linux/arch/ia64/kernel/smpboot.c

941 lines
22 KiB
C
Raw Normal View History

/*
* SMP boot-related support
*
* Copyright (C) 1998-2003, 2005 Hewlett-Packard Co
* David Mosberger-Tang <davidm@hpl.hp.com>
* Copyright (C) 2001, 2004-2005 Intel Corp
* Rohit Seth <rohit.seth@intel.com>
* Suresh Siddha <suresh.b.siddha@intel.com>
* Gordon Jin <gordon.jin@intel.com>
* Ashok Raj <ashok.raj@intel.com>
*
* 01/05/16 Rohit Seth <rohit.seth@intel.com> Moved SMP booting functions from smp.c to here.
* 01/04/27 David Mosberger <davidm@hpl.hp.com> Added ITC synching code.
* 02/07/31 David Mosberger <davidm@hpl.hp.com> Switch over to hotplug-CPU boot-sequence.
* smp_boot_cpus()/smp_commence() is replaced by
* smp_prepare_cpus()/__cpu_up()/smp_cpus_done().
* 04/06/21 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
* 04/12/26 Jin Gordon <gordon.jin@intel.com>
* 04/12/26 Rohit Seth <rohit.seth@intel.com>
* Add multi-threading and multi-core detection
* 05/01/30 Suresh Siddha <suresh.b.siddha@intel.com>
* Setup cpu_sibling_map and cpu_core_map
*/
#include <linux/module.h>
#include <linux/acpi.h>
#include <linux/bootmem.h>
#include <linux/cpu.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/mm.h>
#include <linux/notifier.h>
#include <linux/smp.h>
#include <linux/spinlock.h>
#include <linux/efi.h>
#include <linux/percpu.h>
#include <linux/bitops.h>
#include <asm/atomic.h>
#include <asm/cache.h>
#include <asm/current.h>
#include <asm/delay.h>
#include <asm/ia32.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/machvec.h>
#include <asm/mca.h>
#include <asm/page.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
#include <asm/processor.h>
#include <asm/ptrace.h>
#include <asm/sal.h>
#include <asm/system.h>
#include <asm/tlbflush.h>
#include <asm/unistd.h>
#include <asm/sn/arch.h>
#define SMP_DEBUG 0
#if SMP_DEBUG
#define Dprintk(x...) printk(x)
#else
#define Dprintk(x...)
#endif
#ifdef CONFIG_HOTPLUG_CPU
#ifdef CONFIG_PERMIT_BSP_REMOVE
#define bsp_remove_ok 1
#else
#define bsp_remove_ok 0
#endif
/*
* Store all idle threads, this can be reused instead of creating
* a new thread. Also avoids complicated thread destroy functionality
* for idle threads.
*/
struct task_struct *idle_thread_array[NR_CPUS];
/*
* Global array allocated for NR_CPUS at boot time
*/
struct sal_to_os_boot sal_boot_rendez_state[NR_CPUS];
/*
* start_ap in head.S uses this to store current booting cpu
* info.
