new bases at once. It locks the
timer via lock_timer_base(), deletes the timer, sets ->base = NULL, and
unlocks old base. Then __mod_timer() locks new_base, sets ->base = new_base,
and adds this timer. This simplifies the code, because AB-BA deadlock is not
possible. __mod_timer() also ensures that the timer's base is not changed
while the timer's handler is running on the old base.
__run_timers(), del_timer() do not change ->base anymore, they only clear
pending flag.
So del_timer_sync() can test timer->base->running_timer == timer to detect
whether it is running or not.
We don't need timer_list->lock anymore, this patch kills it.
We also don't need barriers. del_timer() and __run_timers() used smp_wmb()
before clearing timer's pending flag. It was needed because __mod_timer()
did not lock old_base if the timer is not pending, so __mod_timer()->list_add()
could race with del_timer()->list_del(). With this patch these functions are
serialized through base->lock.
One problem. TIMER_INITIALIZER can't use per_cpu(tvec_bases). So this patch
adds global
struct timer_base_s {
spinlock_t lock;
struct timer_list *running_timer;
} __init_timer_base;
which is used by TIMER_INITIALIZER. The corresponding fields in tvec_t_base_s
struct are replaced by struct timer_base_s t_base.
It is indeed ugly. But this can't have scalability problems. The global
__init_timer_base.lock is used only when __mod_timer() is called for the first
time AND the timer was compile time initialized. After that the timer migrates
to the local CPU.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Renaud Lienhart <renaud.lienhart@free.fr>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 07:08:56 +00:00
|
|
|
if (timer_pending(timer)) {
|
|
|
|
base = lock_timer_base(timer, &flags);
|
|
|
|
if (timer_pending(timer)) {
|
|
|
|
detach_timer(timer, 1);
|
|
|
|
ret = 1;
|
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
spin_unlock_irqrestore(&base->lock, flags);
|
|
|
|
}
|
|
|
|
|
[PATCH] timers fixes/improvements
This patch tries to solve following problems:
1. del_timer_sync() is racy. The timer can be fired again after
del_timer_sync have checked all cpus and before it will recheck
timer_pending().
2. It has scalability problems. All cpus are scanned to determine
if the timer is running on that cpu.
With this patch del_timer_sync is O(1) and no slower than plain
del_timer(pending_timer), unless it has to actually wait for
completion of the currently running timer.
The only restriction is that the recurring timer should not use
add_timer_on().
3. The timers are not serialized wrt to itself.
If CPU_0 does mod_timer(jiffies+1) while the timer is currently
running on CPU 1, it is quite possible that local interrupt on
CPU_0 will start that timer before it finished on CPU_1.
4. The timers locking is suboptimal. __mod_timer() takes 3 locks
at once and still requires wmb() in del_timer/run_timers.
The new implementation takes 2 locks sequentially and does not
need memory barriers.
Currently ->base != NULL means that the timer is pending. In that case
->base.lock is used to lock the timer. __mod_timer also takes timer->lock
because ->base can be == NULL.
This patch uses timer->entry.next != NULL as indication that the timer is
pending. So it does __list_del(), entry->next = NULL instead of list_del()
when the timer is deleted.
The ->base field is used for hashed locking only, it is initialized
in init_timer() which sets ->base = per_cpu(tvec_bases). When the
tvec_bases.lock is locked, it means that all timers which are tied
to this base via timer->base are locked, and the base itself is locked
too.
So __run_timers/migrate_timers can safely modify all timers which could
be found on ->tvX lists (pending timers).
When the timer's base is locked, and the timer removed from ->entry list
(which means that _run_timers/migrate_timers can't see this timer), it is
possible to set timer->base = NULL and drop the lock: the timer remains
locked.
This patch adds lock_timer_base() helper, which waits for ->base != NULL,
locks the ->base, and checks it is still the same.
__mod_timer() schedules the timer on the local CPU and changes it's base.
However, it does not lock both old and new bases at once. It locks the
timer via lock_timer_base(), deletes the timer, sets ->base = NULL, and
unlocks old base. Then __mod_timer() locks new_base, sets ->base = new_base,
and adds this timer. This simplifies the code, because AB-BA deadlock is not
possible. __mod_timer() also ensures that the timer's base is not changed
while the timer's handler is running on the old base.
__run_timers(), del_timer() do not change ->base anymore, they only clear
pending flag.
So del_timer_sync() can test timer->base->running_timer == timer to detect
whether it is running or not.
We don't need timer_list->lock anymore, this patch kills it.
We also don't need barriers. del_timer() and __run_timers() used smp_wmb()
before clearing timer's pending flag. It was needed because __mod_timer()
did not lock old_base if the timer is not pending, so __mod_timer()->list_add()
could race with del_timer()->list_del(). With this patch these functions are
serialized through base->lock.
One problem. TIMER_INITIALIZER can't use per_cpu(tvec_bases). So this patch
adds global
struct timer_base_s {
spinlock_t lock;
struct timer_list *running_timer;
} __init_timer_base;
which is used by TIMER_INITIALIZER. The corresponding fields in tvec_t_base_s
struct are replaced by struct timer_base_s t_base.
It is indeed ugly. But this can't have scalability problems. The global
__init_timer_base.lock is used only when __mod_timer() is called for the first
time AND the timer was compile time initialized. After that the timer migrates
to the local CPU.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Renaud Lienhart <renaud.lienhart@free.fr>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 07:08:56 +00:00
|
|
|
return ret;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
EXPORT_SYMBOL(del_timer);
|
|
|
|
|
|
|
|
#ifdef CONFIG_SMP
|
2006-09-29 08:59:46 +00:00
|
|
|
/**
|
|
|
|
* try_to_del_timer_sync - Try to deactivate a timer
|
|
|
|
* @timer: timer do del
|
|
|
|
*
|
2005-06-23 07:08:59 +00:00
|
|
|
* This function tries to deactivate a timer. Upon successful (ret >= 0)
|
|
|
|
* exit the timer is not queued and the handler is not running on any CPU.
|
|
|
|
*
|
|
|
|
* It must not be called from interrupt contexts.
|
|
|
|
*/
|
|
|
|
int try_to_del_timer_sync(struct timer_list *timer)
|
|
|
|
{
|
2008-01-30 12:30:00 +00:00
|
|
|
struct tvec_base *base;
|
2005-06-23 07:08:59 +00:00
|
|
|
unsigned long flags;
|
|
|
|
int ret = -1;
|
|
|
|
|
|
|
|
base = lock_timer_base(timer, &flags);
|
|
|
|
|
|
|
|
if (base->running_timer == timer)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
ret = 0;
|
|
|
|
if (timer_pending(timer)) {
|
|
|
|
detach_timer(timer, 1);
|
|
|
|
ret = 1;
|
|
|
|
}
|
|
|
|
out:
|
|
|
|
spin_unlock_irqrestore(&base->lock, flags);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2007-04-26 22:46:56 +00:00
|
|
|
EXPORT_SYMBOL(try_to_del_timer_sync);
|
|
|
|
|
2006-09-29 08:59:46 +00:00
|
|
|
/**
|
2005-04-16 22:20:36 +00:00
|
|
|
* del_timer_sync - deactivate a timer and wait for the handler to finish.
|
|
|
|
* @timer: the timer to be deactivated
|
|
|
|
*
|
|
|
|
* This function only differs from del_timer() on SMP: besides deactivating
|
|
|
|
* the timer it also makes sure the handler has finished executing on other
|
|
|
|
* CPUs.
|
|
|
|
*
|
2007-02-10 09:45:59 +00:00
|
|
|
* Synchronization rules: Callers must prevent restarting of the timer,
|
2005-04-16 22:20:36 +00:00
|
|
|
* otherwise this function is meaningless. It must not be called from
|
|
|
|
* interrupt contexts. The caller must not hold locks which would prevent
|
[PATCH] timers fixes/improvements
This patch tries to solve following problems:
1. del_timer_sync() is racy. The timer can be fired again after
del_timer_sync have checked all cpus and before it will recheck
timer_pending().
2. It has scalability problems. All cpus are scanned to determine
if the timer is running on that cpu.
With this patch del_timer_sync is O(1) and no slower than plain
del_timer(pending_timer), unless it has to actually wait for
completion of the currently running timer.
The only restriction is that the recurring timer should not use
add_timer_on().
3. The timers are not serialized wrt to itself.
If CPU_0 does mod_timer(jiffies+1) while the timer is currently
running on CPU 1, it is quite possible that local interrupt on
CPU_0 will start that timer before it finished on CPU_1.
4. The timers locking is suboptimal. __mod_timer() takes 3 locks
at once and still requires wmb() in del_timer/run_timers.
The new implementation takes 2 locks sequentially and does not
need memory barriers.
Currently ->base != NULL means that the timer is pending. In that case
->base.lock is used to lock the timer. __mod_timer also takes timer->lock
because ->base can be == NULL.
This patch uses timer->entry.next != NULL as indication that the timer is
pending. So it does __list_del(), entry->next = NULL instead of list_del()
when the timer is deleted.
The ->base field is used for hashed locking only, it is initialized
in init_timer() which sets ->base = per_cpu(tvec_bases). When the
tvec_bases.lock is locked, it means that all timers which are tied
to this base via timer->base are locked, and the base itself is locked
too.
So __run_timers/migrate_timers can safely modify all timers which could
be found on ->tvX lists (pending timers).
When the timer's base is locked, and the timer removed from ->entry list
(which means that _run_timers/migrate_timers can't see this timer), it is
possible to set timer->base = NULL and drop the lock: the timer remains
locked.
This patch adds lock_timer_base() helper, which waits for ->base != NULL,
locks the ->base, and checks it is still the same.
__mod_timer() schedules the timer on the local CPU and changes it's base.
However, it does not lock both old and new bases at once. It locks the
timer via lock_timer_base(), deletes the timer, sets ->base = NULL, and
unlocks old base. Then __mod_timer() locks new_base, sets ->base = new_base,
and adds this timer. This simplifies the code, because AB-BA deadlock is not
possible. __mod_timer() also ensures that the timer's base is not changed
while the timer's handler is running on the old base.
__run_timers(), del_timer() do not change ->base anymore, they only clear
pending flag.
So del_timer_sync() can test timer->base->running_timer == timer to detect
whether it is running or not.
We don't need timer_list->lock anymore, this patch kills it.
We also don't need barriers. del_timer() and __run_timers() used smp_wmb()
before clearing timer's pending flag. It was needed because __mod_timer()
did not lock old_base if the timer is not pending, so __mod_timer()->list_add()
could race with del_timer()->list_del(). With this patch these functions are
serialized through base->lock.
One problem. TIMER_INITIALIZER can't use per_cpu(tvec_bases). So this patch
adds global
struct timer_base_s {
spinlock_t lock;
struct timer_list *running_timer;
} __init_timer_base;
which is used by TIMER_INITIALIZER. The corresponding fields in tvec_t_base_s
struct are replaced by struct timer_base_s t_base.
