2012-06-23 00:42:39 +00:00
|
|
|
/*
|
|
|
|
* CAAM Protocol Data Block (PDB) definition header file
|
|
|
|
*
|
2016-07-04 10:12:08 +00:00
|
|
|
* Copyright 2008-2016 Freescale Semiconductor, Inc.
|
2012-06-23 00:42:39 +00:00
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef CAAM_PDB_H
|
|
|
|
#define CAAM_PDB_H
|
2016-07-04 10:12:08 +00:00
|
|
|
#include "compat.h"
|
2012-06-23 00:42:39 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* PDB- IPSec ESP Header Modification Options
|
|
|
|
*/
|
2016-05-19 15:11:26 +00:00
|
|
|
#define PDBHMO_ESP_DECAP_SHIFT 28
|
|
|
|
#define PDBHMO_ESP_ENCAP_SHIFT 28
|
2012-06-23 00:42:39 +00:00
|
|
|
/*
|
|
|
|
* Encap and Decap - Decrement TTL (Hop Limit) - Based on the value of the
|
|
|
|
* Options Byte IP version (IPvsn) field:
|
|
|
|
* if IPv4, decrement the inner IP header TTL field (byte 8);
|
|
|
|
* if IPv6 decrement the inner IP header Hop Limit field (byte 7).
|
|
|
|
*/
|
|
|
|
#define PDBHMO_ESP_DECAP_DEC_TTL (0x02 << PDBHMO_ESP_DECAP_SHIFT)
|
|
|
|
#define PDBHMO_ESP_ENCAP_DEC_TTL (0x02 << PDBHMO_ESP_ENCAP_SHIFT)
|
|
|
|
/*
|
|
|
|
* Decap - DiffServ Copy - Copy the IPv4 TOS or IPv6 Traffic Class byte
|
|
|
|
* from the outer IP header to the inner IP header.
|
|
|
|
*/
|
|
|
|
#define PDBHMO_ESP_DIFFSERV (0x01 << PDBHMO_ESP_DECAP_SHIFT)
|
|
|
|
/*
|
|
|
|
* Encap- Copy DF bit -if an IPv4 tunnel mode outer IP header is coming from
|
|
|
|
* the PDB, copy the DF bit from the inner IP header to the outer IP header.
|
|
|
|
*/
|
|
|
|
#define PDBHMO_ESP_DFBIT (0x04 << PDBHMO_ESP_ENCAP_SHIFT)
|
|
|
|
|
2016-05-19 15:11:26 +00:00
|
|
|
#define PDBNH_ESP_ENCAP_SHIFT 16
|
|
|
|
#define PDBNH_ESP_ENCAP_MASK (0xff << PDBNH_ESP_ENCAP_SHIFT)
|
|
|
|
|
|
|
|
#define PDBHDRLEN_ESP_DECAP_SHIFT 16
|
|
|
|
#define PDBHDRLEN_MASK (0x0fff << PDBHDRLEN_ESP_DECAP_SHIFT)
|
|
|
|
|
|
|
|
#define PDB_NH_OFFSET_SHIFT 8
|
|
|
|
#define PDB_NH_OFFSET_MASK (0xff << PDB_NH_OFFSET_SHIFT)
|
|
|
|
|
2012-06-23 00:42:39 +00:00
|
|
|
/*
|
|
|
|
* PDB - IPSec ESP Encap/Decap Options
|
|
|
|
*/
|
|
|
|
#define PDBOPTS_ESP_ARSNONE 0x00 /* no antireplay window */
|
|
|
|
#define PDBOPTS_ESP_ARS32 0x40 /* 32-entry antireplay window */
|
2016-05-19 15:11:26 +00:00
|
|
|
#define PDBOPTS_ESP_ARS128 0x80 /* 128-entry antireplay window */
|
2012-06-23 00:42:39 +00:00
|
|
|
#define PDBOPTS_ESP_ARS64 0xc0 /* 64-entry antireplay window */
|
2016-05-19 15:11:26 +00:00
|
|
|
#define PDBOPTS_ESP_ARS_MASK 0xc0 /* antireplay window mask */
|
2012-06-23 00:42:39 +00:00
|
|
|
#define PDBOPTS_ESP_IVSRC 0x20 /* IV comes from internal random gen */
|
|
|
|
#define PDBOPTS_ESP_ESN 0x10 /* extended sequence included */
|
|
|
|
#define PDBOPTS_ESP_OUTFMT 0x08 /* output only decapsulation (decap) */