*/
struct sal_to_os_boot *sal_state_for_booting_cpu = &sal_boot_rendez_state[0];
#define set_brendez_area(x) (sal_state_for_booting_cpu = &sal_boot_rendez_state[(x)]);
#define get_idle_for_cpu(x) (idle_thread_array[(x)])
#define set_idle_for_cpu(x,p) (idle_thread_array[(x)] = (p))
#else
#define get_idle_for_cpu(x) (NULL)
#define set_idle_for_cpu(x,p)
#define set_brendez_area(x)
#endif
/*
* ITC synchronization related stuff:
*/
#define MASTER (0)
#define SLAVE (SMP_CACHE_BYTES/8)
#define NUM_ROUNDS 64 /* magic value */
#define NUM_ITERS 5 /* likewise */
static DEFINE_SPINLOCK(itc_sync_lock);
static volatile unsigned long go[SLAVE + 1];
#define DEBUG_ITC_SYNC 0
extern void __devinit calibrate_delay (void);
extern void start_ap (void);
extern unsigned long ia64_iobase;
struct task_struct *task_for_booting_cpu;
/*
* State for each CPU
*/
DEFINE_PER_CPU(int, cpu_state);
/* Bitmasks of currently online, and possible CPUs */
cpumask_t cpu_online_map;
EXPORT_SYMBOL(cpu_online_map);
cpumask_t cpu_possible_map = CPU_MASK_NONE;
EXPORT_SYMBOL(cpu_possible_map);
cpumask_t cpu_core_map[NR_CPUS] __cacheline_aligned;
DEFINE_PER_CPU_SHARED_ALIGNED(cpumask_t, cpu_sibling_map);
EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
int smp_num_siblings = 1;
/* which logical CPU number maps to which CPU (physical APIC ID) */
volatile int ia64_cpu_to_sapicid[NR_CPUS];
EXPORT_SYMBOL(ia64_cpu_to_sapicid);
static volatile cpumask_t cpu_callin_map;
struct smp_boot_data smp_boot_data __initdata;
unsigned long ap_wakeup_vector = -1; /* External Int use to wakeup APs */
char __initdata no_int_routing;
unsigned char smp_int_redirect; /* are INT and IPI redirectable by the chipset? */
#ifdef CONFIG_FORCE_CPEI_RETARGET
#define CPEI_OVERRIDE_DEFAULT (1)
#else
#define CPEI_OVERRIDE_DEFAULT (0)
#endif
unsigned int force_cpei_retarget = CPEI_OVERRIDE_DEFAULT;
static int __init
cmdl_force_cpei(char *str)
{
int value=0;
get_option (&str, &value);
force_cpei_retarget = value;
return 1;
}
__setup("force_cpei=", cmdl_force_cpei);
static int __init
nointroute (char *str)
{
no_int_routing = 1;
printk ("no_int_routing on\n");
return 1;
}
__setup("nointroute", nointroute);
static void fix_b0_for_bsp(void)
{
#ifdef CONFIG_HOTPLUG_CPU
int cpuid;
static int fix_bsp_b0 = 1;
cpuid = smp_processor_id();
/*
* Cache the b0 value on the first AP that comes up
*/
if (!(fix_bsp_b0 && cpuid))
return;
sal_boot_rendez_state[0].br[0] = sal_boot_rendez_state[cpuid].br[0];
printk ("Fixed BSP b0 value from CPU %d\n", cpuid);
fix_bsp_b0 = 0;
#endif
}
void
sync_master (void *arg)
{
unsigned long flags, i;
go[MASTER] = 0;
local_irq_save(flags);
{
for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
while (!go[MASTER])
cpu_relax();
go[MASTER] = 0;
go[SLAVE] = ia64_get_itc();
}
}
local_irq_restore(flags);
}
/*
* Return the number of cycles by which our itc differs from the itc on the master
* (time-keeper) CPU. A positive number indicates our itc is ahead of the master,
* negative that it is behind.
*/
static inline long
get_delta (long *rt, long *master)
{
unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
unsigned long tcenter, t0, t1, tm;
long i;
for (i = 0; i < NUM_ITERS; ++i) {
t0 = ia64_get_itc();
go[MASTER] = 1;
while (!(tm = go[SLAVE]))
cpu_relax();
go[SLAVE] = 0;
t1 = ia64_get_itc();
if (t1 - t0 < best_t1 - best_t0)
best_t0 = t0, best_t1 = t1, best_tm = tm;
}
*rt = best_t1 - best_t0;
*master = best_tm - best_t0;
/* average best_t0 and best_t1 without overflow: */
tcenter = (best_t0/2 + best_t1/2);
if (best_t0 % 2 + best_t1 % 2 == 2)
++tcenter;
return tcenter - best_tm;
}
/*
* Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU
* (normally the time-keeper CPU). We use a closed loop to eliminate the possibility of
* unaccounted-for errors (such as getting a machine check in the middle of a calibration
* step). The basic idea is for the slave to ask the master what itc value it has and to
* read its own itc before and after the master responds. Each iteration gives us three
* timestamps:
*
* slave master
*
* t0 ---\
* ---\
* --->
* tm
* /---
* /---
* t1 <---
*
*
* The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0
* and t1. If we achieve this, the clocks are synchronized provided the interconnect
* between the slave and the master is symmetric. Even if the interconnect were
* asymmetric, we would still know that the synchronization error is smaller than the
* roundtrip latency (t0 - t1).
