linux/drivers/char/ipmi/ipmi_si_intf.c

3787 lines
93 KiB
C
Raw Normal View History

/*
* ipmi_si.c
*
* The interface to the IPMI driver for the system interfaces (KCS, SMIC,
* BT).
*
* Author: MontaVista Software, Inc.
* Corey Minyard <minyard@mvista.com>
* source@mvista.com
*
* Copyright 2002 MontaVista Software Inc.
* Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
* USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* This file holds the "policy" for the interface to the SMI state
* machine. It does the configuration, handles timers and interrupts,
* and drives the real SMI state machine.
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/sched.h>
#include <linux/seq_file.h>
#include <linux/timer.h>
#include <linux/errno.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/list.h>
#include <linux/pci.h>
#include <linux/ioport.h>
#include <linux/notifier.h>
#include <linux/mutex.h>
#include <linux/kthread.h>
#include <asm/irq.h>
#include <linux/interrupt.h>
#include <linux/rcupdate.h>
#include <linux/ipmi.h>
#include <linux/ipmi_smi.h>
#include <asm/io.h>
#include "ipmi_si_sm.h"
#include <linux/dmi.h>
#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/pnp.h>
#include <linux/of_device.h>
#include <linux/of_platform.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#ifdef CONFIG_PARISC
#include <asm/hardware.h> /* for register_parisc_driver() stuff */
#include <asm/parisc-device.h>
#endif
#define PFX "ipmi_si: "
/* Measure times between events in the driver. */
#undef DEBUG_TIMING
/* Call every 10 ms. */
#define SI_TIMEOUT_TIME_USEC 10000
#define SI_USEC_PER_JIFFY (1000000/HZ)
#define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
#define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
short timeout */
enum si_intf_state {
SI_NORMAL,
SI_GETTING_FLAGS,
SI_GETTING_EVENTS,
SI_CLEARING_FLAGS,
SI_GETTING_MESSAGES,
SI_CHECKING_ENABLES,
SI_SETTING_ENABLES
/* FIXME - add watchdog stuff. */
};
/* Some BT-specific defines we need here. */
#define IPMI_BT_INTMASK_REG 2
#define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
#define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
enum si_type {
SI_KCS, SI_SMIC, SI_BT
};
static char *si_to_str[] = { "kcs", "smic", "bt" };
#define DEVICE_NAME "ipmi_si"
static struct platform_driver ipmi_driver;
/*
* Indexes into stats[] in smi_info below.
*/
enum si_stat_indexes {
/*
* Number of times the driver requested a timer while an operation
* was in progress.
*/
SI_STAT_short_timeouts = 0,
/*
* Number of times the driver requested a timer while nothing was in
* progress.
*/
SI_STAT_long_timeouts,
/* Number of times the interface was idle while being polled. */
SI_STAT_idles,
/* Number of interrupts the driver handled. */
SI_STAT_interrupts,
/* Number of time the driver got an ATTN from the hardware. */
SI_STAT_attentions,
/* Number of times the driver requested flags from the hardware. */
SI_STAT_flag_fetches,
/* Number of times the hardware didn't follow the state machine. */
SI_STAT_hosed_count,
/* Number of completed messages. */
SI_STAT_complete_transactions,
/* Number of IPMI events received from the hardware. */
SI_STAT_events,
/* Number of watchdog pretimeouts. */
SI_STAT_watchdog_pretimeouts,
/* Number of asynchronous messages received. */
SI_STAT_incoming_messages,
/* This *must* remain last, add new values above this. */
SI_NUM_STATS
};
struct smi_info {
int intf_num;
ipmi_smi_t intf;
struct si_sm_data *si_sm;
struct si_sm_handlers *handlers;
enum si_type si_type;
spinlock_t si_lock;
struct ipmi_smi_msg *waiting_msg;
struct ipmi_smi_msg *curr_msg;
enum si_intf_state si_state;
/*
* Used to handle the various types of I/O that can occur with
* IPMI
*/
struct si_sm_io io;
int (*io_setup)(struct smi_info *info);
void (*io_cleanup)(struct smi_info *info);
int (*irq_setup)(struct smi_info *info);
void (*irq_cleanup)(struct smi_info *info);
unsigned int io_size;
enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
void (*addr_source_cleanup)(struct smi_info *info);
void *addr_source_data;
/*
* Per-OEM handler, called from handle_flags(). Returns 1
* when handle_flags() needs to be re-run or 0 indicating it
* set si_state itself.
*/
int (*oem_data_avail_handler)(struct smi_info *smi_info);
/*
* Flags from the last GET_MSG_FLAGS command, used when an ATTN
* is set to hold the flags until we are done handling everything
* from the flags.
*/
#define RECEIVE_MSG_AVAIL 0x01
#define EVENT_MSG_BUFFER_FULL 0x02
#define WDT_PRE_TIMEOUT_INT 0x08
#define OEM0_DATA_AVAIL 0x20
#define OEM1_DATA_AVAIL 0x40
#define OEM2_DATA_AVAIL 0x80
#define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
OEM1_DATA_AVAIL | \
OEM2_DATA_AVAIL)
unsigned char msg_flags;
/* Does the BMC have an event buffer? */
bool has_event_buffer;
/*
* If set to true, this will request events the next time the
* state machine is idle.
*/
atomic_t req_events;
/*
* If true, run the state machine to completion on every send
* call. Generally used after a panic to make sure stuff goes
* out.
*/
bool run_to_completion;
/* The I/O port of an SI interface. */
int port;
/*
* The space between start addresses of the two ports. For
* instance, if the first port is 0xca2 and the spacing is 4, then
* the second port is 0xca6.
*/
unsigned int spacing;
/* zero if no irq; */
int irq;
/* The timer for this si. */
struct timer_list si_timer;
/* This flag is set, if the timer is running (timer_pending() isn't enough) */
bool timer_running;
/* The time (in jiffies) the last timeout occurred at. */
unsigned long last_timeout_jiffies;
/* Are we waiting for the events, pretimeouts, received msgs? */
atomic_t need_watch;
/*
* The driver will disable interrupts when it gets into a
* situation where it cannot handle messages due to lack of
* memory. Once that situation clears up, it will re-enable
* interrupts.
*/
bool interrupt_disabled;
/*
* Does the BMC support events?
*/
bool supports_event_msg_buff;
/*
* Did we get an attention that we did not handle?
*/
bool got_attn;
/* From the get device id response... */
struct ipmi_device_id device_id;
/* Driver model stuff. */
struct device *dev;
struct platform_device *pdev;
/*
* True if we allocated the device, false if it came from
* someplace else (like PCI).
*/
bool dev_registered;
/* Slave address, could be reported from DMI. */
unsigned char slave_addr;
/* Counters and things for the proc filesystem. */
atomic_t stats[SI_NUM_STATS];
struct task_struct *thread;
struct list_head link;
union ipmi_smi_info_union addr_info;
};
#define smi_inc_stat(smi, stat) \
atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
#define smi_get_stat(smi, stat) \
((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
#define SI_MAX_PARMS 4
static int force_kipmid[SI_MAX_PARMS];
static int num_force_kipmid;
#ifdef CONFIG_PCI
static bool pci_registered;
#endif
ipmi: fix hardcoded ipmi device exit path warning When modprobe.conf has options ipmi_si type="kcs" ports=0xCA2 regspacings="4" ipmi_si can be loaded properly, but when try to unload it get: Sep 20 15:00:27 xx abrt: Kerneloops: Reported 1 kernel oopses to Abrt Sep 20 15:00:27 xx abrtd: Directory 'kerneloops-1285020027-1' creation detected Sep 20 15:00:27 xx abrtd: New crash /var/spool/abrt/kerneloops-1285020027-1, processing Sep 20 15:01:09 xx kernel: ------------[ cut here ]------------ Sep 20 15:01:09 xx kernel: WARNING: at drivers/base/driver.c:262 driver_unregister+0x8a/0xa0() Sep 20 15:01:09 xx kernel: Hardware name: Sun Fire x4800 Sep 20 15:01:09 xx kernel: Unexpected driver unregister! Sep 20 15:01:09 xx kernel: Modules linked in: ipmi_si(-) ipmi_msghandler ip6table_filter ip6_tables ebtable_nat ebtables ipt_MASQUERADE iptable_nat nf_nat bridge stp llc autofs4 sunrpc cpufreq_ondemand acpi_cpufreq freq_table mperf xt_physdev be2iscsi iscsi_boot_sysfs bnx2i cnic uio cxgb3i iw_cxgb3 cxgb3 mdio ib_iser rdma_cm ib_cm iw_cm ib_sa ib_mad ib_core ib_addr ipv6 iscsi_tcp libiscsi_tcp libiscsi scsi_transport_iscsi dm_mirror dm_region_hash dm_log dm_mod vhost_net macvtap macvlan tun kvm_intel kvm uinput sg ses enclosure ahci libahci pcspkr i2c_i801 i2c_core iTCO_wdt iTCO_vendor_support igb dca i7core_edac edac_core ext3 jbd mbcache sd_mod crc_t10dif megaraid_sas [last unloaded: ipmi_devintf] Sep 20 15:01:09 xx kernel: Pid: 10625, comm: modprobe Tainted: G W 2.6.36-rc5-tip+ #6 Sep 20 15:01:09 xx kernel: Call Trace: Sep 20 15:01:09 xx kernel: [<ffffffff810600df>] warn_slowpath_common+0x7f/0xc0 Sep 20 15:01:09 xx kernel: [<ffffffff810601d6>] warn_slowpath_fmt+0x46/0x50 Sep 20 15:01:09 xx kernel: [<ffffffff812ff60a>] driver_unregister+0x8a/0xa0 Sep 20 15:01:09 xx kernel: [<ffffffff812ae112>] pnp_unregister_driver+0x12/0x20 Sep 20 15:01:09 xx kernel: [<ffffffffa01d0327>] cleanup_ipmi_si+0x3c/0xa7 [ipmi_si] Sep 20 15:01:09 xx kernel: [<ffffffff81099a60>] sys_delete_module+0x1a0/0x270 Sep 20 15:01:09 xx kernel: [<ffffffff814b7070>] ? do_page_fault+0x150/0x320 Sep 20 15:01:09 xx kernel: [<ffffffff8100b072>] system_call_fastpath+0x16/0x1b Sep 20 15:01:09 xx kernel: ---[ end trace 0d1967161adcee0d ]--- We need to check if ipmi_pnp_driver is loaded before we try to unload it. Signed-off-by: Yinghai Lu <yinghai@kernel.org> Cc: Corey Minyard <minyard@acm.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-09-22 20:05:15 +00:00
#ifdef CONFIG_ACPI
static bool pnp_registered;