|
|
|
|
#define PDBOPTS_ESP_IPHDRSRC 0x08 /* IP header comes from PDB (encap) */
|
|
|
|
#define PDBOPTS_ESP_INCIPHDR 0x04 /* Prepend IP header to output frame */
|
|
|
|
#define PDBOPTS_ESP_IPVSN 0x02 /* process IPv6 header */
|
2013-05-28 07:37:08 +00:00
|
|
|
#define PDBOPTS_ESP_AOFL 0x04 /* adjust out frame len (decap, SEC>=5.3)*/
|
2012-06-23 00:42:39 +00:00
|
|
|
#define PDBOPTS_ESP_TUNNEL 0x01 /* tunnel mode next-header byte */
|
|
|
|
#define PDBOPTS_ESP_IPV6 0x02 /* ip header version is V6 */
|
|
|
|
#define PDBOPTS_ESP_DIFFSERV 0x40 /* copy TOS/TC from inner iphdr */
|
|
|
|
#define PDBOPTS_ESP_UPDATE_CSUM 0x80 /* encap-update ip header checksum */
|
|
|
|
#define PDBOPTS_ESP_VERIFY_CSUM 0x20 /* decap-validate ip header checksum */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* General IPSec encap/decap PDB definitions
|
|
|
|
*/
|
2016-05-19 15:11:26 +00:00
|
|
|
|
|
|
|
/**
|
|
|
|
* ipsec_encap_cbc - PDB part for IPsec CBC encapsulation
|
|
|
|
* @iv: 16-byte array initialization vector
|
|
|
|
*/
|
2012-06-23 00:42:39 +00:00
|
|
|
struct ipsec_encap_cbc {
|
2016-05-19 15:11:26 +00:00
|
|
|
u8 iv[16];
|
2012-06-23 00:42:39 +00:00
|
|
|
};
|
|
|
|
|
2016-05-19 15:11:26 +00:00
|
|
|
/**
|
|
|
|
* ipsec_encap_ctr - PDB part for IPsec CTR encapsulation
|
|
|
|
* @ctr_nonce: 4-byte array nonce
|
|
|
|
* @ctr_initial: initial count constant
|
|
|
|
* @iv: initialization vector
|
|
|
|
*/
|
2012-06-23 00:42:39 +00:00
|
|
|
struct ipsec_encap_ctr {
|
2016-05-19 15:11:26 +00:00
|
|
|
u8 ctr_nonce[4];
|
2012-06-23 00:42:39 +00:00
|
|
|
u32 ctr_initial;
|
2016-05-19 15:11:26 +00:00
|
|
|
u64 iv;
|
2012-06-23 00:42:39 +00:00
|
|
|
};
|
|
|
|
|
2016-05-19 15:11:26 +00:00
|
|
|
/**
|
|
|
|
* ipsec_encap_ccm - PDB part for IPsec CCM encapsulation
|
|
|
|
* @salt: 3-byte array salt (lower 24 bits)
|
|
|
|
* @ccm_opt: CCM algorithm options - MSB-LSB description:
|
|
|
|
* b0_flags (8b) - CCM B0; use 0x5B for 8-byte ICV, 0x6B for 12-byte ICV,
|
|
|
|
* 0x7B for 16-byte ICV (cf. RFC4309, RFC3610)
|
|
|
|
* ctr_flags (8b) - counter flags; constant equal to 0x3
|
|
|
|
* ctr_initial (16b) - initial count constant
|
|
|
|
* @iv: initialization vector
|
|
|
|
*/
|
2012-06-23 00:42:39 +00:00
|
|
|
struct ipsec_encap_ccm {
|
2016-05-19 15:11:26 +00:00
|
|
|
u8 salt[4];
|
|
|
|
u32 ccm_opt;
|
|
|
|
u64 iv;
|
2012-06-23 00:42:39 +00:00
|
|
|
};
|
|
|
|
|
2016-05-19 15:11:26 +00:00
|
|
|
/**
|
|
|
|
* ipsec_encap_gcm - PDB part for IPsec GCM encapsulation
|
|
|
|
* @salt: 3-byte array salt (lower 24 bits)
|
|
|
|
* @rsvd: reserved, do not use
|
|
|
|
* @iv: initialization vector
|
|
|
|
*/
|
2012-06-23 00:42:39 +00:00
|
|
|
struct ipsec_encap_gcm {
|
2016-05-19 15:11:26 +00:00
|
|
|
u8 salt[4];