*
* When the interconnect is quiet and symmetric, this lets us synchronize the itc to
* within one or two cycles. However, we can only *guarantee* that the synchronization is
* accurate to within a round-trip time, which is typically in the range of several
* hundred cycles (e.g., ~500 cycles). In practice, this means that the itc's are usually
* almost perfectly synchronized, but we shouldn't assume that the accuracy is much better
* than half a micro second or so.
*/
void
ia64_sync_itc (unsigned int master)
{
long i, delta, adj, adjust_latency = 0, done = 0;
unsigned long flags, rt, master_time_stamp, bound;
#if DEBUG_ITC_SYNC
struct {
long rt; /* roundtrip time */
long master; /* master's timestamp */
long diff; /* difference between midpoint and master's timestamp */
long lat; /* estimate of itc adjustment latency */
} t[NUM_ROUNDS];
#endif
/*
* Make sure local timer ticks are disabled while we sync. If
* they were enabled, we'd have to worry about nasty issues
* like setting the ITC ahead of (or a long time before) the
* next scheduled tick.
*/
BUG_ON((ia64_get_itv() & (1 << 16)) == 0);
go[MASTER] = 1;
if (smp_call_function_single(master, sync_master, NULL, 1, 0) < 0) {
printk(KERN_ERR "sync_itc: failed to get attention of CPU %u!\n", master);
return;
}
while (go[MASTER])
cpu_relax(); /* wait for master to be ready */
spin_lock_irqsave(&itc_sync_lock, flags);
{
for (i = 0; i < NUM_ROUNDS; ++i) {
delta = get_delta(&rt, &master_time_stamp);
if (delta == 0) {
done = 1; /* let's lock on to this... */
bound = rt;
}
if (!done) {
if (i > 0) {
adjust_latency += -delta;
adj = -delta + adjust_latency/4;
} else
adj = -delta;
ia64_set_itc(ia64_get_itc() + adj);
}
#if DEBUG_ITC_SYNC
t[i].rt = rt;
t[i].master = master_time_stamp;
t[i].diff = delta;
t[i].lat = adjust_latency/4;
#endif
}
}
spin_unlock_irqrestore(&itc_sync_lock, flags);
#if DEBUG_ITC_SYNC
for (i = 0; i < NUM_ROUNDS; ++i)
printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
t[i].rt, t[i].master, t[i].diff, t[i].lat);
#endif
printk(KERN_INFO "CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, "
"maxerr %lu cycles)\n", smp_processor_id(), master, delta, rt);
}
/*
* Ideally sets up per-cpu profiling hooks. Doesn't do much now...
