linux/drivers/gpu/drm/i915/i915_gem_render_state.c

227 lines
5.9 KiB
C
Raw Normal View History

/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Mika Kuoppala <mika.kuoppala@intel.com>
*
*/
#include "i915_drv.h"
#include "intel_renderstate.h"
struct render_state {
const struct intel_renderstate_rodata *rodata;
struct drm_i915_gem_object *obj;
u64 ggtt_offset;
u32 aux_batch_size;
u32 aux_batch_offset;
};
static const struct intel_renderstate_rodata *
render_state_get_rodata(const struct drm_i915_gem_request *req)
{
switch (INTEL_GEN(req->i915)) {
case 6:
return &gen6_null_state;
case 7:
return &gen7_null_state;
case 8:
return &gen8_null_state;
case 9:
return &gen9_null_state;
}
return NULL;
}
drm/i915: Add provision to extend Golden context batch The Golden batch carries 3D state at the beginning so that HW starts with a known state. It is carried as a binary blob which is auto-generated from source. The idea was it would be easier to maintain and keep the complexity out of the kernel which makes sense as we don't really touch it. However if you really need to update it then you need to update generator source and keep the binary blob in sync with it. There is a need to patch this in bxt to send one additional command to enable a feature. A solution was to patch the binary data with some additional data structures (included as part of auto-generator source) but it was unnecessarily complicated. Chris suggested the idea of having a secondary batch and execute two batch buffers. It has clear advantages as we needn't touch the base golden batch, can customize secondary/auxiliary batch depending on Gen and can be carried in the driver with no dependencies. This patch adds support for this auxiliary batch which is inserted at the end of golden batch and is completely independent from it. Thanks to Mika for the preliminary review. v2: Strictly conform to the batch size requirements to cover Gen2 and add comments to clarify overflow check in macro (Chris, Mika). v3: aux_batch_offset was declared as u64, change it to u32 (Chris) Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Mika Kuoppala <mika.kuoppala@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Armin Reese <armin.c.reese@intel.com> Signed-off-by: Arun Siluvery <arun.siluvery@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-07-20 09:46:10 +00:00
/*
* Macro to add commands to auxiliary batch.
* This macro only checks for page overflow before inserting the commands,
* this is sufficient as the null state generator makes the final batch
* with two passes to build command and state separately. At this point
* the size of both are known and it compacts them by relocating the state
* right after the commands taking care of aligment so we should sufficient
* space below them for adding new commands.
*/
#define OUT_BATCH(batch, i, val) \
do { \
if (WARN_ON((i) >= PAGE_SIZE / sizeof(u32))) { \
ret = -ENOSPC; \
goto err_out; \
} \
(batch)[(i)++] = (val); \
} while(0)
static int render_state_setup(struct render_state *so)
{
drm/i915:bxt: Enable Pooled EU support This mode allows to assign EUs to pools which can process work collectively. The command to enable this mode should be issued as part of context initialization. The pooled mode is global, once enabled it has to stay the same across all contexts until HW reset hence this is sent in auxiliary golden context batch. Thanks to Mika for the preliminary review and comments. v2: explain why this is enabled in golden context, use feature flag while enabling the support (Chris) v3: Include only kernel support as userspace support is not available yet. User space clients need to know when the pooled EU feature is present and enabled on the hardware so that they can adapt work submissions. Create a new device info flag for this purpose. Set has_pooled_eu to true in the Broxton static device info - Broxton supports the feature in hardware and the driver will enable it by default. We need to add getparam ioctls to enable userspace to query availability of this feature and to retrieve min. no of eus in a pool but we will expose them once userspace support is available. Opensource users for this feature are mesa, libva and beignet. Beignet team is currently working on adding userspace support. Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> (v2) Cc: Winiarski, Michal <michal.winiarski@intel.com> Cc: Zou, Nanhai <nanhai.zou@intel.com> Cc: Yang, Rong R <rong.r.yang@intel.com> Cc: Mika Kuoppala <mika.kuoppala@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Armin Reese <armin.c.reese@intel.com> Cc: Tim Gore <tim.gore@intel.com> Signed-off-by: Jeff McGee <jeff.mcgee@intel.com> Signed-off-by: Arun Siluvery <arun.siluvery@linux.intel.com> Reviewed-by: Michał Winiarski <michal.winiarski@intel.com> Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
2016-06-03 05:34:33 +00:00
struct drm_device *dev = so->obj->base.dev;
const struct intel_renderstate_rodata *rodata = so->rodata;
const bool has_64bit_reloc = INTEL_GEN(dev) >= 8;
unsigned int i = 0, reloc_index = 0;
struct page *page;
u32 *d;
int ret;
ret = i915_gem_object_set_to_cpu_domain(so->obj, true);
if (ret)
return ret;