|
2012-06-23 00:42:39 +00:00
|
|
|
u32 rsvd1;
|
2016-05-19 15:11:26 +00:00
|
|
|
u64 iv;
|
2012-06-23 00:42:39 +00:00
|
|
|
};
|
|
|
|
|
2016-05-19 15:11:26 +00:00
|
|
|
/**
|
|
|
|
* ipsec_encap_pdb - PDB for IPsec encapsulation
|
|
|
|
* @options: MSB-LSB description
|
|
|
|
* hmo (header manipulation options) - 4b
|
|
|
|
* reserved - 4b
|
|
|
|
* next header - 8b
|
|
|
|
* next header offset - 8b
|
|
|
|
* option flags (depend on selected algorithm) - 8b
|
|
|
|
* @seq_num_ext_hi: (optional) IPsec Extended Sequence Number (ESN)
|
|
|
|
* @seq_num: IPsec sequence number
|
|
|
|
* @spi: IPsec SPI (Security Parameters Index)
|
|
|
|
* @ip_hdr_len: optional IP Header length (in bytes)
|
|
|
|
* reserved - 16b
|
|
|
|
* Opt. IP Hdr Len - 16b
|
|
|
|
* @ip_hdr: optional IP Header content
|
|
|
|
*/
|
2012-06-23 00:42:39 +00:00
|
|
|
struct ipsec_encap_pdb {
|
2016-05-19 15:11:26 +00:00
|
|
|
u32 options;
|
2012-06-23 00:42:39 +00:00
|
|
|
u32 seq_num_ext_hi;
|
|
|
|
u32 seq_num;
|
|
|
|
union {
|
|
|
|
struct ipsec_encap_cbc cbc;
|
|
|
|
struct ipsec_encap_ctr ctr;
|
|
|
|
struct ipsec_encap_ccm ccm;
|
|
|
|
struct ipsec_encap_gcm gcm;
|
|
|
|
};
|
|
|
|
u32 spi;
|
2016-05-19 15:11:26 +00:00
|
|
|
u32 ip_hdr_len;
|
|
|
|
u32 ip_hdr[0];
|
2012-06-23 00:42:39 +00:00
|
|
|
};
|
|
|
|
|
2016-05-19 15:11:26 +00:00
|
|
|
/**
|
|
|
|
* ipsec_decap_cbc - PDB part for IPsec CBC decapsulation
|
|
|
|
* @rsvd: reserved, do not use
|
|
|
|
*/
|
2012-06-23 00:42:39 +00:00
|
|
|
struct ipsec_decap_cbc {
|
|
|
|
u32 rsvd[2];
|
|
|
|
};
|
|
|
|
|
2016-05-19 15:11:26 +00:00
|
|
|
/**
|
|
|
|
* ipsec_decap_ctr - PDB part for IPsec CTR decapsulation
|
|
|
|
* @ctr_nonce: 4-byte array nonce
|
|
|
|
* @ctr_initial: initial count constant
|
|
|
|
*/
|
2012-06-23 00:42:39 +00:00
|
|
|
struct ipsec_decap_ctr {
|
2016-05-19 15:11:26 +00:00
|
|
|
u8 ctr_nonce[4];
|
2012-06-23 00:42:39 +00:00
|
|
|
u32 ctr_initial;
|
|
|
|
};
|
|
|
|
|
2016-05-19 15:11:26 +00:00
|
|
|
/**
|
|
|
|
* ipsec_decap_ccm - PDB part for IPsec CCM decapsulation
|
|
|
|
* @salt: 3-byte salt (lower 24 bits)
|
|
|
|
* @ccm_opt: CCM algorithm options - MSB-LSB description:
|
|
|
|
* b0_flags (8b) - CCM B0; use 0x5B for 8-byte ICV, 0x6B for 12-byte ICV,
|
|
|
|
* 0x7B for 16-byte ICV (cf. RFC4309, RFC3610)
|
|
|
|
* ctr_flags (8b) - counter flags; constant equal to 0x3
|
|
|
|
* ctr_initial (16b) - initial count constant
|
|
|
|
*/
|
2012-06-23 00:42:39 +00:00
|
|
|
struct ipsec_decap_ccm {
|
2016-05-19 15:11:26 +00:00
|
|
|
u8 salt[4];
|
|
|
|
u32 ccm_opt;
|
2012-06-23 00:42:39 +00:00
|
|
|
};
|
|
|
|
|
2016-05-19 15:11:26 +00:00
|
|
|
/**
|
|
|
|
* ipsec_decap_gcm - PDB part for IPsec GCN decapsulation
|
|
|
|
* @salt: 4-byte salt
|
|
|
|