*/
static inline void __devinit
smp_setup_percpu_timer (void)
{
}
static void __cpuinit
smp_callin (void)
{
int cpuid, phys_id, itc_master;
struct cpuinfo_ia64 *last_cpuinfo, *this_cpuinfo;
extern void ia64_init_itm(void);
extern volatile int time_keeper_id;
#ifdef CONFIG_PERFMON
extern void pfm_init_percpu(void);
#endif
cpuid = smp_processor_id();
phys_id = hard_smp_processor_id();
itc_master = time_keeper_id;
if (cpu_online(cpuid)) {
printk(KERN_ERR "huh, phys CPU#0x%x, CPU#0x%x already present??\n",
phys_id, cpuid);
BUG();
}
fix_b0_for_bsp();
lock_ipi_calllock();
spin_lock(&vector_lock);
/* Setup the per cpu irq handling data structures */
__setup_vector_irq(cpuid);
cpu_set(cpuid, cpu_online_map);
unlock_ipi_calllock();
per_cpu(cpu_state, cpuid) = CPU_ONLINE;
spin_unlock(&vector_lock);
smp_setup_percpu_timer();
ia64_mca_cmc_vector_setup(); /* Setup vector on AP */
#ifdef CONFIG_PERFMON
pfm_init_percpu();
#endif
local_irq_enable();
if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
/*
* Synchronize the ITC with the BP. Need to do this after irqs are
* enabled because ia64_sync_itc() calls smp_call_function_single(), which
* calls spin_unlock_bh(), which calls spin_unlock_bh(), which calls
* local_bh_enable(), which bugs out if irqs are not enabled...
*/
Dprintk("Going to syncup ITC with ITC Master.\n");
ia64_sync_itc(itc_master);
}
/*
* Get our bogomips.
*/
ia64_init_itm();
/*
* Delay calibration can be skipped if new processor is identical to the
* previous processor.
*/
last_cpuinfo = cpu_data(cpuid - 1);
this_cpuinfo = local_cpu_data;
if (last_cpuinfo->itc_freq != this_cpuinfo->itc_freq ||
last_cpuinfo->proc_freq != this_cpuinfo->proc_freq ||
last_cpuinfo->features != this_cpuinfo->features ||
last_cpuinfo->revision != this_cpuinfo->revision ||
last_cpuinfo->family != this_cpuinfo->family ||
last_cpuinfo->archrev != this_cpuinfo->archrev ||
last_cpuinfo->model != this_cpuinfo->model)
calibrate_delay();
local_cpu_data->loops_per_jiffy = loops_per_jiffy;
#ifdef CONFIG_IA32_SUPPORT
ia32_gdt_init();
#endif
/*
* Allow the master to continue.
*/
cpu_set(cpuid, cpu_callin_map);
Dprintk("Stack on CPU %d at about %p\n",cpuid, &cpuid);
}
/*
* Activate a secondary processor. head.S calls this.
*/
int __cpuinit
start_secondary (void *unused)
{
/* Early console may use I/O ports */
ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
Dprintk("start_secondary: starting CPU 0x%x\n", hard_smp_processor_id());
efi_map_pal_code();
cpu_init();
preempt_disable();
smp_callin();
cpu_idle();
return 0;
}
struct pt_regs * __devinit idle_regs(struct pt_regs *regs)
{
return NULL;
}
struct create_idle {
struct work_struct work;
struct task_struct *idle;
struct completion done;
int cpu;
};
void __cpuinit
do_fork_idle(struct work_struct *work)
{
struct create_idle *c_idle =
container_of(work, struct create_idle, work);
c_idle->idle = fork_idle(c_idle->cpu);
complete(&c_idle->done);
}
static int __cpuinit
do_boot_cpu (int sapicid, int cpu)
{
int timeout;
struct create_idle c_idle = {
.work = __WORK_INITIALIZER(c_idle.work, do_fork_idle),
.cpu = cpu,
.done = COMPLETION_INITIALIZER(c_idle.done),
};
c_idle.idle = get_idle_for_cpu(cpu);
if (c_idle.idle) {
init_idle(c_idle.idle, cpu);
goto do_rest;
}
/*
* We can't use kernel_thread since we must avoid to reschedule the child.
