linux/drivers/gpu/drm/radeon/r600.c

3794 lines
112 KiB
C
Raw Normal View History

drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
/*
* Copyright 2008 Advanced Micro Devices, Inc.
* Copyright 2008 Red Hat Inc.
* Copyright 2009 Jerome Glisse.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Dave Airlie
* Alex Deucher
* Jerome Glisse
*/
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <linux/seq_file.h>
#include <linux/firmware.h>
#include <linux/platform_device.h>
#include <linux/module.h>
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
#include "drmP.h"
#include "radeon_drm.h"
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
#include "radeon.h"
#include "radeon_asic.h"
#include "radeon_mode.h"
#include "r600d.h"
#include "atom.h"
#include "avivod.h"
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
#define PFP_UCODE_SIZE 576
#define PM4_UCODE_SIZE 1792
#define RLC_UCODE_SIZE 768
#define R700_PFP_UCODE_SIZE 848
#define R700_PM4_UCODE_SIZE 1360
#define R700_RLC_UCODE_SIZE 1024
#define EVERGREEN_PFP_UCODE_SIZE 1120
#define EVERGREEN_PM4_UCODE_SIZE 1376
#define EVERGREEN_RLC_UCODE_SIZE 768
#define CAYMAN_RLC_UCODE_SIZE 1024
/* Firmware Names */
MODULE_FIRMWARE("radeon/R600_pfp.bin");
MODULE_FIRMWARE("radeon/R600_me.bin");
MODULE_FIRMWARE("radeon/RV610_pfp.bin");
MODULE_FIRMWARE("radeon/RV610_me.bin");
MODULE_FIRMWARE("radeon/RV630_pfp.bin");
MODULE_FIRMWARE("radeon/RV630_me.bin");
MODULE_FIRMWARE("radeon/RV620_pfp.bin");
MODULE_FIRMWARE("radeon/RV620_me.bin");
MODULE_FIRMWARE("radeon/RV635_pfp.bin");
MODULE_FIRMWARE("radeon/RV635_me.bin");
MODULE_FIRMWARE("radeon/RV670_pfp.bin");
MODULE_FIRMWARE("radeon/RV670_me.bin");
MODULE_FIRMWARE("radeon/RS780_pfp.bin");
MODULE_FIRMWARE("radeon/RS780_me.bin");
MODULE_FIRMWARE("radeon/RV770_pfp.bin");
MODULE_FIRMWARE("radeon/RV770_me.bin");
MODULE_FIRMWARE("radeon/RV730_pfp.bin");
MODULE_FIRMWARE("radeon/RV730_me.bin");
MODULE_FIRMWARE("radeon/RV710_pfp.bin");
MODULE_FIRMWARE("radeon/RV710_me.bin");
MODULE_FIRMWARE("radeon/R600_rlc.bin");
MODULE_FIRMWARE("radeon/R700_rlc.bin");
MODULE_FIRMWARE("radeon/CEDAR_pfp.bin");
MODULE_FIRMWARE("radeon/CEDAR_me.bin");
MODULE_FIRMWARE("radeon/CEDAR_rlc.bin");
MODULE_FIRMWARE("radeon/REDWOOD_pfp.bin");
MODULE_FIRMWARE("radeon/REDWOOD_me.bin");
MODULE_FIRMWARE("radeon/REDWOOD_rlc.bin");
MODULE_FIRMWARE("radeon/JUNIPER_pfp.bin");
MODULE_FIRMWARE("radeon/JUNIPER_me.bin");
MODULE_FIRMWARE("radeon/JUNIPER_rlc.bin");
MODULE_FIRMWARE("radeon/CYPRESS_pfp.bin");
MODULE_FIRMWARE("radeon/CYPRESS_me.bin");
MODULE_FIRMWARE("radeon/CYPRESS_rlc.bin");
MODULE_FIRMWARE("radeon/PALM_pfp.bin");
MODULE_FIRMWARE("radeon/PALM_me.bin");
MODULE_FIRMWARE("radeon/SUMO_rlc.bin");
MODULE_FIRMWARE("radeon/SUMO_pfp.bin");
MODULE_FIRMWARE("radeon/SUMO_me.bin");
MODULE_FIRMWARE("radeon/SUMO2_pfp.bin");
MODULE_FIRMWARE("radeon/SUMO2_me.bin");
int r600_debugfs_mc_info_init(struct radeon_device *rdev);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
/* r600,rv610,rv630,rv620,rv635,rv670 */
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
int r600_mc_wait_for_idle(struct radeon_device *rdev);
void r600_gpu_init(struct radeon_device *rdev);
void r600_fini(struct radeon_device *rdev);
void r600_irq_disable(struct radeon_device *rdev);
static void r600_pcie_gen2_enable(struct radeon_device *rdev);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
/* get temperature in millidegrees */
int rv6xx_get_temp(struct radeon_device *rdev)
{
u32 temp = (RREG32(CG_THERMAL_STATUS) & ASIC_T_MASK) >>
ASIC_T_SHIFT;
int actual_temp = temp & 0xff;
if (temp & 0x100)
actual_temp -= 256;
return actual_temp * 1000;
}
void r600_pm_get_dynpm_state(struct radeon_device *rdev)
{
int i;
rdev->pm.dynpm_can_upclock = true;
rdev->pm.dynpm_can_downclock = true;
/* power state array is low to high, default is first */
if ((rdev->flags & RADEON_IS_IGP) || (rdev->family == CHIP_R600)) {
int min_power_state_index = 0;
if (rdev->pm.num_power_states > 2)
min_power_state_index = 1;
switch (rdev->pm.dynpm_planned_action) {
case DYNPM_ACTION_MINIMUM:
rdev->pm.requested_power_state_index = min_power_state_index;
rdev->pm.requested_clock_mode_index = 0;
rdev->pm.dynpm_can_downclock = false;
break;
case DYNPM_ACTION_DOWNCLOCK:
if (rdev->pm.current_power_state_index == min_power_state_index) {
rdev->pm.requested_power_state_index = rdev->pm.current_power_state_index;
rdev->pm.dynpm_can_downclock = false;
} else {
if (rdev->pm.active_crtc_count > 1) {
for (i = 0; i < rdev->pm.num_power_states; i++) {
if (rdev->pm.power_state[i].flags & RADEON_PM_STATE_SINGLE_DISPLAY_ONLY)
continue;
else if (i >= rdev->pm.current_power_state_index) {
rdev->pm.requested_power_state_index =
rdev->pm.current_power_state_index;
break;
} else {
rdev->pm.requested_power_state_index = i;
break;
}
}
} else {
if (rdev->pm.current_power_state_index == 0)
rdev->pm.requested_power_state_index =
rdev->pm.num_power_states - 1;
else
rdev->pm.requested_power_state_index =
rdev->pm.current_power_state_index - 1;
}
}
rdev->pm.requested_clock_mode_index = 0;
/* don't use the power state if crtcs are active and no display flag is set */
if ((rdev->pm.active_crtc_count > 0) &&
(rdev->pm.power_state[rdev->pm.requested_power_state_index].
clock_info[rdev->pm.requested_clock_mode_index].flags &
RADEON_PM_MODE_NO_DISPLAY)) {
rdev->pm.requested_power_state_index++;
}
break;
case DYNPM_ACTION_UPCLOCK:
if (rdev->pm.current_power_state_index == (rdev->pm.num_power_states - 1)) {
rdev->pm.requested_power_state_index = rdev->pm.current_power_state_index;
rdev->pm.dynpm_can_upclock = false;
} else {
if (rdev->pm.active_crtc_count > 1) {
for (i = (rdev->pm.num_power_states - 1); i >= 0; i--) {
if (rdev->pm.power_state[i].flags & RADEON_PM_STATE_SINGLE_DISPLAY_ONLY)
continue;
else if (i <= rdev->pm.current_power_state_index) {
rdev->pm.requested_power_state_index =
rdev->pm.current_power_state_index;
break;
} else {
rdev->pm.requested_power_state_index = i;
break;
}
}
} else
rdev->pm.requested_power_state_index =
rdev->pm.current_power_state_index + 1;
}
rdev->pm.requested_clock_mode_index = 0;
break;
case DYNPM_ACTION_DEFAULT:
rdev->pm.requested_power_state_index = rdev->pm.default_power_state_index;
rdev->pm.requested_clock_mode_index = 0;
rdev->pm.dynpm_can_upclock = false;
break;
case DYNPM_ACTION_NONE:
default:
DRM_ERROR("Requested mode for not defined action\n");
return;
}
} else {
/* XXX select a power state based on AC/DC, single/dualhead, etc. */
/* for now just select the first power state and switch between clock modes */
/* power state array is low to high, default is first (0) */
if (rdev->pm.active_crtc_count > 1) {
rdev->pm.requested_power_state_index = -1;
/* start at 1 as we don't want the default mode */
for (i = 1; i < rdev->pm.num_power_states; i++) {
if (rdev->pm.power_state[i].flags & RADEON_PM_STATE_SINGLE_DISPLAY_ONLY)
continue;
else if ((rdev->pm.power_state[i].type == POWER_STATE_TYPE_PERFORMANCE) ||
(rdev->pm.power_state[i].type == POWER_STATE_TYPE_BATTERY)) {
rdev->pm.requested_power_state_index = i;
break;
}
}
/* if nothing selected, grab the default state. */
if (rdev->pm.requested_power_state_index == -1)
rdev->pm.requested_power_state_index = 0;
} else
rdev->pm.requested_power_state_index = 1;
switch (rdev->pm.dynpm_planned_action) {
case DYNPM_ACTION_MINIMUM:
rdev->pm.requested_clock_mode_index = 0;
rdev->pm.dynpm_can_downclock = false;
break;
case DYNPM_ACTION_DOWNCLOCK:
if (rdev->pm.requested_power_state_index == rdev->pm.current_power_state_index) {
if (rdev->pm.current_clock_mode_index == 0) {
rdev->pm.requested_clock_mode_index = 0;
rdev->pm.dynpm_can_downclock = false;
} else
rdev->pm.requested_clock_mode_index =
rdev->pm.current_clock_mode_index - 1;
} else {
rdev->pm.requested_clock_mode_index = 0;
rdev->pm.dynpm_can_downclock = false;
}
/* don't use the power state if crtcs are active and no display flag is set */
if ((rdev->pm.active_crtc_count > 0) &&
(rdev->pm.power_state[rdev->pm.requested_power_state_index].
clock_info[rdev->pm.requested_clock_mode_index].flags &
RADEON_PM_MODE_NO_DISPLAY)) {
rdev->pm.requested_clock_mode_index++;
}
break;
case DYNPM_ACTION_UPCLOCK:
if (rdev->pm.requested_power_state_index == rdev->pm.current_power_state_index) {
if (rdev->pm.current_clock_mode_index ==
(rdev->pm.power_state[rdev->pm.requested_power_state_index].num_clock_modes - 1)) {
rdev->pm.requested_clock_mode_index = rdev->pm.current_clock_mode_index;
rdev->pm.dynpm_can_upclock = false;
} else
rdev->pm.requested_clock_mode_index =
rdev->pm.current_clock_mode_index + 1;
} else {
rdev->pm.requested_clock_mode_index =
rdev->pm.power_state[rdev->pm.requested_power_state_index].num_clock_modes - 1;
rdev->pm.dynpm_can_upclock = false;
}
break;
case DYNPM_ACTION_DEFAULT:
rdev->pm.requested_power_state_index = rdev->pm.default_power_state_index;
rdev->pm.requested_clock_mode_index = 0;
rdev->pm.dynpm_can_upclock = false;
break;
case DYNPM_ACTION_NONE:
default:
DRM_ERROR("Requested mode for not defined action\n");
return;
}
}
DRM_DEBUG_DRIVER("Requested: e: %d m: %d p: %d\n",
rdev->pm.power_state[rdev->pm.requested_power_state_index].
clock_info[rdev->pm.requested_clock_mode_index].sclk,
rdev->pm.power_state[rdev->pm.requested_power_state_index].
clock_info[rdev->pm.requested_clock_mode_index].mclk,
rdev->pm.power_state[rdev->pm.requested_power_state_index].
pcie_lanes);
}
void rs780_pm_init_profile(struct radeon_device *rdev)
{
if (rdev->pm.num_power_states == 2) {
/* default */
rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_off_ps_idx = rdev->pm.default_power_state_index;
rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_on_ps_idx = rdev->pm.default_power_state_index;
rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_on_cm_idx = 0;
/* low sh */
rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_off_ps_idx = 0;
rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_on_ps_idx = 0;
rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_on_cm_idx = 0;
/* mid sh */
rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_off_ps_idx = 0;
rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_on_ps_idx = 0;
rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_on_cm_idx = 0;
/* high sh */
rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_off_ps_idx = 0;
rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_on_ps_idx = 1;
rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_on_cm_idx = 0;
/* low mh */
rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_off_ps_idx = 0;
rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_on_ps_idx = 0;
rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_on_cm_idx = 0;
/* mid mh */
rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_off_ps_idx = 0;
rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_on_ps_idx = 0;
rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_on_cm_idx = 0;
/* high mh */
rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_off_ps_idx = 0;
rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_on_ps_idx = 1;
rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_on_cm_idx = 0;
} else if (rdev->pm.num_power_states == 3) {
/* default */
rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_off_ps_idx = rdev->pm.default_power_state_index;
rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_on_ps_idx = rdev->pm.default_power_state_index;
rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_on_cm_idx = 0;
/* low sh */
rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_off_ps_idx = 1;
rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_on_ps_idx = 1;
rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_on_cm_idx = 0;
/* mid sh */
rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_off_ps_idx = 1;
rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_on_ps_idx = 1;
rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_on_cm_idx = 0;
/* high sh */
rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_off_ps_idx = 1;
rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_on_ps_idx = 2;
rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_on_cm_idx = 0;
/* low mh */
rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_off_ps_idx = 1;
rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_on_ps_idx = 1;
rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_on_cm_idx = 0;
/* mid mh */
rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_off_ps_idx = 1;
rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_on_ps_idx = 1;
rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_on_cm_idx = 0;
/* high mh */
rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_off_ps_idx = 1;
rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_on_ps_idx = 2;
rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_on_cm_idx = 0;
} else {
/* default */
rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_off_ps_idx = rdev->pm.default_power_state_index;
rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_on_ps_idx = rdev->pm.default_power_state_index;
rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_on_cm_idx = 0;
/* low sh */
rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_off_ps_idx = 2;
rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_on_ps_idx = 2;
rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_on_cm_idx = 0;
/* mid sh */
rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_off_ps_idx = 2;
rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_on_ps_idx = 2;
rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_on_cm_idx = 0;
/* high sh */
rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_off_ps_idx = 2;
rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_on_ps_idx = 3;
rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_on_cm_idx = 0;
/* low mh */
rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_off_ps_idx = 2;
rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_on_ps_idx = 0;
rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_on_cm_idx = 0;
/* mid mh */
rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_off_ps_idx = 2;
rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_on_ps_idx = 0;
rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_on_cm_idx = 0;
/* high mh */
rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_off_ps_idx = 2;
rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_on_ps_idx = 3;
rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_on_cm_idx = 0;
}
}
void r600_pm_init_profile(struct radeon_device *rdev)
{
int idx;
if (rdev->family == CHIP_R600) {
/* XXX */
/* default */
rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_off_ps_idx = rdev->pm.default_power_state_index;
rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_on_ps_idx = rdev->pm.default_power_state_index;
rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_on_cm_idx = 0;
/* low sh */
rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_off_ps_idx = rdev->pm.default_power_state_index;
rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_on_ps_idx = rdev->pm.default_power_state_index;
rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_on_cm_idx = 0;
/* mid sh */
rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_off_ps_idx = rdev->pm.default_power_state_index;
rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_on_ps_idx = rdev->pm.default_power_state_index;
rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_on_cm_idx = 0;
/* high sh */
rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_off_ps_idx = rdev->pm.default_power_state_index;
rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_on_ps_idx = rdev->pm.default_power_state_index;
rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_on_cm_idx = 0;
/* low mh */
rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_off_ps_idx = rdev->pm.default_power_state_index;
rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_on_ps_idx = rdev->pm.default_power_state_index;
rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_on_cm_idx = 0;
/* mid mh */
rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_off_ps_idx = rdev->pm.default_power_state_index;
rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_on_ps_idx = rdev->pm.default_power_state_index;
rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_on_cm_idx = 0;
/* high mh */
rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_off_ps_idx = rdev->pm.default_power_state_index;
rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_on_ps_idx = rdev->pm.default_power_state_index;
rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_on_cm_idx = 0;
} else {
if (rdev->pm.num_power_states < 4) {
/* default */
rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_off_ps_idx = rdev->pm.default_power_state_index;
rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_on_ps_idx = rdev->pm.default_power_state_index;
rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_on_cm_idx = 2;
/* low sh */
rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_off_ps_idx = 1;
rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_on_ps_idx = 1;
rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_on_cm_idx = 0;
/* mid sh */
rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_off_ps_idx = 1;
rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_on_ps_idx = 1;
rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_on_cm_idx = 1;
/* high sh */
rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_off_ps_idx = 1;
rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_on_ps_idx = 1;
rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_on_cm_idx = 2;
/* low mh */
rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_off_ps_idx = 2;
rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_on_ps_idx = 2;
rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_on_cm_idx = 0;
/* low mh */
rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_off_ps_idx = 2;
rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_on_ps_idx = 2;
rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_on_cm_idx = 1;
/* high mh */
rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_off_ps_idx = 2;
rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_on_ps_idx = 2;
rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_on_cm_idx = 2;
} else {
/* default */
rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_off_ps_idx = rdev->pm.default_power_state_index;
rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_on_ps_idx = rdev->pm.default_power_state_index;
rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_on_cm_idx = 2;
/* low sh */
if (rdev->flags & RADEON_IS_MOBILITY)
idx = radeon_pm_get_type_index(rdev, POWER_STATE_TYPE_BATTERY, 0);
else
idx = radeon_pm_get_type_index(rdev, POWER_STATE_TYPE_PERFORMANCE, 0);
rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_off_ps_idx = idx;
rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_on_ps_idx = idx;
rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_on_cm_idx = 0;
/* mid sh */
rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_off_ps_idx = idx;
rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_on_ps_idx = idx;
rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_on_cm_idx = 1;
/* high sh */
idx = radeon_pm_get_type_index(rdev, POWER_STATE_TYPE_PERFORMANCE, 0);
rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_off_ps_idx = idx;
rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_on_ps_idx = idx;
rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_on_cm_idx = 2;
/* low mh */
if (rdev->flags & RADEON_IS_MOBILITY)
idx = radeon_pm_get_type_index(rdev, POWER_STATE_TYPE_BATTERY, 1);
else
idx = radeon_pm_get_type_index(rdev, POWER_STATE_TYPE_PERFORMANCE, 1);
rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_off_ps_idx = idx;
rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_on_ps_idx = idx;
rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_on_cm_idx = 0;
/* mid mh */
rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_off_ps_idx = idx;
rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_on_ps_idx = idx;
rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_on_cm_idx = 1;
/* high mh */
idx = radeon_pm_get_type_index(rdev, POWER_STATE_TYPE_PERFORMANCE, 1);
rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_off_ps_idx = idx;
rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_on_ps_idx = idx;
rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_on_cm_idx = 2;
}
}
}
void r600_pm_misc(struct radeon_device *rdev)
{
int req_ps_idx = rdev->pm.requested_power_state_index;
int req_cm_idx = rdev->pm.requested_clock_mode_index;
struct radeon_power_state *ps = &rdev->pm.power_state[req_ps_idx];
struct radeon_voltage *voltage = &ps->clock_info[req_cm_idx].voltage;
if ((voltage->type == VOLTAGE_SW) && voltage->voltage) {
/* 0xff01 is a flag rather then an actual voltage */
if (voltage->voltage == 0xff01)
return;
if (voltage->voltage != rdev->pm.current_vddc) {
radeon_atom_set_voltage(rdev, voltage->voltage, SET_VOLTAGE_TYPE_ASIC_VDDC);
rdev->pm.current_vddc = voltage->voltage;
DRM_DEBUG_DRIVER("Setting: v: %d\n", voltage->voltage);
}
}
}
bool r600_gui_idle(struct radeon_device *rdev)
{
if (RREG32(GRBM_STATUS) & GUI_ACTIVE)
return false;
else
return true;
}
/* hpd for digital panel detect/disconnect */
bool r600_hpd_sense(struct radeon_device *rdev, enum radeon_hpd_id hpd)
{
bool connected = false;
if (ASIC_IS_DCE3(rdev)) {
switch (hpd) {
case RADEON_HPD_1:
if (RREG32(DC_HPD1_INT_STATUS) & DC_HPDx_SENSE)
connected = true;
break;
case RADEON_HPD_2:
if (RREG32(DC_HPD2_INT_STATUS) & DC_HPDx_SENSE)
connected = true;
break;
case RADEON_HPD_3:
if (RREG32(DC_HPD3_INT_STATUS) & DC_HPDx_SENSE)
connected = true;
break;
case RADEON_HPD_4:
if (RREG32(DC_HPD4_INT_STATUS) & DC_HPDx_SENSE)
connected = true;
break;
/* DCE 3.2 */
case RADEON_HPD_5:
if (RREG32(DC_HPD5_INT_STATUS) & DC_HPDx_SENSE)
connected = true;
break;
case RADEON_HPD_6:
if (RREG32(DC_HPD6_INT_STATUS) & DC_HPDx_SENSE)
connected = true;
break;
default:
break;
}
} else {
switch (hpd) {
case RADEON_HPD_1:
if (RREG32(DC_HOT_PLUG_DETECT1_INT_STATUS) & DC_HOT_PLUG_DETECTx_SENSE)
connected = true;
break;
case RADEON_HPD_2:
if (RREG32(DC_HOT_PLUG_DETECT2_INT_STATUS) & DC_HOT_PLUG_DETECTx_SENSE)
connected = true;
break;
case RADEON_HPD_3:
if (RREG32(DC_HOT_PLUG_DETECT3_INT_STATUS) & DC_HOT_PLUG_DETECTx_SENSE)
connected = true;
break;
default:
break;
}
}
return connected;
}
void r600_hpd_set_polarity(struct radeon_device *rdev,
enum radeon_hpd_id hpd)
{
u32 tmp;
bool connected = r600_hpd_sense(rdev, hpd);
if (ASIC_IS_DCE3(rdev)) {
switch (hpd) {
case RADEON_HPD_1:
tmp = RREG32(DC_HPD1_INT_CONTROL);
if (connected)
tmp &= ~DC_HPDx_INT_POLARITY;
else
tmp |= DC_HPDx_INT_POLARITY;
WREG32(DC_HPD1_INT_CONTROL, tmp);
break;
case RADEON_HPD_2:
tmp = RREG32(DC_HPD2_INT_CONTROL);
if (connected)
tmp &= ~DC_HPDx_INT_POLARITY;
else
tmp |= DC_HPDx_INT_POLARITY;
WREG32(DC_HPD2_INT_CONTROL, tmp);
break;
case RADEON_HPD_3:
tmp = RREG32(DC_HPD3_INT_CONTROL);
if (connected)
tmp &= ~DC_HPDx_INT_POLARITY;
else
tmp |= DC_HPDx_INT_POLARITY;
WREG32(DC_HPD3_INT_CONTROL, tmp);
break;
case RADEON_HPD_4:
tmp = RREG32(DC_HPD4_INT_CONTROL);
if (connected)
tmp &= ~DC_HPDx_INT_POLARITY;
else
tmp |= DC_HPDx_INT_POLARITY;
WREG32(DC_HPD4_INT_CONTROL, tmp);
break;
case RADEON_HPD_5:
tmp = RREG32(DC_HPD5_INT_CONTROL);
if (connected)
tmp &= ~DC_HPDx_INT_POLARITY;
else
tmp |= DC_HPDx_INT_POLARITY;
WREG32(DC_HPD5_INT_CONTROL, tmp);
break;
/* DCE 3.2 */
case RADEON_HPD_6:
tmp = RREG32(DC_HPD6_INT_CONTROL);
if (connected)
tmp &= ~DC_HPDx_INT_POLARITY;
else
tmp |= DC_HPDx_INT_POLARITY;
WREG32(DC_HPD6_INT_CONTROL, tmp);
break;
default:
break;
}
} else {
switch (hpd) {
case RADEON_HPD_1:
tmp = RREG32(DC_HOT_PLUG_DETECT1_INT_CONTROL);
if (connected)
tmp &= ~DC_HOT_PLUG_DETECTx_INT_POLARITY;
else
tmp |= DC_HOT_PLUG_DETECTx_INT_POLARITY;
WREG32(DC_HOT_PLUG_DETECT1_INT_CONTROL, tmp);
break;
case RADEON_HPD_2:
tmp = RREG32(DC_HOT_PLUG_DETECT2_INT_CONTROL);
if (connected)
tmp &= ~DC_HOT_PLUG_DETECTx_INT_POLARITY;
else
tmp |= DC_HOT_PLUG_DETECTx_INT_POLARITY;
WREG32(DC_HOT_PLUG_DETECT2_INT_CONTROL, tmp);
break;
case RADEON_HPD_3:
tmp = RREG32(DC_HOT_PLUG_DETECT3_INT_CONTROL);
if (connected)
tmp &= ~DC_HOT_PLUG_DETECTx_INT_POLARITY;
else
tmp |= DC_HOT_PLUG_DETECTx_INT_POLARITY;
WREG32(DC_HOT_PLUG_DETECT3_INT_CONTROL, tmp);
break;
default:
break;
}
}
}
void r600_hpd_init(struct radeon_device *rdev)
{
struct drm_device *dev = rdev->ddev;
struct drm_connector *connector;
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
struct radeon_connector *radeon_connector = to_radeon_connector(connector);
if (ASIC_IS_DCE3(rdev)) {
u32 tmp = DC_HPDx_CONNECTION_TIMER(0x9c4) | DC_HPDx_RX_INT_TIMER(0xfa);
if (ASIC_IS_DCE32(rdev))
tmp |= DC_HPDx_EN;
switch (radeon_connector->hpd.hpd) {
case RADEON_HPD_1:
WREG32(DC_HPD1_CONTROL, tmp);
rdev->irq.hpd[0] = true;
break;
case RADEON_HPD_2:
WREG32(DC_HPD2_CONTROL, tmp);
rdev->irq.hpd[1] = true;
break;
case RADEON_HPD_3:
WREG32(DC_HPD3_CONTROL, tmp);
rdev->irq.hpd[2] = true;
break;
case RADEON_HPD_4:
WREG32(DC_HPD4_CONTROL, tmp);
rdev->irq.hpd[3] = true;
break;
/* DCE 3.2 */
case RADEON_HPD_5:
WREG32(DC_HPD5_CONTROL, tmp);
rdev->irq.hpd[4] = true;
break;
case RADEON_HPD_6:
WREG32(DC_HPD6_CONTROL, tmp);
rdev->irq.hpd[5] = true;
break;
default:
break;
}
} else {
switch (radeon_connector->hpd.hpd) {
case RADEON_HPD_1:
WREG32(DC_HOT_PLUG_DETECT1_CONTROL, DC_HOT_PLUG_DETECTx_EN);
rdev->irq.hpd[0] = true;
break;
case RADEON_HPD_2:
WREG32(DC_HOT_PLUG_DETECT2_CONTROL, DC_HOT_PLUG_DETECTx_EN);
rdev->irq.hpd[1] = true;
break;
case RADEON_HPD_3:
WREG32(DC_HOT_PLUG_DETECT3_CONTROL, DC_HOT_PLUG_DETECTx_EN);
rdev->irq.hpd[2] = true;
break;
default:
break;
}
}
radeon_hpd_set_polarity(rdev, radeon_connector->hpd.hpd);
}
if (rdev->irq.installed)
r600_irq_set(rdev);
}
void r600_hpd_fini(struct radeon_device *rdev)
{
struct drm_device *dev = rdev->ddev;
struct drm_connector *connector;
if (ASIC_IS_DCE3(rdev)) {
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
struct radeon_connector *radeon_connector = to_radeon_connector(connector);
switch (radeon_connector->hpd.hpd) {
case RADEON_HPD_1:
WREG32(DC_HPD1_CONTROL, 0);
rdev->irq.hpd[0] = false;
break;
case RADEON_HPD_2:
WREG32(DC_HPD2_CONTROL, 0);
rdev->irq.hpd[1] = false;
break;
case RADEON_HPD_3:
WREG32(DC_HPD3_CONTROL, 0);
rdev->irq.hpd[2] = false;
break;
case RADEON_HPD_4:
WREG32(DC_HPD4_CONTROL, 0);
rdev->irq.hpd[3] = false;
break;
/* DCE 3.2 */
case RADEON_HPD_5:
WREG32(DC_HPD5_CONTROL, 0);
rdev->irq.hpd[4] = false;
break;
case RADEON_HPD_6:
WREG32(DC_HPD6_CONTROL, 0);
rdev->irq.hpd[5] = false;
break;
default:
break;
}
}
} else {