ipmi: fix hardcoded ipmi device exit path warning When modprobe.conf has options ipmi_si type="kcs" ports=0xCA2 regspacings="4" ipmi_si can be loaded properly, but when try to unload it get: Sep 20 15:00:27 xx abrt: Kerneloops: Reported 1 kernel oopses to Abrt Sep 20 15:00:27 xx abrtd: Directory 'kerneloops-1285020027-1' creation detected Sep 20 15:00:27 xx abrtd: New crash /var/spool/abrt/kerneloops-1285020027-1, processing Sep 20 15:01:09 xx kernel: ------------[ cut here ]------------ Sep 20 15:01:09 xx kernel: WARNING: at drivers/base/driver.c:262 driver_unregister+0x8a/0xa0() Sep 20 15:01:09 xx kernel: Hardware name: Sun Fire x4800 Sep 20 15:01:09 xx kernel: Unexpected driver unregister! Sep 20 15:01:09 xx kernel: Modules linked in: ipmi_si(-) ipmi_msghandler ip6table_filter ip6_tables ebtable_nat ebtables ipt_MASQUERADE iptable_nat nf_nat bridge stp llc autofs4 sunrpc cpufreq_ondemand acpi_cpufreq freq_table mperf xt_physdev be2iscsi iscsi_boot_sysfs bnx2i cnic uio cxgb3i iw_cxgb3 cxgb3 mdio ib_iser rdma_cm ib_cm iw_cm ib_sa ib_mad ib_core ib_addr ipv6 iscsi_tcp libiscsi_tcp libiscsi scsi_transport_iscsi dm_mirror dm_region_hash dm_log dm_mod vhost_net macvtap macvlan tun kvm_intel kvm uinput sg ses enclosure ahci libahci pcspkr i2c_i801 i2c_core iTCO_wdt iTCO_vendor_support igb dca i7core_edac edac_core ext3 jbd mbcache sd_mod crc_t10dif megaraid_sas [last unloaded: ipmi_devintf] Sep 20 15:01:09 xx kernel: Pid: 10625, comm: modprobe Tainted: G W 2.6.36-rc5-tip+ #6 Sep 20 15:01:09 xx kernel: Call Trace: Sep 20 15:01:09 xx kernel: [<ffffffff810600df>] warn_slowpath_common+0x7f/0xc0 Sep 20 15:01:09 xx kernel: [<ffffffff810601d6>] warn_slowpath_fmt+0x46/0x50 Sep 20 15:01:09 xx kernel: [<ffffffff812ff60a>] driver_unregister+0x8a/0xa0 Sep 20 15:01:09 xx kernel: [<ffffffff812ae112>] pnp_unregister_driver+0x12/0x20 Sep 20 15:01:09 xx kernel: [<ffffffffa01d0327>] cleanup_ipmi_si+0x3c/0xa7 [ipmi_si] Sep 20 15:01:09 xx kernel: [<ffffffff81099a60>] sys_delete_module+0x1a0/0x270 Sep 20 15:01:09 xx kernel: [<ffffffff814b7070>] ? do_page_fault+0x150/0x320 Sep 20 15:01:09 xx kernel: [<ffffffff8100b072>] system_call_fastpath+0x16/0x1b Sep 20 15:01:09 xx kernel: ---[ end trace 0d1967161adcee0d ]--- We need to check if ipmi_pnp_driver is loaded before we try to unload it. Signed-off-by: Yinghai Lu <yinghai@kernel.org> Cc: Corey Minyard <minyard@acm.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-09-22 20:05:15 +00:00
#endif
#ifdef CONFIG_PARISC
static bool parisc_registered;
#endif
static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
static int num_max_busy_us;
static bool unload_when_empty = true;
static int add_smi(struct smi_info *smi);
static int try_smi_init(struct smi_info *smi);
static void cleanup_one_si(struct smi_info *to_clean);
static void cleanup_ipmi_si(void);
[PATCH] Notifier chain update: API changes The kernel's implementation of notifier chains is unsafe. There is no protection against entries being added to or removed from a chain while the chain is in use. The issues were discussed in this thread: http://marc.theaimsgroup.com/?l=linux-kernel&m=113018709002036&w=2 We noticed that notifier chains in the kernel fall into two basic usage classes: "Blocking" chains are always called from a process context and the callout routines are allowed to sleep; "Atomic" chains can be called from an atomic context and the callout routines are not allowed to sleep. We decided to codify this distinction and make it part of the API. Therefore this set of patches introduces three new, parallel APIs: one for blocking notifiers, one for atomic notifiers, and one for "raw" notifiers (which is really just the old API under a new name). New kinds of data structures are used for the heads of the chains, and new routines are defined for registration, unregistration, and calling a chain. The three APIs are explained in include/linux/notifier.h and their implementation is in kernel/sys.c. With atomic and blocking chains, the implementation guarantees that the chain links will not be corrupted and that chain callers will not get messed up by entries being added or removed. For raw chains the implementation provides no guarantees at all; users of this API must provide their own protections. (The idea was that situations may come up where the assumptions of the atomic and blocking APIs are not appropriate, so it should be possible for users to handle these things in their own way.) There are some limitations, which should not be too hard to live with. For atomic/blocking chains, registration and unregistration must always be done in a process context since the chain is protected by a mutex/rwsem. Also, a callout routine for a non-raw chain must not try to register or unregister entries on its own chain. (This did happen in a couple of places and the code had to be changed to avoid it.) Since atomic chains may be called from within an NMI handler, they cannot use spinlocks for synchronization. Instead we use RCU. The overhead falls almost entirely in the unregister routine, which is okay since unregistration is much less frequent that calling a chain. Here is the list of chains that we adjusted and their classifications. None of them use the raw API, so for the moment it is only a placeholder. ATOMIC CHAINS ------------- arch/i386/kernel/traps.c: i386die_chain arch/ia64/kernel/traps.c: ia64die_chain arch/powerpc/kernel/traps.c: powerpc_die_chain arch/sparc64/kernel/traps.c: sparc64die_chain arch/x86_64/kernel/traps.c: die_chain drivers/char/ipmi/ipmi_si_intf.c: xaction_notifier_list kernel/panic.c: panic_notifier_list kernel/profile.c: task_free_notifier net/bluetooth/hci_core.c: hci_notifier net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_chain net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_expect_chain net/ipv6/addrconf.c: inet6addr_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_expect_chain net/netlink/af_netlink.c: netlink_chain BLOCKING CHAINS --------------- arch/powerpc/platforms/pseries/reconfig.c: pSeries_reconfig_chain arch/s390/kernel/process.c: idle_chain arch/x86_64/kernel/process.c idle_notifier drivers/base/memory.c: memory_chain drivers/cpufreq/cpufreq.c cpufreq_policy_notifier_list drivers/cpufreq/cpufreq.c cpufreq_transition_notifier_list drivers/macintosh/adb.c: adb_client_list drivers/macintosh/via-pmu.c sleep_notifier_list drivers/macintosh/via-pmu68k.c sleep_notifier_list drivers/macintosh/windfarm_core.c wf_client_list drivers/usb/core/notify.c usb_notifier_list drivers/video/fbmem.c fb_notifier_list kernel/cpu.c cpu_chain kernel/module.c module_notify_list kernel/profile.c munmap_notifier kernel/profile.c task_exit_notifier kernel/sys.c reboot_notifier_list net/core/dev.c netdev_chain net/decnet/dn_dev.c: dnaddr_chain net/ipv4/devinet.c: inetaddr_chain It's possible that some of these classifications are wrong. If they are, please let us know or submit a patch to fix them. Note that any chain that gets called very frequently should be atomic, because the rwsem read-locking used for blocking chains is very likely to incur cache misses on SMP systems. (However, if the chain's callout routines may sleep then the chain cannot be atomic.) The patch set was written by Alan Stern and Chandra Seetharaman, incorporating material written by Keith Owens and suggestions from Paul McKenney and Andrew Morton. [jes@sgi.com: restructure the notifier chain initialization macros] Signed-off-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com> Signed-off-by: Jes Sorensen <jes@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 09:16:30 +00:00
static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
static int register_xaction_notifier(struct notifier_block *nb)
{
[PATCH] Notifier chain update: API changes The kernel's implementation of notifier chains is unsafe. There is no protection against entries being added to or removed from a chain while the chain is in use. The issues were discussed in this thread: http://marc.theaimsgroup.com/?l=linux-kernel&m=113018709002036&w=2 We noticed that notifier chains in the kernel fall into two basic usage classes: "Blocking" chains are always called from a process context and the callout routines are allowed to sleep; "Atomic" chains can be called from an atomic context and the callout routines are not allowed to sleep. We decided to codify this distinction and make it part of the API. Therefore this set of patches introduces three new, parallel APIs: one for blocking notifiers, one for atomic notifiers, and one for "raw" notifiers (which is really just the old API under a new name). New kinds of data structures are used for the heads of the chains, and new routines are defined for registration, unregistration, and calling a chain. The three APIs are explained in include/linux/notifier.h and their implementation is in kernel/sys.c. With atomic and blocking chains, the implementation guarantees that the chain links will not be corrupted and that chain callers will not get messed up by entries being added or removed. For raw chains the implementation provides no guarantees at all; users of this API must provide their own protections. (The idea was that situations may come up where the assumptions of the atomic and blocking APIs are not appropriate, so it should be possible for users to handle these things in their own way.) There are some limitations, which should not be too hard to live with. For atomic/blocking chains, registration and unregistration must always be done in a process context since the chain is protected by a mutex/rwsem. Also, a callout routine for a non-raw chain must not try to register or unregister entries on its own chain. (This did happen in a couple of places and the code had to be changed to avoid it.) Since atomic chains may be called from within an NMI handler, they cannot use spinlocks for synchronization. Instead we use RCU. The overhead falls almost entirely in the unregister routine, which is okay since unregistration is much less frequent that calling a chain. Here is the list of chains that we adjusted and their classifications. None of them use the raw API, so for the moment it is only a placeholder. ATOMIC CHAINS ------------- arch/i386/kernel/traps.c: i386die_chain arch/ia64/kernel/traps.c: ia64die_chain arch/powerpc/kernel/traps.c: powerpc_die_chain arch/sparc64/kernel/traps.c: sparc64die_chain arch/x86_64/kernel/traps.c: die_chain drivers/char/ipmi/ipmi_si_intf.c: xaction_notifier_list kernel/panic.c: panic_notifier_list kernel/profile.c: task_free_notifier net/bluetooth/hci_core.c: hci_notifier net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_chain net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_expect_chain net/ipv6/addrconf.c: inet6addr_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_expect_chain net/netlink/af_netlink.c: netlink_chain BLOCKING CHAINS --------------- arch/powerpc/platforms/pseries/reconfig.c: pSeries_reconfig_chain arch/s390/kernel/process.c: idle_chain arch/x86_64/kernel/process.c idle_notifier drivers/base/memory.c: memory_chain drivers/cpufreq/cpufreq.c cpufreq_policy_notifier_list drivers/cpufreq/cpufreq.c cpufreq_transition_notifier_list drivers/macintosh/adb.c: adb_client_list drivers/macintosh/via-pmu.c sleep_notifier_list drivers/macintosh/via-pmu68k.c sleep_notifier_list drivers/macintosh/windfarm_core.c wf_client_list drivers/usb/core/notify.c usb_notifier_list drivers/video/fbmem.c fb_notifier_list kernel/cpu.c cpu_chain kernel/module.c module_notify_list kernel/profile.c munmap_notifier kernel/profile.c task_exit_notifier kernel/sys.c reboot_notifier_list net/core/dev.c netdev_chain net/decnet/dn_dev.c: dnaddr_chain net/ipv4/devinet.c: inetaddr_chain It's possible that some of these classifications are wrong. If they are, please let us know or submit a patch to fix them. Note that any chain that gets called very frequently should be atomic, because the rwsem read-locking used for blocking chains is very likely to incur cache misses on SMP systems. (However, if the chain's callout routines may sleep then the chain cannot be atomic.) The patch set was written by Alan Stern and Chandra Seetharaman, incorporating material written by Keith Owens and suggestions from Paul McKenney and Andrew Morton. [jes@sgi.com: restructure the notifier chain initialization macros] Signed-off-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com> Signed-off-by: Jes Sorensen <jes@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 09:16:30 +00:00