* @rsvd: reserved, do not use
|
|
|
|
*/
|
2012-06-23 00:42:39 +00:00
|
|
|
struct ipsec_decap_gcm {
|
2016-05-19 15:11:26 +00:00
|
|
|
u8 salt[4];
|
2012-06-23 00:42:39 +00:00
|
|
|
u32 resvd;
|
|
|
|
};
|
|
|
|
|
2016-05-19 15:11:26 +00:00
|
|
|
/**
|
|
|
|
* ipsec_decap_pdb - PDB for IPsec decapsulation
|
|
|
|
* @options: MSB-LSB description
|
|
|
|
* hmo (header manipulation options) - 4b
|
|
|
|
* IP header length - 12b
|
|
|
|
* next header offset - 8b
|
|
|
|
* option flags (depend on selected algorithm) - 8b
|
|
|
|
* @seq_num_ext_hi: (optional) IPsec Extended Sequence Number (ESN)
|
|
|
|
* @seq_num: IPsec sequence number
|
|
|
|
* @anti_replay: Anti-replay window; size depends on ARS (option flags)
|
|
|
|
*/
|
2012-06-23 00:42:39 +00:00
|
|
|
struct ipsec_decap_pdb {
|
2016-05-19 15:11:26 +00:00
|
|
|
u32 options;
|
2012-06-23 00:42:39 +00:00
|
|
|
union {
|
|
|
|
struct ipsec_decap_cbc cbc;
|
|
|
|
struct ipsec_decap_ctr ctr;
|
|
|
|
struct ipsec_decap_ccm ccm;
|
|
|
|
struct ipsec_decap_gcm gcm;
|
|
|
|
};
|
|
|
|
u32 seq_num_ext_hi;
|
|
|
|
u32 seq_num;
|
2016-05-19 15:11:26 +00:00
|
|
|
__be32 anti_replay[4];
|
2012-06-23 00:42:39 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* IPSec ESP Datapath Protocol Override Register (DPOVRD)
|
|
|
|
*/
|
|
|
|
struct ipsec_deco_dpovrd {
|
|
|
|
#define IPSEC_ENCAP_DECO_DPOVRD_USE 0x80
|
|
|
|
u8 ovrd_ecn;
|
|
|
|
u8 ip_hdr_len;
|
|
|
|
u8 nh_offset;
|
|
|
|
u8 next_header; /* reserved if decap */
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* IEEE 802.11i WiFi Protocol Data Block
|
|
|
|
*/
|
|
|
|
#define WIFI_PDBOPTS_FCS 0x01
|
|
|
|
#define WIFI_PDBOPTS_AR 0x40
|
|
|
|
|
|
|
|
struct wifi_encap_pdb {
|
|
|
|
u16 mac_hdr_len;
|
|
|
|
u8 rsvd;
|
|
|
|
u8 options;
|
|
|
|
u8 iv_flags;
|
|
|
|
u8 pri;
|
|
|
|
u16 pn1;
|
|
|
|
u32 pn2;
|
|
|
|
u16 frm_ctrl_mask;
|
|
|
|
u16 seq_ctrl_mask;
|
|
|
|
u8 rsvd1[2];
|
|
|
|
u8 cnst;
|
|
|
|
u8 key_id;
|
|
|
|
u8 ctr_flags;
|
|
|
|
u8 rsvd2;
|
|
|
|
u16 ctr_init;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct wifi_decap_pdb {
|
|
|
|
u16 mac_hdr_len;
|
|
|
|
u8 rsvd;
|
|
|
|
u8 options;
|
|
|
|
u8 iv_flags;
|
|
|
|
u8 pri;
|
|
|
|
u16 pn1;
|
|
|
|
u32 pn2;
|
|
|
|
u16 frm_ctrl_mask;
|
|
|
|
u16 seq_ctrl_mask;
|
|
|
|
u8 rsvd1[4];
|
|
|
|
u8 ctr_flags;
|
|
|
|
u8 rsvd2;
|
|
|
|
u16 ctr_init;
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* IEEE 802.16 WiMAX Protocol Data Block
|
|
|
|
*/
|
|
|
|
#define WIMAX_PDBOPTS_FCS 0x01
|
|
|
|
#define WIMAX_PDBOPTS_AR 0x40 /* decap only */
|
|
|
|
|
|
|
|
struct wimax_encap_pdb {
|
|
|
|
u8 rsvd[3];
|
|
|
|
u8 options;
|
|
|
|
u32 nonce;
|
|
|
|
u8 b0_flags;
|
|
|
|
u8 ctr_flags;
|
|
|
|
u16 ctr_init;
|
|
|
|
/* begin DECO writeback region */