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
struct radeon_connector *radeon_connector = to_radeon_connector(connector);
switch (radeon_connector->hpd.hpd) {
case RADEON_HPD_1:
WREG32(DC_HOT_PLUG_DETECT1_CONTROL, 0);
rdev->irq.hpd[0] = false;
break;
case RADEON_HPD_2:
WREG32(DC_HOT_PLUG_DETECT2_CONTROL, 0);
rdev->irq.hpd[1] = false;
break;
case RADEON_HPD_3:
WREG32(DC_HOT_PLUG_DETECT3_CONTROL, 0);
rdev->irq.hpd[2] = false;
break;
default:
break;
}
}
}
}
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
/*
* R600 PCIE GART
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
*/
void r600_pcie_gart_tlb_flush(struct radeon_device *rdev)
{
unsigned i;
u32 tmp;
/* flush hdp cache so updates hit vram */
if ((rdev->family >= CHIP_RV770) && (rdev->family <= CHIP_RV740) &&
!(rdev->flags & RADEON_IS_AGP)) {
void __iomem *ptr = (void *)rdev->gart.ptr;
u32 tmp;
/* r7xx hw bug. write to HDP_DEBUG1 followed by fb read
* rather than write to HDP_REG_COHERENCY_FLUSH_CNTL
* This seems to cause problems on some AGP cards. Just use the old
* method for them.
*/
WREG32(HDP_DEBUG1, 0);
tmp = readl((void __iomem *)ptr);
} else
WREG32(R_005480_HDP_MEM_COHERENCY_FLUSH_CNTL, 0x1);
WREG32(VM_CONTEXT0_INVALIDATION_LOW_ADDR, rdev->mc.gtt_start >> 12);
WREG32(VM_CONTEXT0_INVALIDATION_HIGH_ADDR, (rdev->mc.gtt_end - 1) >> 12);
WREG32(VM_CONTEXT0_REQUEST_RESPONSE, REQUEST_TYPE(1));
for (i = 0; i < rdev->usec_timeout; i++) {
/* read MC_STATUS */
tmp = RREG32(VM_CONTEXT0_REQUEST_RESPONSE);
tmp = (tmp & RESPONSE_TYPE_MASK) >> RESPONSE_TYPE_SHIFT;
if (tmp == 2) {
printk(KERN_WARNING "[drm] r600 flush TLB failed\n");
return;
}
if (tmp) {
return;
}
udelay(1);
}
}
int r600_pcie_gart_init(struct radeon_device *rdev)
{
int r;
if (rdev->gart.robj) {
WARN(1, "R600 PCIE GART already initialized\n");
return 0;
}
/* Initialize common gart structure */
r = radeon_gart_init(rdev);
if (r)
return r;
rdev->gart.table_size = rdev->gart.num_gpu_pages * 8;
return radeon_gart_table_vram_alloc(rdev);
}
int r600_pcie_gart_enable(struct radeon_device *rdev)
{
u32 tmp;
int r, i;
if (rdev->gart.robj == NULL) {
dev_err(rdev->dev, "No VRAM object for PCIE GART.\n");
return -EINVAL;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
}
r = radeon_gart_table_vram_pin(rdev);
if (r)
return r;
radeon_gart_restore(rdev);
/* Setup L2 cache */
WREG32(VM_L2_CNTL, ENABLE_L2_CACHE | ENABLE_L2_FRAGMENT_PROCESSING |
ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE |
EFFECTIVE_L2_QUEUE_SIZE(7));
WREG32(VM_L2_CNTL2, 0);
WREG32(VM_L2_CNTL3, BANK_SELECT_0(0) | BANK_SELECT_1(1));
/* Setup TLB control */
tmp = ENABLE_L1_TLB | ENABLE_L1_FRAGMENT_PROCESSING |
SYSTEM_ACCESS_MODE_NOT_IN_SYS |
EFFECTIVE_L1_TLB_SIZE(5) | EFFECTIVE_L1_QUEUE_SIZE(5) |
ENABLE_WAIT_L2_QUERY;
WREG32(MC_VM_L1_TLB_MCB_RD_SYS_CNTL, tmp);
WREG32(MC_VM_L1_TLB_MCB_WR_SYS_CNTL, tmp);
WREG32(MC_VM_L1_TLB_MCB_RD_HDP_CNTL, tmp | ENABLE_L1_STRICT_ORDERING);
WREG32(MC_VM_L1_TLB_MCB_WR_HDP_CNTL, tmp);
WREG32(MC_VM_L1_TLB_MCD_RD_A_CNTL, tmp);
WREG32(MC_VM_L1_TLB_MCD_WR_A_CNTL, tmp);
WREG32(MC_VM_L1_TLB_MCD_RD_B_CNTL, tmp);
WREG32(MC_VM_L1_TLB_MCD_WR_B_CNTL, tmp);
WREG32(MC_VM_L1_TLB_MCB_RD_GFX_CNTL, tmp);
WREG32(MC_VM_L1_TLB_MCB_WR_GFX_CNTL, tmp);
WREG32(MC_VM_L1_TLB_MCB_RD_PDMA_CNTL, tmp);
WREG32(MC_VM_L1_TLB_MCB_WR_PDMA_CNTL, tmp);
WREG32(MC_VM_L1_TLB_MCB_RD_SEM_CNTL, tmp | ENABLE_SEMAPHORE_MODE);
WREG32(MC_VM_L1_TLB_MCB_WR_SEM_CNTL, tmp | ENABLE_SEMAPHORE_MODE);
WREG32(VM_CONTEXT0_PAGE_TABLE_START_ADDR, rdev->mc.gtt_start >> 12);
WREG32(VM_CONTEXT0_PAGE_TABLE_END_ADDR, rdev->mc.gtt_end >> 12);
WREG32(VM_CONTEXT0_PAGE_TABLE_BASE_ADDR, rdev->gart.table_addr >> 12);
WREG32(VM_CONTEXT0_CNTL, ENABLE_CONTEXT | PAGE_TABLE_DEPTH(0) |
RANGE_PROTECTION_FAULT_ENABLE_DEFAULT);
WREG32(VM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR,
(u32)(rdev->dummy_page.addr >> 12));
for (i = 1; i < 7; i++)
WREG32(VM_CONTEXT0_CNTL + (i * 4), 0);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
r600_pcie_gart_tlb_flush(rdev);
DRM_INFO("PCIE GART of %uM enabled (table at 0x%016llX).\n",
(unsigned)(rdev->mc.gtt_size >> 20),
(unsigned long long)rdev->gart.table_addr);
rdev->gart.ready = true;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
return 0;
}
void r600_pcie_gart_disable(struct radeon_device *rdev)
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
{
u32 tmp;
int i;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
/* Disable all tables */
for (i = 0; i < 7; i++)
WREG32(VM_CONTEXT0_CNTL + (i * 4), 0);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
/* Disable L2 cache */
WREG32(VM_L2_CNTL, ENABLE_L2_FRAGMENT_PROCESSING |
EFFECTIVE_L2_QUEUE_SIZE(7));
WREG32(VM_L2_CNTL3, BANK_SELECT_0(0) | BANK_SELECT_1(1));
/* Setup L1 TLB control */
tmp = EFFECTIVE_L1_TLB_SIZE(5) | EFFECTIVE_L1_QUEUE_SIZE(5) |
ENABLE_WAIT_L2_QUERY;
WREG32(MC_VM_L1_TLB_MCD_RD_A_CNTL, tmp);
WREG32(MC_VM_L1_TLB_MCD_WR_A_CNTL, tmp);
WREG32(MC_VM_L1_TLB_MCD_RD_B_CNTL, tmp);
WREG32(MC_VM_L1_TLB_MCD_WR_B_CNTL, tmp);
WREG32(MC_VM_L1_TLB_MCB_RD_GFX_CNTL, tmp);
WREG32(MC_VM_L1_TLB_MCB_WR_GFX_CNTL, tmp);
WREG32(MC_VM_L1_TLB_MCB_RD_PDMA_CNTL, tmp);
WREG32(MC_VM_L1_TLB_MCB_WR_PDMA_CNTL, tmp);
WREG32(MC_VM_L1_TLB_MCB_RD_SEM_CNTL, tmp);
WREG32(MC_VM_L1_TLB_MCB_WR_SEM_CNTL, tmp);
WREG32(MC_VM_L1_TLB_MCB_RD_SYS_CNTL, tmp);
WREG32(MC_VM_L1_TLB_MCB_WR_SYS_CNTL, tmp);
WREG32(MC_VM_L1_TLB_MCB_RD_HDP_CNTL, tmp);
WREG32(MC_VM_L1_TLB_MCB_WR_HDP_CNTL, tmp);
radeon_gart_table_vram_unpin(rdev);
}
void r600_pcie_gart_fini(struct radeon_device *rdev)
{
radeon_gart_fini(rdev);
r600_pcie_gart_disable(rdev);
radeon_gart_table_vram_free(rdev);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
}
void r600_agp_enable(struct radeon_device *rdev)
{
u32 tmp;
int i;
/* Setup L2 cache */
WREG32(VM_L2_CNTL, ENABLE_L2_CACHE | ENABLE_L2_FRAGMENT_PROCESSING |
ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE |
EFFECTIVE_L2_QUEUE_SIZE(7));
WREG32(VM_L2_CNTL2, 0);
WREG32(VM_L2_CNTL3, BANK_SELECT_0(0) | BANK_SELECT_1(1));
/* Setup TLB control */
tmp = ENABLE_L1_TLB | ENABLE_L1_FRAGMENT_PROCESSING |
SYSTEM_ACCESS_MODE_NOT_IN_SYS |
EFFECTIVE_L1_TLB_SIZE(5) | EFFECTIVE_L1_QUEUE_SIZE(5) |
ENABLE_WAIT_L2_QUERY;
WREG32(MC_VM_L1_TLB_MCB_RD_SYS_CNTL, tmp);
WREG32(MC_VM_L1_TLB_MCB_WR_SYS_CNTL, tmp);
WREG32(MC_VM_L1_TLB_MCB_RD_HDP_CNTL, tmp | ENABLE_L1_STRICT_ORDERING);
WREG32(MC_VM_L1_TLB_MCB_WR_HDP_CNTL, tmp);
WREG32(MC_VM_L1_TLB_MCD_RD_A_CNTL, tmp);
WREG32(MC_VM_L1_TLB_MCD_WR_A_CNTL, tmp);
WREG32(MC_VM_L1_TLB_MCD_RD_B_CNTL, tmp);
WREG32(MC_VM_L1_TLB_MCD_WR_B_CNTL, tmp);
WREG32(MC_VM_L1_TLB_MCB_RD_GFX_CNTL, tmp);
WREG32(MC_VM_L1_TLB_MCB_WR_GFX_CNTL, tmp);
WREG32(MC_VM_L1_TLB_MCB_RD_PDMA_CNTL, tmp);
WREG32(MC_VM_L1_TLB_MCB_WR_PDMA_CNTL, tmp);
WREG32(MC_VM_L1_TLB_MCB_RD_SEM_CNTL, tmp | ENABLE_SEMAPHORE_MODE);
WREG32(MC_VM_L1_TLB_MCB_WR_SEM_CNTL, tmp | ENABLE_SEMAPHORE_MODE);
for (i = 0; i < 7; i++)
WREG32(VM_CONTEXT0_CNTL + (i * 4), 0);
}
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
int r600_mc_wait_for_idle(struct radeon_device *rdev)
{
unsigned i;
u32 tmp;
for (i = 0; i < rdev->usec_timeout; i++) {
/* read MC_STATUS */
tmp = RREG32(R_000E50_SRBM_STATUS) & 0x3F00;
if (!tmp)
return 0;
udelay(1);
}
return -1;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
}
static void r600_mc_program(struct radeon_device *rdev)
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
{
struct rv515_mc_save save;
u32 tmp;
int i, j;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
/* Initialize HDP */
for (i = 0, j = 0; i < 32; i++, j += 0x18) {
WREG32((0x2c14 + j), 0x00000000);
WREG32((0x2c18 + j), 0x00000000);
WREG32((0x2c1c + j), 0x00000000);
WREG32((0x2c20 + j), 0x00000000);
WREG32((0x2c24 + j), 0x00000000);
}
WREG32(HDP_REG_COHERENCY_FLUSH_CNTL, 0);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
rv515_mc_stop(rdev, &save);
if (r600_mc_wait_for_idle(rdev)) {
dev_warn(rdev->dev, "Wait for MC idle timedout !\n");
}
/* Lockout access through VGA aperture (doesn't exist before R600) */
WREG32(VGA_HDP_CONTROL, VGA_MEMORY_DISABLE);
/* Update configuration */
if (rdev->flags & RADEON_IS_AGP) {
if (rdev->mc.vram_start < rdev->mc.gtt_start) {
/* VRAM before AGP */
WREG32(MC_VM_SYSTEM_APERTURE_LOW_ADDR,
rdev->mc.vram_start >> 12);
WREG32(MC_VM_SYSTEM_APERTURE_HIGH_ADDR,
rdev->mc.gtt_end >> 12);
} else {
/* VRAM after AGP */
WREG32(MC_VM_SYSTEM_APERTURE_LOW_ADDR,
rdev->mc.gtt_start >> 12);
WREG32(MC_VM_SYSTEM_APERTURE_HIGH_ADDR,
rdev->mc.vram_end >> 12);
}
} else {
WREG32(MC_VM_SYSTEM_APERTURE_LOW_ADDR, rdev->mc.vram_start >> 12);
WREG32(MC_VM_SYSTEM_APERTURE_HIGH_ADDR, rdev->mc.vram_end >> 12);
}
WREG32(MC_VM_SYSTEM_APERTURE_DEFAULT_ADDR, rdev->vram_scratch.gpu_addr >> 12);
tmp = ((rdev->mc.vram_end >> 24) & 0xFFFF) << 16;
tmp |= ((rdev->mc.vram_start >> 24) & 0xFFFF);
WREG32(MC_VM_FB_LOCATION, tmp);
WREG32(HDP_NONSURFACE_BASE, (rdev->mc.vram_start >> 8));
WREG32(HDP_NONSURFACE_INFO, (2 << 7));
WREG32(HDP_NONSURFACE_SIZE, 0x3FFFFFFF);
if (rdev->flags & RADEON_IS_AGP) {
WREG32(MC_VM_AGP_TOP, rdev->mc.gtt_end >> 22);
WREG32(MC_VM_AGP_BOT, rdev->mc.gtt_start >> 22);
WREG32(MC_VM_AGP_BASE, rdev->mc.agp_base >> 22);
} else {
WREG32(MC_VM_AGP_BASE, 0);
WREG32(MC_VM_AGP_TOP, 0x0FFFFFFF);
WREG32(MC_VM_AGP_BOT, 0x0FFFFFFF);
}
if (r600_mc_wait_for_idle(rdev)) {
dev_warn(rdev->dev, "Wait for MC idle timedout !\n");
}
rv515_mc_resume(rdev, &save);
/* we need to own VRAM, so turn off the VGA renderer here
* to stop it overwriting our objects */
rv515_vga_render_disable(rdev);
}
/**
* r600_vram_gtt_location - try to find VRAM & GTT location
* @rdev: radeon device structure holding all necessary informations
* @mc: memory controller structure holding memory informations
*
* Function will place try to place VRAM at same place as in CPU (PCI)
* address space as some GPU seems to have issue when we reprogram at
* different address space.
*
* If there is not enough space to fit the unvisible VRAM after the
* aperture then we limit the VRAM size to the aperture.
*
* If we are using AGP then place VRAM adjacent to AGP aperture are we need
* them to be in one from GPU point of view so that we can program GPU to
* catch access outside them (weird GPU policy see ??).
*
* This function will never fails, worst case are limiting VRAM or GTT.
*
* Note: GTT start, end, size should be initialized before calling this
* function on AGP platform.
*/
static void r600_vram_gtt_location(struct radeon_device *rdev, struct radeon_mc *mc)
{
u64 size_bf, size_af;
if (mc->mc_vram_size > 0xE0000000) {
/* leave room for at least 512M GTT */
dev_warn(rdev->dev, "limiting VRAM\n");
mc->real_vram_size = 0xE0000000;
mc->mc_vram_size = 0xE0000000;
}
if (rdev->flags & RADEON_IS_AGP) {
size_bf = mc->gtt_start;
size_af = 0xFFFFFFFF - mc->gtt_end + 1;
if (size_bf > size_af) {
if (mc->mc_vram_size > size_bf) {
dev_warn(rdev->dev, "limiting VRAM\n");
mc->real_vram_size = size_bf;
mc->mc_vram_size = size_bf;
}
mc->vram_start = mc->gtt_start - mc->mc_vram_size;
} else {
if (mc->mc_vram_size > size_af) {
dev_warn(rdev->dev, "limiting VRAM\n");
mc->real_vram_size = size_af;
mc->mc_vram_size = size_af;
}
mc->vram_start = mc->gtt_end;
}
mc->vram_end = mc->vram_start + mc->mc_vram_size - 1;
dev_info(rdev->dev, "VRAM: %lluM 0x%08llX - 0x%08llX (%lluM used)\n",
mc->mc_vram_size >> 20, mc->vram_start,
mc->vram_end, mc->real_vram_size >> 20);
} else {
u64 base = 0;
if (rdev->flags & RADEON_IS_IGP) {
base = RREG32(MC_VM_FB_LOCATION) & 0xFFFF;
base <<= 24;
}
radeon_vram_location(rdev, &rdev->mc, base);
rdev->mc.gtt_base_align = 0;
radeon_gtt_location(rdev, mc);
}
}
int r600_mc_init(struct radeon_device *rdev)
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
{
u32 tmp;
int chansize, numchan;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
/* Get VRAM informations */
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
rdev->mc.vram_is_ddr = true;
tmp = RREG32(RAMCFG);
if (tmp & CHANSIZE_OVERRIDE) {
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
chansize = 16;
} else if (tmp & CHANSIZE_MASK) {
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
chansize = 64;
} else {
chansize = 32;
}
tmp = RREG32(CHMAP);
switch ((tmp & NOOFCHAN_MASK) >> NOOFCHAN_SHIFT) {
case 0:
default:
numchan = 1;
break;
case 1:
numchan = 2;
break;
case 2:
numchan = 4;
break;
case 3:
numchan = 8;
break;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
}
rdev->mc.vram_width = numchan * chansize;
/* Could aper size report 0 ? */
rdev->mc.aper_base = pci_resource_start(rdev->pdev, 0);
rdev->mc.aper_size = pci_resource_len(rdev->pdev, 0);
/* Setup GPU memory space */
rdev->mc.mc_vram_size = RREG32(CONFIG_MEMSIZE);
rdev->mc.real_vram_size = RREG32(CONFIG_MEMSIZE);
rdev->mc.visible_vram_size = rdev->mc.aper_size;
r600_vram_gtt_location(rdev, &rdev->mc);
if (rdev->flags & RADEON_IS_IGP) {
rs690_pm_info(rdev);
rdev->mc.igp_sideport_enabled = radeon_atombios_sideport_present(rdev);
}
radeon_update_bandwidth_info(rdev);
return 0;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
}
int r600_vram_scratch_init(struct radeon_device *rdev)
{
int r;
if (rdev->vram_scratch.robj == NULL) {
r = radeon_bo_create(rdev, RADEON_GPU_PAGE_SIZE,
PAGE_SIZE, true, RADEON_GEM_DOMAIN_VRAM,
&rdev->vram_scratch.robj);
if (r) {
return r;
}
}
r = radeon_bo_reserve(rdev->vram_scratch.robj, false);
if (unlikely(r != 0))
return r;
r = radeon_bo_pin(rdev->vram_scratch.robj,