return atomic_notifier_chain_register(&xaction_notifier_list, nb);
}
static void deliver_recv_msg(struct smi_info *smi_info,
struct ipmi_smi_msg *msg)
{
/* Deliver the message to the upper layer. */
if (smi_info->intf)
ipmi_smi_msg_received(smi_info->intf, msg);
else
ipmi_free_smi_msg(msg);
}
static void return_hosed_msg(struct smi_info *smi_info, int cCode)
{
struct ipmi_smi_msg *msg = smi_info->curr_msg;
if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
cCode = IPMI_ERR_UNSPECIFIED;
/* else use it as is */
/* Make it a response */
msg->rsp[0] = msg->data[0] | 4;
msg->rsp[1] = msg->data[1];
msg->rsp[2] = cCode;
msg->rsp_size = 3;
smi_info->curr_msg = NULL;
deliver_recv_msg(smi_info, msg);
}
static enum si_sm_result start_next_msg(struct smi_info *smi_info)
{
int rv;
#ifdef DEBUG_TIMING
struct timeval t;
#endif
if (!smi_info->waiting_msg) {
smi_info->curr_msg = NULL;
rv = SI_SM_IDLE;
} else {
int err;
smi_info->curr_msg = smi_info->waiting_msg;
smi_info->waiting_msg = NULL;
#ifdef DEBUG_TIMING
do_gettimeofday(&t);
printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
#endif
[PATCH] Notifier chain update: API changes The kernel's implementation of notifier chains is unsafe. There is no protection against entries being added to or removed from a chain while the chain is in use. The issues were discussed in this thread: http://marc.theaimsgroup.com/?l=linux-kernel&m=113018709002036&w=2 We noticed that notifier chains in the kernel fall into two basic usage classes: "Blocking" chains are always called from a process context and the callout routines are allowed to sleep; "Atomic" chains can be called from an atomic context and the callout routines are not allowed to sleep. We decided to codify this distinction and make it part of the API. Therefore this set of patches introduces three new, parallel APIs: one for blocking notifiers, one for atomic notifiers, and one for "raw" notifiers (which is really just the old API under a new name). New kinds of data structures are used for the heads of the chains, and new routines are defined for registration, unregistration, and calling a chain. The three APIs are explained in include/linux/notifier.h and their implementation is in kernel/sys.c. With atomic and blocking chains, the implementation guarantees that the chain links will not be corrupted and that chain callers will not get messed up by entries being added or removed. For raw chains the implementation provides no guarantees at all; users of this API must provide their own protections. (The idea was that situations may come up where the assumptions of the atomic and blocking APIs are not appropriate, so it should be possible for users to handle these things in their own way.) There are some limitations, which should not be too hard to live with. For atomic/blocking chains, registration and unregistration must always be done in a process context since the chain is protected by a mutex/rwsem. Also, a callout routine for a non-raw chain must not try to register or unregister entries on its own chain. (This did happen in a couple of places and the code had to be changed to avoid it.) Since atomic chains may be called from within an NMI handler, they cannot use spinlocks for synchronization. Instead we use RCU. The overhead falls almost entirely in the unregister routine, which is okay since unregistration is much less frequent that calling a chain. Here is the list of chains that we adjusted and their classifications. None of them use the raw API, so for the moment it is only a placeholder. ATOMIC CHAINS ------------- arch/i386/kernel/traps.c: i386die_chain arch/ia64/kernel/traps.c: ia64die_chain arch/powerpc/kernel/traps.c: powerpc_die_chain arch/sparc64/kernel/traps.c: sparc64die_chain arch/x86_64/kernel/traps.c: die_chain drivers/char/ipmi/ipmi_si_intf.c: xaction_notifier_list kernel/panic.c: panic_notifier_list kernel/profile.c: task_free_notifier net/bluetooth/hci_core.c: hci_notifier net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_chain net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_expect_chain net/ipv6/addrconf.c: inet6addr_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_expect_chain net/netlink/af_netlink.c: netlink_chain BLOCKING CHAINS --------------- arch/powerpc/platforms/pseries/reconfig.c: pSeries_reconfig_chain arch/s390/kernel/process.c: idle_chain arch/x86_64/kernel/process.c idle_notifier drivers/base/memory.c: memory_chain drivers/cpufreq/cpufreq.c cpufreq_policy_notifier_list drivers/cpufreq/cpufreq.c cpufreq_transition_notifier_list drivers/macintosh/adb.c: adb_client_list drivers/macintosh/via-pmu.c sleep_notifier_list drivers/macintosh/via-pmu68k.c sleep_notifier_list drivers/macintosh/windfarm_core.c wf_client_list drivers/usb/core/notify.c usb_notifier_list drivers/video/fbmem.c fb_notifier_list kernel/cpu.c cpu_chain kernel/module.c module_notify_list kernel/profile.c munmap_notifier kernel/profile.c task_exit_notifier kernel/sys.c reboot_notifier_list net/core/dev.c netdev_chain net/decnet/dn_dev.c: dnaddr_chain net/ipv4/devinet.c: inetaddr_chain It's possible that some of these classifications are wrong. If they are, please let us know or submit a patch to fix them. Note that any chain that gets called very frequently should be atomic, because the rwsem read-locking used for blocking chains is very likely to incur cache misses on SMP systems. (However, if the chain's callout routines may sleep then the chain cannot be atomic.) The patch set was written by Alan Stern and Chandra Seetharaman, incorporating material written by Keith Owens and suggestions from Paul McKenney and Andrew Morton. [jes@sgi.com: restructure the notifier chain initialization macros] Signed-off-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com> Signed-off-by: Jes Sorensen <jes@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 09:16:30 +00:00
err = atomic_notifier_call_chain(&xaction_notifier_list,
0, smi_info);
if (err & NOTIFY_STOP_MASK) {
rv = SI_SM_CALL_WITHOUT_DELAY;
goto out;
}
err = smi_info->handlers->start_transaction(
smi_info->si_sm,
smi_info->curr_msg->data,
smi_info->curr_msg->data_size);
if (err)
return_hosed_msg(smi_info, err);
rv = SI_SM_CALL_WITHOUT_DELAY;
}
out:
return rv;
}
static void start_check_enables(struct smi_info *smi_info)
{
unsigned char msg[2];
msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
smi_info->si_state = SI_CHECKING_ENABLES;
}
static void start_clear_flags(struct smi_info *smi_info)
{
unsigned char msg[3];
/* Make sure the watchdog pre-timeout flag is not set at startup. */
msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
msg[2] = WDT_PRE_TIMEOUT_INT;
smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
smi_info->si_state = SI_CLEARING_FLAGS;
}
static void start_getting_msg_queue(struct smi_info *smi_info)
{
smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
smi_info->curr_msg->data_size = 2;
smi_info->handlers->start_transaction(
smi_info->si_sm,
smi_info->curr_msg->data,
smi_info->curr_msg->data_size);
smi_info->si_state = SI_GETTING_MESSAGES;
}
static void start_getting_events(struct smi_info *smi_info)
{
smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
smi_info->curr_msg->data_size = 2;
smi_info->handlers->start_transaction(
smi_info->si_sm,
smi_info->curr_msg->data,
smi_info->curr_msg->data_size);
smi_info->si_state = SI_GETTING_EVENTS;
}
static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
{
smi_info->last_timeout_jiffies = jiffies;
mod_timer(&smi_info->si_timer, new_val);
smi_info->timer_running = true;
}
/*
* When we have a situtaion where we run out of memory and cannot
* allocate messages, we just leave them in the BMC and run the system
* polled until we can allocate some memory. Once we have some
* memory, we will re-enable the interrupt.
*/
static inline bool disable_si_irq(struct smi_info *smi_info)
{
if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
smi_info->interrupt_disabled = true;
start_check_enables(smi_info);
return true;
}
return false;
}
static inline bool enable_si_irq(struct smi_info *smi_info)
{
if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
smi_info->interrupt_disabled = false;
start_check_enables(smi_info);
return true;
}
return false;
}
/*
* Allocate a message. If unable to allocate, start the interrupt
* disable process and return NULL. If able to allocate but
* interrupts are disabled, free the message and return NULL after
* starting the interrupt enable process.
*/
static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
{
struct ipmi_smi_msg *msg;
msg = ipmi_alloc_smi_msg();
if (!msg) {
if (!disable_si_irq(smi_info))
smi_info->si_state = SI_NORMAL;
} else if (enable_si_irq(smi_info)) {
ipmi_free_smi_msg(msg);
msg = NULL;
}
return msg;
}
static void handle_flags(struct smi_info *smi_info)
{
retry:
if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
/* Watchdog pre-timeout */
smi_inc_stat(smi_info, watchdog_pretimeouts);
start_clear_flags(smi_info);
smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
if (smi_info->intf)
ipmi_smi_watchdog_pretimeout(smi_info->intf);
} else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
/* Messages available. */
smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
if (!smi_info->curr_msg)
return;
start_getting_msg_queue(smi_info);
} else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
/* Events available. */
smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
if (!smi_info->curr_msg)
return;
start_getting_events(smi_info);
} else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
smi_info->oem_data_avail_handler) {
if (smi_info->oem_data_avail_handler(smi_info))
goto retry;
} else
smi_info->si_state = SI_NORMAL;
}
/*
* Global enables we care about.