*/
if (!keventd_up() || current_is_keventd())
c_idle.work.func(&c_idle.work);
else {
schedule_work(&c_idle.work);
wait_for_completion(&c_idle.done);
}
if (IS_ERR(c_idle.idle))
panic("failed fork for CPU %d", cpu);
set_idle_for_cpu(cpu, c_idle.idle);
do_rest:
task_for_booting_cpu = c_idle.idle;
Dprintk("Sending wakeup vector %lu to AP 0x%x/0x%x.\n", ap_wakeup_vector, cpu, sapicid);
set_brendez_area(cpu);
platform_send_ipi(cpu, ap_wakeup_vector, IA64_IPI_DM_INT, 0);
/*
* Wait 10s total for the AP to start
*/
Dprintk("Waiting on callin_map ...");
for (timeout = 0; timeout < 100000; timeout++) {
if (cpu_isset(cpu, cpu_callin_map))
break; /* It has booted */
udelay(100);
}
Dprintk("\n");
if (!cpu_isset(cpu, cpu_callin_map)) {
printk(KERN_ERR "Processor 0x%x/0x%x is stuck.\n", cpu, sapicid);
ia64_cpu_to_sapicid[cpu] = -1;
cpu_clear(cpu, cpu_online_map); /* was set in smp_callin() */
return -EINVAL;
}
return 0;
}
static int __init
decay (char *str)
{
int ticks;
get_option (&str, &ticks);
return 1;
}
__setup("decay=", decay);
/*
* Initialize the logical CPU number to SAPICID mapping
*/
void __init
smp_build_cpu_map (void)
{
int sapicid, cpu, i;
int boot_cpu_id = hard_smp_processor_id();
for (cpu = 0; cpu < NR_CPUS; cpu++) {
ia64_cpu_to_sapicid[cpu] = -1;
}
ia64_cpu_to_sapicid[0] = boot_cpu_id;
cpus_clear(cpu_present_map);
cpu_set(0, cpu_present_map);
cpu_set(0, cpu_possible_map);
for (cpu = 1, i = 0; i < smp_boot_data.cpu_count; i++) {
sapicid = smp_boot_data.cpu_phys_id[i];
if (sapicid == boot_cpu_id)
continue;
cpu_set(cpu, cpu_present_map);
cpu_set(cpu, cpu_possible_map);
ia64_cpu_to_sapicid[cpu] = sapicid;
cpu++;
}
}
/*
* Cycle through the APs sending Wakeup IPIs to boot each.
*/
void __init
smp_prepare_cpus (unsigned int max_cpus)
{
int boot_cpu_id = hard_smp_processor_id();
/*
* Initialize the per-CPU profiling counter/multiplier
*/
smp_setup_percpu_timer();
/*
* We have the boot CPU online for sure.
*/
cpu_set(0, cpu_online_map);
cpu_set(0, cpu_callin_map);
local_cpu_data->loops_per_jiffy = loops_per_jiffy;
ia64_cpu_to_sapicid[0] = boot_cpu_id;
printk(KERN_INFO "Boot processor id 0x%x/0x%x\n", 0, boot_cpu_id);
current_thread_info()->cpu = 0;
/*
* If SMP should be disabled, then really disable it!