|
|
|
|
u32 pn;
|
|
|
|
/* end DECO writeback region */
|
|
|
|
};
|
|
|
|
|
|
|
|
struct wimax_decap_pdb {
|
|
|
|
u8 rsvd[3];
|
|
|
|
u8 options;
|
|
|
|
u32 nonce;
|
|
|
|
u8 iv_flags;
|
|
|
|
u8 ctr_flags;
|
|
|
|
u16 ctr_init;
|
|
|
|
/* begin DECO writeback region */
|
|
|
|
u32 pn;
|
|
|
|
u8 rsvd1[2];
|
|
|
|
u16 antireplay_len;
|
|
|
|
u64 antireplay_scorecard;
|
|
|
|
/* end DECO writeback region */
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* IEEE 801.AE MacSEC Protocol Data Block
|
|
|
|
*/
|
|
|
|
#define MACSEC_PDBOPTS_FCS 0x01
|
|
|
|
#define MACSEC_PDBOPTS_AR 0x40 /* used in decap only */
|
|
|
|
|
|
|
|
struct macsec_encap_pdb {
|
|
|
|
u16 aad_len;
|
|
|
|
u8 rsvd;
|
|
|
|
u8 options;
|
|
|
|
u64 sci;
|
|
|
|
u16 ethertype;
|
|
|
|
u8 tci_an;
|
|
|
|
u8 rsvd1;
|
|
|
|
/* begin DECO writeback region */
|
|
|
|
u32 pn;
|
|
|
|
/* end DECO writeback region */
|
|
|
|
};
|
|
|
|
|
|
|
|
struct macsec_decap_pdb {
|
|
|
|
u16 aad_len;
|
|
|
|
u8 rsvd;
|
|
|
|
u8 options;
|
|
|
|
u64 sci;
|
|
|
|
u8 rsvd1[3];
|
|
|
|
/* begin DECO writeback region */
|
|
|
|
u8 antireplay_len;
|
|
|
|
u32 pn;
|
|
|
|
u64 antireplay_scorecard;
|
|
|
|
/* end DECO writeback region */
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* SSL/TLS/DTLS Protocol Data Blocks
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define TLS_PDBOPTS_ARS32 0x40
|
|
|
|
#define TLS_PDBOPTS_ARS64 0xc0
|
|
|
|
#define TLS_PDBOPTS_OUTFMT 0x08
|
|
|
|
#define TLS_PDBOPTS_IV_WRTBK 0x02 /* 1.1/1.2/DTLS only */
|
|
|
|
#define TLS_PDBOPTS_EXP_RND_IV 0x01 /* 1.1/1.2/DTLS only */
|
|
|
|
|
|
|
|
struct tls_block_encap_pdb {
|
|
|
|
u8 type;
|
|
|
|
u8 version[2];
|
|
|
|
u8 options;
|
|
|
|
u64 seq_num;
|
|
|
|
u32 iv[4];
|
|
|
|
};
|
|
|
|
|
|
|
|
struct tls_stream_encap_pdb {
|
|
|
|
u8 type;
|
|
|
|
u8 version[2];
|
|
|
|
u8 options;
|
|
|
|
u64 seq_num;
|
|
|
|
u8 i;
|
|
|
|
u8 j;
|
|
|
|
u8 rsvd1[2];
|
|
|
|
};
|
|
|
|
|
|
|
|
struct dtls_block_encap_pdb {
|
|
|
|
u8 type;
|
|
|
|
u8 version[2];
|
|
|
|
u8 options;
|
|
|
|
u16 epoch;
|
|
|
|
u16 seq_num[3];
|
|
|
|
u32 iv[4];
|
|
|
|
};
|
|
|
|
|
|
|
|
struct tls_block_decap_pdb {
|
|
|
|
u8 rsvd[3];
|
|
|
|
u8 options;
|
|
|
|
u64 seq_num;
|
|
|
|
u32 iv[4];
|
|
|
|
};
|
|
|
|
|
|
|
|
struct tls_stream_decap_pdb {
|
|
|
|
u8 rsvd[3];
|
|
|
|
u8 options;
|
|
|
|
u64 seq_num;
|
|
|
|
u8 i;
|
|
|
|
u8 j;
|
|
|
|
u8 rsvd1[2];
|
|
|
|
};
|
|
|
|
|
|
|
|
struct dtls_block_decap_pdb {
|
|
|
|
u8 rsvd[3];
|
|
|
|
u8 options;
|
|
|
|
u16 epoch;
|
|
|
|
u16 seq_num[3];
|
|
|
|
u32 iv[4];
|
|
|
|
u64 antireplay_scorecard;
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* SRTP Protocol Data Blocks
|
|
|
|
*/
|
|
|
|
#define SRTP_PDBOPTS_MKI 0x08
|
|
|
|