It is indeed ugly. But this can't have scalability problems. The global
__init_timer_base.lock is used only when __mod_timer() is called for the first
time AND the timer was compile time initialized. After that the timer migrates
to the local CPU.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Renaud Lienhart <renaud.lienhart@free.fr>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 07:08:56 +00:00
|
|
|
* completion of the timer's handler. The timer's handler must not call
|
|
|
|
* add_timer_on(). Upon exit the timer is not queued and the handler is
|
|
|
|
* not running on any CPU.
|
2005-04-16 22:20:36 +00:00
|
|
|
*
|
|
|
|
* The function returns whether it has deactivated a pending timer or not.
|
|
|
|
*/
|
|
|
|
int del_timer_sync(struct timer_list *timer)
|
|
|
|
{
|
2005-06-23 07:08:59 +00:00
|
|
|
for (;;) {
|
|
|
|
int ret = try_to_del_timer_sync(timer);
|
|
|
|
if (ret >= 0)
|
|
|
|
return ret;
|
2006-07-14 07:24:06 +00:00
|
|
|
cpu_relax();
|
2005-06-23 07:08:59 +00:00
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
[PATCH] timers fixes/improvements
This patch tries to solve following problems:
1. del_timer_sync() is racy. The timer can be fired again after
del_timer_sync have checked all cpus and before it will recheck
timer_pending().
2. It has scalability problems. All cpus are scanned to determine
if the timer is running on that cpu.
With this patch del_timer_sync is O(1) and no slower than plain
del_timer(pending_timer), unless it has to actually wait for
completion of the currently running timer.
The only restriction is that the recurring timer should not use
add_timer_on().
3. The timers are not serialized wrt to itself.
If CPU_0 does mod_timer(jiffies+1) while the timer is currently
running on CPU 1, it is quite possible that local interrupt on
CPU_0 will start that timer before it finished on CPU_1.
4. The timers locking is suboptimal. __mod_timer() takes 3 locks
at once and still requires wmb() in del_timer/run_timers.
The new implementation takes 2 locks sequentially and does not
need memory barriers.
Currently ->base != NULL means that the timer is pending. In that case
->base.lock is used to lock the timer. __mod_timer also takes timer->lock
because ->base can be == NULL.
This patch uses timer->entry.next != NULL as indication that the timer is
pending. So it does __list_del(), entry->next = NULL instead of list_del()
when the timer is deleted.
The ->base field is used for hashed locking only, it is initialized
in init_timer() which sets ->base = per_cpu(tvec_bases). When the
tvec_bases.lock is locked, it means that all timers which are tied
to this base via timer->base are locked, and the base itself is locked
too.
So __run_timers/migrate_timers can safely modify all timers which could
be found on ->tvX lists (pending timers).
When the timer's base is locked, and the timer removed from ->entry list
(which means that _run_timers/migrate_timers can't see this timer), it is
possible to set timer->base = NULL and drop the lock: the timer remains
locked.
This patch adds lock_timer_base() helper, which waits for ->base != NULL,
locks the ->base, and checks it is still the same.
__mod_timer() schedules the timer on the local CPU and changes it's base.
However, it does not lock both old and new bases at once. It locks the
timer via lock_timer_base(), deletes the timer, sets ->base = NULL, and
unlocks old base. Then __mod_timer() locks new_base, sets ->base = new_base,
and adds this timer. This simplifies the code, because AB-BA deadlock is not
possible. __mod_timer() also ensures that the timer's base is not changed
while the timer's handler is running on the old base.
__run_timers(), del_timer() do not change ->base anymore, they only clear
pending flag.
So del_timer_sync() can test timer->base->running_timer == timer to detect
whether it is running or not.
We don't need timer_list->lock anymore, this patch kills it.
We also don't need barriers. del_timer() and __run_timers() used smp_wmb()
before clearing timer's pending flag. It was needed because __mod_timer()
did not lock old_base if the timer is not pending, so __mod_timer()->list_add()
could race with del_timer()->list_del(). With this patch these functions are
serialized through base->lock.
One problem. TIMER_INITIALIZER can't use per_cpu(tvec_bases). So this patch
adds global
struct timer_base_s {
spinlock_t lock;
struct timer_list *running_timer;
} __init_timer_base;
which is used by TIMER_INITIALIZER. The corresponding fields in tvec_t_base_s
struct are replaced by struct timer_base_s t_base.
It is indeed ugly. But this can't have scalability problems. The global
__init_timer_base.lock is used only when __mod_timer() is called for the first
time AND the timer was compile time initialized. After that the timer migrates
to the local CPU.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Renaud Lienhart <renaud.lienhart@free.fr>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 07:08:56 +00:00
|
|
|
EXPORT_SYMBOL(del_timer_sync);
|
2005-04-16 22:20:36 +00:00
|
|
|
#endif
|
|
|
|
|
2008-01-30 12:30:00 +00:00
|
|
|
static int cascade(struct tvec_base *base, struct tvec *tv, int index)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
|
|
|
/* cascade all the timers from tv up one level */
|
[PATCH] When CONFIG_BASE_SMALL=1, cascade() may enter an infinite loop
When CONFIG_BASE_SAMLL=1, cascade() in may enter the infinite loop.
Because of CONFIG_BASE_SMALL=1(TVR_BITS=6 and TVN_BITS=4), the list
base->tv5 may cascade into base->tv5. So, the kernel enters the infinite
loop in the function cascade().
I created a test module to verify this bug, and a patch to fix it.
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/timer.h>
#if 0
#include <linux/kdb.h>
#else
#define kdb_printf printk
#endif
#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
#define TVN_SIZE (1 << TVN_BITS)
#define TVR_SIZE (1 << TVR_BITS)
#define TVN_MASK (TVN_SIZE - 1)
#define TVR_MASK (TVR_SIZE - 1)
#define TV_SIZE(N) (N*TVN_BITS + TVR_BITS)
struct timer_list timer0;
struct timer_list dummy_timer1;
struct timer_list dummy_timer2;
void dummy_timer_fun(unsigned long data) {
}
unsigned long j=0;
void check_timer_base(unsigned long data)
{
kdb_printf("check_timer_base %08x\n",jiffies);
mod_timer(&timer0,(jiffies & (~0xFFF)) + 0x1FFF);
}
int init_module(void)
{
init_timer(&timer0);
timer0.data = (unsigned long)0;
timer0.function = check_timer_base;
mod_timer(&timer0,jiffies+1);
init_timer(&dummy_timer1);
dummy_timer1.data = (unsigned long)0;
dummy_timer1.function = dummy_timer_fun;
init_timer(&dummy_timer2);
dummy_timer2.data = (unsigned long)0;
dummy_timer2.function = dummy_timer_fun;
j=jiffies;
j&=(~((1<<TV_SIZE(3))-1));
j+=(1<<TV_SIZE(3));
j+=(1<<TV_SIZE(4));
kdb_printf("mod_timer %08x\n",j);
mod_timer(&dummy_timer1, j );
mod_timer(&dummy_timer2, j );
return 0;
}
void cleanup_module()
{
del_timer_sync(&timer0);
del_timer_sync(&dummy_timer1);
del_timer_sync(&dummy_timer2);
}
(Cleanups from Oleg)
[oleg@tv-sign.ru: use list_replace_init()]
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 09:05:56 +00:00
|
|
|
struct timer_list *timer, *tmp;
|
|
|
|
struct list_head tv_list;
|
|
|
|
|
|
|
|
list_replace_init(tv->vec + index, &tv_list);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/*
|
[PATCH] When CONFIG_BASE_SMALL=1, cascade() may enter an infinite loop
When CONFIG_BASE_SAMLL=1, cascade() in may enter the infinite loop.
Because of CONFIG_BASE_SMALL=1(TVR_BITS=6 and TVN_BITS=4), the list
base->tv5 may cascade into base->tv5. So, the kernel enters the infinite
loop in the function cascade().
I created a test module to verify this bug, and a patch to fix it.
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/timer.h>
#if 0
#include <linux/kdb.h>
#else
#define kdb_printf printk
#endif
#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
#define TVN_SIZE (1 << TVN_BITS)
#define TVR_SIZE (1 << TVR_BITS)
#define TVN_MASK (TVN_SIZE - 1)
#define TVR_MASK (TVR_SIZE - 1)
#define TV_SIZE(N) (N*TVN_BITS + TVR_BITS)
struct timer_list timer0;
struct timer_list dummy_timer1;
struct timer_list dummy_timer2;
void dummy_timer_fun(unsigned long data) {
}
unsigned long j=0;
void check_timer_base(unsigned long data)
{
kdb_printf("check_timer_base %08x\n",jiffies);
mod_timer(&timer0,(jiffies & (~0xFFF)) + 0x1FFF);
}
int init_module(void)
{
init_timer(&timer0);
timer0.data = (unsigned long)0;
timer0.function = check_timer_base;
mod_timer(&timer0,jiffies+1);
init_timer(&dummy_timer1);
dummy_timer1.data = (unsigned long)0;
dummy_timer1.function = dummy_timer_fun;
init_timer(&dummy_timer2);
dummy_timer2.data = (unsigned long)0;
dummy_timer2.function = dummy_timer_fun;
j=jiffies;
j&=(~((1<<TV_SIZE(3))-1));
j+=(1<<TV_SIZE(3));
j+=(1<<TV_SIZE(4));
kdb_printf("mod_timer %08x\n",j);
mod_timer(&dummy_timer1, j );
mod_timer(&dummy_timer2, j );
return 0;
}
void cleanup_module()
{
del_timer_sync(&timer0);
del_timer_sync(&dummy_timer1);
del_timer_sync(&dummy_timer2);
}
(Cleanups from Oleg)
[oleg@tv-sign.ru: use list_replace_init()]
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 09:05:56 +00:00
|
|
|
* We are removing _all_ timers from the list, so we
|
|
|
|
* don't have to detach them individually.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
[PATCH] When CONFIG_BASE_SMALL=1, cascade() may enter an infinite loop
When CONFIG_BASE_SAMLL=1, cascade() in may enter the infinite loop.
Because of CONFIG_BASE_SMALL=1(TVR_BITS=6 and TVN_BITS=4), the list
base->tv5 may cascade into base->tv5. So, the kernel enters the infinite
loop in the function cascade().
I created a test module to verify this bug, and a patch to fix it.
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/timer.h>
#if 0
#include <linux/kdb.h>
#else
#define kdb_printf printk
#endif
#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
#define TVN_SIZE (1 << TVN_BITS)
#define TVR_SIZE (1 << TVR_BITS)
#define TVN_MASK (TVN_SIZE - 1)
#define TVR_MASK (TVR_SIZE - 1)
#define TV_SIZE(N) (N*TVN_BITS + TVR_BITS)
struct timer_list timer0;
struct timer_list dummy_timer1;
struct timer_list dummy_timer2;
void dummy_timer_fun(unsigned long data) {
}
unsigned long j=0;
void check_timer_base(unsigned long data)
{
kdb_printf("check_timer_base %08x\n",jiffies);
mod_timer(&timer0,(jiffies & (~0xFFF)) + 0x1FFF);
}
int init_module(void)
{
init_timer(&timer0);
timer0.data = (unsigned long)0;
timer0.function = check_timer_base;
mod_timer(&timer0,jiffies+1);
init_timer(&dummy_timer1);
dummy_timer1.data = (unsigned long)0;
dummy_timer1.function = dummy_timer_fun;
init_timer(&dummy_timer2);
dummy_timer2.data = (unsigned long)0;
dummy_timer2.function = dummy_timer_fun;
j=jiffies;
j&=(~((1<<TV_SIZE(3))-1));
j+=(1<<TV_SIZE(3));
j+=(1<<TV_SIZE(4));
kdb_printf("mod_timer %08x\n",j);
mod_timer(&dummy_timer1, j );
mod_timer(&dummy_timer2, j );
return 0;
}
void cleanup_module()
{
del_timer_sync(&timer0);
del_timer_sync(&dummy_timer1);
del_timer_sync(&dummy_timer2);
}
(Cleanups from Oleg)
[oleg@tv-sign.ru: use list_replace_init()]
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 09:05:56 +00:00
|
|
|
list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
|
2007-05-08 07:27:44 +00:00
|
|
|
BUG_ON(tbase_get_base(timer->base) != base);
|
[PATCH] When CONFIG_BASE_SMALL=1, cascade() may enter an infinite loop
When CONFIG_BASE_SAMLL=1, cascade() in may enter the infinite loop.