*/
if (!max_cpus) {
printk(KERN_INFO "SMP mode deactivated.\n");
cpus_clear(cpu_online_map);
cpus_clear(cpu_present_map);
cpus_clear(cpu_possible_map);
cpu_set(0, cpu_online_map);
cpu_set(0, cpu_present_map);
cpu_set(0, cpu_possible_map);
return;
}
}
void __devinit smp_prepare_boot_cpu(void)
{
cpu_set(smp_processor_id(), cpu_online_map);
cpu_set(smp_processor_id(), cpu_callin_map);
per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
}
#ifdef CONFIG_HOTPLUG_CPU
static inline void
clear_cpu_sibling_map(int cpu)
{
int i;
for_each_cpu_mask(i, per_cpu(cpu_sibling_map, cpu))
cpu_clear(cpu, per_cpu(cpu_sibling_map, i));
for_each_cpu_mask(i, cpu_core_map[cpu])
cpu_clear(cpu, cpu_core_map[i]);
per_cpu(cpu_sibling_map, cpu) = cpu_core_map[cpu] = CPU_MASK_NONE;
}
static void
remove_siblinginfo(int cpu)
{
int last = 0;
if (cpu_data(cpu)->threads_per_core == 1 &&
cpu_data(cpu)->cores_per_socket == 1) {
cpu_clear(cpu, cpu_core_map[cpu]);
cpu_clear(cpu, per_cpu(cpu_sibling_map, cpu));
return;
}
last = (cpus_weight(cpu_core_map[cpu]) == 1 ? 1 : 0);
/* remove it from all sibling map's */
clear_cpu_sibling_map(cpu);
}
extern void fixup_irqs(void);
int migrate_platform_irqs(unsigned int cpu)
{
int new_cpei_cpu;
irq_desc_t *desc = NULL;
cpumask_t mask;
int retval = 0;
/*
* dont permit CPEI target to removed.
*/
if (cpe_vector > 0 && is_cpu_cpei_target(cpu)) {
printk ("CPU (%d) is CPEI Target\n", cpu);
if (can_cpei_retarget()) {
/*
* Now re-target the CPEI to a different processor
*/
new_cpei_cpu = any_online_cpu(cpu_online_map);
mask = cpumask_of_cpu(new_cpei_cpu);
set_cpei_target_cpu(new_cpei_cpu);
desc = irq_desc + ia64_cpe_irq;
/*
* Switch for now, immediately, we need to do fake intr
* as other interrupts, but need to study CPEI behaviour with
* polling before making changes.
*/
if (desc) {
[PATCH] genirq: rename desc->handler to desc->chip This patch-queue improves the generic IRQ layer to be truly generic, by adding various abstractions and features to it, without impacting existing functionality. While the queue can be best described as "fix and improve everything in the generic IRQ layer that we could think of", and thus it consists of many smaller features and lots of cleanups, the one feature that stands out most is the new 'irq chip' abstraction. The irq-chip abstraction is about describing and coding and IRQ controller driver by mapping its raw hardware capabilities [and quirks, if needed] in a straightforward way, without having to think about "IRQ flow" (level/edge/etc.) type of details. This stands in contrast with the current 'irq-type' model of genirq architectures, which 'mixes' raw hardware capabilities with 'flow' details. The patchset supports both types of irq controller designs at once, and converts i386 and x86_64 to the new irq-chip design. As a bonus side-effect of the irq-chip approach, chained interrupt controllers (master/slave PIC constructs, etc.) are now supported by design as well. The end result of this patchset intends to be simpler architecture-level code and more consolidation between architectures. We reused many bits of code and many concepts from Russell King's ARM IRQ layer, the merging of which was one of the motivations for this patchset. This patch: rename desc->handler to desc->chip. Originally i did not want to do this, because it's a big patch. But having both "desc->handler", "desc->handle_irq" and "action->handler" caused a large degree of confusion and made the code appear alot less clean than it truly is. I have also attempted a dual approach as well by introducing a desc->chip alias - but that just wasnt robust enough and broke frequently. So lets get over with this quickly. The conversion was done automatically via scripts and converts all the code in the kernel. This renaming patch is the first one amongst the patches, so that the remaining patches can stay flexible and can be merged and split up without having some big monolithic patch act as a merge barrier. [akpm@osdl.org: build fix] [akpm@osdl.org: another build fix] Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-29 09:24:36 +00:00