RADEON_GEM_DOMAIN_VRAM, &rdev->vram_scratch.gpu_addr);
if (r) {
radeon_bo_unreserve(rdev->vram_scratch.robj);
return r;
}
r = radeon_bo_kmap(rdev->vram_scratch.robj,
(void **)&rdev->vram_scratch.ptr);
if (r)
radeon_bo_unpin(rdev->vram_scratch.robj);
radeon_bo_unreserve(rdev->vram_scratch.robj);
return r;
}
void r600_vram_scratch_fini(struct radeon_device *rdev)
{
int r;
if (rdev->vram_scratch.robj == NULL) {
return;
}
r = radeon_bo_reserve(rdev->vram_scratch.robj, false);
if (likely(r == 0)) {
radeon_bo_kunmap(rdev->vram_scratch.robj);
radeon_bo_unpin(rdev->vram_scratch.robj);
radeon_bo_unreserve(rdev->vram_scratch.robj);
}
radeon_bo_unref(&rdev->vram_scratch.robj);
}
/* We doesn't check that the GPU really needs a reset we simply do the
* reset, it's up to the caller to determine if the GPU needs one. We
* might add an helper function to check that.
*/
int r600_gpu_soft_reset(struct radeon_device *rdev)
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
{
struct rv515_mc_save save;
u32 grbm_busy_mask = S_008010_VC_BUSY(1) | S_008010_VGT_BUSY_NO_DMA(1) |
S_008010_VGT_BUSY(1) | S_008010_TA03_BUSY(1) |
S_008010_TC_BUSY(1) | S_008010_SX_BUSY(1) |
S_008010_SH_BUSY(1) | S_008010_SPI03_BUSY(1) |
S_008010_SMX_BUSY(1) | S_008010_SC_BUSY(1) |
S_008010_PA_BUSY(1) | S_008010_DB03_BUSY(1) |
S_008010_CR_BUSY(1) | S_008010_CB03_BUSY(1) |
S_008010_GUI_ACTIVE(1);
u32 grbm2_busy_mask = S_008014_SPI0_BUSY(1) | S_008014_SPI1_BUSY(1) |
S_008014_SPI2_BUSY(1) | S_008014_SPI3_BUSY(1) |
S_008014_TA0_BUSY(1) | S_008014_TA1_BUSY(1) |
S_008014_TA2_BUSY(1) | S_008014_TA3_BUSY(1) |
S_008014_DB0_BUSY(1) | S_008014_DB1_BUSY(1) |
S_008014_DB2_BUSY(1) | S_008014_DB3_BUSY(1) |
S_008014_CB0_BUSY(1) | S_008014_CB1_BUSY(1) |
S_008014_CB2_BUSY(1) | S_008014_CB3_BUSY(1);
u32 tmp;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
if (!(RREG32(GRBM_STATUS) & GUI_ACTIVE))
return 0;
dev_info(rdev->dev, "GPU softreset \n");
dev_info(rdev->dev, " R_008010_GRBM_STATUS=0x%08X\n",
RREG32(R_008010_GRBM_STATUS));
dev_info(rdev->dev, " R_008014_GRBM_STATUS2=0x%08X\n",
RREG32(R_008014_GRBM_STATUS2));
dev_info(rdev->dev, " R_000E50_SRBM_STATUS=0x%08X\n",
RREG32(R_000E50_SRBM_STATUS));
rv515_mc_stop(rdev, &save);
if (r600_mc_wait_for_idle(rdev)) {
dev_warn(rdev->dev, "Wait for MC idle timedout !\n");
}
/* Disable CP parsing/prefetching */
WREG32(R_0086D8_CP_ME_CNTL, S_0086D8_CP_ME_HALT(1));
/* Check if any of the rendering block is busy and reset it */
if ((RREG32(R_008010_GRBM_STATUS) & grbm_busy_mask) ||
(RREG32(R_008014_GRBM_STATUS2) & grbm2_busy_mask)) {
tmp = S_008020_SOFT_RESET_CR(1) |
S_008020_SOFT_RESET_DB(1) |
S_008020_SOFT_RESET_CB(1) |
S_008020_SOFT_RESET_PA(1) |
S_008020_SOFT_RESET_SC(1) |
S_008020_SOFT_RESET_SMX(1) |
S_008020_SOFT_RESET_SPI(1) |
S_008020_SOFT_RESET_SX(1) |
S_008020_SOFT_RESET_SH(1) |
S_008020_SOFT_RESET_TC(1) |
S_008020_SOFT_RESET_TA(1) |
S_008020_SOFT_RESET_VC(1) |
S_008020_SOFT_RESET_VGT(1);
dev_info(rdev->dev, " R_008020_GRBM_SOFT_RESET=0x%08X\n", tmp);
WREG32(R_008020_GRBM_SOFT_RESET, tmp);
RREG32(R_008020_GRBM_SOFT_RESET);
mdelay(15);
WREG32(R_008020_GRBM_SOFT_RESET, 0);
}
/* Reset CP (we always reset CP) */
tmp = S_008020_SOFT_RESET_CP(1);
dev_info(rdev->dev, "R_008020_GRBM_SOFT_RESET=0x%08X\n", tmp);
WREG32(R_008020_GRBM_SOFT_RESET, tmp);
RREG32(R_008020_GRBM_SOFT_RESET);
mdelay(15);
WREG32(R_008020_GRBM_SOFT_RESET, 0);
/* Wait a little for things to settle down */
mdelay(1);
dev_info(rdev->dev, " R_008010_GRBM_STATUS=0x%08X\n",
RREG32(R_008010_GRBM_STATUS));
dev_info(rdev->dev, " R_008014_GRBM_STATUS2=0x%08X\n",
RREG32(R_008014_GRBM_STATUS2));
dev_info(rdev->dev, " R_000E50_SRBM_STATUS=0x%08X\n",
RREG32(R_000E50_SRBM_STATUS));
rv515_mc_resume(rdev, &save);
return 0;
}
bool r600_gpu_is_lockup(struct radeon_device *rdev, struct radeon_ring *ring)
{
u32 srbm_status;
u32 grbm_status;
u32 grbm_status2;
struct r100_gpu_lockup *lockup;
int r;
if (rdev->family >= CHIP_RV770)
lockup = &rdev->config.rv770.lockup;
else
lockup = &rdev->config.r600.lockup;
srbm_status = RREG32(R_000E50_SRBM_STATUS);
grbm_status = RREG32(R_008010_GRBM_STATUS);
grbm_status2 = RREG32(R_008014_GRBM_STATUS2);
if (!G_008010_GUI_ACTIVE(grbm_status)) {
r100_gpu_lockup_update(lockup, ring);
return false;
}
/* force CP activities */
r = radeon_ring_lock(rdev, ring, 2);
if (!r) {
/* PACKET2 NOP */
radeon_ring_write(ring, 0x80000000);
radeon_ring_write(ring, 0x80000000);
radeon_ring_unlock_commit(rdev, ring);
}
ring->rptr = RREG32(ring->rptr_reg);
return r100_gpu_cp_is_lockup(rdev, lockup, ring);
}
int r600_asic_reset(struct radeon_device *rdev)
{
return r600_gpu_soft_reset(rdev);
}
static u32 r600_get_tile_pipe_to_backend_map(u32 num_tile_pipes,
u32 num_backends,
u32 backend_disable_mask)
{
u32 backend_map = 0;
u32 enabled_backends_mask;
u32 enabled_backends_count;
u32 cur_pipe;
u32 swizzle_pipe[R6XX_MAX_PIPES];
u32 cur_backend;
u32 i;
if (num_tile_pipes > R6XX_MAX_PIPES)
num_tile_pipes = R6XX_MAX_PIPES;
if (num_tile_pipes < 1)
num_tile_pipes = 1;
if (num_backends > R6XX_MAX_BACKENDS)
num_backends = R6XX_MAX_BACKENDS;
if (num_backends < 1)
num_backends = 1;
enabled_backends_mask = 0;
enabled_backends_count = 0;
for (i = 0; i < R6XX_MAX_BACKENDS; ++i) {
if (((backend_disable_mask >> i) & 1) == 0) {
enabled_backends_mask |= (1 << i);
++enabled_backends_count;
}
if (enabled_backends_count == num_backends)
break;
}
if (enabled_backends_count == 0) {
enabled_backends_mask = 1;
enabled_backends_count = 1;
}
if (enabled_backends_count != num_backends)
num_backends = enabled_backends_count;
memset((uint8_t *)&swizzle_pipe[0], 0, sizeof(u32) * R6XX_MAX_PIPES);
switch (num_tile_pipes) {
case 1:
swizzle_pipe[0] = 0;
break;
case 2:
swizzle_pipe[0] = 0;
swizzle_pipe[1] = 1;
break;
case 3:
swizzle_pipe[0] = 0;
swizzle_pipe[1] = 1;
swizzle_pipe[2] = 2;
break;
case 4:
swizzle_pipe[0] = 0;
swizzle_pipe[1] = 1;
swizzle_pipe[2] = 2;
swizzle_pipe[3] = 3;
break;
case 5:
swizzle_pipe[0] = 0;
swizzle_pipe[1] = 1;
swizzle_pipe[2] = 2;
swizzle_pipe[3] = 3;
swizzle_pipe[4] = 4;
break;
case 6:
swizzle_pipe[0] = 0;
swizzle_pipe[1] = 2;
swizzle_pipe[2] = 4;
swizzle_pipe[3] = 5;
swizzle_pipe[4] = 1;
swizzle_pipe[5] = 3;
break;
case 7:
swizzle_pipe[0] = 0;
swizzle_pipe[1] = 2;
swizzle_pipe[2] = 4;
swizzle_pipe[3] = 6;
swizzle_pipe[4] = 1;
swizzle_pipe[5] = 3;
swizzle_pipe[6] = 5;
break;
case 8:
swizzle_pipe[0] = 0;
swizzle_pipe[1] = 2;
swizzle_pipe[2] = 4;
swizzle_pipe[3] = 6;
swizzle_pipe[4] = 1;
swizzle_pipe[5] = 3;
swizzle_pipe[6] = 5;
swizzle_pipe[7] = 7;
break;
}
cur_backend = 0;
for (cur_pipe = 0; cur_pipe < num_tile_pipes; ++cur_pipe) {
while (((1 << cur_backend) & enabled_backends_mask) == 0)
cur_backend = (cur_backend + 1) % R6XX_MAX_BACKENDS;
backend_map |= (u32)(((cur_backend & 3) << (swizzle_pipe[cur_pipe] * 2)));
cur_backend = (cur_backend + 1) % R6XX_MAX_BACKENDS;
}
return backend_map;
}
int r600_count_pipe_bits(uint32_t val)
{
int i, ret = 0;
for (i = 0; i < 32; i++) {
ret += val & 1;
val >>= 1;
}
return ret;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
}
void r600_gpu_init(struct radeon_device *rdev)
{
u32 tiling_config;
u32 ramcfg;
u32 backend_map;
u32 cc_rb_backend_disable;
u32 cc_gc_shader_pipe_config;
u32 tmp;
int i, j;
u32 sq_config;
u32 sq_gpr_resource_mgmt_1 = 0;
u32 sq_gpr_resource_mgmt_2 = 0;
u32 sq_thread_resource_mgmt = 0;
u32 sq_stack_resource_mgmt_1 = 0;
u32 sq_stack_resource_mgmt_2 = 0;
/* FIXME: implement */
switch (rdev->family) {
case CHIP_R600:
rdev->config.r600.max_pipes = 4;
rdev->config.r600.max_tile_pipes = 8;
rdev->config.r600.max_simds = 4;
rdev->config.r600.max_backends = 4;
rdev->config.r600.max_gprs = 256;
rdev->config.r600.max_threads = 192;
rdev->config.r600.max_stack_entries = 256;
rdev->config.r600.max_hw_contexts = 8;
rdev->config.r600.max_gs_threads = 16;
rdev->config.r600.sx_max_export_size = 128;
rdev->config.r600.sx_max_export_pos_size = 16;
rdev->config.r600.sx_max_export_smx_size = 128;
rdev->config.r600.sq_num_cf_insts = 2;
break;
case CHIP_RV630:
case CHIP_RV635:
rdev->config.r600.max_pipes = 2;
rdev->config.r600.max_tile_pipes = 2;
rdev->config.r600.max_simds = 3;
rdev->config.r600.max_backends = 1;
rdev->config.r600.max_gprs = 128;
rdev->config.r600.max_threads = 192;
rdev->config.r600.max_stack_entries = 128;
rdev->config.r600.max_hw_contexts = 8;
rdev->config.r600.max_gs_threads = 4;
rdev->config.r600.sx_max_export_size = 128;
rdev->config.r600.sx_max_export_pos_size = 16;
rdev->config.r600.sx_max_export_smx_size = 128;
rdev->config.r600.sq_num_cf_insts = 2;
break;
case CHIP_RV610:
case CHIP_RV620:
case CHIP_RS780:
case CHIP_RS880:
rdev->config.r600.max_pipes = 1;
rdev->config.r600.max_tile_pipes = 1;
rdev->config.r600.max_simds = 2;
rdev->config.r600.max_backends = 1;
rdev->config.r600.max_gprs = 128;
rdev->config.r600.max_threads = 192;
rdev->config.r600.max_stack_entries = 128;
rdev->config.r600.max_hw_contexts = 4;
rdev->config.r600.max_gs_threads = 4;
rdev->config.r600.sx_max_export_size = 128;
rdev->config.r600.sx_max_export_pos_size = 16;
rdev->config.r600.sx_max_export_smx_size = 128;
rdev->config.r600.sq_num_cf_insts = 1;
break;
case CHIP_RV670:
rdev->config.r600.max_pipes = 4;
rdev->config.r600.max_tile_pipes = 4;
rdev->config.r600.max_simds = 4;
rdev->config.r600.max_backends = 4;
rdev->config.r600.max_gprs = 192;
rdev->config.r600.max_threads = 192;
rdev->config.r600.max_stack_entries = 256;
rdev->config.r600.max_hw_contexts = 8;
rdev->config.r600.max_gs_threads = 16;
rdev->config.r600.sx_max_export_size = 128;
rdev->config.r600.sx_max_export_pos_size = 16;
rdev->config.r600.sx_max_export_smx_size = 128;
rdev->config.r600.sq_num_cf_insts = 2;
break;
default:
break;
}
/* Initialize HDP */
for (i = 0, j = 0; i < 32; i++, j += 0x18) {
WREG32((0x2c14 + j), 0x00000000);
WREG32((0x2c18 + j), 0x00000000);
WREG32((0x2c1c + j), 0x00000000);
WREG32((0x2c20 + j), 0x00000000);
WREG32((0x2c24 + j), 0x00000000);
}
WREG32(GRBM_CNTL, GRBM_READ_TIMEOUT(0xff));
/* Setup tiling */
tiling_config = 0;
ramcfg = RREG32(RAMCFG);
switch (rdev->config.r600.max_tile_pipes) {
case 1:
tiling_config |= PIPE_TILING(0);
break;
case 2:
tiling_config |= PIPE_TILING(1);
break;
case 4:
tiling_config |= PIPE_TILING(2);
break;
case 8:
tiling_config |= PIPE_TILING(3);
break;
default:
break;
}
rdev->config.r600.tiling_npipes = rdev->config.r600.max_tile_pipes;
rdev->config.r600.tiling_nbanks = 4 << ((ramcfg & NOOFBANK_MASK) >> NOOFBANK_SHIFT);
tiling_config |= BANK_TILING((ramcfg & NOOFBANK_MASK) >> NOOFBANK_SHIFT);
tiling_config |= GROUP_SIZE((ramcfg & BURSTLENGTH_MASK) >> BURSTLENGTH_SHIFT);
if ((ramcfg & BURSTLENGTH_MASK) >> BURSTLENGTH_SHIFT)
rdev->config.r600.tiling_group_size = 512;
else
rdev->config.r600.tiling_group_size = 256;
tmp = (ramcfg & NOOFROWS_MASK) >> NOOFROWS_SHIFT;
if (tmp > 3) {
tiling_config |= ROW_TILING(3);
tiling_config |= SAMPLE_SPLIT(3);
} else {
tiling_config |= ROW_TILING(tmp);
tiling_config |= SAMPLE_SPLIT(tmp);
}
tiling_config |= BANK_SWAPS(1);
cc_rb_backend_disable = RREG32(CC_RB_BACKEND_DISABLE) & 0x00ff0000;
cc_rb_backend_disable |=
BACKEND_DISABLE((R6XX_MAX_BACKENDS_MASK << rdev->config.r600.max_backends) & R6XX_MAX_BACKENDS_MASK);
cc_gc_shader_pipe_config = RREG32(CC_GC_SHADER_PIPE_CONFIG) & 0xffffff00;
cc_gc_shader_pipe_config |=
INACTIVE_QD_PIPES((R6XX_MAX_PIPES_MASK << rdev->config.r600.max_pipes) & R6XX_MAX_PIPES_MASK);
cc_gc_shader_pipe_config |=
INACTIVE_SIMDS((R6XX_MAX_SIMDS_MASK << rdev->config.r600.max_simds) & R6XX_MAX_SIMDS_MASK);
backend_map = r600_get_tile_pipe_to_backend_map(rdev->config.r600.max_tile_pipes,
(R6XX_MAX_BACKENDS -
r600_count_pipe_bits((cc_rb_backend_disable &
R6XX_MAX_BACKENDS_MASK) >> 16)),
(cc_rb_backend_disable >> 16));
rdev->config.r600.tile_config = tiling_config;
rdev->config.r600.backend_map = backend_map;
tiling_config |= BACKEND_MAP(backend_map);
WREG32(GB_TILING_CONFIG, tiling_config);
WREG32(DCP_TILING_CONFIG, tiling_config & 0xffff);
WREG32(HDP_TILING_CONFIG, tiling_config & 0xffff);
/* Setup pipes */
WREG32(CC_RB_BACKEND_DISABLE, cc_rb_backend_disable);
WREG32(CC_GC_SHADER_PIPE_CONFIG, cc_gc_shader_pipe_config);
WREG32(GC_USER_SHADER_PIPE_CONFIG, cc_gc_shader_pipe_config);
tmp = R6XX_MAX_PIPES - r600_count_pipe_bits((cc_gc_shader_pipe_config & INACTIVE_QD_PIPES_MASK) >> 8);
WREG32(VGT_OUT_DEALLOC_CNTL, (tmp * 4) & DEALLOC_DIST_MASK);
WREG32(VGT_VERTEX_REUSE_BLOCK_CNTL, ((tmp * 4) - 2) & VTX_REUSE_DEPTH_MASK);
/* Setup some CP states */
WREG32(CP_QUEUE_THRESHOLDS, (ROQ_IB1_START(0x16) | ROQ_IB2_START(0x2b)));
WREG32(CP_MEQ_THRESHOLDS, (MEQ_END(0x40) | ROQ_END(0x40)));
WREG32(TA_CNTL_AUX, (DISABLE_CUBE_ANISO | SYNC_GRADIENT |
SYNC_WALKER | SYNC_ALIGNER));
/* Setup various GPU states */
if (rdev->family == CHIP_RV670)
WREG32(ARB_GDEC_RD_CNTL, 0x00000021);
tmp = RREG32(SX_DEBUG_1);
tmp |= SMX_EVENT_RELEASE;
if ((rdev->family > CHIP_R600))
tmp |= ENABLE_NEW_SMX_ADDRESS;
WREG32(SX_DEBUG_1, tmp);
if (((rdev->family) == CHIP_R600) ||
((rdev->family) == CHIP_RV630) ||
((rdev->family) == CHIP_RV610) ||
((rdev->family) == CHIP_RV620) ||
((rdev->family) == CHIP_RS780) ||
((rdev->family) == CHIP_RS880)) {
WREG32(DB_DEBUG, PREZ_MUST_WAIT_FOR_POSTZ_DONE);
} else {
WREG32(DB_DEBUG, 0);
}
WREG32(DB_WATERMARKS, (DEPTH_FREE(4) | DEPTH_CACHELINE_FREE(16) |
DEPTH_FLUSH(16) | DEPTH_PENDING_FREE(4)));
WREG32(PA_SC_MULTI_CHIP_CNTL, 0);
WREG32(VGT_NUM_INSTANCES, 0);