drm/i915: mark GEM object pages dirty when mapped & written by the CPU In various places, a single page of a (regular) GEM object is mapped into CPU address space and updated. In each such case, either the page or the the object should be marked dirty, to ensure that the modifications are not discarded if the object is evicted under memory pressure. The typical sequence is: va = kmap_atomic(i915_gem_object_get_page(obj, pageno)); *(va+offset) = ... kunmap_atomic(va); Here we introduce i915_gem_object_get_dirty_page(), which performs the same operation as i915_gem_object_get_page() but with the side-effect of marking the returned page dirty in the pagecache. This will ensure that if the object is subsequently evicted (due to memory pressure), the changes are written to backing store rather than discarded. Note that it works only for regular (shmfs-backed) GEM objects, but (at least for now) those are the only ones that are updated in this way -- the objects in question are contexts and batchbuffers, which are always shmfs-backed. Separate patches deal with the cases where whole objects are (or may be) dirtied. v3: Mark two more pages dirty in the page-boundary-crossing cases of the execbuffer relocation code [Chris Wilson] Signed-off-by: Dave Gordon <david.s.gordon@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1449773486-30822-2-git-send-email-david.s.gordon@intel.com Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-12-10 18:51:23 +00:00
page = i915_gem_object_get_dirty_page(so->obj, 0);
d = kmap(page);
while (i < rodata->batch_items) {
u32 s = rodata->batch[i];
if (i * 4 == rodata->reloc[reloc_index]) {
u64 r = s + so->ggtt_offset;
s = lower_32_bits(r);
if (has_64bit_reloc) {
if (i + 1 >= rodata->batch_items ||
rodata->batch[i + 1] != 0) {
ret = -EINVAL;
goto err_out;
}
d[i++] = s;
s = upper_32_bits(r);
}
reloc_index++;
}
d[i++] = s;
}
drm/i915: Add provision to extend Golden context batch The Golden batch carries 3D state at the beginning so that HW starts with a known state. It is carried as a binary blob which is auto-generated from source. The idea was it would be easier to maintain and keep the complexity out of the kernel which makes sense as we don't really touch it. However if you really need to update it then you need to update generator source and keep the binary blob in sync with it. There is a need to patch this in bxt to send one additional command to enable a feature. A solution was to patch the binary data with some additional data structures (included as part of auto-generator source) but it was unnecessarily complicated. Chris suggested the idea of having a secondary batch and execute two batch buffers. It has clear advantages as we needn't touch the base golden batch, can customize secondary/auxiliary batch depending on Gen and can be carried in the driver with no dependencies. This patch adds support for this auxiliary batch which is inserted at the end of golden batch and is completely independent from it. Thanks to Mika for the preliminary review. v2: Strictly conform to the batch size requirements to cover Gen2 and add comments to clarify overflow check in macro (Chris, Mika). v3: aux_batch_offset was declared as u64, change it to u32 (Chris) Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Mika Kuoppala <mika.kuoppala@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Armin Reese <armin.c.reese@intel.com> Signed-off-by: Arun Siluvery <arun.siluvery@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-07-20 09:46:10 +00:00
while (i % CACHELINE_DWORDS)
OUT_BATCH(d, i, MI_NOOP);
so->aux_batch_offset = i * sizeof(u32);
drm/i915:bxt: Enable Pooled EU support This mode allows to assign EUs to pools which can process work collectively. The command to enable this mode should be issued as part of context initialization. The pooled mode is global, once enabled it has to stay the same across all contexts until HW reset hence this is sent in auxiliary golden context batch. Thanks to Mika for the preliminary review and comments. v2: explain why this is enabled in golden context, use feature flag while enabling the support (Chris) v3: Include only kernel support as userspace support is not available yet. User space clients need to know when the pooled EU feature is present and enabled on the hardware so that they can adapt work submissions. Create a new device info flag for this purpose. Set has_pooled_eu to true in the Broxton static device info - Broxton supports the feature in hardware and the driver will enable it by default. We need to add getparam ioctls to enable userspace to query availability of this feature and to retrieve min. no of eus in a pool but we will expose them once userspace support is available. Opensource users for this feature are mesa, libva and beignet. Beignet team is currently working on adding userspace support. Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> (v2) Cc: Winiarski, Michal <michal.winiarski@intel.com> Cc: Zou, Nanhai <nanhai.zou@intel.com> Cc: Yang, Rong R <rong.r.yang@intel.com> Cc: Mika Kuoppala <mika.kuoppala@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Armin Reese <armin.c.reese@intel.com> Cc: Tim Gore <tim.gore@intel.com> Signed-off-by: Jeff McGee <jeff.mcgee@intel.com> Signed-off-by: Arun Siluvery <arun.siluvery@linux.intel.com> Reviewed-by: Michał Winiarski <michal.winiarski@intel.com> Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
2016-06-03 05:34:33 +00:00
if (HAS_POOLED_EU(dev)) {
/*
* We always program 3x6 pool config but depending upon which
* subslice is disabled HW drops down to appropriate config
* shown below.