desc->chip->disable(ia64_cpe_irq);
desc->chip->set_affinity(ia64_cpe_irq, mask);
desc->chip->enable(ia64_cpe_irq);
printk ("Re-targetting CPEI to cpu %d\n", new_cpei_cpu);
}
}
if (!desc) {
printk ("Unable to retarget CPEI, offline cpu [%d] failed\n", cpu);
retval = -EBUSY;
}
}
return retval;
}
/* must be called with cpucontrol mutex held */
int __cpu_disable(void)
{
int cpu = smp_processor_id();
/*
* dont permit boot processor for now
*/
if (cpu == 0 && !bsp_remove_ok) {
printk ("Your platform does not support removal of BSP\n");
return (-EBUSY);
}
if (ia64_platform_is("sn2")) {
if (!sn_cpu_disable_allowed(cpu))
return -EBUSY;
}
cpu_clear(cpu, cpu_online_map);
if (migrate_platform_irqs(cpu)) {
cpu_set(cpu, cpu_online_map);
return (-EBUSY);
}
remove_siblinginfo(cpu);
[PATCH] i386 CPU hotplug (The i386 CPU hotplug patch provides infrastructure for some work which Pavel is doing as well as for ACPI S3 (suspend-to-RAM) work which Li Shaohua <shaohua.li@intel.com> is doing) The following provides i386 architecture support for safely unregistering and registering processors during runtime, updated for the current -mm tree. In order to avoid dumping cpu hotplug code into kernel/irq/* i dropped the cpu_online check in do_IRQ() by modifying fixup_irqs(). The difference being that on cpu offline, fixup_irqs() is called before we clear the cpu from cpu_online_map and a long delay in order to ensure that we never have any queued external interrupts on the APICs. There are additional changes to s390 and ppc64 to account for this change. 1) Add CONFIG_HOTPLUG_CPU 2) disable local APIC timer on dead cpus. 3) Disable preempt around irq balancing to prevent CPUs going down. 4) Print irq stats for all possible cpus. 5) Debugging check for interrupts on offline cpus. 6) Hacky fixup_irqs() to redirect irqs when cpus go off/online. 7) play_dead() for offline cpus to spin inside. 8) Handle offline cpus set in flush_tlb_others(). 9) Grab lock earlier in smp_call_function() to prevent CPUs going down. 10) Implement __cpu_disable() and __cpu_die(). 11) Enable local interrupts in cpu_enable() after fixup_irqs() 12) Don't fiddle with NMI on dead cpu, but leave intact on other cpus. 13) Program IRQ affinity whilst cpu is still in cpu_online_map on offline. Signed-off-by: Zwane Mwaikambo <zwane@linuxpower.ca> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-25 21:54:50 +00:00
cpu_clear(cpu, cpu_online_map);
fixup_irqs();
local_flush_tlb_all();
cpu_clear(cpu, cpu_callin_map);
return 0;
}
void __cpu_die(unsigned int cpu)
{
unsigned int i;
for (i = 0; i < 100; i++) {
/* They ack this in play_dead by setting CPU_DEAD */
if (per_cpu(cpu_state, cpu) == CPU_DEAD)
{
printk ("CPU %d is now offline\n", cpu);
return;
}
msleep(100);
}
printk(KERN_ERR "CPU %u didn't die...\n", cpu);
}
#else /* !CONFIG_HOTPLUG_CPU */
int __cpu_disable(void)
{
return -ENOSYS;
}
void __cpu_die(unsigned int cpu)
{
/* We said "no" in __cpu_disable */
BUG();
}
#endif /* CONFIG_HOTPLUG_CPU */
void
smp_cpus_done (unsigned int dummy)
{
int cpu;
unsigned long bogosum = 0;
/*
* Allow the user to impress friends.