#define SRTP_PDBOPTS_AR 0x40
|
|
|
|
|
|
|
|
struct srtp_encap_pdb {
|
|
|
|
u8 x_len;
|
|
|
|
u8 mki_len;
|
|
|
|
u8 n_tag;
|
|
|
|
u8 options;
|
|
|
|
u32 cnst0;
|
|
|
|
u8 rsvd[2];
|
|
|
|
u16 cnst1;
|
|
|
|
u16 salt[7];
|
|
|
|
u16 cnst2;
|
|
|
|
u32 rsvd1;
|
|
|
|
u32 roc;
|
|
|
|
u32 opt_mki;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct srtp_decap_pdb {
|
|
|
|
u8 x_len;
|
|
|
|
u8 mki_len;
|
|
|
|
u8 n_tag;
|
|
|
|
u8 options;
|
|
|
|
u32 cnst0;
|
|
|
|
u8 rsvd[2];
|
|
|
|
u16 cnst1;
|
|
|
|
u16 salt[7];
|
|
|
|
u16 cnst2;
|
|
|
|
u16 rsvd1;
|
|
|
|
u16 seq_num;
|
|
|
|
u32 roc;
|
|
|
|
u64 antireplay_scorecard;
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* DSA/ECDSA Protocol Data Blocks
|
|
|
|
* Two of these exist: DSA-SIGN, and DSA-VERIFY. They are similar
|
|
|
|
* except for the treatment of "w" for verify, "s" for sign,
|
|
|
|
* and the placement of "a,b".
|
|
|
|
*/
|
|
|
|
#define DSA_PDB_SGF_SHIFT 24
|
|
|
|
#define DSA_PDB_SGF_MASK (0xff << DSA_PDB_SGF_SHIFT)
|
|
|
|
#define DSA_PDB_SGF_Q (0x80 << DSA_PDB_SGF_SHIFT)
|
|
|
|
#define DSA_PDB_SGF_R (0x40 << DSA_PDB_SGF_SHIFT)
|
|
|
|
#define DSA_PDB_SGF_G (0x20 << DSA_PDB_SGF_SHIFT)
|
|
|
|
#define DSA_PDB_SGF_W (0x10 << DSA_PDB_SGF_SHIFT)
|
|
|
|
#define DSA_PDB_SGF_S (0x10 << DSA_PDB_SGF_SHIFT)
|
|
|
|
#define DSA_PDB_SGF_F (0x08 << DSA_PDB_SGF_SHIFT)
|
|
|
|
#define DSA_PDB_SGF_C (0x04 << DSA_PDB_SGF_SHIFT)
|
|
|
|
#define DSA_PDB_SGF_D (0x02 << DSA_PDB_SGF_SHIFT)
|
|
|
|
#define DSA_PDB_SGF_AB_SIGN (0x02 << DSA_PDB_SGF_SHIFT)
|
|
|
|
#define DSA_PDB_SGF_AB_VERIFY (0x01 << DSA_PDB_SGF_SHIFT)
|
|
|
|
|
|
|
|
#define DSA_PDB_L_SHIFT 7
|
|
|
|
#define DSA_PDB_L_MASK (0x3ff << DSA_PDB_L_SHIFT)
|
|
|
|
|
|
|
|
#define DSA_PDB_N_MASK 0x7f
|
|
|
|
|
|
|
|
struct dsa_sign_pdb {
|
|
|
|
u32 sgf_ln; /* Use DSA_PDB_ defintions per above */
|
|
|
|
u8 *q;
|
|
|
|
u8 *r;
|
|
|
|
u8 *g; /* or Gx,y */
|
|
|
|
u8 *s;
|
|
|
|
u8 *f;
|
|
|
|
u8 *c;
|
|
|
|
u8 *d;
|
|
|
|
u8 *ab; /* ECC only */
|
|
|
|
u8 *u;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct dsa_verify_pdb {
|
|
|
|
u32 sgf_ln;
|
|
|
|
u8 *q;
|
|
|
|
u8 *r;
|
|
|
|
u8 *g; /* or Gx,y */
|
|
|
|
u8 *w; /* or Wx,y */
|
|
|
|
u8 *f;
|
|
|
|
u8 *c;
|
|
|
|
u8 *d;
|
|
|
|
u8 *tmp; /* temporary data block */
|
|
|
|
u8 *ab; /* only used if ECC processing */
|
|
|
|
};
|
|
|
|
|
2016-07-04 10:12:08 +00:00
|
|
|
/* RSA Protocol Data Block */
|
|
|
|
#define RSA_PDB_SGF_SHIFT 28
|
|
|
|
#define RSA_PDB_E_SHIFT 12
|
|
|
|
#define RSA_PDB_E_MASK (0xFFF << RSA_PDB_E_SHIFT)
|
|
|
|
#define RSA_PDB_D_SHIFT 12
|
|
|
|
#define RSA_PDB_D_MASK (0xFFF << RSA_PDB_D_SHIFT)
|
crypto: caam - add support for RSA key form 2
CAAM RSA private key may have either of three representations.