WREG32(SPI_CONFIG_CNTL, GPR_WRITE_PRIORITY(0));
WREG32(SPI_CONFIG_CNTL_1, VTX_DONE_DELAY(0));
tmp = RREG32(SQ_MS_FIFO_SIZES);
if (((rdev->family) == CHIP_RV610) ||
((rdev->family) == CHIP_RV620) ||
((rdev->family) == CHIP_RS780) ||
((rdev->family) == CHIP_RS880)) {
tmp = (CACHE_FIFO_SIZE(0xa) |
FETCH_FIFO_HIWATER(0xa) |
DONE_FIFO_HIWATER(0xe0) |
ALU_UPDATE_FIFO_HIWATER(0x8));
} else if (((rdev->family) == CHIP_R600) ||
((rdev->family) == CHIP_RV630)) {
tmp &= ~DONE_FIFO_HIWATER(0xff);
tmp |= DONE_FIFO_HIWATER(0x4);
}
WREG32(SQ_MS_FIFO_SIZES, tmp);
/* SQ_CONFIG, SQ_GPR_RESOURCE_MGMT, SQ_THREAD_RESOURCE_MGMT, SQ_STACK_RESOURCE_MGMT
* should be adjusted as needed by the 2D/3D drivers. This just sets default values
*/
sq_config = RREG32(SQ_CONFIG);
sq_config &= ~(PS_PRIO(3) |
VS_PRIO(3) |
GS_PRIO(3) |
ES_PRIO(3));
sq_config |= (DX9_CONSTS |
VC_ENABLE |
PS_PRIO(0) |
VS_PRIO(1) |
GS_PRIO(2) |
ES_PRIO(3));
if ((rdev->family) == CHIP_R600) {
sq_gpr_resource_mgmt_1 = (NUM_PS_GPRS(124) |
NUM_VS_GPRS(124) |
NUM_CLAUSE_TEMP_GPRS(4));
sq_gpr_resource_mgmt_2 = (NUM_GS_GPRS(0) |
NUM_ES_GPRS(0));
sq_thread_resource_mgmt = (NUM_PS_THREADS(136) |
NUM_VS_THREADS(48) |
NUM_GS_THREADS(4) |
NUM_ES_THREADS(4));
sq_stack_resource_mgmt_1 = (NUM_PS_STACK_ENTRIES(128) |
NUM_VS_STACK_ENTRIES(128));
sq_stack_resource_mgmt_2 = (NUM_GS_STACK_ENTRIES(0) |
NUM_ES_STACK_ENTRIES(0));
} else if (((rdev->family) == CHIP_RV610) ||
((rdev->family) == CHIP_RV620) ||
((rdev->family) == CHIP_RS780) ||
((rdev->family) == CHIP_RS880)) {
/* no vertex cache */
sq_config &= ~VC_ENABLE;
sq_gpr_resource_mgmt_1 = (NUM_PS_GPRS(44) |
NUM_VS_GPRS(44) |
NUM_CLAUSE_TEMP_GPRS(2));
sq_gpr_resource_mgmt_2 = (NUM_GS_GPRS(17) |
NUM_ES_GPRS(17));
sq_thread_resource_mgmt = (NUM_PS_THREADS(79) |
NUM_VS_THREADS(78) |
NUM_GS_THREADS(4) |
NUM_ES_THREADS(31));
sq_stack_resource_mgmt_1 = (NUM_PS_STACK_ENTRIES(40) |
NUM_VS_STACK_ENTRIES(40));
sq_stack_resource_mgmt_2 = (NUM_GS_STACK_ENTRIES(32) |
NUM_ES_STACK_ENTRIES(16));
} else if (((rdev->family) == CHIP_RV630) ||
((rdev->family) == CHIP_RV635)) {
sq_gpr_resource_mgmt_1 = (NUM_PS_GPRS(44) |
NUM_VS_GPRS(44) |
NUM_CLAUSE_TEMP_GPRS(2));
sq_gpr_resource_mgmt_2 = (NUM_GS_GPRS(18) |
NUM_ES_GPRS(18));
sq_thread_resource_mgmt = (NUM_PS_THREADS(79) |
NUM_VS_THREADS(78) |
NUM_GS_THREADS(4) |
NUM_ES_THREADS(31));
sq_stack_resource_mgmt_1 = (NUM_PS_STACK_ENTRIES(40) |
NUM_VS_STACK_ENTRIES(40));
sq_stack_resource_mgmt_2 = (NUM_GS_STACK_ENTRIES(32) |
NUM_ES_STACK_ENTRIES(16));
} else if ((rdev->family) == CHIP_RV670) {
sq_gpr_resource_mgmt_1 = (NUM_PS_GPRS(44) |
NUM_VS_GPRS(44) |
NUM_CLAUSE_TEMP_GPRS(2));
sq_gpr_resource_mgmt_2 = (NUM_GS_GPRS(17) |
NUM_ES_GPRS(17));
sq_thread_resource_mgmt = (NUM_PS_THREADS(79) |
NUM_VS_THREADS(78) |
NUM_GS_THREADS(4) |
NUM_ES_THREADS(31));
sq_stack_resource_mgmt_1 = (NUM_PS_STACK_ENTRIES(64) |
NUM_VS_STACK_ENTRIES(64));
sq_stack_resource_mgmt_2 = (NUM_GS_STACK_ENTRIES(64) |
NUM_ES_STACK_ENTRIES(64));
}
WREG32(SQ_CONFIG, sq_config);
WREG32(SQ_GPR_RESOURCE_MGMT_1, sq_gpr_resource_mgmt_1);
WREG32(SQ_GPR_RESOURCE_MGMT_2, sq_gpr_resource_mgmt_2);
WREG32(SQ_THREAD_RESOURCE_MGMT, sq_thread_resource_mgmt);
WREG32(SQ_STACK_RESOURCE_MGMT_1, sq_stack_resource_mgmt_1);
WREG32(SQ_STACK_RESOURCE_MGMT_2, sq_stack_resource_mgmt_2);
if (((rdev->family) == CHIP_RV610) ||
((rdev->family) == CHIP_RV620) ||
((rdev->family) == CHIP_RS780) ||
((rdev->family) == CHIP_RS880)) {
WREG32(VGT_CACHE_INVALIDATION, CACHE_INVALIDATION(TC_ONLY));
} else {
WREG32(VGT_CACHE_INVALIDATION, CACHE_INVALIDATION(VC_AND_TC));
}
/* More default values. 2D/3D driver should adjust as needed */
WREG32(PA_SC_AA_SAMPLE_LOCS_2S, (S0_X(0xc) | S0_Y(0x4) |
S1_X(0x4) | S1_Y(0xc)));
WREG32(PA_SC_AA_SAMPLE_LOCS_4S, (S0_X(0xe) | S0_Y(0xe) |
S1_X(0x2) | S1_Y(0x2) |
S2_X(0xa) | S2_Y(0x6) |
S3_X(0x6) | S3_Y(0xa)));
WREG32(PA_SC_AA_SAMPLE_LOCS_8S_WD0, (S0_X(0xe) | S0_Y(0xb) |
S1_X(0x4) | S1_Y(0xc) |
S2_X(0x1) | S2_Y(0x6) |
S3_X(0xa) | S3_Y(0xe)));
WREG32(PA_SC_AA_SAMPLE_LOCS_8S_WD1, (S4_X(0x6) | S4_Y(0x1) |
S5_X(0x0) | S5_Y(0x0) |
S6_X(0xb) | S6_Y(0x4) |
S7_X(0x7) | S7_Y(0x8)));
WREG32(VGT_STRMOUT_EN, 0);
tmp = rdev->config.r600.max_pipes * 16;
switch (rdev->family) {
case CHIP_RV610:
case CHIP_RV620:
case CHIP_RS780:
case CHIP_RS880:
tmp += 32;
break;
case CHIP_RV670:
tmp += 128;
break;
default:
break;
}
if (tmp > 256) {
tmp = 256;
}
WREG32(VGT_ES_PER_GS, 128);
WREG32(VGT_GS_PER_ES, tmp);
WREG32(VGT_GS_PER_VS, 2);
WREG32(VGT_GS_VERTEX_REUSE, 16);
/* more default values. 2D/3D driver should adjust as needed */
WREG32(PA_SC_LINE_STIPPLE_STATE, 0);
WREG32(VGT_STRMOUT_EN, 0);
WREG32(SX_MISC, 0);
WREG32(PA_SC_MODE_CNTL, 0);
WREG32(PA_SC_AA_CONFIG, 0);
WREG32(PA_SC_LINE_STIPPLE, 0);
WREG32(SPI_INPUT_Z, 0);
WREG32(SPI_PS_IN_CONTROL_0, NUM_INTERP(2));
WREG32(CB_COLOR7_FRAG, 0);
/* Clear render buffer base addresses */
WREG32(CB_COLOR0_BASE, 0);
WREG32(CB_COLOR1_BASE, 0);
WREG32(CB_COLOR2_BASE, 0);
WREG32(CB_COLOR3_BASE, 0);
WREG32(CB_COLOR4_BASE, 0);
WREG32(CB_COLOR5_BASE, 0);
WREG32(CB_COLOR6_BASE, 0);
WREG32(CB_COLOR7_BASE, 0);
WREG32(CB_COLOR7_FRAG, 0);
switch (rdev->family) {
case CHIP_RV610:
case CHIP_RV620:
case CHIP_RS780:
case CHIP_RS880:
tmp = TC_L2_SIZE(8);
break;
case CHIP_RV630:
case CHIP_RV635:
tmp = TC_L2_SIZE(4);
break;
case CHIP_R600:
tmp = TC_L2_SIZE(0) | L2_DISABLE_LATE_HIT;
break;
default:
tmp = TC_L2_SIZE(0);
break;
}
WREG32(TC_CNTL, tmp);
tmp = RREG32(HDP_HOST_PATH_CNTL);
WREG32(HDP_HOST_PATH_CNTL, tmp);
tmp = RREG32(ARB_POP);
tmp |= ENABLE_TC128;
WREG32(ARB_POP, tmp);
WREG32(PA_SC_MULTI_CHIP_CNTL, 0);
WREG32(PA_CL_ENHANCE, (CLIP_VTX_REORDER_ENA |
NUM_CLIP_SEQ(3)));
WREG32(PA_SC_ENHANCE, FORCE_EOV_MAX_CLK_CNT(4095));
}
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
/*
* Indirect registers accessor
*/
u32 r600_pciep_rreg(struct radeon_device *rdev, u32 reg)
{
u32 r;
WREG32(PCIE_PORT_INDEX, ((reg) & 0xff));
(void)RREG32(PCIE_PORT_INDEX);
r = RREG32(PCIE_PORT_DATA);
return r;
}
void r600_pciep_wreg(struct radeon_device *rdev, u32 reg, u32 v)
{
WREG32(PCIE_PORT_INDEX, ((reg) & 0xff));
(void)RREG32(PCIE_PORT_INDEX);
WREG32(PCIE_PORT_DATA, (v));
(void)RREG32(PCIE_PORT_DATA);
}
/*
* CP & Ring
*/
void r600_cp_stop(struct radeon_device *rdev)
{
radeon_ttm_set_active_vram_size(rdev, rdev->mc.visible_vram_size);
WREG32(R_0086D8_CP_ME_CNTL, S_0086D8_CP_ME_HALT(1));
WREG32(SCRATCH_UMSK, 0);
}
int r600_init_microcode(struct radeon_device *rdev)
{
struct platform_device *pdev;
const char *chip_name;
const char *rlc_chip_name;
size_t pfp_req_size, me_req_size, rlc_req_size;
char fw_name[30];
int err;
DRM_DEBUG("\n");
pdev = platform_device_register_simple("radeon_cp", 0, NULL, 0);
err = IS_ERR(pdev);
if (err) {
printk(KERN_ERR "radeon_cp: Failed to register firmware\n");
return -EINVAL;
}
switch (rdev->family) {
case CHIP_R600:
chip_name = "R600";
rlc_chip_name = "R600";
break;
case CHIP_RV610:
chip_name = "RV610";
rlc_chip_name = "R600";
break;
case CHIP_RV630:
chip_name = "RV630";
rlc_chip_name = "R600";
break;
case CHIP_RV620:
chip_name = "RV620";
rlc_chip_name = "R600";
break;
case CHIP_RV635:
chip_name = "RV635";
rlc_chip_name = "R600";
break;
case CHIP_RV670:
chip_name = "RV670";
rlc_chip_name = "R600";
break;
case CHIP_RS780:
case CHIP_RS880:
chip_name = "RS780";
rlc_chip_name = "R600";
break;
case CHIP_RV770:
chip_name = "RV770";
rlc_chip_name = "R700";
break;
case CHIP_RV730:
case CHIP_RV740:
chip_name = "RV730";
rlc_chip_name = "R700";
break;
case CHIP_RV710:
chip_name = "RV710";
rlc_chip_name = "R700";
break;
case CHIP_CEDAR:
chip_name = "CEDAR";
rlc_chip_name = "CEDAR";
break;
case CHIP_REDWOOD:
chip_name = "REDWOOD";
rlc_chip_name = "REDWOOD";
break;
case CHIP_JUNIPER:
chip_name = "JUNIPER";
rlc_chip_name = "JUNIPER";
break;
case CHIP_CYPRESS:
case CHIP_HEMLOCK:
chip_name = "CYPRESS";
rlc_chip_name = "CYPRESS";
break;
case CHIP_PALM:
chip_name = "PALM";
rlc_chip_name = "SUMO";
break;
case CHIP_SUMO:
chip_name = "SUMO";
rlc_chip_name = "SUMO";
break;
case CHIP_SUMO2:
chip_name = "SUMO2";
rlc_chip_name = "SUMO";
break;
default: BUG();
}
if (rdev->family >= CHIP_CEDAR) {
pfp_req_size = EVERGREEN_PFP_UCODE_SIZE * 4;
me_req_size = EVERGREEN_PM4_UCODE_SIZE * 4;
rlc_req_size = EVERGREEN_RLC_UCODE_SIZE * 4;
} else if (rdev->family >= CHIP_RV770) {
pfp_req_size = R700_PFP_UCODE_SIZE * 4;
me_req_size = R700_PM4_UCODE_SIZE * 4;
rlc_req_size = R700_RLC_UCODE_SIZE * 4;
} else {
pfp_req_size = PFP_UCODE_SIZE * 4;
me_req_size = PM4_UCODE_SIZE * 12;
rlc_req_size = RLC_UCODE_SIZE * 4;
}
DRM_INFO("Loading %s Microcode\n", chip_name);
snprintf(fw_name, sizeof(fw_name), "radeon/%s_pfp.bin", chip_name);
err = request_firmware(&rdev->pfp_fw, fw_name, &pdev->dev);
if (err)
goto out;
if (rdev->pfp_fw->size != pfp_req_size) {
printk(KERN_ERR
"r600_cp: Bogus length %zu in firmware \"%s\"\n",
rdev->pfp_fw->size, fw_name);
err = -EINVAL;
goto out;
}
snprintf(fw_name, sizeof(fw_name), "radeon/%s_me.bin", chip_name);
err = request_firmware(&rdev->me_fw, fw_name, &pdev->dev);
if (err)
goto out;
if (rdev->me_fw->size != me_req_size) {
printk(KERN_ERR
"r600_cp: Bogus length %zu in firmware \"%s\"\n",
rdev->me_fw->size, fw_name);
err = -EINVAL;
}
snprintf(fw_name, sizeof(fw_name), "radeon/%s_rlc.bin", rlc_chip_name);
err = request_firmware(&rdev->rlc_fw, fw_name, &pdev->dev);
if (err)
goto out;
if (rdev->rlc_fw->size != rlc_req_size) {
printk(KERN_ERR
"r600_rlc: Bogus length %zu in firmware \"%s\"\n",
rdev->rlc_fw->size, fw_name);
err = -EINVAL;
}
out:
platform_device_unregister(pdev);
if (err) {
if (err != -EINVAL)
printk(KERN_ERR
"r600_cp: Failed to load firmware \"%s\"\n",
fw_name);
release_firmware(rdev->pfp_fw);
rdev->pfp_fw = NULL;
release_firmware(rdev->me_fw);
rdev->me_fw = NULL;
release_firmware(rdev->rlc_fw);
rdev->rlc_fw = NULL;
}
return err;
}
static int r600_cp_load_microcode(struct radeon_device *rdev)
{
const __be32 *fw_data;
int i;
if (!rdev->me_fw || !rdev->pfp_fw)
return -EINVAL;
r600_cp_stop(rdev);
WREG32(CP_RB_CNTL,
#ifdef __BIG_ENDIAN
BUF_SWAP_32BIT |
#endif
RB_NO_UPDATE | RB_BLKSZ(15) | RB_BUFSZ(3));
/* Reset cp */
WREG32(GRBM_SOFT_RESET, SOFT_RESET_CP);
RREG32(GRBM_SOFT_RESET);
mdelay(15);
WREG32(GRBM_SOFT_RESET, 0);
WREG32(CP_ME_RAM_WADDR, 0);
fw_data = (const __be32 *)rdev->me_fw->data;
WREG32(CP_ME_RAM_WADDR, 0);
for (i = 0; i < PM4_UCODE_SIZE * 3; i++)
WREG32(CP_ME_RAM_DATA,
be32_to_cpup(fw_data++));
fw_data = (const __be32 *)rdev->pfp_fw->data;
WREG32(CP_PFP_UCODE_ADDR, 0);
for (i = 0; i < PFP_UCODE_SIZE; i++)
WREG32(CP_PFP_UCODE_DATA,
be32_to_cpup(fw_data++));
WREG32(CP_PFP_UCODE_ADDR, 0);
WREG32(CP_ME_RAM_WADDR, 0);
WREG32(CP_ME_RAM_RADDR, 0);
return 0;
}
int r600_cp_start(struct radeon_device *rdev)
{
struct radeon_ring *ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX];
int r;
uint32_t cp_me;
r = radeon_ring_lock(rdev, ring, 7);
if (r) {
DRM_ERROR("radeon: cp failed to lock ring (%d).\n", r);
return r;
}
radeon_ring_write(ring, PACKET3(PACKET3_ME_INITIALIZE, 5));
radeon_ring_write(ring, 0x1);
if (rdev->family >= CHIP_RV770) {
radeon_ring_write(ring, 0x0);
radeon_ring_write(ring, rdev->config.rv770.max_hw_contexts - 1);
} else {
radeon_ring_write(ring, 0x3);
radeon_ring_write(ring, rdev->config.r600.max_hw_contexts - 1);
}
radeon_ring_write(ring, PACKET3_ME_INITIALIZE_DEVICE_ID(1));
radeon_ring_write(ring, 0);
radeon_ring_write(ring, 0);
radeon_ring_unlock_commit(rdev, ring);
cp_me = 0xff;
WREG32(R_0086D8_CP_ME_CNTL, cp_me);
return 0;
}
int r600_cp_resume(struct radeon_device *rdev)
{
struct radeon_ring *ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX];
u32 tmp;
u32 rb_bufsz;
int r;
/* Reset cp */
WREG32(GRBM_SOFT_RESET, SOFT_RESET_CP);
RREG32(GRBM_SOFT_RESET);
mdelay(15);
WREG32(GRBM_SOFT_RESET, 0);
/* Set ring buffer size */
rb_bufsz = drm_order(ring->ring_size / 8);
tmp = (drm_order(RADEON_GPU_PAGE_SIZE/8) << 8) | rb_bufsz;
#ifdef __BIG_ENDIAN
tmp |= BUF_SWAP_32BIT;
#endif
WREG32(CP_RB_CNTL, tmp);
WREG32(CP_SEM_WAIT_TIMER, 0x0);
/* Set the write pointer delay */
WREG32(CP_RB_WPTR_DELAY, 0);
/* Initialize the ring buffer's read and write pointers */
WREG32(CP_RB_CNTL, tmp | RB_RPTR_WR_ENA);
WREG32(CP_RB_RPTR_WR, 0);
ring->wptr = 0;
WREG32(CP_RB_WPTR, ring->wptr);
/* set the wb address whether it's enabled or not */
WREG32(CP_RB_RPTR_ADDR,
((rdev->wb.gpu_addr + RADEON_WB_CP_RPTR_OFFSET) & 0xFFFFFFFC));
WREG32(CP_RB_RPTR_ADDR_HI, upper_32_bits(rdev->wb.gpu_addr + RADEON_WB_CP_RPTR_OFFSET) & 0xFF);
WREG32(SCRATCH_ADDR, ((rdev->wb.gpu_addr + RADEON_WB_SCRATCH_OFFSET) >> 8) & 0xFFFFFFFF);
if (rdev->wb.enabled)
WREG32(SCRATCH_UMSK, 0xff);
else {
tmp |= RB_NO_UPDATE;
WREG32(SCRATCH_UMSK, 0);
}
mdelay(1);
WREG32(CP_RB_CNTL, tmp);
WREG32(CP_RB_BASE, ring->gpu_addr >> 8);
WREG32(CP_DEBUG, (1 << 27) | (1 << 28));
ring->rptr = RREG32(CP_RB_RPTR);
r600_cp_start(rdev);
ring->ready = true;
r = radeon_ring_test(rdev, ring);
if (r) {
ring->ready = false;
return r;
}
return 0;
}
void r600_ring_init(struct radeon_device *rdev, struct radeon_ring *ring, unsigned ring_size)
{
u32 rb_bufsz;
/* Align ring size */
rb_bufsz = drm_order(ring_size / 8);
ring_size = (1 << (rb_bufsz + 1)) * 4;
ring->ring_size = ring_size;
ring->align_mask = 16 - 1;
}
void r600_cp_fini(struct radeon_device *rdev)
{
r600_cp_stop(rdev);
radeon_ring_fini(rdev, &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]);
}
/*
* GPU scratch registers helpers function.