*/
#define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
IPMI_BMC_EVT_MSG_INTR)
static u8 current_global_enables(struct smi_info *smi_info, u8 base,
bool *irq_on)
{
u8 enables = 0;
if (smi_info->supports_event_msg_buff)
enables |= IPMI_BMC_EVT_MSG_BUFF;
else
enables &= ~IPMI_BMC_EVT_MSG_BUFF;
if (smi_info->irq && !smi_info->interrupt_disabled)
enables |= IPMI_BMC_RCV_MSG_INTR;
else
enables &= ~IPMI_BMC_RCV_MSG_INTR;
if (smi_info->supports_event_msg_buff &&
smi_info->irq && !smi_info->interrupt_disabled)
enables |= IPMI_BMC_EVT_MSG_INTR;
else
enables &= ~IPMI_BMC_EVT_MSG_INTR;
*irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
return enables;
}
static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
{
u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
if ((bool)irqstate == irq_on)
return;
if (irq_on)
smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
else
smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
}
static void handle_transaction_done(struct smi_info *smi_info)
{
struct ipmi_smi_msg *msg;
#ifdef DEBUG_TIMING
struct timeval t;
do_gettimeofday(&t);
printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
#endif
switch (smi_info->si_state) {
case SI_NORMAL:
if (!smi_info->curr_msg)
break;
smi_info->curr_msg->rsp_size
= smi_info->handlers->get_result(
smi_info->si_sm,
smi_info->curr_msg->rsp,
IPMI_MAX_MSG_LENGTH);
/*
* Do this here becase deliver_recv_msg() releases the
* lock, and a new message can be put in during the
* time the lock is released.
*/
msg = smi_info->curr_msg;
smi_info->curr_msg = NULL;
deliver_recv_msg(smi_info, msg);
break;
case SI_GETTING_FLAGS:
{
unsigned char msg[4];
unsigned int len;
/* We got the flags from the SMI, now handle them. */
len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
if (msg[2] != 0) {
/* Error fetching flags, just give up for now. */
smi_info->si_state = SI_NORMAL;
} else if (len < 4) {
/*
* Hmm, no flags. That's technically illegal, but
* don't use uninitialized data.
*/
smi_info->si_state = SI_NORMAL;
} else {
smi_info->msg_flags = msg[3];
handle_flags(smi_info);
}
break;
}
case SI_CLEARING_FLAGS:
{
unsigned char msg[3];
/* We cleared the flags. */
smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
if (msg[2] != 0) {
/* Error clearing flags */
dev_warn(smi_info->dev,
"Error clearing flags: %2.2x\n", msg[2]);
}
smi_info->si_state = SI_NORMAL;
break;
}
case SI_GETTING_EVENTS:
{
smi_info->curr_msg->rsp_size
= smi_info->handlers->get_result(
smi_info->si_sm,
smi_info->curr_msg->rsp,
IPMI_MAX_MSG_LENGTH);
/*
* Do this here becase deliver_recv_msg() releases the
* lock, and a new message can be put in during the
* time the lock is released.
*/
msg = smi_info->curr_msg;
smi_info->curr_msg = NULL;
if (msg->rsp[2] != 0) {
/* Error getting event, probably done. */
msg->done(msg);
/* Take off the event flag. */
smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
handle_flags(smi_info);
} else {
smi_inc_stat(smi_info, events);
/*
* Do this before we deliver the message
* because delivering the message releases the
* lock and something else can mess with the
* state.
*/
handle_flags(smi_info);
deliver_recv_msg(smi_info, msg);
}
break;
}
case SI_GETTING_MESSAGES:
{
smi_info->curr_msg->rsp_size
= smi_info->handlers->get_result(
smi_info->si_sm,
smi_info->curr_msg->rsp,
IPMI_MAX_MSG_LENGTH);
/*
* Do this here becase deliver_recv_msg() releases the
* lock, and a new message can be put in during the
* time the lock is released.
*/
msg = smi_info->curr_msg;
smi_info->curr_msg = NULL;
if (msg->rsp[2] != 0) {
/* Error getting event, probably done. */
msg->done(msg);
/* Take off the msg flag. */
smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
handle_flags(smi_info);
} else {
smi_inc_stat(smi_info, incoming_messages);
/*
* Do this before we deliver the message
* because delivering the message releases the
* lock and something else can mess with the
* state.
*/
handle_flags(smi_info);
deliver_recv_msg(smi_info, msg);
}
break;
}
case SI_CHECKING_ENABLES:
{
unsigned char msg[4];
u8 enables;
bool irq_on;
/* We got the flags from the SMI, now handle them. */
smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
if (msg[2] != 0) {
dev_warn(smi_info->dev,
"Couldn't get irq info: %x.\n", msg[2]);
dev_warn(smi_info->dev,
"Maybe ok, but ipmi might run very slowly.\n");
smi_info->si_state = SI_NORMAL;
break;
}
enables = current_global_enables(smi_info, 0, &irq_on);
if (smi_info->si_type == SI_BT)
/* BT has its own interrupt enable bit. */
check_bt_irq(smi_info, irq_on);
if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
/* Enables are not correct, fix them. */
msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
smi_info->handlers->start_transaction(
smi_info->si_sm, msg, 3);
smi_info->si_state = SI_SETTING_ENABLES;
} else if (smi_info->supports_event_msg_buff) {
smi_info->curr_msg = ipmi_alloc_smi_msg();
if (!smi_info->curr_msg) {
smi_info->si_state = SI_NORMAL;
break;
}
start_getting_msg_queue(smi_info);
} else {
smi_info->si_state = SI_NORMAL;
}
break;
}
case SI_SETTING_ENABLES:
{
unsigned char msg[4];
smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
if (msg[2] != 0)
dev_warn(smi_info->dev,
"Could not set the global enables: 0x%x.\n",
msg[2]);
if (smi_info->supports_event_msg_buff) {
smi_info->curr_msg = ipmi_alloc_smi_msg();
if (!smi_info->curr_msg) {
smi_info->si_state = SI_NORMAL;
break;
}
start_getting_msg_queue(smi_info);
} else {
smi_info->si_state = SI_NORMAL;
}
break;
}
}
}
/*
* Called on timeouts and events. Timeouts should pass the elapsed
* time, interrupts should pass in zero. Must be called with
* si_lock held and interrupts disabled.
*/
static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
int time)
{
enum si_sm_result si_sm_result;
restart:
/*
* There used to be a loop here that waited a little while
* (around 25us) before giving up. That turned out to be
* pointless, the minimum delays I was seeing were in the 300us
* range, which is far too long to wait in an interrupt. So
* we just run until the state machine tells us something
* happened or it needs a delay.
*/
si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
time = 0;
while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
smi_inc_stat(smi_info, complete_transactions);
handle_transaction_done(smi_info);
si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
} else if (si_sm_result == SI_SM_HOSED) {
smi_inc_stat(smi_info, hosed_count);
/*
* Do the before return_hosed_msg, because that
* releases the lock.
*/
smi_info->si_state = SI_NORMAL;
if (smi_info->curr_msg != NULL) {
/*
* If we were handling a user message, format
* a response to send to the upper layer to
* tell it about the error.
*/
return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
}
si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
}
/*
* We prefer handling attn over new messages. But don't do
* this if there is not yet an upper layer to handle anything.
*/
if (likely(smi_info->intf) &&
(si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
unsigned char msg[2];
if (smi_info->si_state != SI_NORMAL) {
/*
* We got an ATTN, but we are doing something else.
* Handle the ATTN later.
*/
smi_info->got_attn = true;
} else {
smi_info->got_attn = false;
smi_inc_stat(smi_info, attentions);
/*
* Got a attn, send down a get message flags to see
* what's causing it. It would be better to handle
* this in the upper layer, but due to the way
* interrupts work with the SMI, that's not really
* possible.
*/
msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
msg[1] = IPMI_GET_MSG_FLAGS_CMD;
smi_info->handlers->start_transaction(
smi_info->si_sm, msg, 2);
smi_info->si_state = SI_GETTING_FLAGS;
goto restart;
}
}
/* If we are currently idle, try to start the next message. */
if (si_sm_result == SI_SM_IDLE) {
smi_inc_stat(smi_info, idles);
si_sm_result = start_next_msg(smi_info);
if (si_sm_result != SI_SM_IDLE)
goto restart;
}
if ((si_sm_result == SI_SM_IDLE)
&& (atomic_read(&smi_info->req_events))) {
/*
* We are idle and the upper layer requested that I fetch
* events, so do so.
*/
atomic_set(&smi_info->req_events, 0);
/*
* Take this opportunity to check the interrupt and
* message enable state for the BMC. The BMC can be
* asynchronously reset, and may thus get interrupts
* disable and messages disabled.
*/
if (smi_info->supports_event_msg_buff || smi_info->irq) {
start_check_enables(smi_info);
} else {
smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
if (!smi_info->curr_msg)
goto out;
start_getting_events(smi_info);
}
goto restart;
}
out:
return si_sm_result;
}
static void check_start_timer_thread(struct smi_info *smi_info)
{
if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
if (smi_info->thread)
wake_up_process(smi_info->thread);
start_next_msg(smi_info);
smi_event_handler(smi_info, 0);
}
}
static void sender(void *send_info,
struct ipmi_smi_msg *msg)
{
struct smi_info *smi_info = send_info;
enum si_sm_result result;
unsigned long flags;
#ifdef DEBUG_TIMING
struct timeval t;
#endif
BUG_ON(smi_info->waiting_msg);
smi_info->waiting_msg = msg;
#ifdef DEBUG_TIMING
do_gettimeofday(&t);
printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
#endif
if (smi_info->run_to_completion) {
/*
* If we are running to completion, start it and run
* transactions until everything is clear.
*/
smi_info->curr_msg = smi_info->waiting_msg;
smi_info->waiting_msg = NULL;
/*
* Run to completion means we are single-threaded, no
* need for locks.