1. The first representation consists of the pair (n, d), where the
components have the following meanings:
n the RSA modulus
d the RSA private exponent
2. The second representation consists of the triplet (p, q, d), where
the
components have the following meanings:
p the first prime factor of the RSA modulus n
q the second prime factor of the RSA modulus n
d the RSA private exponent
3. The third representation consists of the quintuple (p, q, dP, dQ,
qInv),
where the components have the following meanings:
p the first prime factor of the RSA modulus n
q the second prime factor of the RSA modulus n
dP the first factors's CRT exponent
dQ the second factors's CRT exponent
qInv the (first) CRT coefficient
The benefit of using the third or the second key form is lower
computational cost for the decryption and signature operations.
This patch adds support for the second RSA private key
representation.
Signed-off-by: Tudor Ambarus <tudor-dan.ambarus@nxp.com>
Signed-off-by: Radu Alexe <radu.alexe@nxp.com>
Signed-off-by: Horia Geantă <horia.geanta@nxp.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-04-25 13:26:38 +00:00
|
|
|
#define RSA_PDB_Q_SHIFT 12
|
|
|
|
#define RSA_PDB_Q_MASK (0xFFF << RSA_PDB_Q_SHIFT)
|
2016-07-04 10:12:08 +00:00
|
|
|
|
|
|
|
#define RSA_PDB_SGF_F (0x8 << RSA_PDB_SGF_SHIFT)
|
|
|
|
#define RSA_PDB_SGF_G (0x4 << RSA_PDB_SGF_SHIFT)
|
|
|
|
#define RSA_PRIV_PDB_SGF_F (0x4 << RSA_PDB_SGF_SHIFT)
|
|
|
|
#define RSA_PRIV_PDB_SGF_G (0x8 << RSA_PDB_SGF_SHIFT)
|
|
|
|
|
|
|
|
#define RSA_PRIV_KEY_FRM_1 0
|
crypto: caam - add support for RSA key form 2
CAAM RSA private key may have either of three representations.
1. The first representation consists of the pair (n, d), where the
components have the following meanings:
n the RSA modulus
d the RSA private exponent
2. The second representation consists of the triplet (p, q, d), where
the
components have the following meanings:
p the first prime factor of the RSA modulus n
q the second prime factor of the RSA modulus n
d the RSA private exponent
3. The third representation consists of the quintuple (p, q, dP, dQ,
qInv),
where the components have the following meanings:
p the first prime factor of the RSA modulus n
q the second prime factor of the RSA modulus n
dP the first factors's CRT exponent
dQ the second factors's CRT exponent
qInv the (first) CRT coefficient
The benefit of using the third or the second key form is lower
computational cost for the decryption and signature operations.
This patch adds support for the second RSA private key
representation.