*/
void r600_scratch_init(struct radeon_device *rdev)
{
int i;
rdev->scratch.num_reg = 7;
rdev->scratch.reg_base = SCRATCH_REG0;
for (i = 0; i < rdev->scratch.num_reg; i++) {
rdev->scratch.free[i] = true;
rdev->scratch.reg[i] = rdev->scratch.reg_base + (i * 4);
}
}
int r600_ring_test(struct radeon_device *rdev, struct radeon_ring *ring)
{
uint32_t scratch;
uint32_t tmp = 0;
unsigned i, ridx = radeon_ring_index(rdev, ring);
int r;
r = radeon_scratch_get(rdev, &scratch);
if (r) {
DRM_ERROR("radeon: cp failed to get scratch reg (%d).\n", r);
return r;
}
WREG32(scratch, 0xCAFEDEAD);
r = radeon_ring_lock(rdev, ring, 3);
if (r) {
DRM_ERROR("radeon: cp failed to lock ring %d (%d).\n", ridx, r);
radeon_scratch_free(rdev, scratch);
return r;
}
radeon_ring_write(ring, PACKET3(PACKET3_SET_CONFIG_REG, 1));
radeon_ring_write(ring, ((scratch - PACKET3_SET_CONFIG_REG_OFFSET) >> 2));
radeon_ring_write(ring, 0xDEADBEEF);
radeon_ring_unlock_commit(rdev, ring);
for (i = 0; i < rdev->usec_timeout; i++) {
tmp = RREG32(scratch);
if (tmp == 0xDEADBEEF)
break;
DRM_UDELAY(1);
}
if (i < rdev->usec_timeout) {
DRM_INFO("ring test on %d succeeded in %d usecs\n", ridx, i);
} else {
DRM_ERROR("radeon: ring %d test failed (scratch(0x%04X)=0x%08X)\n",
ridx, scratch, tmp);
r = -EINVAL;
}
radeon_scratch_free(rdev, scratch);
return r;
}
void r600_fence_ring_emit(struct radeon_device *rdev,
struct radeon_fence *fence)
{
struct radeon_ring *ring = &rdev->ring[fence->ring];
if (rdev->wb.use_event) {
u64 addr = rdev->fence_drv[fence->ring].gpu_addr;
/* flush read cache over gart */
radeon_ring_write(ring, PACKET3(PACKET3_SURFACE_SYNC, 3));
radeon_ring_write(ring, PACKET3_TC_ACTION_ENA |
PACKET3_VC_ACTION_ENA |
PACKET3_SH_ACTION_ENA);
radeon_ring_write(ring, 0xFFFFFFFF);
radeon_ring_write(ring, 0);
radeon_ring_write(ring, 10); /* poll interval */
/* EVENT_WRITE_EOP - flush caches, send int */
radeon_ring_write(ring, PACKET3(PACKET3_EVENT_WRITE_EOP, 4));
radeon_ring_write(ring, EVENT_TYPE(CACHE_FLUSH_AND_INV_EVENT_TS) | EVENT_INDEX(5));
radeon_ring_write(ring, addr & 0xffffffff);
radeon_ring_write(ring, (upper_32_bits(addr) & 0xff) | DATA_SEL(1) | INT_SEL(2));
radeon_ring_write(ring, fence->seq);
radeon_ring_write(ring, 0);
} else {
/* flush read cache over gart */
radeon_ring_write(ring, PACKET3(PACKET3_SURFACE_SYNC, 3));
radeon_ring_write(ring, PACKET3_TC_ACTION_ENA |
PACKET3_VC_ACTION_ENA |
PACKET3_SH_ACTION_ENA);
radeon_ring_write(ring, 0xFFFFFFFF);
radeon_ring_write(ring, 0);
radeon_ring_write(ring, 10); /* poll interval */
radeon_ring_write(ring, PACKET3(PACKET3_EVENT_WRITE, 0));
radeon_ring_write(ring, EVENT_TYPE(CACHE_FLUSH_AND_INV_EVENT) | EVENT_INDEX(0));
/* wait for 3D idle clean */
radeon_ring_write(ring, PACKET3(PACKET3_SET_CONFIG_REG, 1));
radeon_ring_write(ring, (WAIT_UNTIL - PACKET3_SET_CONFIG_REG_OFFSET) >> 2);
radeon_ring_write(ring, WAIT_3D_IDLE_bit | WAIT_3D_IDLECLEAN_bit);
/* Emit fence sequence & fire IRQ */
radeon_ring_write(ring, PACKET3(PACKET3_SET_CONFIG_REG, 1));
radeon_ring_write(ring, ((rdev->fence_drv[fence->ring].scratch_reg - PACKET3_SET_CONFIG_REG_OFFSET) >> 2));
radeon_ring_write(ring, fence->seq);
/* CP_INTERRUPT packet 3 no longer exists, use packet 0 */
radeon_ring_write(ring, PACKET0(CP_INT_STATUS, 0));
radeon_ring_write(ring, RB_INT_STAT);
}
}
void r600_semaphore_ring_emit(struct radeon_device *rdev,
struct radeon_ring *ring,
struct radeon_semaphore *semaphore,
bool emit_wait)
{
uint64_t addr = semaphore->gpu_addr;
unsigned sel = emit_wait ? PACKET3_SEM_SEL_WAIT : PACKET3_SEM_SEL_SIGNAL;
radeon_ring_write(ring, PACKET3(PACKET3_MEM_SEMAPHORE, 1));
radeon_ring_write(ring, addr & 0xffffffff);
radeon_ring_write(ring, (upper_32_bits(addr) & 0xff) | sel);
}
int r600_copy_blit(struct radeon_device *rdev,
uint64_t src_offset,
uint64_t dst_offset,
unsigned num_gpu_pages,
struct radeon_fence *fence)
{
int r;
mutex_lock(&rdev->r600_blit.mutex);
rdev->r600_blit.vb_ib = NULL;
r = r600_blit_prepare_copy(rdev, num_gpu_pages);
if (r) {
if (rdev->r600_blit.vb_ib)
radeon_ib_free(rdev, &rdev->r600_blit.vb_ib);
mutex_unlock(&rdev->r600_blit.mutex);
return r;
}
r600_kms_blit_copy(rdev, src_offset, dst_offset, num_gpu_pages);
r600_blit_done_copy(rdev, fence);
mutex_unlock(&rdev->r600_blit.mutex);
return 0;
}
void r600_blit_suspend(struct radeon_device *rdev)
{
int r;
/* unpin shaders bo */
if (rdev->r600_blit.shader_obj) {
r = radeon_bo_reserve(rdev->r600_blit.shader_obj, false);
if (!r) {
radeon_bo_unpin(rdev->r600_blit.shader_obj);
radeon_bo_unreserve(rdev->r600_blit.shader_obj);
}
}
}
int r600_set_surface_reg(struct radeon_device *rdev, int reg,
uint32_t tiling_flags, uint32_t pitch,
uint32_t offset, uint32_t obj_size)
{
/* FIXME: implement */
return 0;
}
void r600_clear_surface_reg(struct radeon_device *rdev, int reg)
{
/* FIXME: implement */
}
int r600_startup(struct radeon_device *rdev)
{
struct radeon_ring *ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX];
int r;
/* enable pcie gen2 link */
r600_pcie_gen2_enable(rdev);
if (!rdev->me_fw || !rdev->pfp_fw || !rdev->rlc_fw) {
r = r600_init_microcode(rdev);
if (r) {
DRM_ERROR("Failed to load firmware!\n");
return r;
}
}
r = r600_vram_scratch_init(rdev);
if (r)
return r;
r600_mc_program(rdev);
if (rdev->flags & RADEON_IS_AGP) {
r600_agp_enable(rdev);
} else {
r = r600_pcie_gart_enable(rdev);
if (r)
return r;
}
r600_gpu_init(rdev);
r = r600_blit_init(rdev);
if (r) {
r600_blit_fini(rdev);
rdev->asic->copy = NULL;
dev_warn(rdev->dev, "failed blitter (%d) falling back to memcpy\n", r);
}
/* allocate wb buffer */
r = radeon_wb_init(rdev);
if (r)
return r;
r = radeon_fence_driver_start_ring(rdev, RADEON_RING_TYPE_GFX_INDEX);
if (r) {
dev_err(rdev->dev, "failed initializing CP fences (%d).\n", r);
return r;
}
/* Enable IRQ */
r = r600_irq_init(rdev);
if (r) {
DRM_ERROR("radeon: IH init failed (%d).\n", r);
radeon_irq_kms_fini(rdev);
return r;
}
r600_irq_set(rdev);
r = radeon_ring_init(rdev, ring, ring->ring_size, RADEON_WB_CP_RPTR_OFFSET,
R600_CP_RB_RPTR, R600_CP_RB_WPTR,
0, 0xfffff, RADEON_CP_PACKET2);
if (r)
return r;
r = r600_cp_load_microcode(rdev);
if (r)
return r;
r = r600_cp_resume(rdev);
if (r)
return r;
r = radeon_ib_pool_start(rdev);
if (r)
return r;
r = r600_ib_test(rdev, RADEON_RING_TYPE_GFX_INDEX);
if (r) {
DRM_ERROR("radeon: failed testing IB (%d).\n", r);
rdev->accel_working = false;
return r;
}
return 0;
}
void r600_vga_set_state(struct radeon_device *rdev, bool state)
{
uint32_t temp;
temp = RREG32(CONFIG_CNTL);
if (state == false) {
temp &= ~(1<<0);
temp |= (1<<1);
} else {
temp &= ~(1<<1);
}
WREG32(CONFIG_CNTL, temp);
}
int r600_resume(struct radeon_device *rdev)
{
int r;
/* Do not reset GPU before posting, on r600 hw unlike on r500 hw,
* posting will perform necessary task to bring back GPU into good
* shape.
*/
/* post card */
atom_asic_init(rdev->mode_info.atom_context);
rdev->accel_working = true;
r = r600_startup(rdev);
if (r) {
DRM_ERROR("r600 startup failed on resume\n");
return r;
}
r = r600_audio_init(rdev);
if (r) {
DRM_ERROR("radeon: audio resume failed\n");
return r;
}
return r;
}
int r600_suspend(struct radeon_device *rdev)
{
r600_audio_fini(rdev);
radeon_ib_pool_suspend(rdev);
r600_blit_suspend(rdev);
/* FIXME: we should wait for ring to be empty */
r600_cp_stop(rdev);
rdev->ring[RADEON_RING_TYPE_GFX_INDEX].ready = false;
r600_irq_suspend(rdev);
radeon_wb_disable(rdev);
r600_pcie_gart_disable(rdev);
return 0;
}
/* Plan is to move initialization in that function and use
* helper function so that radeon_device_init pretty much
* do nothing more than calling asic specific function. This
* should also allow to remove a bunch of callback function
* like vram_info.
*/
int r600_init(struct radeon_device *rdev)
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
{
int r;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
if (r600_debugfs_mc_info_init(rdev)) {
DRM_ERROR("Failed to register debugfs file for mc !\n");
}
/* This don't do much */
r = radeon_gem_init(rdev);
if (r)
return r;
/* Read BIOS */
if (!radeon_get_bios(rdev)) {
if (ASIC_IS_AVIVO(rdev))
return -EINVAL;
}
/* Must be an ATOMBIOS */
if (!rdev->is_atom_bios) {
dev_err(rdev->dev, "Expecting atombios for R600 GPU\n");
return -EINVAL;
}
r = radeon_atombios_init(rdev);
if (r)
return r;
/* Post card if necessary */
if (!radeon_card_posted(rdev)) {
if (!rdev->bios) {
dev_err(rdev->dev, "Card not posted and no BIOS - ignoring\n");
return -EINVAL;
}
DRM_INFO("GPU not posted. posting now...\n");
atom_asic_init(rdev->mode_info.atom_context);
}
/* Initialize scratch registers */
r600_scratch_init(rdev);
/* Initialize surface registers */
radeon_surface_init(rdev);
/* Initialize clocks */
radeon_get_clock_info(rdev->ddev);
/* Fence driver */
r = radeon_fence_driver_init(rdev);
if (r)
return r;
if (rdev->flags & RADEON_IS_AGP) {
r = radeon_agp_init(rdev);
if (r)
radeon_agp_disable(rdev);
}
r = r600_mc_init(rdev);
if (r)
return r;
/* Memory manager */
r = radeon_bo_init(rdev);
if (r)
return r;
r = radeon_irq_kms_init(rdev);
if (r)
return r;
rdev->ring[RADEON_RING_TYPE_GFX_INDEX].ring_obj = NULL;
r600_ring_init(rdev, &rdev->ring[RADEON_RING_TYPE_GFX_INDEX], 1024 * 1024);
rdev->ih.ring_obj = NULL;
r600_ih_ring_init(rdev, 64 * 1024);
r = r600_pcie_gart_init(rdev);
if (r)
return r;
r = radeon_ib_pool_init(rdev);
rdev->accel_working = true;
if (r) {
dev_err(rdev->dev, "IB initialization failed (%d).\n", r);
rdev->accel_working = false;
}
r = r600_startup(rdev);
if (r) {
dev_err(rdev->dev, "disabling GPU acceleration\n");
r600_cp_fini(rdev);
r600_irq_fini(rdev);
radeon_wb_fini(rdev);
r100_ib_fini(rdev);
radeon_irq_kms_fini(rdev);
r600_pcie_gart_fini(rdev);
rdev->accel_working = false;
}
r = r600_audio_init(rdev);
if (r)
return r; /* TODO error handling */
return 0;
}
void r600_fini(struct radeon_device *rdev)
{
r600_audio_fini(rdev);
r600_blit_fini(rdev);
r600_cp_fini(rdev);
r600_irq_fini(rdev);
radeon_wb_fini(rdev);
r100_ib_fini(rdev);
radeon_irq_kms_fini(rdev);
r600_pcie_gart_fini(rdev);
r600_vram_scratch_fini(rdev);
radeon_agp_fini(rdev);
radeon_gem_fini(rdev);
radeon_semaphore_driver_fini(rdev);
radeon_fence_driver_fini(rdev);
radeon_bo_fini(rdev);
radeon_atombios_fini(rdev);
kfree(rdev->bios);
rdev->bios = NULL;
}
/*
* CS stuff
*/
void r600_ring_ib_execute(struct radeon_device *rdev, struct radeon_ib *ib)
{
struct radeon_ring *ring = &rdev->ring[ib->fence->ring];
/* FIXME: implement */
radeon_ring_write(ring, PACKET3(PACKET3_INDIRECT_BUFFER, 2));
radeon_ring_write(ring,
#ifdef __BIG_ENDIAN
(2 << 0) |
#endif
(ib->gpu_addr & 0xFFFFFFFC));
radeon_ring_write(ring, upper_32_bits(ib->gpu_addr) & 0xFF);
radeon_ring_write(ring, ib->length_dw);
}
int r600_ib_test(struct radeon_device *rdev, int ring)
{
struct radeon_ib *ib;
uint32_t scratch;
uint32_t tmp = 0;
unsigned i;
int r;
r = radeon_scratch_get(rdev, &scratch);
if (r) {
DRM_ERROR("radeon: failed to get scratch reg (%d).\n", r);
return r;
}
WREG32(scratch, 0xCAFEDEAD);
r = radeon_ib_get(rdev, ring, &ib, 256);
if (r) {
DRM_ERROR("radeon: failed to get ib (%d).\n", r);
return r;
}
ib->ptr[0] = PACKET3(PACKET3_SET_CONFIG_REG, 1);
ib->ptr[1] = ((scratch - PACKET3_SET_CONFIG_REG_OFFSET) >> 2);
ib->ptr[2] = 0xDEADBEEF;
ib->ptr[3] = PACKET2(0);
ib->ptr[4] = PACKET2(0);
ib->ptr[5] = PACKET2(0);
ib->ptr[6] = PACKET2(0);
ib->ptr[7] = PACKET2(0);
ib->ptr[8] = PACKET2(0);
ib->ptr[9] = PACKET2(0);
ib->ptr[10] = PACKET2(0);
ib->ptr[11] = PACKET2(0);
ib->ptr[12] = PACKET2(0);
ib->ptr[13] = PACKET2(0);
ib->ptr[14] = PACKET2(0);
ib->ptr[15] = PACKET2(0);
ib->length_dw = 16;
r = radeon_ib_schedule(rdev, ib);
if (r) {
radeon_scratch_free(rdev, scratch);
radeon_ib_free(rdev, &ib);
DRM_ERROR("radeon: failed to schedule ib (%d).\n", r);
return r;
}
r = radeon_fence_wait(ib->fence, false);
if (r) {
DRM_ERROR("radeon: fence wait failed (%d).\n", r);
return r;
}
for (i = 0; i < rdev->usec_timeout; i++) {
tmp = RREG32(scratch);
if (tmp == 0xDEADBEEF)
break;
DRM_UDELAY(1);
}
if (i < rdev->usec_timeout) {
DRM_INFO("ib test on ring %d succeeded in %u usecs\n", ib->fence->ring, i);
} else {
DRM_ERROR("radeon: ib test failed (scratch(0x%04X)=0x%08X)\n",
scratch, tmp);
r = -EINVAL;
}
radeon_scratch_free(rdev, scratch);
radeon_ib_free(rdev, &ib);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
return r;
}
/*
* Interrupts
*
* Interrupts use a ring buffer on r6xx/r7xx hardware. It works pretty
* the same as the CP ring buffer, but in reverse. Rather than the CPU
* writing to the ring and the GPU consuming, the GPU writes to the ring
* and host consumes. As the host irq handler processes interrupts, it
* increments the rptr. When the rptr catches up with the wptr, all the
* current interrupts have been processed.
*/
void r600_ih_ring_init(struct radeon_device *rdev, unsigned ring_size)
{
u32 rb_bufsz;
/* Align ring size */
rb_bufsz = drm_order(ring_size / 4);
ring_size = (1 << rb_bufsz) * 4;
rdev->ih.ring_size = ring_size;
rdev->ih.ptr_mask = rdev->ih.ring_size - 1;
rdev->ih.rptr = 0;
}
static int r600_ih_ring_alloc(struct radeon_device *rdev)
{
int r;
/* Allocate ring buffer */
if (rdev->ih.ring_obj == NULL) {
r = radeon_bo_create(rdev, rdev->ih.ring_size,
PAGE_SIZE, true,
RADEON_GEM_DOMAIN_GTT,
&rdev->ih.ring_obj);
if (r) {
DRM_ERROR("radeon: failed to create ih ring buffer (%d).\n", r);
return r;
}
r = radeon_bo_reserve(rdev->ih.ring_obj, false);
if (unlikely(r != 0))
return r;
r = radeon_bo_pin(rdev->ih.ring_obj,
RADEON_GEM_DOMAIN_GTT,
&rdev->ih.gpu_addr);
if (r) {
radeon_bo_unreserve(rdev->ih.ring_obj);
DRM_ERROR("radeon: failed to pin ih ring buffer (%d).\n", r);