*/
for_each_online_cpu(cpu) {
bogosum += cpu_data(cpu)->loops_per_jiffy;
}
printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
(int)num_online_cpus(), bogosum/(500000/HZ), (bogosum/(5000/HZ))%100);
}
static inline void __devinit
set_cpu_sibling_map(int cpu)
{
int i;
for_each_online_cpu(i) {
if ((cpu_data(cpu)->socket_id == cpu_data(i)->socket_id)) {
cpu_set(i, cpu_core_map[cpu]);
cpu_set(cpu, cpu_core_map[i]);
if (cpu_data(cpu)->core_id == cpu_data(i)->core_id) {
cpu_set(i, per_cpu(cpu_sibling_map, cpu));
cpu_set(cpu, per_cpu(cpu_sibling_map, i));
}
}
}
}
int __cpuinit
__cpu_up (unsigned int cpu)
{
int ret;
int sapicid;
sapicid = ia64_cpu_to_sapicid[cpu];
if (sapicid == -1)
return -EINVAL;
/*
* Already booted cpu? not valid anymore since we dont
* do idle loop tightspin anymore.
*/
if (cpu_isset(cpu, cpu_callin_map))
return -EINVAL;
per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
/* Processor goes to start_secondary(), sets online flag */
ret = do_boot_cpu(sapicid, cpu);
if (ret < 0)
return ret;
if (cpu_data(cpu)->threads_per_core == 1 &&
cpu_data(cpu)->cores_per_socket == 1) {
cpu_set(cpu, per_cpu(cpu_sibling_map, cpu));
cpu_set(cpu, cpu_core_map[cpu]);
return 0;
}
set_cpu_sibling_map(cpu);
return 0;
}
/*
* Assume that CPUs have been discovered by some platform-dependent interface. For
* SoftSDV/Lion, that would be ACPI.
*
* Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP().
*/
void __init
init_smp_config(void)
{
struct fptr {
unsigned long fp;
unsigned long gp;
} *ap_startup;
long sal_ret;
/* Tell SAL where to drop the APs. */
ap_startup = (struct fptr *) start_ap;
sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ,
ia64_tpa(ap_startup->fp), ia64_tpa(ap_startup->gp), 0, 0, 0, 0);
if (sal_ret < 0)
printk(KERN_ERR "SMP: Can't set SAL AP Boot Rendezvous: %s\n",
ia64_sal_strerror(sal_ret));
}
/*
* identify_siblings(cpu) gets called from identify_cpu. This populates the
* information related to logical execution units in per_cpu_data structure.
*/
void __devinit
identify_siblings(struct cpuinfo_ia64 *c)
{
s64 status;
u16 pltid;
pal_logical_to_physical_t info;
if ((status = ia64_pal_logical_to_phys(-1, &info)) != PAL_STATUS_SUCCESS) {
if (status != PAL_STATUS_UNIMPLEMENTED) {
printk(KERN_ERR
"ia64_pal_logical_to_phys failed with %ld\n",
status);
return;
}
info.overview_ppid = 0;
info.overview_cpp = 1;
info.overview_tpc = 1;
}
if ((status = ia64_sal_physical_id_info(&pltid)) != PAL_STATUS_SUCCESS) {
printk(KERN_ERR "ia64_sal_pltid failed with %ld\n", status);
return;
}
c->socket_id = (pltid << 8) | info.overview_ppid;
if (info.overview_cpp == 1 && info.overview_tpc == 1)
return;
c->cores_per_socket = info.overview_cpp;
c->threads_per_core = info.overview_tpc;
c->num_log = info.overview_num_log;
c->core_id = info.log1_cid;
c->thread_id = info.log1_tid;
}
/*
* returns non zero, if multi-threading is enabled
* on at least one physical package. Due to hotplug cpu
* and (maxcpus=), all threads may not necessarily be enabled
* even though the processor supports multi-threading.
*/
int is_multithreading_enabled(void)
{
int i, j;
for_each_present_cpu(i) {
for_each_present_cpu(j) {
if (j == i)
continue;
if ((cpu_data(j)->socket_id == cpu_data(i)->socket_id)) {
if (cpu_data(j)->core_id == cpu_data(i)->core_id)
return 1;
}
}
}
return 0;
}
EXPORT_SYMBOL_GPL(is_multithreading_enabled);