Because of CONFIG_BASE_SMALL=1(TVR_BITS=6 and TVN_BITS=4), the list
base->tv5 may cascade into base->tv5. So, the kernel enters the infinite
loop in the function cascade().
I created a test module to verify this bug, and a patch to fix it.
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/timer.h>
#if 0
#include <linux/kdb.h>
#else
#define kdb_printf printk
#endif
#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
#define TVN_SIZE (1 << TVN_BITS)
#define TVR_SIZE (1 << TVR_BITS)
#define TVN_MASK (TVN_SIZE - 1)
#define TVR_MASK (TVR_SIZE - 1)
#define TV_SIZE(N) (N*TVN_BITS + TVR_BITS)
struct timer_list timer0;
struct timer_list dummy_timer1;
struct timer_list dummy_timer2;
void dummy_timer_fun(unsigned long data) {
}
unsigned long j=0;
void check_timer_base(unsigned long data)
{
kdb_printf("check_timer_base %08x\n",jiffies);
mod_timer(&timer0,(jiffies & (~0xFFF)) + 0x1FFF);
}
int init_module(void)
{
init_timer(&timer0);
timer0.data = (unsigned long)0;
timer0.function = check_timer_base;
mod_timer(&timer0,jiffies+1);
init_timer(&dummy_timer1);
dummy_timer1.data = (unsigned long)0;
dummy_timer1.function = dummy_timer_fun;
init_timer(&dummy_timer2);
dummy_timer2.data = (unsigned long)0;
dummy_timer2.function = dummy_timer_fun;
j=jiffies;
j&=(~((1<<TV_SIZE(3))-1));
j+=(1<<TV_SIZE(3));
j+=(1<<TV_SIZE(4));
kdb_printf("mod_timer %08x\n",j);
mod_timer(&dummy_timer1, j );
mod_timer(&dummy_timer2, j );
return 0;
}
void cleanup_module()
{
del_timer_sync(&timer0);
del_timer_sync(&dummy_timer1);
del_timer_sync(&dummy_timer2);
}
(Cleanups from Oleg)
[oleg@tv-sign.ru: use list_replace_init()]
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 09:05:56 +00:00
|
|
|
internal_add_timer(base, timer);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
return index;
|
|
|
|
}
|
|
|
|
|
2006-09-29 08:59:46 +00:00
|
|
|
#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
|
|
|
|
|
|
|
|
/**
|
2005-04-16 22:20:36 +00:00
|
|
|
* __run_timers - run all expired timers (if any) on this CPU.
|
|
|
|
* @base: the timer vector to be processed.
|
|
|
|
*
|
|
|
|
* This function cascades all vectors and executes all expired timer
|
|
|
|
* vectors.
|
|
|
|
*/
|
2008-01-30 12:30:00 +00:00
|
|
|
static inline void __run_timers(struct tvec_base *base)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
|
|
|
struct timer_list *timer;
|
|
|
|
|
2006-03-31 10:30:30 +00:00
|
|
|
spin_lock_irq(&base->lock);
|
2005-04-16 22:20:36 +00:00
|
|
|
while (time_after_eq(jiffies, base->timer_jiffies)) {
|
2006-06-23 09:05:55 +00:00
|
|
|
struct list_head work_list;
|
2005-04-16 22:20:36 +00:00
|
|
|
struct list_head *head = &work_list;
|
2007-07-19 08:49:16 +00:00
|
|
|
int index = base->timer_jiffies & TVR_MASK;
|
2006-06-23 09:05:55 +00:00
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/*
|
|
|
|
* Cascade timers:
|
|
|
|
*/
|
|
|
|
if (!index &&
|
|
|
|
(!cascade(base, &base->tv2, INDEX(0))) &&
|
|
|
|
(!cascade(base, &base->tv3, INDEX(1))) &&
|
|
|
|
!cascade(base, &base->tv4, INDEX(2)))
|
|
|
|
cascade(base, &base->tv5, INDEX(3));
|
2006-06-23 09:05:55 +00:00
|
|
|
++base->timer_jiffies;
|
|
|
|
list_replace_init(base->tv1.vec + index, &work_list);
|
[PATCH] timers fixes/improvements
This patch tries to solve following problems:
1. del_timer_sync() is racy. The timer can be fired again after
del_timer_sync have checked all cpus and before it will recheck
timer_pending().
2. It has scalability problems. All cpus are scanned to determine
if the timer is running on that cpu.
With this patch del_timer_sync is O(1) and no slower than plain
del_timer(pending_timer), unless it has to actually wait for
completion of the currently running timer.
The only restriction is that the recurring timer should not use
add_timer_on().
3. The timers are not serialized wrt to itself.
If CPU_0 does mod_timer(jiffies+1) while the timer is currently
running on CPU 1, it is quite possible that local interrupt on
CPU_0 will start that timer before it finished on CPU_1.
4. The timers locking is suboptimal. __mod_timer() takes 3 locks
at once and still requires wmb() in del_timer/run_timers.
The new implementation takes 2 locks sequentially and does not
need memory barriers.
Currently ->base != NULL means that the timer is pending. In that case
->base.lock is used to lock the timer. __mod_timer also takes timer->lock
because ->base can be == NULL.
This patch uses timer->entry.next != NULL as indication that the timer is
pending. So it does __list_del(), entry->next = NULL instead of list_del()
when the timer is deleted.
The ->base field is used for hashed locking only, it is initialized
in init_timer() which sets ->base = per_cpu(tvec_bases). When the
tvec_bases.lock is locked, it means that all timers which are tied
to this base via timer->base are locked, and the base itself is locked
too.
So __run_timers/migrate_timers can safely modify all timers which could
be found on ->tvX lists (pending timers).
When the timer's base is locked, and the timer removed from ->entry list
(which means that _run_timers/migrate_timers can't see this timer), it is
possible to set timer->base = NULL and drop the lock: the timer remains
locked.
This patch adds lock_timer_base() helper, which waits for ->base != NULL,
locks the ->base, and checks it is still the same.
__mod_timer() schedules the timer on the local CPU and changes it's base.
However, it does not lock both old and new bases at once. It locks the
timer via lock_timer_base(), deletes the timer, sets ->base = NULL, and
unlocks old base. Then __mod_timer() locks new_base, sets ->base = new_base,
and adds this timer. This simplifies the code, because AB-BA deadlock is not
possible. __mod_timer() also ensures that the timer's base is not changed
while the timer's handler is running on the old base.
__run_timers(), del_timer() do not change ->base anymore, they only clear
pending flag.
So del_timer_sync() can test timer->base->running_timer == timer to detect
whether it is running or not.
We don't need timer_list->lock anymore, this patch kills it.
We also don't need barriers. del_timer() and __run_timers() used smp_wmb()
before clearing timer's pending flag. It was needed because __mod_timer()
did not lock old_base if the timer is not pending, so __mod_timer()->list_add()
could race with del_timer()->list_del(). With this patch these functions are
serialized through base->lock.
One problem. TIMER_INITIALIZER can't use per_cpu(tvec_bases). So this patch
adds global
struct timer_base_s {
spinlock_t lock;
struct timer_list *running_timer;
} __init_timer_base;
which is used by TIMER_INITIALIZER. The corresponding fields in tvec_t_base_s
struct are replaced by struct timer_base_s t_base.
It is indeed ugly. But this can't have scalability problems. The global
__init_timer_base.lock is used only when __mod_timer() is called for the first
time AND the timer was compile time initialized. After that the timer migrates
to the local CPU.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Renaud Lienhart <renaud.lienhart@free.fr>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 07:08:56 +00:00
|
|
|
while (!list_empty(head)) {
|
2005-04-16 22:20:36 +00:00
|
|
|
void (*fn)(unsigned long);
|
|
|
|
unsigned long data;
|
|
|
|
|
Introduce a handy list_first_entry macro
There are many places in the kernel where the construction like
foo = list_entry(head->next, struct foo_struct, list);
are used.
The code might look more descriptive and neat if using the macro
list_first_entry(head, type, member) \
list_entry((head)->next, type, member)
Here is the macro itself and the examples of its usage in the generic code.
If it will turn out to be useful, I can prepare the set of patches to
inject in into arch-specific code, drivers, networking, etc.
Signed-off-by: Pavel Emelianov <xemul@openvz.org>
Signed-off-by: Kirill Korotaev <dev@openvz.org>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Zach Brown <zach.brown@oracle.com>
Cc: Davide Libenzi <davidel@xmailserver.org>
Cc: John McCutchan <ttb@tentacle.dhs.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: john stultz <johnstul@us.ibm.com>
Cc: Ram Pai <linuxram@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-08 07:30:19 +00:00
|
|
|
timer = list_first_entry(head, struct timer_list,entry);
|
2007-07-19 08:49:16 +00:00
|
|
|
fn = timer->function;
|
|
|
|
data = timer->data;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
[PATCH] Add debugging feature /proc/timer_stat
Add /proc/timer_stats support: debugging feature to profile timer expiration.
Both the starting site, process/PID and the expiration function is captured.
This allows the quick identification of timer event sources in a system.
Sample output:
# echo 1 > /proc/timer_stats
# cat /proc/timer_stats
Timer Stats Version: v0.1
Sample period: 4.010 s
24, 0 swapper hrtimer_stop_sched_tick (hrtimer_sched_tick)
11, 0 swapper sk_reset_timer (tcp_delack_timer)
6, 0 swapper hrtimer_stop_sched_tick (hrtimer_sched_tick)
2, 1 swapper queue_delayed_work_on (delayed_work_timer_fn)
17, 0 swapper hrtimer_restart_sched_tick (hrtimer_sched_tick)
2, 1 swapper queue_delayed_work_on (delayed_work_timer_fn)
4, 2050 pcscd do_nanosleep (hrtimer_wakeup)
5, 4179 sshd sk_reset_timer (tcp_write_timer)
4, 2248 yum-updatesd schedule_timeout (process_timeout)
18, 0 swapper hrtimer_restart_sched_tick (hrtimer_sched_tick)
3, 0 swapper sk_reset_timer (tcp_delack_timer)
1, 1 swapper neigh_table_init_no_netlink (neigh_periodic_timer)
2, 1 swapper e1000_up (e1000_watchdog)
1, 1 init schedule_timeout (process_timeout)
100 total events, 25.24 events/sec
[ cleanups and hrtimers support from Thomas Gleixner <tglx@linutronix.de> ]
[bunk@stusta.de: nr_entries can become static]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: john stultz <johnstul@us.ibm.com>
Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-16 09:28:13 +00:00
|
|
|
timer_stats_account_timer(timer);
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
set_running_timer(base, timer);
|
[PATCH] timers fixes/improvements
This patch tries to solve following problems:
1. del_timer_sync() is racy. The timer can be fired again after
del_timer_sync have checked all cpus and before it will recheck
timer_pending().