return r;
}
r = radeon_bo_kmap(rdev->ih.ring_obj,
(void **)&rdev->ih.ring);
radeon_bo_unreserve(rdev->ih.ring_obj);
if (r) {
DRM_ERROR("radeon: failed to map ih ring buffer (%d).\n", r);
return r;
}
}
return 0;
}
static void r600_ih_ring_fini(struct radeon_device *rdev)
{
int r;
if (rdev->ih.ring_obj) {
r = radeon_bo_reserve(rdev->ih.ring_obj, false);
if (likely(r == 0)) {
radeon_bo_kunmap(rdev->ih.ring_obj);
radeon_bo_unpin(rdev->ih.ring_obj);
radeon_bo_unreserve(rdev->ih.ring_obj);
}
radeon_bo_unref(&rdev->ih.ring_obj);
rdev->ih.ring = NULL;
rdev->ih.ring_obj = NULL;
}
}
void r600_rlc_stop(struct radeon_device *rdev)
{
if ((rdev->family >= CHIP_RV770) &&
(rdev->family <= CHIP_RV740)) {
/* r7xx asics need to soft reset RLC before halting */
WREG32(SRBM_SOFT_RESET, SOFT_RESET_RLC);
RREG32(SRBM_SOFT_RESET);
udelay(15000);
WREG32(SRBM_SOFT_RESET, 0);
RREG32(SRBM_SOFT_RESET);
}
WREG32(RLC_CNTL, 0);
}
static void r600_rlc_start(struct radeon_device *rdev)
{
WREG32(RLC_CNTL, RLC_ENABLE);
}
static int r600_rlc_init(struct radeon_device *rdev)
{
u32 i;
const __be32 *fw_data;
if (!rdev->rlc_fw)
return -EINVAL;
r600_rlc_stop(rdev);
WREG32(RLC_HB_BASE, 0);
WREG32(RLC_HB_CNTL, 0);
WREG32(RLC_HB_RPTR, 0);
WREG32(RLC_HB_WPTR, 0);
if (rdev->family <= CHIP_CAICOS) {
WREG32(RLC_HB_WPTR_LSB_ADDR, 0);
WREG32(RLC_HB_WPTR_MSB_ADDR, 0);
}
WREG32(RLC_MC_CNTL, 0);
WREG32(RLC_UCODE_CNTL, 0);
fw_data = (const __be32 *)rdev->rlc_fw->data;
if (rdev->family >= CHIP_CAYMAN) {
for (i = 0; i < CAYMAN_RLC_UCODE_SIZE; i++) {
WREG32(RLC_UCODE_ADDR, i);
WREG32(RLC_UCODE_DATA, be32_to_cpup(fw_data++));
}
} else if (rdev->family >= CHIP_CEDAR) {
for (i = 0; i < EVERGREEN_RLC_UCODE_SIZE; i++) {
WREG32(RLC_UCODE_ADDR, i);
WREG32(RLC_UCODE_DATA, be32_to_cpup(fw_data++));
}
} else if (rdev->family >= CHIP_RV770) {
for (i = 0; i < R700_RLC_UCODE_SIZE; i++) {
WREG32(RLC_UCODE_ADDR, i);
WREG32(RLC_UCODE_DATA, be32_to_cpup(fw_data++));
}
} else {
for (i = 0; i < RLC_UCODE_SIZE; i++) {
WREG32(RLC_UCODE_ADDR, i);
WREG32(RLC_UCODE_DATA, be32_to_cpup(fw_data++));
}
}
WREG32(RLC_UCODE_ADDR, 0);
r600_rlc_start(rdev);
return 0;
}
static void r600_enable_interrupts(struct radeon_device *rdev)
{
u32 ih_cntl = RREG32(IH_CNTL);
u32 ih_rb_cntl = RREG32(IH_RB_CNTL);
ih_cntl |= ENABLE_INTR;
ih_rb_cntl |= IH_RB_ENABLE;
WREG32(IH_CNTL, ih_cntl);
WREG32(IH_RB_CNTL, ih_rb_cntl);
rdev->ih.enabled = true;
}
void r600_disable_interrupts(struct radeon_device *rdev)
{
u32 ih_rb_cntl = RREG32(IH_RB_CNTL);
u32 ih_cntl = RREG32(IH_CNTL);
ih_rb_cntl &= ~IH_RB_ENABLE;
ih_cntl &= ~ENABLE_INTR;
WREG32(IH_RB_CNTL, ih_rb_cntl);
WREG32(IH_CNTL, ih_cntl);
/* set rptr, wptr to 0 */
WREG32(IH_RB_RPTR, 0);
WREG32(IH_RB_WPTR, 0);
rdev->ih.enabled = false;
rdev->ih.wptr = 0;
rdev->ih.rptr = 0;
}
static void r600_disable_interrupt_state(struct radeon_device *rdev)
{
u32 tmp;
WREG32(CP_INT_CNTL, CNTX_BUSY_INT_ENABLE | CNTX_EMPTY_INT_ENABLE);
WREG32(GRBM_INT_CNTL, 0);
WREG32(DxMODE_INT_MASK, 0);
WREG32(D1GRPH_INTERRUPT_CONTROL, 0);
WREG32(D2GRPH_INTERRUPT_CONTROL, 0);
if (ASIC_IS_DCE3(rdev)) {
WREG32(DCE3_DACA_AUTODETECT_INT_CONTROL, 0);
WREG32(DCE3_DACB_AUTODETECT_INT_CONTROL, 0);
tmp = RREG32(DC_HPD1_INT_CONTROL) & DC_HPDx_INT_POLARITY;
WREG32(DC_HPD1_INT_CONTROL, tmp);
tmp = RREG32(DC_HPD2_INT_CONTROL) & DC_HPDx_INT_POLARITY;
WREG32(DC_HPD2_INT_CONTROL, tmp);
tmp = RREG32(DC_HPD3_INT_CONTROL) & DC_HPDx_INT_POLARITY;
WREG32(DC_HPD3_INT_CONTROL, tmp);
tmp = RREG32(DC_HPD4_INT_CONTROL) & DC_HPDx_INT_POLARITY;
WREG32(DC_HPD4_INT_CONTROL, tmp);
if (ASIC_IS_DCE32(rdev)) {
tmp = RREG32(DC_HPD5_INT_CONTROL) & DC_HPDx_INT_POLARITY;
WREG32(DC_HPD5_INT_CONTROL, tmp);
tmp = RREG32(DC_HPD6_INT_CONTROL) & DC_HPDx_INT_POLARITY;
WREG32(DC_HPD6_INT_CONTROL, tmp);
}
} else {
WREG32(DACA_AUTODETECT_INT_CONTROL, 0);
WREG32(DACB_AUTODETECT_INT_CONTROL, 0);
tmp = RREG32(DC_HOT_PLUG_DETECT1_INT_CONTROL) & DC_HOT_PLUG_DETECTx_INT_POLARITY;
WREG32(DC_HOT_PLUG_DETECT1_INT_CONTROL, tmp);
tmp = RREG32(DC_HOT_PLUG_DETECT2_INT_CONTROL) & DC_HOT_PLUG_DETECTx_INT_POLARITY;
WREG32(DC_HOT_PLUG_DETECT2_INT_CONTROL, tmp);
tmp = RREG32(DC_HOT_PLUG_DETECT3_INT_CONTROL) & DC_HOT_PLUG_DETECTx_INT_POLARITY;
WREG32(DC_HOT_PLUG_DETECT3_INT_CONTROL, tmp);
}
}
int r600_irq_init(struct radeon_device *rdev)
{
int ret = 0;
int rb_bufsz;
u32 interrupt_cntl, ih_cntl, ih_rb_cntl;
/* allocate ring */
ret = r600_ih_ring_alloc(rdev);
if (ret)
return ret;
/* disable irqs */
r600_disable_interrupts(rdev);
/* init rlc */
ret = r600_rlc_init(rdev);
if (ret) {
r600_ih_ring_fini(rdev);
return ret;
}
/* setup interrupt control */
/* set dummy read address to ring address */
WREG32(INTERRUPT_CNTL2, rdev->ih.gpu_addr >> 8);
interrupt_cntl = RREG32(INTERRUPT_CNTL);
/* IH_DUMMY_RD_OVERRIDE=0 - dummy read disabled with msi, enabled without msi
* IH_DUMMY_RD_OVERRIDE=1 - dummy read controlled by IH_DUMMY_RD_EN
*/
interrupt_cntl &= ~IH_DUMMY_RD_OVERRIDE;
/* IH_REQ_NONSNOOP_EN=1 if ring is in non-cacheable memory, e.g., vram */
interrupt_cntl &= ~IH_REQ_NONSNOOP_EN;
WREG32(INTERRUPT_CNTL, interrupt_cntl);
WREG32(IH_RB_BASE, rdev->ih.gpu_addr >> 8);
rb_bufsz = drm_order(rdev->ih.ring_size / 4);
ih_rb_cntl = (IH_WPTR_OVERFLOW_ENABLE |
IH_WPTR_OVERFLOW_CLEAR |
(rb_bufsz << 1));
if (rdev->wb.enabled)
ih_rb_cntl |= IH_WPTR_WRITEBACK_ENABLE;
/* set the writeback address whether it's enabled or not */
WREG32(IH_RB_WPTR_ADDR_LO, (rdev->wb.gpu_addr + R600_WB_IH_WPTR_OFFSET) & 0xFFFFFFFC);
WREG32(IH_RB_WPTR_ADDR_HI, upper_32_bits(rdev->wb.gpu_addr + R600_WB_IH_WPTR_OFFSET) & 0xFF);
WREG32(IH_RB_CNTL, ih_rb_cntl);
/* set rptr, wptr to 0 */
WREG32(IH_RB_RPTR, 0);
WREG32(IH_RB_WPTR, 0);
/* Default settings for IH_CNTL (disabled at first) */
ih_cntl = MC_WRREQ_CREDIT(0x10) | MC_WR_CLEAN_CNT(0x10);
/* RPTR_REARM only works if msi's are enabled */
if (rdev->msi_enabled)
ih_cntl |= RPTR_REARM;
WREG32(IH_CNTL, ih_cntl);
/* force the active interrupt state to all disabled */
if (rdev->family >= CHIP_CEDAR)
evergreen_disable_interrupt_state(rdev);
else
r600_disable_interrupt_state(rdev);
/* enable irqs */
r600_enable_interrupts(rdev);
return ret;
}
void r600_irq_suspend(struct radeon_device *rdev)
{
r600_irq_disable(rdev);
r600_rlc_stop(rdev);
}
void r600_irq_fini(struct radeon_device *rdev)
{
r600_irq_suspend(rdev);
r600_ih_ring_fini(rdev);
}
int r600_irq_set(struct radeon_device *rdev)
{
u32 cp_int_cntl = CNTX_BUSY_INT_ENABLE | CNTX_EMPTY_INT_ENABLE;
u32 mode_int = 0;
u32 hpd1, hpd2, hpd3, hpd4 = 0, hpd5 = 0, hpd6 = 0;
u32 grbm_int_cntl = 0;
u32 hdmi1, hdmi2;
u32 d1grph = 0, d2grph = 0;
if (!rdev->irq.installed) {
WARN(1, "Can't enable IRQ/MSI because no handler is installed\n");
return -EINVAL;
}
/* don't enable anything if the ih is disabled */
if (!rdev->ih.enabled) {
r600_disable_interrupts(rdev);
/* force the active interrupt state to all disabled */
r600_disable_interrupt_state(rdev);
return 0;
}
hdmi1 = RREG32(R600_HDMI_BLOCK1 + R600_HDMI_CNTL) & ~R600_HDMI_INT_EN;
if (ASIC_IS_DCE3(rdev)) {
hdmi2 = RREG32(R600_HDMI_BLOCK3 + R600_HDMI_CNTL) & ~R600_HDMI_INT_EN;
hpd1 = RREG32(DC_HPD1_INT_CONTROL) & ~DC_HPDx_INT_EN;
hpd2 = RREG32(DC_HPD2_INT_CONTROL) & ~DC_HPDx_INT_EN;
hpd3 = RREG32(DC_HPD3_INT_CONTROL) & ~DC_HPDx_INT_EN;
hpd4 = RREG32(DC_HPD4_INT_CONTROL) & ~DC_HPDx_INT_EN;
if (ASIC_IS_DCE32(rdev)) {
hpd5 = RREG32(DC_HPD5_INT_CONTROL) & ~DC_HPDx_INT_EN;
hpd6 = RREG32(DC_HPD6_INT_CONTROL) & ~DC_HPDx_INT_EN;
}
} else {
hdmi2 = RREG32(R600_HDMI_BLOCK2 + R600_HDMI_CNTL) & ~R600_HDMI_INT_EN;
hpd1 = RREG32(DC_HOT_PLUG_DETECT1_INT_CONTROL) & ~DC_HPDx_INT_EN;
hpd2 = RREG32(DC_HOT_PLUG_DETECT2_INT_CONTROL) & ~DC_HPDx_INT_EN;
hpd3 = RREG32(DC_HOT_PLUG_DETECT3_INT_CONTROL) & ~DC_HPDx_INT_EN;
}
if (rdev->irq.sw_int[RADEON_RING_TYPE_GFX_INDEX]) {
DRM_DEBUG("r600_irq_set: sw int\n");
cp_int_cntl |= RB_INT_ENABLE;
cp_int_cntl |= TIME_STAMP_INT_ENABLE;
}
if (rdev->irq.crtc_vblank_int[0] ||
rdev->irq.pflip[0]) {
DRM_DEBUG("r600_irq_set: vblank 0\n");
mode_int |= D1MODE_VBLANK_INT_MASK;
}
if (rdev->irq.crtc_vblank_int[1] ||
rdev->irq.pflip[1]) {
DRM_DEBUG("r600_irq_set: vblank 1\n");
mode_int |= D2MODE_VBLANK_INT_MASK;
}
if (rdev->irq.hpd[0]) {
DRM_DEBUG("r600_irq_set: hpd 1\n");
hpd1 |= DC_HPDx_INT_EN;
}
if (rdev->irq.hpd[1]) {
DRM_DEBUG("r600_irq_set: hpd 2\n");
hpd2 |= DC_HPDx_INT_EN;
}
if (rdev->irq.hpd[2]) {
DRM_DEBUG("r600_irq_set: hpd 3\n");
hpd3 |= DC_HPDx_INT_EN;
}
if (rdev->irq.hpd[3]) {
DRM_DEBUG("r600_irq_set: hpd 4\n");
hpd4 |= DC_HPDx_INT_EN;
}
if (rdev->irq.hpd[4]) {
DRM_DEBUG("r600_irq_set: hpd 5\n");
hpd5 |= DC_HPDx_INT_EN;
}
if (rdev->irq.hpd[5]) {
DRM_DEBUG("r600_irq_set: hpd 6\n");
hpd6 |= DC_HPDx_INT_EN;
}
if (rdev->irq.hdmi[0]) {
DRM_DEBUG("r600_irq_set: hdmi 1\n");
hdmi1 |= R600_HDMI_INT_EN;
}
if (rdev->irq.hdmi[1]) {
DRM_DEBUG("r600_irq_set: hdmi 2\n");
hdmi2 |= R600_HDMI_INT_EN;
}
if (rdev->irq.gui_idle) {
DRM_DEBUG("gui idle\n");
grbm_int_cntl |= GUI_IDLE_INT_ENABLE;
}
WREG32(CP_INT_CNTL, cp_int_cntl);
WREG32(DxMODE_INT_MASK, mode_int);
WREG32(D1GRPH_INTERRUPT_CONTROL, d1grph);
WREG32(D2GRPH_INTERRUPT_CONTROL, d2grph);
WREG32(GRBM_INT_CNTL, grbm_int_cntl);
WREG32(R600_HDMI_BLOCK1 + R600_HDMI_CNTL, hdmi1);
if (ASIC_IS_DCE3(rdev)) {
WREG32(R600_HDMI_BLOCK3 + R600_HDMI_CNTL, hdmi2);
WREG32(DC_HPD1_INT_CONTROL, hpd1);
WREG32(DC_HPD2_INT_CONTROL, hpd2);
WREG32(DC_HPD3_INT_CONTROL, hpd3);
WREG32(DC_HPD4_INT_CONTROL, hpd4);
if (ASIC_IS_DCE32(rdev)) {
WREG32(DC_HPD5_INT_CONTROL, hpd5);
WREG32(DC_HPD6_INT_CONTROL, hpd6);
}
} else {
WREG32(R600_HDMI_BLOCK2 + R600_HDMI_CNTL, hdmi2);
WREG32(DC_HOT_PLUG_DETECT1_INT_CONTROL, hpd1);
WREG32(DC_HOT_PLUG_DETECT2_INT_CONTROL, hpd2);
WREG32(DC_HOT_PLUG_DETECT3_INT_CONTROL, hpd3);
}
return 0;
}
static void r600_irq_ack(struct radeon_device *rdev)
{
u32 tmp;
if (ASIC_IS_DCE3(rdev)) {
rdev->irq.stat_regs.r600.disp_int = RREG32(DCE3_DISP_INTERRUPT_STATUS);
rdev->irq.stat_regs.r600.disp_int_cont = RREG32(DCE3_DISP_INTERRUPT_STATUS_CONTINUE);
rdev->irq.stat_regs.r600.disp_int_cont2 = RREG32(DCE3_DISP_INTERRUPT_STATUS_CONTINUE2);
} else {
rdev->irq.stat_regs.r600.disp_int = RREG32(DISP_INTERRUPT_STATUS);
rdev->irq.stat_regs.r600.disp_int_cont = RREG32(DISP_INTERRUPT_STATUS_CONTINUE);
rdev->irq.stat_regs.r600.disp_int_cont2 = 0;
}
rdev->irq.stat_regs.r600.d1grph_int = RREG32(D1GRPH_INTERRUPT_STATUS);
rdev->irq.stat_regs.r600.d2grph_int = RREG32(D2GRPH_INTERRUPT_STATUS);
if (rdev->irq.stat_regs.r600.d1grph_int & DxGRPH_PFLIP_INT_OCCURRED)
WREG32(D1GRPH_INTERRUPT_STATUS, DxGRPH_PFLIP_INT_CLEAR);
if (rdev->irq.stat_regs.r600.d2grph_int & DxGRPH_PFLIP_INT_OCCURRED)
WREG32(D2GRPH_INTERRUPT_STATUS, DxGRPH_PFLIP_INT_CLEAR);
if (rdev->irq.stat_regs.r600.disp_int & LB_D1_VBLANK_INTERRUPT)
WREG32(D1MODE_VBLANK_STATUS, DxMODE_VBLANK_ACK);
if (rdev->irq.stat_regs.r600.disp_int & LB_D1_VLINE_INTERRUPT)
WREG32(D1MODE_VLINE_STATUS, DxMODE_VLINE_ACK);
if (rdev->irq.stat_regs.r600.disp_int & LB_D2_VBLANK_INTERRUPT)
WREG32(D2MODE_VBLANK_STATUS, DxMODE_VBLANK_ACK);
if (rdev->irq.stat_regs.r600.disp_int & LB_D2_VLINE_INTERRUPT)
WREG32(D2MODE_VLINE_STATUS, DxMODE_VLINE_ACK);
if (rdev->irq.stat_regs.r600.disp_int & DC_HPD1_INTERRUPT) {
if (ASIC_IS_DCE3(rdev)) {
tmp = RREG32(DC_HPD1_INT_CONTROL);
tmp |= DC_HPDx_INT_ACK;
WREG32(DC_HPD1_INT_CONTROL, tmp);
} else {
tmp = RREG32(DC_HOT_PLUG_DETECT1_INT_CONTROL);
tmp |= DC_HPDx_INT_ACK;
WREG32(DC_HOT_PLUG_DETECT1_INT_CONTROL, tmp);
}
}
if (rdev->irq.stat_regs.r600.disp_int & DC_HPD2_INTERRUPT) {
if (ASIC_IS_DCE3(rdev)) {
tmp = RREG32(DC_HPD2_INT_CONTROL);
tmp |= DC_HPDx_INT_ACK;
WREG32(DC_HPD2_INT_CONTROL, tmp);
} else {
tmp = RREG32(DC_HOT_PLUG_DETECT2_INT_CONTROL);
tmp |= DC_HPDx_INT_ACK;
WREG32(DC_HOT_PLUG_DETECT2_INT_CONTROL, tmp);
}
}
if (rdev->irq.stat_regs.r600.disp_int_cont & DC_HPD3_INTERRUPT) {
if (ASIC_IS_DCE3(rdev)) {
tmp = RREG32(DC_HPD3_INT_CONTROL);
tmp |= DC_HPDx_INT_ACK;
WREG32(DC_HPD3_INT_CONTROL, tmp);
} else {
tmp = RREG32(DC_HOT_PLUG_DETECT3_INT_CONTROL);
tmp |= DC_HPDx_INT_ACK;
WREG32(DC_HOT_PLUG_DETECT3_INT_CONTROL, tmp);
}
}
if (rdev->irq.stat_regs.r600.disp_int_cont & DC_HPD4_INTERRUPT) {
tmp = RREG32(DC_HPD4_INT_CONTROL);
tmp |= DC_HPDx_INT_ACK;
WREG32(DC_HPD4_INT_CONTROL, tmp);
}
if (ASIC_IS_DCE32(rdev)) {
if (rdev->irq.stat_regs.r600.disp_int_cont2 & DC_HPD5_INTERRUPT) {
tmp = RREG32(DC_HPD5_INT_CONTROL);
tmp |= DC_HPDx_INT_ACK;
WREG32(DC_HPD5_INT_CONTROL, tmp);
}
if (rdev->irq.stat_regs.r600.disp_int_cont2 & DC_HPD6_INTERRUPT) {
tmp = RREG32(DC_HPD5_INT_CONTROL);
tmp |= DC_HPDx_INT_ACK;
WREG32(DC_HPD6_INT_CONTROL, tmp);
}
}
if (RREG32(R600_HDMI_BLOCK1 + R600_HDMI_STATUS) & R600_HDMI_INT_PENDING) {
WREG32_P(R600_HDMI_BLOCK1 + R600_HDMI_CNTL, R600_HDMI_INT_ACK, ~R600_HDMI_INT_ACK);
}
if (ASIC_IS_DCE3(rdev)) {
if (RREG32(R600_HDMI_BLOCK3 + R600_HDMI_STATUS) & R600_HDMI_INT_PENDING) {
WREG32_P(R600_HDMI_BLOCK3 + R600_HDMI_CNTL, R600_HDMI_INT_ACK, ~R600_HDMI_INT_ACK);
}
} else {
if (RREG32(R600_HDMI_BLOCK2 + R600_HDMI_STATUS) & R600_HDMI_INT_PENDING) {
WREG32_P(R600_HDMI_BLOCK2 + R600_HDMI_CNTL, R600_HDMI_INT_ACK, ~R600_HDMI_INT_ACK);
}
}
}
void r600_irq_disable(struct radeon_device *rdev)
{
r600_disable_interrupts(rdev);
/* Wait and acknowledge irq */
mdelay(1);
r600_irq_ack(rdev);
r600_disable_interrupt_state(rdev);
}
static u32 r600_get_ih_wptr(struct radeon_device *rdev)
{
u32 wptr, tmp;
if (rdev->wb.enabled)
wptr = le32_to_cpu(rdev->wb.wb[R600_WB_IH_WPTR_OFFSET/4]);
else
wptr = RREG32(IH_RB_WPTR);
if (wptr & RB_OVERFLOW) {
/* When a ring buffer overflow happen start parsing interrupt
* from the last not overwritten vector (wptr + 16). Hopefully
* this should allow us to catchup.