*/
result = smi_event_handler(smi_info, 0);
while (result != SI_SM_IDLE) {
udelay(SI_SHORT_TIMEOUT_USEC);
result = smi_event_handler(smi_info,
SI_SHORT_TIMEOUT_USEC);
}
return;
}
spin_lock_irqsave(&smi_info->si_lock, flags);
check_start_timer_thread(smi_info);
spin_unlock_irqrestore(&smi_info->si_lock, flags);
}
static void set_run_to_completion(void *send_info, bool i_run_to_completion)
{
struct smi_info *smi_info = send_info;
enum si_sm_result result;
smi_info->run_to_completion = i_run_to_completion;
if (i_run_to_completion) {
result = smi_event_handler(smi_info, 0);
while (result != SI_SM_IDLE) {
udelay(SI_SHORT_TIMEOUT_USEC);
result = smi_event_handler(smi_info,
SI_SHORT_TIMEOUT_USEC);
}
}
}
/*
* Use -1 in the nsec value of the busy waiting timespec to tell that
* we are spinning in kipmid looking for something and not delaying
* between checks
*/
static inline void ipmi_si_set_not_busy(struct timespec *ts)
{
ts->tv_nsec = -1;
}
static inline int ipmi_si_is_busy(struct timespec *ts)
{
return ts->tv_nsec != -1;
}
static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
const struct smi_info *smi_info,
struct timespec *busy_until)
{
unsigned int max_busy_us = 0;
if (smi_info->intf_num < num_max_busy_us)
max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
ipmi_si_set_not_busy(busy_until);
else if (!ipmi_si_is_busy(busy_until)) {
getnstimeofday(busy_until);
timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
} else {
struct timespec now;
getnstimeofday(&now);
if (unlikely(timespec_compare(&now, busy_until) > 0)) {
ipmi_si_set_not_busy(busy_until);
return 0;
}
}
return 1;
}
/*
* A busy-waiting loop for speeding up IPMI operation.
*
* Lousy hardware makes this hard. This is only enabled for systems
* that are not BT and do not have interrupts. It starts spinning
* when an operation is complete or until max_busy tells it to stop
* (if that is enabled). See the paragraph on kimid_max_busy_us in
* Documentation/IPMI.txt for details.
*/
static int ipmi_thread(void *data)
{
struct smi_info *smi_info = data;
unsigned long flags;
enum si_sm_result smi_result;
struct timespec busy_until;
ipmi_si_set_not_busy(&busy_until);
set_user_nice(current, MAX_NICE);
while (!kthread_should_stop()) {
int busy_wait;
spin_lock_irqsave(&(smi_info->si_lock), flags);
smi_result = smi_event_handler(smi_info, 0);
/*
* If the driver is doing something, there is a possible
* race with the timer. If the timer handler see idle,
* and the thread here sees something else, the timer
* handler won't restart the timer even though it is
* required. So start it here if necessary.
*/
if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
spin_unlock_irqrestore(&(smi_info->si_lock), flags);
busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
&busy_until);
if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
; /* do nothing */
else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
schedule();
else if (smi_result == SI_SM_IDLE) {
if (atomic_read(&smi_info->need_watch)) {
schedule_timeout_interruptible(100);
} else {
/* Wait to be woken up when we are needed. */
__set_current_state(TASK_INTERRUPTIBLE);
schedule();
}
} else
schedule_timeout_interruptible(1);
}
return 0;
}
static void poll(void *send_info)
{
struct smi_info *smi_info = send_info;
unsigned long flags = 0;
bool run_to_completion = smi_info->run_to_completion;
/*
* Make sure there is some delay in the poll loop so we can
* drive time forward and timeout things.
*/
udelay(10);
if (!run_to_completion)
spin_lock_irqsave(&smi_info->si_lock, flags);
smi_event_handler(smi_info, 10);
if (!run_to_completion)
spin_unlock_irqrestore(&smi_info->si_lock, flags);
}
static void request_events(void *send_info)
{
struct smi_info *smi_info = send_info;
if (!smi_info->has_event_buffer)
return;
atomic_set(&smi_info->req_events, 1);
}
static void set_need_watch(void *send_info, bool enable)
{
struct smi_info *smi_info = send_info;
unsigned long flags;
atomic_set(&smi_info->need_watch, enable);
spin_lock_irqsave(&smi_info->si_lock, flags);
check_start_timer_thread(smi_info);
spin_unlock_irqrestore(&smi_info->si_lock, flags);
}
static int initialized;
static void smi_timeout(unsigned long data)
{
struct smi_info *smi_info = (struct smi_info *) data;
enum si_sm_result smi_result;
unsigned long flags;
unsigned long jiffies_now;
2005-11-07 08:59:56 +00:00
long time_diff;
long timeout;
#ifdef DEBUG_TIMING
struct timeval t;
#endif
spin_lock_irqsave(&(smi_info->si_lock), flags);
#ifdef DEBUG_TIMING
do_gettimeofday(&t);
printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
#endif
jiffies_now = jiffies;
2005-11-07 08:59:56 +00:00
time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
* SI_USEC_PER_JIFFY);
smi_result = smi_event_handler(smi_info, time_diff);
if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
/* Running with interrupts, only do long timeouts. */
timeout = jiffies + SI_TIMEOUT_JIFFIES;
smi_inc_stat(smi_info, long_timeouts);
goto do_mod_timer;
}
/*
* If the state machine asks for a short delay, then shorten
* the timer timeout.
*/
if (smi_result == SI_SM_CALL_WITH_DELAY) {
smi_inc_stat(smi_info, short_timeouts);
timeout = jiffies + 1;
} else {
smi_inc_stat(smi_info, long_timeouts);
timeout = jiffies + SI_TIMEOUT_JIFFIES;
}
do_mod_timer:
if (smi_result != SI_SM_IDLE)
smi_mod_timer(smi_info, timeout);
else
smi_info->timer_running = false;
spin_unlock_irqrestore(&(smi_info->si_lock), flags);
}
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 13:55:46 +00:00
static irqreturn_t si_irq_handler(int irq, void *data)
{
struct smi_info *smi_info = data;
unsigned long flags;
#ifdef DEBUG_TIMING
struct timeval t;
#endif
spin_lock_irqsave(&(smi_info->si_lock), flags);
smi_inc_stat(smi_info, interrupts);
#ifdef DEBUG_TIMING
do_gettimeofday(&t);
printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
#endif
smi_event_handler(smi_info, 0);
spin_unlock_irqrestore(&(smi_info->si_lock), flags);
return IRQ_HANDLED;
}
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 13:55:46 +00:00
static irqreturn_t si_bt_irq_handler(int irq, void *data)
{
struct smi_info *smi_info = data;
/* We need to clear the IRQ flag for the BT interface. */
smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
IPMI_BT_INTMASK_CLEAR_IRQ_BIT
| IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 13:55:46 +00:00
return si_irq_handler(irq, data);
}
static int smi_start_processing(void *send_info,
ipmi_smi_t intf)
{
struct smi_info *new_smi = send_info;
int enable = 0;
new_smi->intf = intf;
/* Try to claim any interrupts. */
if (new_smi->irq_setup)
new_smi->irq_setup(new_smi);
/* Set up the timer that drives the interface. */
setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
/*
* Check if the user forcefully enabled the daemon.
*/
if (new_smi->intf_num < num_force_kipmid)
enable = force_kipmid[new_smi->intf_num];
/*
* The BT interface is efficient enough to not need a thread,
* and there is no need for a thread if we have interrupts.
*/
else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
enable = 1;
if (enable) {
new_smi->thread = kthread_run(ipmi_thread, new_smi,
"kipmi%d", new_smi->intf_num);
if (IS_ERR(new_smi->thread)) {
dev_notice(new_smi->dev, "Could not start"
" kernel thread due to error %ld, only using"
" timers to drive the interface\n",
PTR_ERR(new_smi->thread));
new_smi->thread = NULL;
}
}
return 0;
}
static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
{
struct smi_info *smi = send_info;
data->addr_src = smi->addr_source;
data->dev = smi->dev;
data->addr_info = smi->addr_info;
get_device(smi->dev);
return 0;
}
static void set_maintenance_mode(void *send_info, bool enable)
{
struct smi_info *smi_info = send_info;
if (!enable)
atomic_set(&smi_info->req_events, 0);
}
static struct ipmi_smi_handlers handlers = {
.owner = THIS_MODULE,
.start_processing = smi_start_processing,
.get_smi_info = get_smi_info,
.sender = sender,
.request_events = request_events,
.set_need_watch = set_need_watch,
.set_maintenance_mode = set_maintenance_mode,
.set_run_to_completion = set_run_to_completion,
.poll = poll,
};
/*
* There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
* a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
*/
static LIST_HEAD(smi_infos);
static DEFINE_MUTEX(smi_infos_lock);
static int smi_num; /* Used to sequence the SMIs */
#define DEFAULT_REGSPACING 1
#define DEFAULT_REGSIZE 1
#ifdef CONFIG_ACPI
static bool si_tryacpi = 1;
#endif
#ifdef CONFIG_DMI
static bool si_trydmi = 1;
#endif
static bool si_tryplatform = 1;
#ifdef CONFIG_PCI
static bool si_trypci = 1;
#endif
static bool si_trydefaults = IS_ENABLED(CONFIG_IPMI_SI_PROBE_DEFAULTS);
static char *si_type[SI_MAX_PARMS];
#define MAX_SI_TYPE_STR 30
static char si_type_str[MAX_SI_TYPE_STR];
static unsigned long addrs[SI_MAX_PARMS];
static unsigned int num_addrs;
static unsigned int ports[SI_MAX_PARMS];
static unsigned int num_ports;
static int irqs[SI_MAX_PARMS];
static unsigned int num_irqs;
static int regspacings[SI_MAX_PARMS];
static unsigned int num_regspacings;
static int regsizes[SI_MAX_PARMS];
static unsigned int num_regsizes;
static int regshifts[SI_MAX_PARMS];
static unsigned int num_regshifts;
static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
static unsigned int num_slave_addrs;
#define IPMI_IO_ADDR_SPACE 0
#define IPMI_MEM_ADDR_SPACE 1
static char *addr_space_to_str[] = { "i/o", "mem" };
static int hotmod_handler(const char *val, struct kernel_param *kp);
module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
" Documentation/IPMI.txt in the kernel sources for the"
" gory details.");
#ifdef CONFIG_ACPI
module_param_named(tryacpi, si_tryacpi, bool, 0);
MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
" default scan of the interfaces identified via ACPI");
#endif
#ifdef CONFIG_DMI
module_param_named(trydmi, si_trydmi, bool, 0);
MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