2. It has scalability problems. All cpus are scanned to determine
if the timer is running on that cpu.
With this patch del_timer_sync is O(1) and no slower than plain
del_timer(pending_timer), unless it has to actually wait for
completion of the currently running timer.
The only restriction is that the recurring timer should not use
add_timer_on().
3. The timers are not serialized wrt to itself.
If CPU_0 does mod_timer(jiffies+1) while the timer is currently
running on CPU 1, it is quite possible that local interrupt on
CPU_0 will start that timer before it finished on CPU_1.
4. The timers locking is suboptimal. __mod_timer() takes 3 locks
at once and still requires wmb() in del_timer/run_timers.
The new implementation takes 2 locks sequentially and does not
need memory barriers.
Currently ->base != NULL means that the timer is pending. In that case
->base.lock is used to lock the timer. __mod_timer also takes timer->lock
because ->base can be == NULL.
This patch uses timer->entry.next != NULL as indication that the timer is
pending. So it does __list_del(), entry->next = NULL instead of list_del()
when the timer is deleted.
The ->base field is used for hashed locking only, it is initialized
in init_timer() which sets ->base = per_cpu(tvec_bases). When the
tvec_bases.lock is locked, it means that all timers which are tied
to this base via timer->base are locked, and the base itself is locked
too.
So __run_timers/migrate_timers can safely modify all timers which could
be found on ->tvX lists (pending timers).
When the timer's base is locked, and the timer removed from ->entry list
(which means that _run_timers/migrate_timers can't see this timer), it is
possible to set timer->base = NULL and drop the lock: the timer remains
locked.
This patch adds lock_timer_base() helper, which waits for ->base != NULL,
locks the ->base, and checks it is still the same.
__mod_timer() schedules the timer on the local CPU and changes it's base.
However, it does not lock both old and new bases at once. It locks the
timer via lock_timer_base(), deletes the timer, sets ->base = NULL, and
unlocks old base. Then __mod_timer() locks new_base, sets ->base = new_base,
and adds this timer. This simplifies the code, because AB-BA deadlock is not
possible. __mod_timer() also ensures that the timer's base is not changed
while the timer's handler is running on the old base.
__run_timers(), del_timer() do not change ->base anymore, they only clear
pending flag.
So del_timer_sync() can test timer->base->running_timer == timer to detect
whether it is running or not.
We don't need timer_list->lock anymore, this patch kills it.
We also don't need barriers. del_timer() and __run_timers() used smp_wmb()
before clearing timer's pending flag. It was needed because __mod_timer()
did not lock old_base if the timer is not pending, so __mod_timer()->list_add()
could race with del_timer()->list_del(). With this patch these functions are
serialized through base->lock.
One problem. TIMER_INITIALIZER can't use per_cpu(tvec_bases). So this patch
adds global
struct timer_base_s {
spinlock_t lock;
struct timer_list *running_timer;
} __init_timer_base;
which is used by TIMER_INITIALIZER. The corresponding fields in tvec_t_base_s
struct are replaced by struct timer_base_s t_base.
It is indeed ugly. But this can't have scalability problems. The global
__init_timer_base.lock is used only when __mod_timer() is called for the first
time AND the timer was compile time initialized. After that the timer migrates
to the local CPU.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Renaud Lienhart <renaud.lienhart@free.fr>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 07:08:56 +00:00
|
|
|
detach_timer(timer, 1);
|
2006-03-31 10:30:30 +00:00
|
|
|
spin_unlock_irq(&base->lock);
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2005-06-23 07:09:09 +00:00
|
|
|
int preempt_count = preempt_count();
|
2005-04-16 22:20:36 +00:00
|
|
|
fn(data);
|
|
|
|
if (preempt_count != preempt_count()) {
|
2008-01-30 12:30:00 +00:00
|
|
|
printk(KERN_ERR "huh, entered %p "
|
2005-06-23 07:09:09 +00:00
|
|
|
"with preempt_count %08x, exited"
|
|
|
|
" with %08x?\n",
|
|
|
|
fn, preempt_count,
|
|
|
|
preempt_count());
|
2005-04-16 22:20:36 +00:00
|
|
|
BUG();
|
|
|
|
}
|
|
|
|
}
|
2006-03-31 10:30:30 +00:00
|
|
|
spin_lock_irq(&base->lock);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
set_running_timer(base, NULL);
|
2006-03-31 10:30:30 +00:00
|
|
|
spin_unlock_irq(&base->lock);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2008-04-20 12:59:33 +00:00
|
|
|
#ifdef CONFIG_NO_HZ
|
2005-04-16 22:20:36 +00:00
|
|
|
/*
|
|
|
|
* Find out when the next timer event is due to happen. This
|
|
|
|
* is used on S/390 to stop all activity when a cpus is idle.
|
|
|
|
* This functions needs to be called disabled.
|
|
|
|
*/
|
2008-01-30 12:30:00 +00:00
|
|
|
static unsigned long __next_timer_interrupt(struct tvec_base *base)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2007-02-16 09:27:46 +00:00
|
|
|
unsigned long timer_jiffies = base->timer_jiffies;
|
2007-05-29 21:47:39 +00:00
|
|
|
unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
|
2007-02-16 09:27:46 +00:00
|
|
|
int index, slot, array, found = 0;
|
2005-04-16 22:20:36 +00:00
|
|
|
struct timer_list *nte;
|
2008-01-30 12:30:00 +00:00
|
|
|
struct tvec *varray[4];
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* Look for timer events in tv1. */
|
2007-02-16 09:27:46 +00:00
|
|
|
index = slot = timer_jiffies & TVR_MASK;
|
2005-04-16 22:20:36 +00:00
|
|
|
do {
|
2007-02-16 09:27:46 +00:00
|
|
|
list_for_each_entry(nte, base->tv1.vec + slot, entry) {
|
2007-07-19 08:49:16 +00:00
|
|
|
if (tbase_get_deferrable(nte->base))
|
|
|
|
continue;
|
2007-05-08 07:27:44 +00:00
|
|
|
|
2007-02-16 09:27:46 +00:00
|
|
|
found = 1;
|
2005-04-16 22:20:36 +00:00
|
|
|
expires = nte->expires;
|
2007-02-16 09:27:46 +00:00
|
|
|
/* Look at the cascade bucket(s)? */
|
|
|
|
if (!index || slot < index)
|
|
|
|
goto cascade;
|
|
|
|
return expires;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
2007-02-16 09:27:46 +00:00
|
|
|
slot = (slot + 1) & TVR_MASK;
|
|
|
|
} while (slot != index);
|
|
|
|
|
|
|
|
cascade:
|
|
|
|
/* Calculate the next cascade event */
|
|
|
|
if (index)
|
|
|
|
timer_jiffies += TVR_SIZE - index;
|
|
|
|
timer_jiffies >>= TVR_BITS;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* Check tv2-tv5. */
|
|
|
|
varray[0] = &base->tv2;
|
|
|
|
varray[1] = &base->tv3;
|
|
|
|
varray[2] = &base->tv4;
|
|
|
|
varray[3] = &base->tv5;
|
2007-02-16 09:27:46 +00:00
|
|
|
|
|
|
|
for (array = 0; array < 4; array++) {
|
2008-01-30 12:30:00 +00:00
|
|
|
struct tvec *varp = varray[array];
|
2007-02-16 09:27:46 +00:00
|
|
|
|
|
|
|
index = slot = timer_jiffies & TVN_MASK;
|
2005-04-16 22:20:36 +00:00
|
|
|
do {
|
2007-02-16 09:27:46 +00:00
|
|
|
list_for_each_entry(nte, varp->vec + slot, entry) {
|
|
|
|
found = 1;
|
2005-04-16 22:20:36 +00:00
|
|
|
if (time_before(nte->expires, expires))
|
|
|
|
expires = nte->expires;
|
2007-02-16 09:27:46 +00:00
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Do we still search for the first timer or are
|
|
|
|
* we looking up the cascade buckets ?
|
|
|
|
*/
|
|
|
|
if (found) {
|
|
|
|
/* Look at the cascade bucket(s)? */
|
|
|
|
if (!index || slot < index)
|
|
|
|
break;
|
|
|
|
return expires;
|
|
|
|
}
|
|
|
|
slot = (slot + 1) & TVN_MASK;
|
|
|
|
} while (slot != index);
|
|
|
|
|
|
|
|
if (index)
|
|
|
|
timer_jiffies += TVN_SIZE - index;
|
|
|
|
timer_jiffies >>= TVN_BITS;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
2007-02-16 09:27:46 +00:00
|
|
|
return expires;
|
|
|
|
}
|
2006-03-06 23:42:45 +00:00
|
|
|
|
2007-02-16 09:27:46 +00:00
|
|
|
/*
|
|
|
|
* Check, if the next hrtimer event is before the next timer wheel
|
|
|
|
* event:
|
|
|
|
*/
|
|
|
|
static unsigned long cmp_next_hrtimer_event(unsigned long now,
|
|
|
|
unsigned long expires)
|
|
|
|
{
|
|
|
|
ktime_t hr_delta = hrtimer_get_next_event();
|
|
|
|
struct timespec tsdelta;
|
2007-03-25 12:31:17 +00:00
|
|
|
unsigned long delta;
|
2007-02-16 09:27:46 +00:00
|
|
|
|
|
|
|
if (hr_delta.tv64 == KTIME_MAX)
|
|
|
|
return expires;
|
2006-05-20 22:00:24 +00:00
|
|
|
|
2007-03-25 12:31:17 +00:00
|
|
|
/*
|
|
|
|
* Expired timer available, let it expire in the next tick
|
|
|
|
*/
|
|
|
|
if (hr_delta.tv64 <= 0)
|
|
|
|
return now + 1;
|
2006-03-06 23:42:45 +00:00
|
|
|
|
2007-02-16 09:27:46 +00:00
|
|
|
tsdelta = ktime_to_timespec(hr_delta);
|
2007-03-25 12:31:17 +00:00
|
|
|
delta = timespec_to_jiffies(&tsdelta);
|
2007-05-29 21:47:39 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Limit the delta to the max value, which is checked in
|
|
|
|
* tick_nohz_stop_sched_tick():
|
|
|
|
*/
|
|
|
|
if (delta > NEXT_TIMER_MAX_DELTA)
|
|
|
|
delta = NEXT_TIMER_MAX_DELTA;
|
|
|
|
|
2007-03-25 12:31:17 +00:00
|
|
|
/*
|
|
|
|
* Take rounding errors in to account and make sure, that it
|
|
|
|
* expires in the next tick. Otherwise we go into an endless
|
|
|
|
* ping pong due to tick_nohz_stop_sched_tick() retriggering
|
|
|
|
* the timer softirq
|
|
|
|
*/
|
|
|
|
if (delta < 1)
|
|
|
|
delta = 1;
|
|
|
|
now += delta;
|
2007-02-16 09:27:46 +00:00
|
|
|
if (time_before(now, expires))
|
|
|
|
return now;
|
2005-04-16 22:20:36 +00:00
|
|
|
return expires;
|
|
|
|
}
|
2007-02-16 09:27:46 +00:00
|
|
|
|
|
|
|
/**
|
2007-11-05 22:51:10 +00:00
|
|
|
* get_next_timer_interrupt - return the jiffy of the next pending timer
|
2007-03-01 04:12:13 +00:00
|
|
|
* @now: current time (in jiffies)
|
2007-02-16 09:27:46 +00:00
|
|
|
*/
|
2007-02-16 09:27:47 +00:00
|
|
|
unsigned long get_next_timer_interrupt(unsigned long now)
|
2007-02-16 09:27:46 +00:00
|
|
|
{
|
2008-01-30 12:30:00 +00:00
|
|
|
struct tvec_base *base = __get_cpu_var(tvec_bases);
|
2007-02-16 09:27:47 +00:00
|
|
|
unsigned long expires;
|
2007-02-16 09:27:46 +00:00
|
|
|
|
|
|
|
spin_lock(&base->lock);
|
|
|
|
expires = __next_timer_interrupt(base);
|
|
|
|
spin_unlock(&base->lock);
|
|
|
|
|
|
|
|
if (time_before_eq(expires, now))
|
|
|
|
return now;
|
|
|
|
|
|
|
|
return cmp_next_hrtimer_event(now, expires);
|
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
#endif
|
|
|
|
|
2007-11-09 21:39:38 +00:00
|
|
|
#ifndef CONFIG_VIRT_CPU_ACCOUNTING
|
|
|
|
void account_process_tick(struct task_struct *p, int user_tick)
|
|
|
|
{
|
2008-02-06 09:36:12 +00:00
|
|
|
cputime_t one_jiffy = jiffies_to_cputime(1);
|
|
|
|
|
2007-11-09 21:39:38 +00:00
|
|
|
if (user_tick) {
|
2008-02-06 09:36:12 +00:00
|
|
|
account_user_time(p, one_jiffy);
|
|
|
|
account_user_time_scaled(p, cputime_to_scaled(one_jiffy));
|
2007-11-09 21:39:38 +00:00
|
|
|
} else {
|
2008-02-06 09:36:12 +00:00
|
|
|
account_system_time(p, HARDIRQ_OFFSET, one_jiffy);
|
|
|
|
account_system_time_scaled(p, cputime_to_scaled(one_jiffy));
|
2007-11-09 21:39:38 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/*
|
2007-10-18 10:06:11 +00:00
|
|
|
* Called from the timer interrupt handler to charge one tick to the current
|
2005-04-16 22:20:36 +00:00
|
|
|
* process. user_tick is 1 if the tick is user time, 0 for system.