*/
dev_warn(rdev->dev, "IH ring buffer overflow (0x%08X, %d, %d)\n",
wptr, rdev->ih.rptr, (wptr + 16) + rdev->ih.ptr_mask);
rdev->ih.rptr = (wptr + 16) & rdev->ih.ptr_mask;
tmp = RREG32(IH_RB_CNTL);
tmp |= IH_WPTR_OVERFLOW_CLEAR;
WREG32(IH_RB_CNTL, tmp);
}
return (wptr & rdev->ih.ptr_mask);
}
/* r600 IV Ring
* Each IV ring entry is 128 bits:
* [7:0] - interrupt source id
* [31:8] - reserved
* [59:32] - interrupt source data
* [127:60] - reserved
*
* The basic interrupt vector entries
* are decoded as follows:
* src_id src_data description
* 1 0 D1 Vblank
* 1 1 D1 Vline
* 5 0 D2 Vblank
* 5 1 D2 Vline
* 19 0 FP Hot plug detection A
* 19 1 FP Hot plug detection B
* 19 2 DAC A auto-detection
* 19 3 DAC B auto-detection
* 21 4 HDMI block A
* 21 5 HDMI block B
* 176 - CP_INT RB
* 177 - CP_INT IB1
* 178 - CP_INT IB2
* 181 - EOP Interrupt
* 233 - GUI Idle
*
* Note, these are based on r600 and may need to be
* adjusted or added to on newer asics
*/
int r600_irq_process(struct radeon_device *rdev)
{
u32 wptr;
u32 rptr;
u32 src_id, src_data;
u32 ring_index;
unsigned long flags;
bool queue_hotplug = false;
if (!rdev->ih.enabled || rdev->shutdown)
return IRQ_NONE;
/* No MSIs, need a dummy read to flush PCI DMAs */
if (!rdev->msi_enabled)
RREG32(IH_RB_WPTR);
wptr = r600_get_ih_wptr(rdev);
rptr = rdev->ih.rptr;
DRM_DEBUG("r600_irq_process start: rptr %d, wptr %d\n", rptr, wptr);
spin_lock_irqsave(&rdev->ih.lock, flags);
if (rptr == wptr) {
spin_unlock_irqrestore(&rdev->ih.lock, flags);
return IRQ_NONE;
}
restart_ih:
/* Order reading of wptr vs. reading of IH ring data */
rmb();
/* display interrupts */
r600_irq_ack(rdev);
rdev->ih.wptr = wptr;
while (rptr != wptr) {
/* wptr/rptr are in bytes! */
ring_index = rptr / 4;
src_id = le32_to_cpu(rdev->ih.ring[ring_index]) & 0xff;
src_data = le32_to_cpu(rdev->ih.ring[ring_index + 1]) & 0xfffffff;
switch (src_id) {
case 1: /* D1 vblank/vline */
switch (src_data) {
case 0: /* D1 vblank */
if (rdev->irq.stat_regs.r600.disp_int & LB_D1_VBLANK_INTERRUPT) {
if (rdev->irq.crtc_vblank_int[0]) {
drm_handle_vblank(rdev->ddev, 0);
rdev->pm.vblank_sync = true;
wake_up(&rdev->irq.vblank_queue);
}
if (rdev->irq.pflip[0])
radeon_crtc_handle_flip(rdev, 0);
rdev->irq.stat_regs.r600.disp_int &= ~LB_D1_VBLANK_INTERRUPT;
DRM_DEBUG("IH: D1 vblank\n");
}
break;
case 1: /* D1 vline */
if (rdev->irq.stat_regs.r600.disp_int & LB_D1_VLINE_INTERRUPT) {
rdev->irq.stat_regs.r600.disp_int &= ~LB_D1_VLINE_INTERRUPT;
DRM_DEBUG("IH: D1 vline\n");
}
break;
default:
DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data);
break;
}
break;
case 5: /* D2 vblank/vline */
switch (src_data) {
case 0: /* D2 vblank */
if (rdev->irq.stat_regs.r600.disp_int & LB_D2_VBLANK_INTERRUPT) {
if (rdev->irq.crtc_vblank_int[1]) {
drm_handle_vblank(rdev->ddev, 1);
rdev->pm.vblank_sync = true;
wake_up(&rdev->irq.vblank_queue);
}
if (rdev->irq.pflip[1])
radeon_crtc_handle_flip(rdev, 1);
rdev->irq.stat_regs.r600.disp_int &= ~LB_D2_VBLANK_INTERRUPT;
DRM_DEBUG("IH: D2 vblank\n");
}
break;
case 1: /* D1 vline */
if (rdev->irq.stat_regs.r600.disp_int & LB_D2_VLINE_INTERRUPT) {
rdev->irq.stat_regs.r600.disp_int &= ~LB_D2_VLINE_INTERRUPT;
DRM_DEBUG("IH: D2 vline\n");
}
break;
default:
DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data);
break;
}
break;
case 19: /* HPD/DAC hotplug */
switch (src_data) {
case 0:
if (rdev->irq.stat_regs.r600.disp_int & DC_HPD1_INTERRUPT) {
rdev->irq.stat_regs.r600.disp_int &= ~DC_HPD1_INTERRUPT;
queue_hotplug = true;
DRM_DEBUG("IH: HPD1\n");
}
break;
case 1:
if (rdev->irq.stat_regs.r600.disp_int & DC_HPD2_INTERRUPT) {
rdev->irq.stat_regs.r600.disp_int &= ~DC_HPD2_INTERRUPT;
queue_hotplug = true;
DRM_DEBUG("IH: HPD2\n");
}
break;
case 4:
if (rdev->irq.stat_regs.r600.disp_int_cont & DC_HPD3_INTERRUPT) {
rdev->irq.stat_regs.r600.disp_int_cont &= ~DC_HPD3_INTERRUPT;
queue_hotplug = true;
DRM_DEBUG("IH: HPD3\n");
}
break;
case 5:
if (rdev->irq.stat_regs.r600.disp_int_cont & DC_HPD4_INTERRUPT) {
rdev->irq.stat_regs.r600.disp_int_cont &= ~DC_HPD4_INTERRUPT;
queue_hotplug = true;
DRM_DEBUG("IH: HPD4\n");
}
break;
case 10:
if (rdev->irq.stat_regs.r600.disp_int_cont2 & DC_HPD5_INTERRUPT) {
rdev->irq.stat_regs.r600.disp_int_cont2 &= ~DC_HPD5_INTERRUPT;
queue_hotplug = true;
DRM_DEBUG("IH: HPD5\n");
}
break;
case 12:
if (rdev->irq.stat_regs.r600.disp_int_cont2 & DC_HPD6_INTERRUPT) {
rdev->irq.stat_regs.r600.disp_int_cont2 &= ~DC_HPD6_INTERRUPT;
queue_hotplug = true;
DRM_DEBUG("IH: HPD6\n");
}
break;
default:
DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data);
break;
}
break;
case 21: /* HDMI */
DRM_DEBUG("IH: HDMI: 0x%x\n", src_data);
r600_audio_schedule_polling(rdev);
break;
case 176: /* CP_INT in ring buffer */
case 177: /* CP_INT in IB1 */
case 178: /* CP_INT in IB2 */
DRM_DEBUG("IH: CP int: 0x%08x\n", src_data);
radeon_fence_process(rdev, RADEON_RING_TYPE_GFX_INDEX);
break;
case 181: /* CP EOP event */
DRM_DEBUG("IH: CP EOP\n");
radeon_fence_process(rdev, RADEON_RING_TYPE_GFX_INDEX);
break;
case 233: /* GUI IDLE */
DRM_DEBUG("IH: GUI idle\n");
rdev->pm.gui_idle = true;
wake_up(&rdev->irq.idle_queue);
break;
default:
DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data);
break;
}
/* wptr/rptr are in bytes! */
rptr += 16;
rptr &= rdev->ih.ptr_mask;
}
/* make sure wptr hasn't changed while processing */
wptr = r600_get_ih_wptr(rdev);
if (wptr != rdev->ih.wptr)
goto restart_ih;
if (queue_hotplug)
schedule_work(&rdev->hotplug_work);
rdev->ih.rptr = rptr;
WREG32(IH_RB_RPTR, rdev->ih.rptr);
spin_unlock_irqrestore(&rdev->ih.lock, flags);
return IRQ_HANDLED;
}
/*
* Debugfs info
*/
#if defined(CONFIG_DEBUG_FS)
static int r600_debugfs_mc_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
struct radeon_device *rdev = dev->dev_private;
DREG32_SYS(m, rdev, R_000E50_SRBM_STATUS);
DREG32_SYS(m, rdev, VM_L2_STATUS);
return 0;
}
static struct drm_info_list r600_mc_info_list[] = {
{"r600_mc_info", r600_debugfs_mc_info, 0, NULL},
};
#endif
int r600_debugfs_mc_info_init(struct radeon_device *rdev)
{
#if defined(CONFIG_DEBUG_FS)
return radeon_debugfs_add_files(rdev, r600_mc_info_list, ARRAY_SIZE(r600_mc_info_list));
#else
return 0;
#endif
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
}
/**
* r600_ioctl_wait_idle - flush host path cache on wait idle ioctl
* rdev: radeon device structure
* bo: buffer object struct which userspace is waiting for idle
*
* Some R6XX/R7XX doesn't seems to take into account HDP flush performed
* through ring buffer, this leads to corruption in rendering, see
* http://bugzilla.kernel.org/show_bug.cgi?id=15186 to avoid this we
* directly perform HDP flush by writing register through MMIO.
*/
void r600_ioctl_wait_idle(struct radeon_device *rdev, struct radeon_bo *bo)
{
/* r7xx hw bug. write to HDP_DEBUG1 followed by fb read
* rather than write to HDP_REG_COHERENCY_FLUSH_CNTL.
* This seems to cause problems on some AGP cards. Just use the old
* method for them.
*/
if ((rdev->family >= CHIP_RV770) && (rdev->family <= CHIP_RV740) &&
rdev->vram_scratch.ptr && !(rdev->flags & RADEON_IS_AGP)) {
void __iomem *ptr = (void *)rdev->vram_scratch.ptr;
u32 tmp;
WREG32(HDP_DEBUG1, 0);
tmp = readl((void __iomem *)ptr);
} else
WREG32(R_005480_HDP_MEM_COHERENCY_FLUSH_CNTL, 0x1);
}
void r600_set_pcie_lanes(struct radeon_device *rdev, int lanes)
{
u32 link_width_cntl, mask, target_reg;
if (rdev->flags & RADEON_IS_IGP)
return;
if (!(rdev->flags & RADEON_IS_PCIE))
return;
/* x2 cards have a special sequence */
if (ASIC_IS_X2(rdev))
return;
/* FIXME wait for idle */
switch (lanes) {
case 0:
mask = RADEON_PCIE_LC_LINK_WIDTH_X0;
break;
case 1:
mask = RADEON_PCIE_LC_LINK_WIDTH_X1;
break;
case 2:
mask = RADEON_PCIE_LC_LINK_WIDTH_X2;
break;
case 4:
mask = RADEON_PCIE_LC_LINK_WIDTH_X4;
break;
case 8:
mask = RADEON_PCIE_LC_LINK_WIDTH_X8;
break;
case 12:
mask = RADEON_PCIE_LC_LINK_WIDTH_X12;
break;
case 16:
default:
mask = RADEON_PCIE_LC_LINK_WIDTH_X16;
break;
}
link_width_cntl = RREG32_PCIE_P(RADEON_PCIE_LC_LINK_WIDTH_CNTL);
if ((link_width_cntl & RADEON_PCIE_LC_LINK_WIDTH_RD_MASK) ==
(mask << RADEON_PCIE_LC_LINK_WIDTH_RD_SHIFT))
return;
if (link_width_cntl & R600_PCIE_LC_UPCONFIGURE_DIS)
return;
link_width_cntl &= ~(RADEON_PCIE_LC_LINK_WIDTH_MASK |
RADEON_PCIE_LC_RECONFIG_NOW |
R600_PCIE_LC_RENEGOTIATE_EN |
R600_PCIE_LC_RECONFIG_ARC_MISSING_ESCAPE);
link_width_cntl |= mask;
WREG32_PCIE_P(RADEON_PCIE_LC_LINK_WIDTH_CNTL, link_width_cntl);
/* some northbridges can renegotiate the link rather than requiring
* a complete re-config.
* e.g., AMD 780/790 northbridges (pci ids: 0x5956, 0x5957, 0x5958, etc.)
*/
if (link_width_cntl & R600_PCIE_LC_RENEGOTIATION_SUPPORT)
link_width_cntl |= R600_PCIE_LC_RENEGOTIATE_EN | R600_PCIE_LC_UPCONFIGURE_SUPPORT;
else
link_width_cntl |= R600_PCIE_LC_RECONFIG_ARC_MISSING_ESCAPE;
WREG32_PCIE_P(RADEON_PCIE_LC_LINK_WIDTH_CNTL, (link_width_cntl |
RADEON_PCIE_LC_RECONFIG_NOW));
if (rdev->family >= CHIP_RV770)
target_reg = R700_TARGET_AND_CURRENT_PROFILE_INDEX;
else
target_reg = R600_TARGET_AND_CURRENT_PROFILE_INDEX;
/* wait for lane set to complete */
link_width_cntl = RREG32(target_reg);
while (link_width_cntl == 0xffffffff)
link_width_cntl = RREG32(target_reg);
}
int r600_get_pcie_lanes(struct radeon_device *rdev)
{
u32 link_width_cntl;
if (rdev->flags & RADEON_IS_IGP)
return 0;
if (!(rdev->flags & RADEON_IS_PCIE))
return 0;
/* x2 cards have a special sequence */
if (ASIC_IS_X2(rdev))
return 0;
/* FIXME wait for idle */
link_width_cntl = RREG32_PCIE_P(RADEON_PCIE_LC_LINK_WIDTH_CNTL);
switch ((link_width_cntl & RADEON_PCIE_LC_LINK_WIDTH_RD_MASK) >> RADEON_PCIE_LC_LINK_WIDTH_RD_SHIFT) {
case RADEON_PCIE_LC_LINK_WIDTH_X0:
return 0;
case RADEON_PCIE_LC_LINK_WIDTH_X1:
return 1;
case RADEON_PCIE_LC_LINK_WIDTH_X2:
return 2;
case RADEON_PCIE_LC_LINK_WIDTH_X4:
return 4;
case RADEON_PCIE_LC_LINK_WIDTH_X8:
return 8;
case RADEON_PCIE_LC_LINK_WIDTH_X16:
default:
return 16;
}
}
static void r600_pcie_gen2_enable(struct radeon_device *rdev)
{
u32 link_width_cntl, lanes, speed_cntl, training_cntl, tmp;
u16 link_cntl2;
if (radeon_pcie_gen2 == 0)
return;
if (rdev->flags & RADEON_IS_IGP)
return;
if (!(rdev->flags & RADEON_IS_PCIE))
return;
/* x2 cards have a special sequence */
if (ASIC_IS_X2(rdev))
return;
/* only RV6xx+ chips are supported */
if (rdev->family <= CHIP_R600)
return;
/* 55 nm r6xx asics */
if ((rdev->family == CHIP_RV670) ||
(rdev->family == CHIP_RV620) ||
(rdev->family == CHIP_RV635)) {
/* advertise upconfig capability */
link_width_cntl = RREG32_PCIE_P(PCIE_LC_LINK_WIDTH_CNTL);
link_width_cntl &= ~LC_UPCONFIGURE_DIS;
WREG32_PCIE_P(PCIE_LC_LINK_WIDTH_CNTL, link_width_cntl);
link_width_cntl = RREG32_PCIE_P(PCIE_LC_LINK_WIDTH_CNTL);
if (link_width_cntl & LC_RENEGOTIATION_SUPPORT) {
lanes = (link_width_cntl & LC_LINK_WIDTH_RD_MASK) >> LC_LINK_WIDTH_RD_SHIFT;
link_width_cntl &= ~(LC_LINK_WIDTH_MASK |
LC_RECONFIG_ARC_MISSING_ESCAPE);
link_width_cntl |= lanes | LC_RECONFIG_NOW | LC_RENEGOTIATE_EN;
WREG32_PCIE_P(PCIE_LC_LINK_WIDTH_CNTL, link_width_cntl);
} else {
link_width_cntl |= LC_UPCONFIGURE_DIS;
WREG32_PCIE_P(PCIE_LC_LINK_WIDTH_CNTL, link_width_cntl);
}
}
speed_cntl = RREG32_PCIE_P(PCIE_LC_SPEED_CNTL);
if ((speed_cntl & LC_OTHER_SIDE_EVER_SENT_GEN2) &&
(speed_cntl & LC_OTHER_SIDE_SUPPORTS_GEN2)) {
/* 55 nm r6xx asics */
if ((rdev->family == CHIP_RV670) ||
(rdev->family == CHIP_RV620) ||
(rdev->family == CHIP_RV635)) {
WREG32(MM_CFGREGS_CNTL, 0x8);
link_cntl2 = RREG32(0x4088);
WREG32(MM_CFGREGS_CNTL, 0);
/* not supported yet */
if (link_cntl2 & SELECTABLE_DEEMPHASIS)
return;
}
speed_cntl &= ~LC_SPEED_CHANGE_ATTEMPTS_ALLOWED_MASK;
speed_cntl |= (0x3 << LC_SPEED_CHANGE_ATTEMPTS_ALLOWED_SHIFT);
speed_cntl &= ~LC_VOLTAGE_TIMER_SEL_MASK;
speed_cntl &= ~LC_FORCE_DIS_HW_SPEED_CHANGE;
speed_cntl |= LC_FORCE_EN_HW_SPEED_CHANGE;
WREG32_PCIE_P(PCIE_LC_SPEED_CNTL, speed_cntl);
tmp = RREG32(0x541c);
WREG32(0x541c, tmp | 0x8);
WREG32(MM_CFGREGS_CNTL, MM_WR_TO_CFG_EN);
link_cntl2 = RREG16(0x4088);
link_cntl2 &= ~TARGET_LINK_SPEED_MASK;
link_cntl2 |= 0x2;
WREG16(0x4088, link_cntl2);
WREG32(MM_CFGREGS_CNTL, 0);
if ((rdev->family == CHIP_RV670) ||
(rdev->family == CHIP_RV620) ||
(rdev->family == CHIP_RV635)) {
training_cntl = RREG32_PCIE_P(PCIE_LC_TRAINING_CNTL);
training_cntl &= ~LC_POINT_7_PLUS_EN;
WREG32_PCIE_P(PCIE_LC_TRAINING_CNTL, training_cntl);
} else {
speed_cntl = RREG32_PCIE_P(PCIE_LC_SPEED_CNTL);
speed_cntl &= ~LC_TARGET_LINK_SPEED_OVERRIDE_EN;
WREG32_PCIE_P(PCIE_LC_SPEED_CNTL, speed_cntl);
}
speed_cntl = RREG32_PCIE_P(PCIE_LC_SPEED_CNTL);
speed_cntl |= LC_GEN2_EN_STRAP;
WREG32_PCIE_P(PCIE_LC_SPEED_CNTL, speed_cntl);
} else {
link_width_cntl = RREG32_PCIE_P(PCIE_LC_LINK_WIDTH_CNTL);
/* XXX: only disable it if gen1 bridge vendor == 0x111d or 0x1106 */
if (1)
link_width_cntl |= LC_UPCONFIGURE_DIS;
else
link_width_cntl &= ~LC_UPCONFIGURE_DIS;
WREG32_PCIE_P(PCIE_LC_LINK_WIDTH_CNTL, link_width_cntl);
}
}