" default scan of the interfaces identified via DMI");
#endif
module_param_named(tryplatform, si_tryplatform, bool, 0);
MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
" default scan of the interfaces identified via platform"
" interfaces like openfirmware");
#ifdef CONFIG_PCI
module_param_named(trypci, si_trypci, bool, 0);
MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
" default scan of the interfaces identified via pci");
#endif
module_param_named(trydefaults, si_trydefaults, bool, 0);
MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
" default scan of the KCS and SMIC interface at the standard"
" address");
module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
MODULE_PARM_DESC(type, "Defines the type of each interface, each"
" interface separated by commas. The types are 'kcs',"
" 'smic', and 'bt'. For example si_type=kcs,bt will set"
" the first interface to kcs and the second to bt");
module_param_array(addrs, ulong, &num_addrs, 0);
MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
" addresses separated by commas. Only use if an interface"
" is in memory. Otherwise, set it to zero or leave"
" it blank.");
module_param_array(ports, uint, &num_ports, 0);
MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
" addresses separated by commas. Only use if an interface"
" is a port. Otherwise, set it to zero or leave"
" it blank.");
module_param_array(irqs, int, &num_irqs, 0);
MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
" addresses separated by commas. Only use if an interface"
" has an interrupt. Otherwise, set it to zero or leave"
" it blank.");
module_param_array(regspacings, int, &num_regspacings, 0);
MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
" and each successive register used by the interface. For"
" instance, if the start address is 0xca2 and the spacing"
" is 2, then the second address is at 0xca4. Defaults"
" to 1.");
module_param_array(regsizes, int, &num_regsizes, 0);
MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
" This should generally be 1, 2, 4, or 8 for an 8-bit,"
" 16-bit, 32-bit, or 64-bit register. Use this if you"
" the 8-bit IPMI register has to be read from a larger"
" register.");
module_param_array(regshifts, int, &num_regshifts, 0);
MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
" IPMI register, in bits. For instance, if the data"
" is read from a 32-bit word and the IPMI data is in"
" bit 8-15, then the shift would be 8");
module_param_array(slave_addrs, int, &num_slave_addrs, 0);
MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
" the controller. Normally this is 0x20, but can be"
" overridden by this parm. This is an array indexed"
" by interface number.");
module_param_array(force_kipmid, int, &num_force_kipmid, 0);
MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
" disabled(0). Normally the IPMI driver auto-detects"
" this, but the value may be overridden by this parm.");
module_param(unload_when_empty, bool, 0);
MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
" specified or found, default is 1. Setting to 0"
" is useful for hot add of devices using hotmod.");
module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
MODULE_PARM_DESC(kipmid_max_busy_us,
"Max time (in microseconds) to busy-wait for IPMI data before"
" sleeping. 0 (default) means to wait forever. Set to 100-500"
" if kipmid is using up a lot of CPU time.");
static void std_irq_cleanup(struct smi_info *info)
{
if (info->si_type == SI_BT)
/* Disable the interrupt in the BT interface. */
info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
free_irq(info->irq, info);
}
static int std_irq_setup(struct smi_info *info)
{
int rv;
if (!info->irq)
return 0;
if (info->si_type == SI_BT) {
rv = request_irq(info->irq,
si_bt_irq_handler,
IRQF_SHARED,
DEVICE_NAME,
info);
if (!rv)
/* Enable the interrupt in the BT interface. */
info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
} else
rv = request_irq(info->irq,
si_irq_handler,
IRQF_SHARED,
DEVICE_NAME,
info);
if (rv) {
dev_warn(info->dev, "%s unable to claim interrupt %d,"
" running polled\n",
DEVICE_NAME, info->irq);
info->irq = 0;
} else {
info->irq_cleanup = std_irq_cleanup;
dev_info(info->dev, "Using irq %d\n", info->irq);
}
return rv;
}
static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
{
unsigned int addr = io->addr_data;
return inb(addr + (offset * io->regspacing));
}
static void port_outb(struct si_sm_io *io, unsigned int offset,
unsigned char b)
{
unsigned int addr = io->addr_data;
outb(b, addr + (offset * io->regspacing));
}
static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
{
unsigned int addr = io->addr_data;
return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
}
static void port_outw(struct si_sm_io *io, unsigned int offset,
unsigned char b)
{
unsigned int addr = io->addr_data;
outw(b << io->regshift, addr + (offset * io->regspacing));
}
static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
{
unsigned int addr = io->addr_data;
return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
}
static void port_outl(struct si_sm_io *io, unsigned int offset,
unsigned char b)
{
unsigned int addr = io->addr_data;
outl(b << io->regshift, addr+(offset * io->regspacing));
}
static void port_cleanup(struct smi_info *info)
{
unsigned int addr = info->io.addr_data;
int idx;
if (addr) {
for (idx = 0; idx < info->io_size; idx++)
release_region(addr + idx * info->io.regspacing,
info->io.regsize);
}
}
static int port_setup(struct smi_info *info)
{
unsigned int addr = info->io.addr_data;
int idx;
if (!addr)
return -ENODEV;
info->io_cleanup = port_cleanup;
/*
* Figure out the actual inb/inw/inl/etc routine to use based
* upon the register size.
*/
switch (info->io.regsize) {
case 1:
info->io.inputb = port_inb;
info->io.outputb = port_outb;
break;
case 2:
info->io.inputb = port_inw;
info->io.outputb = port_outw;
break;
case 4:
info->io.inputb = port_inl;
info->io.outputb = port_outl;
break;
default:
dev_warn(info->dev, "Invalid register size: %d\n",
info->io.regsize);
return -EINVAL;
}
/*
* Some BIOSes reserve disjoint I/O regions in their ACPI
* tables. This causes problems when trying to register the
* entire I/O region. Therefore we must register each I/O
* port separately.
*/
for (idx = 0; idx < info->io_size; idx++) {
if (request_region(addr + idx * info->io.regspacing,
info->io.regsize, DEVICE_NAME) == NULL) {
/* Undo allocations */
while (idx--) {
release_region(addr + idx * info->io.regspacing,
info->io.regsize);
}
return -EIO;
}
}
return 0;
}
static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
{
return readb((io->addr)+(offset * io->regspacing));
}
static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
unsigned char b)
{
writeb(b, (io->addr)+(offset * io->regspacing));
}
static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
{
return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
& 0xff;
}
static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
unsigned char b)
{
writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
}
static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
{
return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
& 0xff;
}
static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
unsigned char b)
{
writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
}
#ifdef readq
static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
{
return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
& 0xff;
}
static void mem_outq(struct si_sm_io *io, unsigned int offset,
unsigned char b)
{
writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
}
#endif
static void mem_cleanup(struct smi_info *info)
{
unsigned long addr = info->io.addr_data;
int mapsize;
if (info->io.addr) {
iounmap(info->io.addr);
mapsize = ((info->io_size * info->io.regspacing)
- (info->io.regspacing - info->io.regsize));
release_mem_region(addr, mapsize);
}
}
static int mem_setup(struct smi_info *info)
{
unsigned long addr = info->io.addr_data;
int mapsize;
if (!addr)
return -ENODEV;
info->io_cleanup = mem_cleanup;
/*
* Figure out the actual readb/readw/readl/etc routine to use based
* upon the register size.
*/
switch (info->io.regsize) {
case 1:
info->io.inputb = intf_mem_inb;
info->io.outputb = intf_mem_outb;
break;
case 2:
info->io.inputb = intf_mem_inw;
info->io.outputb = intf_mem_outw;
break;
case 4:
info->io.inputb = intf_mem_inl;
info->io.outputb = intf_mem_outl;
break;
#ifdef readq
case 8:
info->io.inputb = mem_inq;
info->io.outputb = mem_outq;
break;
#endif
default:
dev_warn(info->dev, "Invalid register size: %d\n",
info->io.regsize);
return -EINVAL;
}
/*
* Calculate the total amount of memory to claim. This is an
* unusual looking calculation, but it avoids claiming any
* more memory than it has to. It will claim everything
* between the first address to the end of the last full
* register.
*/
mapsize = ((info->io_size * info->io.regspacing)
- (info->io.regspacing - info->io.regsize));
if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
return -EIO;
info->io.addr = ioremap(addr, mapsize);
if (info->io.addr == NULL) {
release_mem_region(addr, mapsize);
return -EIO;
}
return 0;
}
/*
* Parms come in as <op1>[:op2[:op3...]]. ops are:
* add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
* Options are:
* rsp=<regspacing>
* rsi=<regsize>
* rsh=<regshift>
* irq=<irq>
* ipmb=<ipmb addr>
*/
enum hotmod_op { HM_ADD, HM_REMOVE };
struct hotmod_vals {
char *name;
int val;
};
static struct hotmod_vals hotmod_ops[] = {
{ "add", HM_ADD },
{ "remove", HM_REMOVE },
{ NULL }
};
static struct hotmod_vals hotmod_si[] = {
{ "kcs", SI_KCS },
{ "smic", SI_SMIC },
{ "bt", SI_BT },
{ NULL }
};
static struct hotmod_vals hotmod_as[] = {
{ "mem", IPMI_MEM_ADDR_SPACE },
{ "i/o", IPMI_IO_ADDR_SPACE },
{ NULL }
};
static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
{
char *s;
int i;
s = strchr(*curr, ',');
if (!s) {
printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