|
|
|
|
*/
|
|
|
|
void update_process_times(int user_tick)
|
|
|
|
{
|
|
|
|
struct task_struct *p = current;
|
|
|
|
int cpu = smp_processor_id();
|
|
|
|
|
|
|
|
/* Note: this timer irq context must be accounted for as well. */
|
2007-11-09 21:39:38 +00:00
|
|
|
account_process_tick(p, user_tick);
|
2005-04-16 22:20:36 +00:00
|
|
|
run_local_timers();
|
|
|
|
if (rcu_pending(cpu))
|
|
|
|
rcu_check_callbacks(cpu, user_tick);
|
2008-08-08 19:47:09 +00:00
|
|
|
printk_tick();
|
2005-04-16 22:20:36 +00:00
|
|
|
scheduler_tick();
|
2007-07-19 08:49:16 +00:00
|
|
|
run_posix_cpu_timers(p);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Nr of active tasks - counted in fixed-point numbers
|
|
|
|
*/
|
|
|
|
static unsigned long count_active_tasks(void)
|
|
|
|
{
|
2006-03-31 10:31:21 +00:00
|
|
|
return nr_active() * FIXED_1;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Hmm.. Changed this, as the GNU make sources (load.c) seems to
|
|
|
|
* imply that avenrun[] is the standard name for this kind of thing.
|
|
|
|
* Nothing else seems to be standardized: the fractional size etc
|
|
|
|
* all seem to differ on different machines.
|
|
|
|
*
|
|
|
|
* Requires xtime_lock to access.
|
|
|
|
*/
|
|
|
|
unsigned long avenrun[3];
|
|
|
|
|
|
|
|
EXPORT_SYMBOL(avenrun);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* calc_load - given tick count, update the avenrun load estimates.
|
|
|
|
* This is called while holding a write_lock on xtime_lock.
|
|
|
|
*/
|
|
|
|
static inline void calc_load(unsigned long ticks)
|
|
|
|
{
|
|
|
|
unsigned long active_tasks; /* fixed-point */
|
|
|
|
static int count = LOAD_FREQ;
|
|
|
|
|
2006-12-13 08:35:45 +00:00
|
|
|
count -= ticks;
|
|
|
|
if (unlikely(count < 0)) {
|
|
|
|
active_tasks = count_active_tasks();
|
|
|
|
do {
|
|
|
|
CALC_LOAD(avenrun[0], EXP_1, active_tasks);
|
|
|
|
CALC_LOAD(avenrun[1], EXP_5, active_tasks);
|
|
|
|
CALC_LOAD(avenrun[2], EXP_15, active_tasks);
|
|
|
|
count += LOAD_FREQ;
|
|
|
|
} while (count < 0);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This function runs timers and the timer-tq in bottom half context.
|
|
|
|
*/
|
|
|
|
static void run_timer_softirq(struct softirq_action *h)
|
|
|
|
{
|
2008-01-30 12:30:00 +00:00
|
|
|
struct tvec_base *base = __get_cpu_var(tvec_bases);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2008-01-25 20:08:31 +00:00
|
|
|
hrtimer_run_pending();
|
[PATCH] Add debugging feature /proc/timer_stat
Add /proc/timer_stats support: debugging feature to profile timer expiration.
Both the starting site, process/PID and the expiration function is captured.
This allows the quick identification of timer event sources in a system.
Sample output:
# echo 1 > /proc/timer_stats
# cat /proc/timer_stats
Timer Stats Version: v0.1
Sample period: 4.010 s
24, 0 swapper hrtimer_stop_sched_tick (hrtimer_sched_tick)
11, 0 swapper sk_reset_timer (tcp_delack_timer)
6, 0 swapper hrtimer_stop_sched_tick (hrtimer_sched_tick)
2, 1 swapper queue_delayed_work_on (delayed_work_timer_fn)
17, 0 swapper hrtimer_restart_sched_tick (hrtimer_sched_tick)
2, 1 swapper queue_delayed_work_on (delayed_work_timer_fn)
4, 2050 pcscd do_nanosleep (hrtimer_wakeup)
5, 4179 sshd sk_reset_timer (tcp_write_timer)
4, 2248 yum-updatesd schedule_timeout (process_timeout)
18, 0 swapper hrtimer_restart_sched_tick (hrtimer_sched_tick)
3, 0 swapper sk_reset_timer (tcp_delack_timer)
1, 1 swapper neigh_table_init_no_netlink (neigh_periodic_timer)
2, 1 swapper e1000_up (e1000_watchdog)
1, 1 init schedule_timeout (process_timeout)
100 total events, 25.24 events/sec
[ cleanups and hrtimers support from Thomas Gleixner <tglx@linutronix.de> ]
[bunk@stusta.de: nr_entries can become static]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: john stultz <johnstul@us.ibm.com>
Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-16 09:28:13 +00:00
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
if (time_after_eq(jiffies, base->timer_jiffies))
|
|
|
|
__run_timers(base);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Called by the local, per-CPU timer interrupt on SMP.
|
|
|
|
*/
|
|
|
|
void run_local_timers(void)
|
|
|
|
{
|
2008-01-25 20:08:31 +00:00
|
|
|
hrtimer_run_queues();
|
2005-04-16 22:20:36 +00:00
|
|
|
raise_softirq(TIMER_SOFTIRQ);
|
2006-03-24 11:18:41 +00:00
|
|
|
softlockup_tick();
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Called by the timer interrupt. xtime_lock must already be taken
|
|
|
|
* by the timer IRQ!
|
|
|
|
*/
|
2006-09-29 09:00:32 +00:00
|
|
|
static inline void update_times(unsigned long ticks)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2006-06-26 07:25:06 +00:00
|
|
|
update_wall_time();
|
2005-04-16 22:20:36 +00:00
|
|
|
calc_load(ticks);
|
|
|
|
}
|
2007-07-19 08:49:16 +00:00
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/*
|
|
|
|
* The 64-bit jiffies value is not atomic - you MUST NOT read it
|
|
|
|
* without sampling the sequence number in xtime_lock.
|
|
|
|
* jiffies is defined in the linker script...
|
|
|
|
*/
|
|
|
|
|
2006-09-29 09:00:32 +00:00
|
|
|
void do_timer(unsigned long ticks)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2006-09-29 09:00:32 +00:00
|
|
|
jiffies_64 += ticks;
|
|
|
|
update_times(ticks);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef __ARCH_WANT_SYS_ALARM
|
|
|
|
|
|
|
|
/*
|
|
|
|
* For backwards compatibility? This can be done in libc so Alpha
|
|
|
|
* and all newer ports shouldn't need it.
|
|
|
|
*/
|
|
|
|
asmlinkage unsigned long sys_alarm(unsigned int seconds)
|
|
|
|
{
|
2006-03-25 11:06:33 +00:00
|
|
|
return alarm_setitimer(seconds);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef __alpha__
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
|
|
|
|
* should be moved into arch/i386 instead?
|
|
|
|
*/
|
|
|
|
|
|
|
|
/**
|
|
|
|
* sys_getpid - return the thread group id of the current process
|
|
|
|
*
|
|
|
|
* Note, despite the name, this returns the tgid not the pid. The tgid and
|
|
|
|
* the pid are identical unless CLONE_THREAD was specified on clone() in
|
|
|
|
* which case the tgid is the same in all threads of the same group.
|
|
|
|
*
|
|
|
|
* This is SMP safe as current->tgid does not change.
|
|
|
|
*/
|
|
|
|
asmlinkage long sys_getpid(void)
|
|
|
|
{
|
2007-10-19 06:40:14 +00:00
|
|
|
return task_tgid_vnr(current);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2006-08-14 06:24:23 +00:00
|
|
|
* Accessing ->real_parent is not SMP-safe, it could
|
|
|
|
* change from under us. However, we can use a stale
|
|
|
|
* value of ->real_parent under rcu_read_lock(), see
|
|
|
|
* release_task()->call_rcu(delayed_put_task_struct).