*
* In the below table 2x6 config always refers to
* fused-down version, native 2x6 is not available and can
* be ignored
*
* SNo subslices config eu pool configuration
* -----------------------------------------------------------
* 1 3 subslices enabled (3x6) - 0x00777000 (9+9)
* 2 ss0 disabled (2x6) - 0x00777000 (3+9)
* 3 ss1 disabled (2x6) - 0x00770000 (6+6)
* 4 ss2 disabled (2x6) - 0x00007000 (9+3)
*/
u32 eu_pool_config = 0x00777000;
OUT_BATCH(d, i, GEN9_MEDIA_POOL_STATE);
OUT_BATCH(d, i, GEN9_MEDIA_POOL_ENABLE);
OUT_BATCH(d, i, eu_pool_config);
OUT_BATCH(d, i, 0);
OUT_BATCH(d, i, 0);
OUT_BATCH(d, i, 0);
}
drm/i915: Add provision to extend Golden context batch The Golden batch carries 3D state at the beginning so that HW starts with a known state. It is carried as a binary blob which is auto-generated from source. The idea was it would be easier to maintain and keep the complexity out of the kernel which makes sense as we don't really touch it. However if you really need to update it then you need to update generator source and keep the binary blob in sync with it. There is a need to patch this in bxt to send one additional command to enable a feature. A solution was to patch the binary data with some additional data structures (included as part of auto-generator source) but it was unnecessarily complicated. Chris suggested the idea of having a secondary batch and execute two batch buffers. It has clear advantages as we needn't touch the base golden batch, can customize secondary/auxiliary batch depending on Gen and can be carried in the driver with no dependencies. This patch adds support for this auxiliary batch which is inserted at the end of golden batch and is completely independent from it. Thanks to Mika for the preliminary review. v2: Strictly conform to the batch size requirements to cover Gen2 and add comments to clarify overflow check in macro (Chris, Mika). v3: aux_batch_offset was declared as u64, change it to u32 (Chris) Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Mika Kuoppala <mika.kuoppala@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Armin Reese <armin.c.reese@intel.com> Signed-off-by: Arun Siluvery <arun.siluvery@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-07-20 09:46:10 +00:00
OUT_BATCH(d, i, MI_BATCH_BUFFER_END);
so->aux_batch_size = (i * sizeof(u32)) - so->aux_batch_offset;
/*
* Since we are sending length, we need to strictly conform to
* all requirements. For Gen2 this must be a multiple of 8.
*/
so->aux_batch_size = ALIGN(so->aux_batch_size, 8);
kunmap(page);
ret = i915_gem_object_set_to_gtt_domain(so->obj, false);
if (ret)
return ret;
if (rodata->reloc[reloc_index] != -1) {
DRM_ERROR("only %d relocs resolved\n", reloc_index);
return -EINVAL;
}
return 0;
err_out:
kunmap(page);
return ret;
}
drm/i915: Add provision to extend Golden context batch The Golden batch carries 3D state at the beginning so that HW starts with a known state. It is carried as a binary blob which is auto-generated from source. The idea was it would be easier to maintain and keep the complexity out of the kernel which makes sense as we don't really touch it. However if you really need to update it then you need to update generator source and keep the binary blob in sync with it. There is a need to patch this in bxt to send one additional command to enable a feature. A solution was to patch the binary data with some additional data structures (included as part of auto-generator source) but it was unnecessarily complicated. Chris suggested the idea of having a secondary batch and execute two batch buffers. It has clear advantages as we needn't touch the base golden batch, can customize secondary/auxiliary batch depending on Gen and can be carried in the driver with no dependencies. This patch adds support for this auxiliary batch which is inserted at the end of golden batch and is completely independent from it. Thanks to Mika for the preliminary review. v2: Strictly conform to the batch size requirements to cover Gen2 and add comments to clarify overflow check in macro (Chris, Mika). v3: aux_batch_offset was declared as u64, change it to u32 (Chris) Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Mika Kuoppala <mika.kuoppala@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Armin Reese <armin.c.reese@intel.com> Signed-off-by: Arun Siluvery <arun.siluvery@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-07-20 09:46:10 +00:00
#undef OUT_BATCH
int i915_gem_render_state_init(struct drm_i915_gem_request *req)
{
struct render_state so;
int ret;
if (WARN_ON(req->engine->id != RCS))
return -ENOENT;
so.rodata = render_state_get_rodata(req);
if (!so.rodata)
return 0;
if (so.rodata->batch_items * 4 > 4096)
return -EINVAL;
so.obj = i915_gem_object_create(&req->i915->drm, 4096);
if (IS_ERR(so.obj))
return PTR_ERR(so.obj);
ret = i915_gem_object_ggtt_pin(so.obj, NULL, 0, 0, 0);
if (ret)
goto err_obj;
so.ggtt_offset = i915_gem_obj_ggtt_offset(so.obj);
ret = render_state_setup(&so);
if (ret)
goto err_unpin;
ret = req->engine->emit_bb_start(req, so.ggtt_offset,
so.rodata->batch_items * 4,
I915_DISPATCH_SECURE);
if (ret)
goto err_unpin;