return -EINVAL;
}
*s = '\0';
s++;
for (i = 0; v[i].name; i++) {
if (strcmp(*curr, v[i].name) == 0) {
*val = v[i].val;
*curr = s;
return 0;
}
}
printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
return -EINVAL;
}
static int check_hotmod_int_op(const char *curr, const char *option,
const char *name, int *val)
{
char *n;
if (strcmp(curr, name) == 0) {
if (!option) {
printk(KERN_WARNING PFX
"No option given for '%s'\n",
curr);
return -EINVAL;
}
*val = simple_strtoul(option, &n, 0);
if ((*n != '\0') || (*option == '\0')) {
printk(KERN_WARNING PFX
"Bad option given for '%s'\n",
curr);
return -EINVAL;
}
return 1;
}
return 0;
}
static struct smi_info *smi_info_alloc(void)
{
struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
if (info)
spin_lock_init(&info->si_lock);
return info;
}
static int hotmod_handler(const char *val, struct kernel_param *kp)
{
char *str = kstrdup(val, GFP_KERNEL);
int rv;
char *next, *curr, *s, *n, *o;
enum hotmod_op op;
enum si_type si_type;
int addr_space;
unsigned long addr;
int regspacing;
int regsize;
int regshift;
int irq;
int ipmb;
int ival;
int len;
struct smi_info *info;
if (!str)
return -ENOMEM;
/* Kill any trailing spaces, as we can get a "\n" from echo. */
len = strlen(str);
ival = len - 1;
while ((ival >= 0) && isspace(str[ival])) {
str[ival] = '\0';
ival--;
}
for (curr = str; curr; curr = next) {
regspacing = 1;
regsize = 1;
regshift = 0;
irq = 0;
ipmb = 0; /* Choose the default if not specified */
next = strchr(curr, ':');
if (next) {
*next = '\0';
next++;
}
rv = parse_str(hotmod_ops, &ival, "operation", &curr);
if (rv)
break;
op = ival;
rv = parse_str(hotmod_si, &ival, "interface type", &curr);
if (rv)
break;
si_type = ival;
rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
if (rv)
break;
s = strchr(curr, ',');
if (s) {
*s = '\0';
s++;
}
addr = simple_strtoul(curr, &n, 0);
if ((*n != '\0') || (*curr == '\0')) {
printk(KERN_WARNING PFX "Invalid hotmod address"
" '%s'\n", curr);
break;
}
while (s) {
curr = s;
s = strchr(curr, ',');
if (s) {
*s = '\0';
s++;
}
o = strchr(curr, '=');
if (o) {
*o = '\0';
o++;
}
rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
if (rv < 0)
goto out;
else if (rv)
continue;
rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
if (rv < 0)
goto out;
else if (rv)
continue;
rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
if (rv < 0)
goto out;
else if (rv)
continue;
rv = check_hotmod_int_op(curr, o, "irq", &irq);
if (rv < 0)
goto out;
else if (rv)
continue;
rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
if (rv < 0)
goto out;
else if (rv)
continue;
rv = -EINVAL;
printk(KERN_WARNING PFX
"Invalid hotmod option '%s'\n",
curr);
goto out;
}
if (op == HM_ADD) {
info = smi_info_alloc();
if (!info) {
rv = -ENOMEM;
goto out;
}
info->addr_source = SI_HOTMOD;
info->si_type = si_type;
info->io.addr_data = addr;
info->io.addr_type = addr_space;
if (addr_space == IPMI_MEM_ADDR_SPACE)
info->io_setup = mem_setup;
else
info->io_setup = port_setup;
info->io.addr = NULL;
info->io.regspacing = regspacing;
if (!info->io.regspacing)
info->io.regspacing = DEFAULT_REGSPACING;
info->io.regsize = regsize;
if (!info->io.regsize)
info->io.regsize = DEFAULT_REGSPACING;
info->io.regshift = regshift;
info->irq = irq;
if (info->irq)
info->irq_setup = std_irq_setup;
info->slave_addr = ipmb;
rv = add_smi(info);
if (rv) {
kfree(info);
goto out;
}
rv = try_smi_init(info);
if (rv) {
cleanup_one_si(info);
goto out;
}
} else {
/* remove */
struct smi_info *e, *tmp_e;
mutex_lock(&smi_infos_lock);
list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
if (e->io.addr_type != addr_space)
continue;
if (e->si_type != si_type)
continue;
if (e->io.addr_data == addr)
cleanup_one_si(e);
}
mutex_unlock(&smi_infos_lock);
}
}
rv = len;
out:
kfree(str);
return rv;
}
static int hardcode_find_bmc(void)
{
int ret = -ENODEV;
int i;
struct smi_info *info;
for (i = 0; i < SI_MAX_PARMS; i++) {
if (!ports[i] && !addrs[i])
continue;
info = smi_info_alloc();
if (!info)
return -ENOMEM;
info->addr_source = SI_HARDCODED;
printk(KERN_INFO PFX "probing via hardcoded address\n");
if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
info->si_type = SI_KCS;
} else if (strcmp(si_type[i], "smic") == 0) {
info->si_type = SI_SMIC;
} else if (strcmp(si_type[i], "bt") == 0) {
info->si_type = SI_BT;
} else {
printk(KERN_WARNING PFX "Interface type specified "
"for interface %d, was invalid: %s\n",
i, si_type[i]);
kfree(info);
continue;
}
if (ports[i]) {
/* An I/O port */
info->io_setup = port_setup;
info->io.addr_data = ports[i];
info->io.addr_type = IPMI_IO_ADDR_SPACE;
} else if (addrs[i]) {
/* A memory port */
info->io_setup = mem_setup;
info->io.addr_data = addrs[i];
info->io.addr_type = IPMI_MEM_ADDR_SPACE;
} else {
printk(KERN_WARNING PFX "Interface type specified "
"for interface %d, but port and address were "
"not set or set to zero.\n", i);
kfree(info);
continue;
}
info->io.addr = NULL;
info->io.regspacing = regspacings[i];
if (!info->io.regspacing)
info->io.regspacing = DEFAULT_REGSPACING;
info->io.regsize = regsizes[i];
if (!info->io.regsize)
info->io.regsize = DEFAULT_REGSPACING;
info->io.regshift = regshifts[i];
info->irq = irqs[i];
if (info->irq)
info->irq_setup = std_irq_setup;
info->slave_addr = slave_addrs[i];
if (!add_smi(info)) {
if (try_smi_init(info))
cleanup_one_si(info);
ret = 0;
} else {
kfree(info);
}
}
return ret;
}
#ifdef CONFIG_ACPI
#include <linux/acpi.h>
/*
* Once we get an ACPI failure, we don't try any more, because we go
* through the tables sequentially. Once we don't find a table, there
* are no more.
*/
static int acpi_failure;
/* For GPE-type interrupts. */
static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
u32 gpe_number, void *context)
{
struct smi_info *smi_info = context;
unsigned long flags;
#ifdef DEBUG_TIMING
struct timeval t;
#endif
spin_lock_irqsave(&(smi_info->si_lock), flags);
smi_inc_stat(smi_info, interrupts);
#ifdef DEBUG_TIMING
do_gettimeofday(&t);
printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
#endif
smi_event_handler(smi_info, 0);
spin_unlock_irqrestore(&(smi_info->si_lock), flags);
return ACPI_INTERRUPT_HANDLED;
}
static void acpi_gpe_irq_cleanup(struct smi_info *info)
{
if (!info->irq)
return;
acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
}
static int acpi_gpe_irq_setup(struct smi_info *info)
{
acpi_status status;
if (!info->irq)
return 0;
/* FIXME - is level triggered right? */
status = acpi_install_gpe_handler(NULL,
info->irq,
ACPI_GPE_LEVEL_TRIGGERED,
&ipmi_acpi_gpe,
info);
if (status != AE_OK) {
dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
" running polled\n", DEVICE_NAME, info->irq);
info->irq = 0;
return -EINVAL;
} else {
info->irq_cleanup = acpi_gpe_irq_cleanup;
dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
return 0;
}
}
/*
* Defined at
* http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
*/
struct SPMITable {
s8 Signature[4];
u32 Length;
u8 Revision;
u8 Checksum;
s8 OEMID[6];
s8 OEMTableID[8];
s8 OEMRevision[4];
s8 CreatorID[4];
s8 CreatorRevision[4];
u8 InterfaceType;
u8 IPMIlegacy;
s16 SpecificationRevision;
/*
* Bit 0 - SCI interrupt supported
* Bit 1 - I/O APIC/SAPIC
*/
u8 InterruptType;
/*
* If bit 0 of InterruptType is set, then this is the SCI
* interrupt in the GPEx_STS register.
*/
u8 GPE;
s16 Reserved;
/*
* If bit 1 of InterruptType is set, then this is the I/O
* APIC/SAPIC interrupt.
*/
u32 GlobalSystemInterrupt;
/* The actual register address. */
struct acpi_generic_address addr;
u8 UID[4];
s8 spmi_id[1]; /* A '\0' terminated array starts here. */
};
static int try_init_spmi(struct SPMITable *spmi)
{
struct smi_info *info;
int rv;
if (spmi->IPMIlegacy != 1) {
printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
return -ENODEV;
}
info = smi_info_alloc();
if (!info) {
printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
return -ENOMEM;
}
info->addr_source = SI_SPMI;
printk(KERN_INFO PFX "probing via SPMI\n");
/* Figure out the interface type. */
switch (spmi->InterfaceType) {
case 1: /* KCS */
info->si_type = SI_KCS;
break;
case 2: /* SMIC */
info->si_type = SI_SMIC;
break;
case 3: /* BT */
info->si_type = SI_BT;
break;
case 4: /* SSIF, just ignore */
kfree(info);
return -EIO;
default:
printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
spmi->InterfaceType);
kfree(info);
return -EIO;
}
if (spmi->InterruptType & 1) {
/* We've got a GPE interrupt. */
info->irq = spmi->GPE;
info->irq_setup = acpi_gpe_irq_setup;
} else if (spmi->InterruptType & 2) {
/* We've got an APIC/SAPIC interrupt. */
info->irq = spmi->GlobalSystemInterrupt;
info->irq_setup = std_irq_setup;
} else {
/* Use the default interrupt setting. */
info->irq = 0;
info->irq_setup = NULL;
}
if (spmi->addr.bit_width) {
/* A (hopefully) properly formed register bit width. */
info->io.regspacing = spmi->addr.bit_width / 8;
} else {
info->io.regspacing = DEFAULT_REGSPACING;
}
info->io.regsize = info->io.regspacing;
info->io.regshift = spmi->addr.bit_offset;
if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
info->io_setup = mem_setup;
info->io.addr_type = IPMI_MEM_ADDR_SPACE;
} else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
info->io_setup = port_setup;
info->io.addr_type = IPMI_IO_ADDR_SPACE;
} else {
kfree(info);
printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
return -EIO;
}
info->io.addr_data = spmi->addr.address;
pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
(info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
info->io.addr_data, info->io.regsize, info->io.regspacing,
info->irq);
rv = add_smi(info);
if (rv)
kfree(info);
return rv;
}
static void spmi_find_bmc(void)
{
acpi_status status;
struct SPMITable *spmi;
int i;
if (acpi_disabled)
return;
if (acpi_failure)
return;
for (i = 0; ; i++) {
status = acpi_get_table(ACPI_SIG_SPMI, i+1,
(struct acpi_table_header **)&spmi);
if (status != AE_OK)
return;
try_init_spmi(spmi);
}
}