Signed-off-by: Tudor Ambarus <tudor-dan.ambarus@nxp.com>
Signed-off-by: Radu Alexe <radu.alexe@nxp.com>
Signed-off-by: Horia Geantă <horia.geanta@nxp.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-04-25 13:26:38 +00:00
|
|
|
#define RSA_PRIV_KEY_FRM_2 1
|
2016-07-04 10:12:08 +00:00
|
|
|
|
|
|
|
/**
|
|
|
|
* RSA Encrypt Protocol Data Block
|
|
|
|
* @sgf: scatter-gather field
|
|
|
|
* @f_dma: dma address of input data
|
|
|
|
* @g_dma: dma address of encrypted output data
|
|
|
|
* @n_dma: dma address of RSA modulus
|
|
|
|
* @e_dma: dma address of RSA public exponent
|
|
|
|
* @f_len: length in octets of the input data
|
|
|
|
*/
|
|
|
|
struct rsa_pub_pdb {
|
|
|
|
u32 sgf;
|
|
|
|
dma_addr_t f_dma;
|
|
|
|
dma_addr_t g_dma;
|
|
|
|
dma_addr_t n_dma;
|
|
|
|
dma_addr_t e_dma;
|
|
|
|
u32 f_len;
|
|
|
|
} __packed;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* RSA Decrypt PDB - Private Key Form #1
|
|
|
|
* @sgf: scatter-gather field
|
|
|
|
* @g_dma: dma address of encrypted input data
|
|
|
|
* @f_dma: dma address of output data
|
|
|
|
* @n_dma: dma address of RSA modulus
|
|
|
|
* @d_dma: dma address of RSA private exponent
|
|
|
|
*/
|
|
|
|
struct rsa_priv_f1_pdb {
|
|
|
|
u32 sgf;
|
|
|
|
dma_addr_t g_dma;
|
|
|
|
dma_addr_t f_dma;
|
|
|
|
dma_addr_t n_dma;
|
|
|
|
dma_addr_t d_dma;
|
|
|
|
} __packed;
|
|
|
|
|
crypto: caam - add support for RSA key form 2
CAAM RSA private key may have either of three representations.
1. The first representation consists of the pair (n, d), where the
components have the following meanings:
n the RSA modulus
d the RSA private exponent
2. The second representation consists of the triplet (p, q, d), where
the
components have the following meanings:
p the first prime factor of the RSA modulus n
q the second prime factor of the RSA modulus n
d the RSA private exponent
3. The third representation consists of the quintuple (p, q, dP, dQ,
qInv),
where the components have the following meanings:
p the first prime factor of the RSA modulus n
q the second prime factor of the RSA modulus n
dP the first factors's CRT exponent
dQ the second factors's CRT exponent
qInv the (first) CRT coefficient
The benefit of using the third or the second key form is lower
computational cost for the decryption and signature operations.
This patch adds support for the second RSA private key
representation.
Signed-off-by: Tudor Ambarus <tudor-dan.ambarus@nxp.com>
Signed-off-by: Radu Alexe <radu.alexe@nxp.com>
Signed-off-by: Horia Geantă <horia.geanta@nxp.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-04-25 13:26:38 +00:00
|
|
|
/**
|
|
|
|
* RSA Decrypt PDB - Private Key Form #2
|
|
|
|
* @sgf : scatter-gather field
|
|
|
|
* @g_dma : dma address of encrypted input data
|
|
|
|
* @f_dma : dma address of output data
|
|
|
|
* @d_dma : dma address of RSA private exponent
|
|
|
|
* @p_dma : dma address of RSA prime factor p of RSA modulus n
|
|
|
|
* @q_dma : dma address of RSA prime factor q of RSA modulus n
|
|
|
|
* @tmp1_dma: dma address of temporary buffer. CAAM uses this temporary buffer
|
|
|
|
* as internal state buffer. It is assumed to be as long as p.
|
|
|
|
* @tmp2_dma: dma address of temporary buffer. CAAM uses this temporary buffer
|
|
|
|
* as internal state buffer. It is assumed to be as long as q.
|
|
|
|
* @p_q_len : length in bytes of first two prime factors of the RSA modulus n
|
|
|
|
*/
|
|
|
|
struct rsa_priv_f2_pdb {
|
|
|
|
u32 sgf;
|
|
|
|
dma_addr_t g_dma;
|
|
|
|
dma_addr_t f_dma;
|
|
|
|
dma_addr_t d_dma;
|
|
|
|
dma_addr_t p_dma;
|
|
|
|
dma_addr_t q_dma;
|
|
|
|
dma_addr_t tmp1_dma;
|
|
|
|
dma_addr_t tmp2_dma;
|
|
|
|
u32 p_q_len;
|
|
|
|
} __packed;
|
|
|
|
|
2012-06-23 00:42:39 +00:00
|
|
|
#endif
|