drm/i915: Add provision to extend Golden context batch The Golden batch carries 3D state at the beginning so that HW starts with a known state. It is carried as a binary blob which is auto-generated from source. The idea was it would be easier to maintain and keep the complexity out of the kernel which makes sense as we don't really touch it. However if you really need to update it then you need to update generator source and keep the binary blob in sync with it. There is a need to patch this in bxt to send one additional command to enable a feature. A solution was to patch the binary data with some additional data structures (included as part of auto-generator source) but it was unnecessarily complicated. Chris suggested the idea of having a secondary batch and execute two batch buffers. It has clear advantages as we needn't touch the base golden batch, can customize secondary/auxiliary batch depending on Gen and can be carried in the driver with no dependencies. This patch adds support for this auxiliary batch which is inserted at the end of golden batch and is completely independent from it. Thanks to Mika for the preliminary review. v2: Strictly conform to the batch size requirements to cover Gen2 and add comments to clarify overflow check in macro (Chris, Mika). v3: aux_batch_offset was declared as u64, change it to u32 (Chris) Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Mika Kuoppala <mika.kuoppala@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Armin Reese <armin.c.reese@intel.com> Signed-off-by: Arun Siluvery <arun.siluvery@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-07-20 09:46:10 +00:00
if (so.aux_batch_size > 8) {
ret = req->engine->emit_bb_start(req,
(so.ggtt_offset +
so.aux_batch_offset),
so.aux_batch_size,
I915_DISPATCH_SECURE);
drm/i915: Add provision to extend Golden context batch The Golden batch carries 3D state at the beginning so that HW starts with a known state. It is carried as a binary blob which is auto-generated from source. The idea was it would be easier to maintain and keep the complexity out of the kernel which makes sense as we don't really touch it. However if you really need to update it then you need to update generator source and keep the binary blob in sync with it. There is a need to patch this in bxt to send one additional command to enable a feature. A solution was to patch the binary data with some additional data structures (included as part of auto-generator source) but it was unnecessarily complicated. Chris suggested the idea of having a secondary batch and execute two batch buffers. It has clear advantages as we needn't touch the base golden batch, can customize secondary/auxiliary batch depending on Gen and can be carried in the driver with no dependencies. This patch adds support for this auxiliary batch which is inserted at the end of golden batch and is completely independent from it. Thanks to Mika for the preliminary review. v2: Strictly conform to the batch size requirements to cover Gen2 and add comments to clarify overflow check in macro (Chris, Mika). v3: aux_batch_offset was declared as u64, change it to u32 (Chris) Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Mika Kuoppala <mika.kuoppala@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Armin Reese <armin.c.reese@intel.com> Signed-off-by: Arun Siluvery <arun.siluvery@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-07-20 09:46:10 +00:00
if (ret)
goto err_unpin;
drm/i915: Add provision to extend Golden context batch The Golden batch carries 3D state at the beginning so that HW starts with a known state. It is carried as a binary blob which is auto-generated from source. The idea was it would be easier to maintain and keep the complexity out of the kernel which makes sense as we don't really touch it. However if you really need to update it then you need to update generator source and keep the binary blob in sync with it. There is a need to patch this in bxt to send one additional command to enable a feature. A solution was to patch the binary data with some additional data structures (included as part of auto-generator source) but it was unnecessarily complicated. Chris suggested the idea of having a secondary batch and execute two batch buffers. It has clear advantages as we needn't touch the base golden batch, can customize secondary/auxiliary batch depending on Gen and can be carried in the driver with no dependencies. This patch adds support for this auxiliary batch which is inserted at the end of golden batch and is completely independent from it. Thanks to Mika for the preliminary review. v2: Strictly conform to the batch size requirements to cover Gen2 and add comments to clarify overflow check in macro (Chris, Mika). v3: aux_batch_offset was declared as u64, change it to u32 (Chris) Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Mika Kuoppala <mika.kuoppala@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Armin Reese <armin.c.reese@intel.com> Signed-off-by: Arun Siluvery <arun.siluvery@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-07-20 09:46:10 +00:00
}
i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req, 0);
err_unpin:
i915_gem_object_ggtt_unpin(so.obj);
err_obj:
i915_gem_object_put(so.obj);
return ret;
}