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
|
|
|
asmlinkage long sys_getppid(void)
|
|
|
|
{
|
|
|
|
int pid;
|
|
|
|
|
2006-08-14 06:24:23 +00:00
|
|
|
rcu_read_lock();
|
2008-02-08 12:19:20 +00:00
|
|
|
pid = task_tgid_vnr(current->real_parent);
|
2006-08-14 06:24:23 +00:00
|
|
|
rcu_read_unlock();
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
return pid;
|
|
|
|
}
|
|
|
|
|
|
|
|
asmlinkage long sys_getuid(void)
|
|
|
|
{
|
|
|
|
/* Only we change this so SMP safe */
|
2008-11-13 23:39:12 +00:00
|
|
|
return current_uid();
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
asmlinkage long sys_geteuid(void)
|
|
|
|
{
|
|
|
|
/* Only we change this so SMP safe */
|
2008-11-13 23:39:12 +00:00
|
|
|
return current_euid();
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
asmlinkage long sys_getgid(void)
|
|
|
|
{
|
|
|
|
/* Only we change this so SMP safe */
|
2008-11-13 23:39:12 +00:00
|
|
|
return current_gid();
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
asmlinkage long sys_getegid(void)
|
|
|
|
{
|
|
|
|
/* Only we change this so SMP safe */
|
2008-11-13 23:39:12 +00:00
|
|
|
return current_egid();
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
static void process_timeout(unsigned long __data)
|
|
|
|
{
|
2006-07-03 07:25:41 +00:00
|
|
|
wake_up_process((struct task_struct *)__data);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* schedule_timeout - sleep until timeout
|
|
|
|
* @timeout: timeout value in jiffies
|
|
|
|
*
|
|
|
|
* Make the current task sleep until @timeout jiffies have
|
|
|
|
* elapsed. The routine will return immediately unless
|
|
|
|
* the current task state has been set (see set_current_state()).
|
|
|
|
*
|
|
|
|
* You can set the task state as follows -
|
|
|
|
*
|
|
|
|
* %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
|
|
|
|
* pass before the routine returns. The routine will return 0
|
|
|
|
*
|
|
|
|
* %TASK_INTERRUPTIBLE - the routine may return early if a signal is
|
|
|
|
* delivered to the current task. In this case the remaining time
|
|
|
|
* in jiffies will be returned, or 0 if the timer expired in time
|
|
|
|
*
|
|
|
|
* The current task state is guaranteed to be TASK_RUNNING when this
|
|
|
|
* routine returns.
|
|
|
|
*
|
|
|
|
* Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
|
|
|
|
* the CPU away without a bound on the timeout. In this case the return
|
|
|
|
* value will be %MAX_SCHEDULE_TIMEOUT.
|
|
|
|
*
|
|
|
|
* In all cases the return value is guaranteed to be non-negative.
|
|
|
|
*/
|
2008-02-08 12:19:53 +00:00
|
|
|
signed long __sched schedule_timeout(signed long timeout)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
|
|
|
struct timer_list timer;
|
|
|
|
unsigned long expire;
|
|
|
|
|
|
|
|
switch (timeout)
|
|
|
|
{
|
|
|
|
case MAX_SCHEDULE_TIMEOUT:
|
|
|
|
/*
|
|
|
|
* These two special cases are useful to be comfortable
|
|
|
|
* in the caller. Nothing more. We could take
|
|
|
|
* MAX_SCHEDULE_TIMEOUT from one of the negative value
|
|
|
|
* but I' d like to return a valid offset (>=0) to allow
|
|
|
|
* the caller to do everything it want with the retval.
|
|
|
|
*/
|
|
|
|
schedule();
|
|
|
|
goto out;
|
|
|
|
default:
|
|
|
|
/*
|
|
|
|
* Another bit of PARANOID. Note that the retval will be
|
|
|
|
* 0 since no piece of kernel is supposed to do a check
|
|
|
|
* for a negative retval of schedule_timeout() (since it
|
|
|
|
* should never happens anyway). You just have the printk()
|
|
|
|
* that will tell you if something is gone wrong and where.
|
|
|
|
*/
|
2006-12-22 09:10:14 +00:00
|
|
|
if (timeout < 0) {
|
2005-04-16 22:20:36 +00:00
|
|
|
printk(KERN_ERR "schedule_timeout: wrong timeout "
|
2006-12-22 09:10:14 +00:00
|
|
|
"value %lx\n", timeout);
|
|
|
|
dump_stack();
|
2005-04-16 22:20:36 +00:00
|
|
|
current->state = TASK_RUNNING;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
expire = timeout + jiffies;
|
|
|
|
|
2008-04-30 07:55:03 +00:00
|
|
|
setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
|
2005-10-30 23:01:38 +00:00
|
|
|
__mod_timer(&timer, expire);
|
2005-04-16 22:20:36 +00:00
|
|
|
schedule();
|
|
|
|
del_singleshot_timer_sync(&timer);
|
|
|
|
|
2008-04-30 07:55:03 +00:00
|
|
|
/* Remove the timer from the object tracker */
|
|
|
|
destroy_timer_on_stack(&timer);
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
timeout = expire - jiffies;
|
|
|
|
|
|
|
|
out:
|
|
|
|
return timeout < 0 ? 0 : timeout;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(schedule_timeout);
|
|
|
|
|
2005-09-13 08:25:15 +00:00
|
|
|
/*
|
|
|
|
* We can use __set_current_state() here because schedule_timeout() calls
|
|
|
|
* schedule() unconditionally.
|
|
|
|
*/
|
2005-09-10 07:27:21 +00:00
|
|
|
signed long __sched schedule_timeout_interruptible(signed long timeout)
|
|
|
|
{
|
2005-10-30 23:01:42 +00:00
|
|
|
__set_current_state(TASK_INTERRUPTIBLE);
|
|
|
|
return schedule_timeout(timeout);
|
2005-09-10 07:27:21 +00:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(schedule_timeout_interruptible);
|
|
|
|
|
2007-12-06 16:59:46 +00:00
|
|
|
signed long __sched schedule_timeout_killable(signed long timeout)
|
|
|
|
{
|
|
|
|
__set_current_state(TASK_KILLABLE);
|
|
|
|
return schedule_timeout(timeout);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(schedule_timeout_killable);
|
|
|
|
|
2005-09-10 07:27:21 +00:00
|
|
|
signed long __sched schedule_timeout_uninterruptible(signed long timeout)
|
|
|
|
{
|
2005-10-30 23:01:42 +00:00
|
|
|
__set_current_state(TASK_UNINTERRUPTIBLE);
|
|
|
|
return schedule_timeout(timeout);
|
2005-09-10 07:27:21 +00:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(schedule_timeout_uninterruptible);
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* Thread ID - the internal kernel "pid" */
|
|
|
|
asmlinkage long sys_gettid(void)
|
|
|
|
{
|
2007-10-19 06:40:14 +00:00
|
|
|
return task_pid_vnr(current);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2006-09-29 08:59:46 +00:00
|
|
|
/**
|
2007-02-10 09:46:00 +00:00
|
|
|
* do_sysinfo - fill in sysinfo struct
|
2006-09-29 08:59:46 +00:00
|
|
|
* @info: pointer to buffer to fill
|
2007-07-19 08:49:16 +00:00
|
|
|
*/
|
2007-02-10 09:46:00 +00:00
|
|
|
int do_sysinfo(struct sysinfo *info)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
|
|
|
unsigned long mem_total, sav_total;
|
|
|
|
unsigned int mem_unit, bitcount;
|
|
|
|
unsigned long seq;
|
|
|
|
|
2007-02-10 09:46:00 +00:00
|
|
|
memset(info, 0, sizeof(struct sysinfo));
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
do {
|
|
|
|
struct timespec tp;
|
|
|
|
seq = read_seqbegin(&xtime_lock);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This is annoying. The below is the same thing
|
|
|
|
* posix_get_clock_monotonic() does, but it wants to
|
|
|
|
* take the lock which we want to cover the loads stuff
|
|
|
|
* too.
|
|
|
|
*/
|
|
|
|
|
|
|
|
getnstimeofday(&tp);
|
|
|
|
tp.tv_sec += wall_to_monotonic.tv_sec;
|
|
|
|
tp.tv_nsec += wall_to_monotonic.tv_nsec;
|
2007-07-16 06:39:42 +00:00
|
|
|
monotonic_to_bootbased(&tp);
|
2005-04-16 22:20:36 +00:00
|
|
|
if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
|
|
|
|
tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
|
|
|
|
tp.tv_sec++;
|
|
|
|
}
|
2007-02-10 09:46:00 +00:00
|
|
|
info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2007-02-10 09:46:00 +00:00
|
|
|
info->loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
|
|
|
|
info->loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
|
|
|
|
info->loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2007-02-10 09:46:00 +00:00
|
|
|
info->procs = nr_threads;
|
2005-04-16 22:20:36 +00:00
|
|
|
} while (read_seqretry(&xtime_lock, seq));
|
|
|
|
|
2007-02-10 09:46:00 +00:00
|
|
|
si_meminfo(info);
|
|
|
|
si_swapinfo(info);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* If the sum of all the available memory (i.e. ram + swap)
|
|
|
|
* is less than can be stored in a 32 bit unsigned long then
|
|
|
|
* we can be binary compatible with 2.2.x kernels. If not,
|
|
|
|
* well, in that case 2.2.x was broken anyways...
|
|
|
|
*
|
|
|
|
* -Erik Andersen <andersee@debian.org>
|
|
|
|
*/
|
|
|
|
|
2007-02-10 09:46:00 +00:00
|
|
|
mem_total = info->totalram + info->totalswap;
|
|
|
|
if (mem_total < info->totalram || mem_total < info->totalswap)
|
2005-04-16 22:20:36 +00:00
|
|
|
goto out;
|
|
|
|
bitcount = 0;
|
2007-02-10 09:46:00 +00:00
|
|
|
mem_unit = info->mem_unit;
|
2005-04-16 22:20:36 +00:00
|
|
|
while (mem_unit > 1) {
|
|
|
|
bitcount++;
|
|
|
|
mem_unit >>= 1;
|
|
|
|
sav_total = mem_total;
|
|
|
|
mem_total <<= 1;
|
|
|
|
if (mem_total < sav_total)
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If mem_total did not overflow, multiply all memory values by
|
2007-02-10 09:46:00 +00:00
|
|
|
* info->mem_unit and set it to 1. This leaves things compatible
|
2005-04-16 22:20:36 +00:00
|
|
|
* with 2.2.x, and also retains compatibility with earlier 2.4.x
|
|
|
|
* kernels...
|
|
|
|
*/
|
|
|
|
|
2007-02-10 09:46:00 +00:00
|
|
|
info->mem_unit = 1;
|
|
|
|
info->totalram <<= bitcount;
|
|
|
|
info->freeram <<= bitcount;
|
|
|
|
info->sharedram <<= bitcount;
|
|
|
|
info->bufferram <<= bitcount;
|
|
|
|
info->totalswap <<= bitcount;
|
|
|
|
info->freeswap <<= bitcount;
|
|
|
|
info->totalhigh <<= bitcount;
|
|
|
|
info->freehigh <<= bitcount;
|
|
|
|
|
|
|
|
out:
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
asmlinkage long sys_sysinfo(struct sysinfo __user *info)
|
|
|
|
{
|
|
|
|
struct sysinfo val;
|
|
|
|
|
|
|
|
do_sysinfo(&val);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
if (copy_to_user(info, &val, sizeof(struct sysinfo)))
|
|
|
|
return -EFAULT;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2007-12-18 17:05:58 +00:00
|
|
|
static int __cpuinit init_timers_cpu(int cpu)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
|
|
|
int j;
|
2008-01-30 12:30:00 +00:00
|
|
|
struct tvec_base *base;
|
2007-12-18 17:05:58 +00:00
|
|
|
static char __cpuinitdata tvec_base_done[NR_CPUS];
|
[PATCH] timers fixes/improvements
This patch tries to solve following problems:
1. del_timer_sync() is racy. The timer can be fired again after
del_timer_sync have checked all cpus and before it will recheck
timer_pending().
2. It has scalability problems. All cpus are scanned to determine
if the timer is running on that cpu.
With this patch del_timer_sync is O(1) and no slower than plain
del_timer(pending_timer), unless it has to actually wait for
completion of the currently running timer.
The only restriction is that the recurring timer should not use
add_timer_on().
3. The timers are not serialized wrt to itself.
If CPU_0 does mod_timer(jiffies+1) while the timer is currently
running on CPU 1, it is quite possible that local interrupt on
CPU_0 will start that timer before it finished on CPU_1.
4. The timers locking is suboptimal. __mod_timer() takes 3 locks
at once and still requires wmb() in del_timer/run_timers.
The new implementation takes 2 locks sequentially and does not
need memory barriers.
Currently ->base != NULL means that the timer is pending. In that case
->base.lock is used to lock the timer. __mod_timer also takes timer->lock
because ->base can be == NULL.
This patch uses timer->entry.next != NULL as indication that the timer is
pending. So it does __list_del(), entry->next = NULL instead of list_del()
when the timer is deleted.
The ->base field is used for hashed locking only, it is initialized
in init_timer() which sets ->base = per_cpu(tvec_bases). When the
tvec_bases.lock is locked, it means that all timers which are tied
to this base via timer->base are locked, and the base itself is locked
too.
So __run_timers/migrate_timers can safely modify all timers which could
be found on ->tvX lists (pending timers).
When the timer's base is locked, and the timer removed from ->entry list
(which means that _run_timers/migrate_timers can't see this timer), it is
possible to set timer->base = NULL and drop the lock: the timer remains
locked.
This patch adds lock_timer_base() helper, which waits for ->base != NULL,
locks the ->base, and checks it is still the same.
__mod_timer() schedules the timer on the local CPU and changes it's base.
However, it does not lock both old and new bases at once. It locks the
timer via lock_timer_base(), deletes the timer, sets ->base = NULL, and
unlocks old base. Then __mod_timer() locks new_base, sets ->base = new_base,
and adds this timer. This simplifies the code, because AB-BA deadlock is not
possible. __mod_timer() also ensures that the timer's base is not changed
while the timer's handler is running on the old base.
__run_timers(), del_timer() do not change ->base anymore, they only clear
pending flag.
So del_timer_sync() can test timer->base->running_timer == timer to detect
whether it is running or not.
We don't need timer_list->lock anymore, this patch kills it.
We also don't need barriers. del_timer() and __run_timers() used smp_wmb()
before clearing timer's pending flag. It was needed because __mod_timer()
did not lock old_base if the timer is not pending, so __mod_timer()->list_add()
could race with del_timer()->list_del(). With this patch these functions are
serialized through base->lock.
One problem. TIMER_INITIALIZER can't use per_cpu(tvec_bases). So this patch
adds global
struct timer_base_s {
spinlock_t lock;
struct timer_list *running_timer;
} __init_timer_base;
which is used by TIMER_INITIALIZER. The corresponding fields in tvec_t_base_s
struct are replaced by struct timer_base_s t_base.
It is indeed ugly. But this can't have scalability problems. The global
__init_timer_base.lock is used only when __mod_timer() is called for the first
time AND the timer was compile time initialized. After that the timer migrates
to the local CPU.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Renaud Lienhart <renaud.lienhart@free.fr>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 07:08:56 +00:00
|
|
|
|
2006-04-11 05:53:58 +00:00
|
|
|
if (!tvec_base_done[cpu]) {
|
2006-03-24 11:15:54 +00:00
|
|
|
static char boot_done;
|
|
|
|
|
|
|
|
if (boot_done) {
|
2006-04-11 05:53:58 +00:00
|
|
|
/*
|
|
|
|
* The APs use this path later in boot
|
|
|
|
*/
|
2007-07-17 11:03:29 +00:00
|
|
|
base = kmalloc_node(sizeof(*base),
|
|
|
|
GFP_KERNEL | __GFP_ZERO,
|
2006-03-24 11:15:54 +00:00
|
|
|
cpu_to_node(cpu));
|
|
|
|
if (!base)
|
|
|
|
return -ENOMEM;
|
2007-05-08 07:27:44 +00:00
|
|
|
|
|
|
|
/* Make sure that tvec_base is 2 byte aligned */
|
|
|
|
if (tbase_get_deferrable(base)) {
|
|
|
|
WARN_ON(1);
|
|
|
|
kfree(base);
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
2006-04-11 05:53:58 +00:00
|
|
|
per_cpu(tvec_bases, cpu) = base;
|
2006-03-24 11:15:54 +00:00
|
|
|
} else {
|
2006-04-11 05:53:58 +00:00
|
|
|
/*
|
|
|
|
* This is for the boot CPU - we use compile-time
|
|
|
|
* static initialisation because per-cpu memory isn't
|
|
|
|
* ready yet and because the memory allocators are not
|
|
|
|
* initialised either.
|
|
|
|
*/
|
2006-03-24 11:15:54 +00:00
|
|
|
boot_done = 1;
|
2006-04-11 05:53:58 +00:00
|
|
|
base = &boot_tvec_bases;
|
2006-03-24 11:15:54 +00:00
|
|
|
}
|
2006-04-11 05:53:58 +00:00
|
|
|
tvec_base_done[cpu] = 1;
|
|
|
|
} else {
|
|
|
|
base = per_cpu(tvec_bases, cpu);
|
2006-03-24 11:15:54 +00:00
|
|
|
}
|
2006-04-11 05:53:58 +00:00
|
|
|
|
2006-03-31 10:30:30 +00:00
|
|
|
spin_lock_init(&base->lock);
|
2006-07-03 07:25:10 +00:00
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
for (j = 0; j < TVN_SIZE; j++) {
|
|
|
|
INIT_LIST_HEAD(base->tv5.vec + j);
|
|
|
|
INIT_LIST_HEAD(base->tv4.vec + j);
|
|
|
|
INIT_LIST_HEAD(base->tv3.vec + j);
|
|
|
|
INIT_LIST_HEAD(base->tv2.vec + j);
|
|
|
|
}
|
|
|
|
for (j = 0; j < TVR_SIZE; j++)
|
|
|
|
INIT_LIST_HEAD(base->tv1.vec + j);
|
|
|
|
|
|
|
|
base->timer_jiffies = jiffies;
|
2006-03-24 11:15:54 +00:00
|
|
|
return 0;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
2008-01-30 12:30:00 +00:00
|
|
|
static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
|
|
|
struct timer_list *timer;
|
|
|
|
|
|
|
|
while (!list_empty(head)) {
|
Introduce a handy list_first_entry macro
There are many places in the kernel where the construction like
foo = list_entry(head->next, struct foo_struct, list);
are used.
The code might look more descriptive and neat if using the macro
list_first_entry(head, type, member) \
list_entry((head)->next, type, member)
Here is the macro itself and the examples of its usage in the generic code.
If it will turn out to be useful, I can prepare the set of patches to
inject in into arch-specific code, drivers, networking, etc.
Signed-off-by: Pavel Emelianov <xemul@openvz.org>
Signed-off-by: Kirill Korotaev <dev@openvz.org>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Zach Brown <zach.brown@oracle.com>
Cc: Davide Libenzi <davidel@xmailserver.org>
Cc: John McCutchan <ttb@tentacle.dhs.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: john stultz <johnstul@us.ibm.com>
Cc: Ram Pai <linuxram@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-08 07:30:19 +00:00
|
|
|
timer = list_first_entry(head, struct timer_list, entry);
|
[PATCH] timers fixes/improvements
This patch tries to solve following problems:
1. del_timer_sync() is racy. The timer can be fired again after
del_timer_sync have checked all cpus and before it will recheck
timer_pending().
2. It has scalability problems. All cpus are scanned to determine
if the timer is running on that cpu.
With this patch del_timer_sync is O(1) and no slower than plain
del_timer(pending_timer), unless it has to actually wait for
completion of the currently running timer.
The only restriction is that the recurring timer should not use
add_timer_on().
3. The timers are not serialized wrt to itself.
If CPU_0 does mod_timer(jiffies+1) while the timer is currently
running on CPU 1, it is quite possible that local interrupt on
CPU_0 will start that timer before it finished on CPU_1.
4. The timers locking is suboptimal. __mod_timer() takes 3 locks
at once and still requires wmb() in del_timer/run_timers.
The new implementation takes 2 locks sequentially and does not
need memory barriers.
Currently ->base != NULL means that the timer is pending. In that case
->base.lock is used to lock the timer. __mod_timer also takes timer->lock
because ->base can be == NULL.
This patch uses timer->entry.next != NULL as indication that the timer is
pending. So it does __list_del(), entry->next = NULL instead of list_del()
when the timer is deleted.
The ->base field is used for hashed locking only, it is initialized
in init_timer() which sets ->base = per_cpu(tvec_bases). When the
tvec_bases.lock is locked, it means that all timers which are tied
to this base via timer->base are locked, and the base itself is locked
too.
So __run_timers/migrate_timers can safely modify all timers which could
be found on ->tvX lists (pending timers).
When the timer's base is locked, and the timer removed from ->entry list
(which means that _run_timers/migrate_timers can't see this timer), it is
possible to set timer->base = NULL and drop the lock: the timer remains
locked.
This patch adds lock_timer_base() helper, which waits for ->base != NULL,
locks the ->base, and checks it is still the same.
__mod_timer() schedules the timer on the local CPU and changes it's base.
However, it does not lock both old and new bases at once. It locks the
timer via lock_timer_base(), deletes the timer, sets ->base = NULL, and
unlocks old base. Then __mod_timer() locks new_base, sets ->base = new_base,
and adds this timer. This simplifies the code, because AB-BA deadlock is not
possible. __mod_timer() also ensures that the timer's base is not changed
while the timer's handler is running on the old base.
__run_timers(), del_timer() do not change ->base anymore, they only clear
pending flag.
So del_timer_sync() can test timer->base->running_timer == timer to detect
whether it is running or not.
We don't need timer_list->lock anymore, this patch kills it.
We also don't need barriers. del_timer() and __run_timers() used smp_wmb()
before clearing timer's pending flag. It was needed because __mod_timer()
did not lock old_base if the timer is not pending, so __mod_timer()->list_add()
could race with del_timer()->list_del(). With this patch these functions are
serialized through base->lock.
One problem. TIMER_INITIALIZER can't use per_cpu(tvec_bases). So this patch
adds global
struct timer_base_s {
spinlock_t lock;
struct timer_list *running_timer;
} __init_timer_base;
which is used by TIMER_INITIALIZER. The corresponding fields in tvec_t_base_s
struct are replaced by struct timer_base_s t_base.
It is indeed ugly. But this can't have scalability problems. The global
__init_timer_base.lock is used only when __mod_timer() is called for the first
time AND the timer was compile time initialized. After that the timer migrates
to the local CPU.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Renaud Lienhart <renaud.lienhart@free.fr>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 07:08:56 +00:00
|
|
|
detach_timer(timer, 0);
|
2007-05-08 07:27:44 +00:00
|
|
|
timer_set_base(timer, new_base);
|
2005-04-16 22:20:36 +00:00
|
|
|
internal_add_timer(new_base, timer);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2008-01-22 01:18:25 +00:00
|
|
|
static void __cpuinit migrate_timers(int cpu)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2008-01-30 12:30:00 +00:00
|
|
|
struct tvec_base *old_base;
|
|
|
|
struct tvec_base *new_base;
|
2005-04-16 22:20:36 +00:00
|
|
|
int i;
|
|
|
|
|
|
|
|
BUG_ON(cpu_online(cpu));
|
2006-03-24 11:15:54 +00:00
|
|
|
old_base = per_cpu(tvec_bases, cpu);
|
|
|
|
new_base = get_cpu_var(tvec_bases);
|
2008-08-20 23:46:04 +00:00
|
|
|
/*
|
|
|
|
* The caller is globally serialized and nobody else
|
|
|
|
* takes two locks at once, deadlock is not possible.
|
|
|
|
*/
|
|
|
|
spin_lock_irq(&new_base->lock);
|
2008-04-04 18:54:10 +00:00
|
|
|
spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
|
2006-03-31 10:30:30 +00:00
|
|
|
|
|
|
|
BUG_ON(old_base->running_timer);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
for (i = 0; i < TVR_SIZE; i++)
|
[PATCH] timers fixes/improvements
This patch tries to solve following problems:
1. del_timer_sync() is racy. The timer can be fired again after
del_timer_sync have checked all cpus and before it will recheck
timer_pending().
2. It has scalability problems. All cpus are scanned to determine
if the timer is running on that cpu.
With this patch del_timer_sync is O(1) and no slower than plain
del_timer(pending_timer), unless it has to actually wait for
completion of the currently running timer.
The only restriction is that the recurring timer should not use
add_timer_on().
3. The timers are not serialized wrt to itself.
If CPU_0 does mod_timer(jiffies+1) while the timer is currently
running on CPU 1, it is quite possible that local interrupt on
CPU_0 will start that timer before it finished on CPU_1.
4. The timers locking is suboptimal. __mod_timer() takes 3 locks
at once and still requires wmb() in del_timer/run_timers.
The new implementation takes 2 locks sequentially and does not
need memory barriers.
Currently ->base != NULL means that the timer is pending. In that case
->base.lock is used to lock the timer. __mod_timer also takes timer->lock
because ->base can be == NULL.
This patch uses timer->entry.next != NULL as indication that the timer is
pending. So it does __list_del(), entry->next = NULL instead of list_del()
when the timer is deleted.
The ->base field is used for hashed locking only, it is initialized
in init_timer() which sets ->base = per_cpu(tvec_bases). When the
tvec_bases.lock is locked, it means that all timers which are tied
to this base via timer->base are locked, and the base itself is locked
too.
So __run_timers/migrate_timers can safely modify all timers which could
be found on ->tvX lists (pending timers).
When the timer's base is locked, and the timer removed from ->entry list
(which means that _run_timers/migrate_timers can't see this timer), it is
possible to set timer->base = NULL and drop the lock: the timer remains
locked.
This patch adds lock_timer_base() helper, which waits for ->base != NULL,
locks the ->base, and checks it is still the same.
__mod_timer() schedules the timer on the local CPU and changes it's base.
However, it does not lock both old and new bases at once. It locks the
timer via lock_timer_base(), deletes the timer, sets ->base = NULL, and
unlocks old base. Then __mod_timer() locks new_base, sets ->base = new_base,
and adds this timer. This simplifies the code, because AB-BA deadlock is not
possible. __mod_timer() also ensures that the timer's base is not changed
while the timer's handler is running on the old base.
__run_timers(), del_timer() do not change ->base anymore, they only clear
pending flag.
So del_timer_sync() can test timer->base->running_timer == timer to detect
whether it is running or not.
We don't need timer_list->lock anymore, this patch kills it.
We also don't need barriers. del_timer() and __run_timers() used smp_wmb()
before clearing timer's pending flag. It was needed because __mod_timer()
did not lock old_base if the timer is not pending, so __mod_timer()->list_add()
could race with del_timer()->list_del(). With this patch these functions are
serialized through base->lock.
One problem. TIMER_INITIALIZER can't use per_cpu(tvec_bases). So this patch
adds global
struct timer_base_s {
spinlock_t lock;
struct timer_list *running_timer;
} __init_timer_base;
which is used by TIMER_INITIALIZER. The corresponding fields in tvec_t_base_s
struct are replaced by struct timer_base_s t_base.
It is indeed ugly. But this can't have scalability problems. The global
__init_timer_base.lock is used only when __mod_timer() is called for the first
time AND the timer was compile time initialized. After that the timer migrates
to the local CPU.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Renaud Lienhart <renaud.lienhart@free.fr>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 07:08:56 +00:00
|
|
|
migrate_timer_list(new_base, old_base->tv1.vec + i);
|
|
|
|
for (i = 0; i < TVN_SIZE; i++) {
|
|
|
|
migrate_timer_list(new_base, old_base->tv2.vec + i);
|
|
|
|
migrate_timer_list(new_base, old_base->tv3.vec + i);
|
|
|
|
migrate_timer_list(new_base, old_base->tv4.vec + i);
|
|
|
|
migrate_timer_list(new_base, old_base->tv5.vec + i);
|
|
|
|
}
|
|
|
|
|
2008-04-04 18:54:10 +00:00
|
|
|
spin_unlock(&old_base->lock);
|
2008-08-20 23:46:04 +00:00
|
|
|
spin_unlock_irq(&new_base->lock);
|
2005-04-16 22:20:36 +00:00
|
|
|
put_cpu_var(tvec_bases);
|
|
|
|
}
|
|
|
|
#endif /* CONFIG_HOTPLUG_CPU */
|
|
|
|
|
2006-07-30 10:03:35 +00:00
|
|
|
static int __cpuinit timer_cpu_notify(struct notifier_block *self,
|
2005-04-16 22:20:36 +00:00
|
|
|
unsigned long action, void *hcpu)
|
|
|
|
{
|
|
|
|
long cpu = (long)hcpu;
|
|
|
|
switch(action) {
|
|
|
|
case CPU_UP_PREPARE:
|
2007-05-09 09:35:10 +00:00
|
|
|
case CPU_UP_PREPARE_FROZEN:
|
2006-03-24 11:15:54 +00:00
|
|
|
if (init_timers_cpu(cpu) < 0)
|
|
|
|
return NOTIFY_BAD;
|
2005-04-16 22:20:36 +00:00
|
|
|
break;
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
|
|
case CPU_DEAD:
|
2007-05-09 09:35:10 +00:00
|
|
|
case CPU_DEAD_FROZEN:
|
2005-04-16 22:20:36 +00:00
|
|
|
migrate_timers(cpu);
|
|
|
|
break;
|
|
|
|
#endif
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
return NOTIFY_OK;
|
|
|
|
}
|
|
|
|
|
2006-07-30 10:03:35 +00:00
|
|
|
static struct notifier_block __cpuinitdata timers_nb = {
|
2005-04-16 22:20:36 +00:00
|
|
|
.notifier_call = timer_cpu_notify,
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
void __init init_timers(void)
|
|
|
|
{
|
2006-09-29 09:00:22 +00:00
|
|
|
int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
|
2005-04-16 22:20:36 +00:00
|
|
|
(void *)(long)smp_processor_id());
|
2006-09-29 09:00:22 +00:00
|
|
|
|
[PATCH] Add debugging feature /proc/timer_stat
Add /proc/timer_stats support: debugging feature to profile timer expiration.
Both the starting site, process/PID and the expiration function is captured.
This allows the quick identification of timer event sources in a system.
Sample output:
# echo 1 > /proc/timer_stats
# cat /proc/timer_stats
Timer Stats Version: v0.1
Sample period: 4.010 s
24, 0 swapper hrtimer_stop_sched_tick (hrtimer_sched_tick)
11, 0 swapper sk_reset_timer (tcp_delack_timer)
6, 0 swapper hrtimer_stop_sched_tick (hrtimer_sched_tick)
2, 1 swapper queue_delayed_work_on (delayed_work_timer_fn)
17, 0 swapper hrtimer_restart_sched_tick (hrtimer_sched_tick)
2, 1 swapper queue_delayed_work_on (delayed_work_timer_fn)
4, 2050 pcscd do_nanosleep (hrtimer_wakeup)
5, 4179 sshd sk_reset_timer (tcp_write_timer)
4, 2248 yum-updatesd schedule_timeout (process_timeout)
18, 0 swapper hrtimer_restart_sched_tick (hrtimer_sched_tick)
3, 0 swapper sk_reset_timer (tcp_delack_timer)
1, 1 swapper neigh_table_init_no_netlink (neigh_periodic_timer)
2, 1 swapper e1000_up (e1000_watchdog)
1, 1 init schedule_timeout (process_timeout)
100 total events, 25.24 events/sec
[ cleanups and hrtimers support from Thomas Gleixner <tglx@linutronix.de> ]
[bunk@stusta.de: nr_entries can become static]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: john stultz <johnstul@us.ibm.com>
Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-16 09:28:13 +00:00
|
|
|
init_timer_stats();
|
|
|
|
|
2006-09-29 09:00:22 +00:00
|
|
|
BUG_ON(err == NOTIFY_BAD);
|
2005-04-16 22:20:36 +00:00
|
|
|
register_cpu_notifier(&timers_nb);
|
Remove argument from open_softirq which is always NULL
As git-grep shows, open_softirq() is always called with the last argument
being NULL
block/blk-core.c: open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
kernel/hrtimer.c: open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq, NULL);
kernel/rcuclassic.c: open_softirq(RCU_SOFTIRQ, rcu_process_callbacks, NULL);
kernel/rcupreempt.c: open_softirq(RCU_SOFTIRQ, rcu_process_callbacks, NULL);
kernel/sched.c: open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
kernel/softirq.c: open_softirq(TASKLET_SOFTIRQ, tasklet_action, NULL);
kernel/softirq.c: open_softirq(HI_SOFTIRQ, tasklet_hi_action, NULL);
kernel/timer.c: open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL);
net/core/dev.c: open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL);
net/core/dev.c: open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL);
This observation has already been made by Matthew Wilcox in June 2002
(http://www.cs.helsinki.fi/linux/linux-kernel/2002-25/0687.html)
"I notice that none of the current softirq routines use the data element
passed to them."
and the situation hasn't changed since them. So it appears we can safely
remove that extra argument to save 128 (54) bytes of kernel data (text).
Signed-off-by: Carlos R. Mafra <crmafra@ift.unesp.br>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-15 14:15:37 +00:00
|
|
|
open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* msleep - sleep safely even with waitqueue interruptions
|
|
|
|
* @msecs: Time in milliseconds to sleep for
|
|
|
|
*/
|
|
|
|
void msleep(unsigned int msecs)
|
|
|
|
{
|
|
|
|
unsigned long timeout = msecs_to_jiffies(msecs) + 1;
|
|
|
|
|
2005-09-10 07:27:24 +00:00
|
|
|
while (timeout)
|
|
|
|
timeout = schedule_timeout_uninterruptible(timeout);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
EXPORT_SYMBOL(msleep);
|
|
|
|
|
|
|
|
/**
|
2005-06-25 21:58:43 +00:00
|
|
|
* msleep_interruptible - sleep waiting for signals
|
2005-04-16 22:20:36 +00:00
|
|
|
* @msecs: Time in milliseconds to sleep for
|
|
|
|
*/
|
|
|
|
unsigned long msleep_interruptible(unsigned int msecs)
|
|
|
|
{
|
|
|
|
unsigned long timeout = msecs_to_jiffies(msecs) + 1;
|
|
|
|
|
2005-09-10 07:27:24 +00:00
|
|
|
while (timeout && !signal_pending(current))
|
|
|
|
timeout = schedule_timeout_interruptible(timeout);
|
2005-04-16 22:20:36 +00:00
|
|
|
return jiffies_to_msecs(timeout);
|
|
|
|
}
|
|
|
|
|
|
|
|
EXPORT_SYMBOL(msleep_interruptible);
|