static int ipmi_pnp_probe(struct pnp_dev *dev,
const struct pnp_device_id *dev_id)
{
struct acpi_device *acpi_dev;
struct smi_info *info;
struct resource *res, *res_second;
acpi_handle handle;
acpi_status status;
unsigned long long tmp;
int rv;
acpi_dev = pnp_acpi_device(dev);
if (!acpi_dev)
return -ENODEV;
info = smi_info_alloc();
if (!info)
return -ENOMEM;
info->addr_source = SI_ACPI;
printk(KERN_INFO PFX "probing via ACPI\n");
handle = acpi_dev->handle;
info->addr_info.acpi_info.acpi_handle = handle;
/* _IFT tells us the interface type: KCS, BT, etc */
status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
if (ACPI_FAILURE(status))
goto err_free;
switch (tmp) {
case 1:
info->si_type = SI_KCS;
break;
case 2:
info->si_type = SI_SMIC;
break;
case 3:
info->si_type = SI_BT;
break;
case 4: /* SSIF, just ignore */
goto err_free;
default:
dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
goto err_free;
}
res = pnp_get_resource(dev, IORESOURCE_IO, 0);
if (res) {
info->io_setup = port_setup;
info->io.addr_type = IPMI_IO_ADDR_SPACE;
} else {
res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
if (res) {
info->io_setup = mem_setup;
info->io.addr_type = IPMI_MEM_ADDR_SPACE;
}
}
if (!res) {
dev_err(&dev->dev, "no I/O or memory address\n");
goto err_free;
}
info->io.addr_data = res->start;
info->io.regspacing = DEFAULT_REGSPACING;
res_second = pnp_get_resource(dev,
ipmi: fix ACPI detection with regspacing After the commit that changed ipmi_si detecting sequence from SMBIOS/ACPI to ACPI/SMBIOS, | commit 754d453185275951d39792865927ec494fa1ebd8 | Author: Matthew Garrett <mjg@redhat.com> | Date: Wed May 26 14:43:47 2010 -0700 | | ipmi: change device discovery order | | The ipmi spec provides an ordering for si discovery. Change the driver to | match, with the exception of preferring smbios to SPMI as HPs (at least) | contain accurate information in the former but not the latter. ipmi_si can not be initialized. [ 138.799739] calling init_ipmi_devintf+0x0/0x109 @ 1 [ 138.805050] ipmi device interface [ 138.818131] initcall init_ipmi_devintf+0x0/0x109 returned 0 after 12797 usecs [ 138.822998] calling init_ipmi_si+0x0/0xa90 @ 1 [ 138.840276] IPMI System Interface driver. [ 138.846137] ipmi_si: probing via ACPI [ 138.849225] ipmi_si 00:09: [io 0x0ca2] regsize 1 spacing 1 irq 0 [ 138.864438] ipmi_si: Adding ACPI-specified kcs state machine [ 138.870893] ipmi_si: probing via SMBIOS [ 138.880945] ipmi_si: Adding SMBIOS-specified kcs state machineipmi_si: duplicate interface [ 138.896511] ipmi_si: probing via SPMI [ 138.899861] ipmi_si: Adding SPMI-specified kcs state machineipmi_si: duplicate interface [ 138.917095] ipmi_si: Trying ACPI-specified kcs state machine at i/o address 0xca2, slave address 0x0, irq 0 [ 138.928658] ipmi_si: Interface detection failed [ 138.953411] initcall init_ipmi_si+0x0/0xa90 returned 0 after 110847 usecs in smbios has DMI/SMBIOS Handle 0x00C5, DMI type 38, 18 bytes IPMI Device Information Interface Type: KCS (Keyboard Control Style) Specification Version: 2.0 I2C Slave Address: 0x00 NV Storage Device: Not Present Base Address: 0x0000000000000CA2 (I/O) Register Spacing: 32-bit Boundaries in DSDT has Device (BMC) { Name (_HID, EisaId ("IPI0001")) Method (_STA, 0, NotSerialized) { If (LEqual (OSN, Zero)) { Return (Zero) } Return (0x0F) } Name (_STR, Unicode ("IPMI_KCS")) Name (_UID, Zero) Name (_CRS, ResourceTemplate () { IO (Decode16, 0x0CA2, // Range Minimum 0x0CA2, // Range Maximum 0x00, // Alignment 0x01, // Length ) IO (Decode16, 0x0CA6, // Range Minimum 0x0CA6, // Range Maximum 0x00, // Alignment 0x01, // Length ) }) Method (_IFT, 0, NotSerialized) { Return (One) } Method (_SRV, 0, NotSerialized) { Return (0x0200) } } so the reg spacing should be 4 instead of 1. Try to calculate regspacing for this kind of system. Observed on a Sun Fire X4800. Other OSes work and pass certification. Signed-off-by: Yinghai Lu <yinghai@kernel.org> Cc: Bjorn Helgaas <bjorn.helgaas@hp.com> Acked-by: Matthew Garrett <mjg@redhat.com> Cc: Len Brown <len.brown@intel.com> Cc: Myron Stowe <myron.stowe@hp.com> Cc: Corey Minyard <minyard@acm.org> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-10 00:18:22 +00:00
(info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
IORESOURCE_IO : IORESOURCE_MEM,
1);
if (res_second) {
if (res_second->start > info->io.addr_data)
info->io.regspacing = res_second->start - info->io.addr_data;
ipmi: fix ACPI detection with regspacing After the commit that changed ipmi_si detecting sequence from SMBIOS/ACPI to ACPI/SMBIOS, | commit 754d453185275951d39792865927ec494fa1ebd8 | Author: Matthew Garrett <mjg@redhat.com> | Date: Wed May 26 14:43:47 2010 -0700 | | ipmi: change device discovery order | | The ipmi spec provides an ordering for si discovery. Change the driver to | match, with the exception of preferring smbios to SPMI as HPs (at least) | contain accurate information in the former but not the latter. ipmi_si can not be initialized. [ 138.799739] calling init_ipmi_devintf+0x0/0x109 @ 1 [ 138.805050] ipmi device interface [ 138.818131] initcall init_ipmi_devintf+0x0/0x109 returned 0 after 12797 usecs [ 138.822998] calling init_ipmi_si+0x0/0xa90 @ 1 [ 138.840276] IPMI System Interface driver. [ 138.846137] ipmi_si: probing via ACPI [ 138.849225] ipmi_si 00:09: [io 0x0ca2] regsize 1 spacing 1 irq 0 [ 138.864438] ipmi_si: Adding ACPI-specified kcs state machine [ 138.870893] ipmi_si: probing via SMBIOS [ 138.880945] ipmi_si: Adding SMBIOS-specified kcs state machineipmi_si: duplicate interface [ 138.896511] ipmi_si: probing via SPMI [ 138.899861] ipmi_si: Adding SPMI-specified kcs state machineipmi_si: duplicate interface [ 138.917095] ipmi_si: Trying ACPI-specified kcs state machine at i/o address 0xca2, slave address 0x0, irq 0 [ 138.928658] ipmi_si: Interface detection failed [ 138.953411] initcall init_ipmi_si+0x0/0xa90 returned 0 after 110847 usecs in smbios has DMI/SMBIOS Handle 0x00C5, DMI type 38, 18 bytes IPMI Device Information Interface Type: KCS (Keyboard Control Style) Specification Version: 2.0 I2C Slave Address: 0x00 NV Storage Device: Not Present Base Address: 0x0000000000000CA2 (I/O) Register Spacing: 32-bit Boundaries in DSDT has Device (BMC) { Name (_HID, EisaId ("IPI0001")) Method (_STA, 0, NotSerialized) { If (LEqual (OSN, Zero)) { Return (Zero) } Return (0x0F) } Name (_STR, Unicode ("IPMI_KCS")) Name (_UID, Zero) Name (_CRS, ResourceTemplate () { IO (Decode16, 0x0CA2, // Range Minimum 0x0CA2, // Range Maximum 0x00, // Alignment 0x01, // Length ) IO (Decode16, 0x0CA6, // Range Minimum 0x0CA6, // Range Maximum 0x00, // Alignment 0x01, // Length ) }) Method (_IFT, 0, NotSerialized) { Return (One) } Method (_SRV, 0, NotSerialized) { Return (0x0200) } } so the reg spacing should be 4 instead of 1. Try to calculate regspacing for this kind of system. Observed on a Sun Fire X4800. Other OSes work and pass certification. Signed-off-by: Yinghai Lu <yinghai@kernel.org> Cc: Bjorn Helgaas <bjorn.helgaas@hp.com> Acked-by: Matthew Garrett <mjg@redhat.com> Cc: Len Brown <len.brown@intel.com> Cc: Myron Stowe <myron.stowe@hp.com> Cc: Corey Minyard <minyard@acm.org> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-10 00:18:22 +00:00
}
info->io.regsize = DEFAULT_REGSPACING;
info->io.regshift = 0;
/* If _GPE exists, use it; otherwise use standard interrupts */
status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
if (ACPI_SUCCESS(status)) {
info->irq = tmp;
info->irq_setup = acpi_gpe_irq_setup;
} else if (pnp_irq_valid(dev, 0)) {
info->irq = pnp_irq(dev, 0);
info->irq_setup = std_irq_setup;
}
info->dev = &dev->dev;
pnp_set_drvdata(dev, info);
dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
res, info->io.regsize, info->io.regspacing,
info->irq);
rv = add_smi(info);
if (rv)
kfree(info);
return rv;
err_free:
kfree(info);
return -EINVAL;
}
static void ipmi_pnp_remove(struct pnp_dev *dev)
{
struct smi_info *info = pnp_get_drvdata(dev);
cleanup_one_si(info);
}
static const struct pnp_device_id pnp_dev_table[] = {
{"IPI0001", 0},
{"", 0},
};
static struct pnp_driver ipmi_pnp_driver = {
.name = DEVICE_NAME,
.probe = ipmi_pnp_probe,
.remove = ipmi_pnp_remove,
.id_table = pnp_dev_table,
};
MODULE_DEVICE_TABLE(pnp, pnp_dev_table);
#endif
#ifdef CONFIG_DMI
struct dmi_ipmi_data {
u8 type;
u8 addr_space;
unsigned long base_addr;
u8 irq;
u8 offset;
u8 slave_addr;
};
static int decode_dmi(const struct dmi_header *dm,
struct dmi_ipmi_data *dmi)
{
const u8 *data = (const u8 *)dm;
unsigned long base_addr;
u8 reg_spacing;
u8 len = dm->length;
dmi->type = data[4];
memcpy(&base_addr, data+8, sizeof(unsigned long));
if (len >= 0x11) {
if (base_addr & 1) {
/* I/O */
base_addr &= 0xFFFE;
dmi->addr_space = IPMI_IO_ADDR_SPACE;
} else
/* Memory */
dmi->addr_space = IPMI_MEM_ADDR_SPACE;
/* If bit 4 of byte 0x10 is set, then the lsb for the address
is odd. */
dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
dmi->irq = data[0x11];
/* The top two bits of byte 0x10 hold the register spacing. */
reg_spacing = (data[0x10] & 0xC0) >> 6;
switch (reg_spacing) {
case 0x00: /* Byte boundaries */
dmi->offset = 1;
break;
case 0x01: /* 32-bit boundaries */
dmi->offset = 4;
break;
case 0x02: /* 16-byte boundaries */
dmi->offset = 16;
break;
default:
/* Some other interface, just ignore it. */
return -EIO;
}
} else {
/* Old DMI spec. */
/*
* Note that technically, the lower bit of the base
* address should be 1 if the address is I/O and 0 if
* the address is in memory. So many systems get that
* wrong (and all that I have seen are I/O) so we just
* ignore that bit and assume I/O. Systems that use
* memory should use the newer spec, anyway.
*/
dmi->base_addr = base_addr & 0xfffe;
dmi->addr_space = IPMI_IO_ADDR_SPACE;
dmi->offset = 1;
}
dmi->slave_addr = data[6];
return 0;
}
static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
{
struct smi_info *info;
info = smi_info_alloc();
if (!info) {
printk(KERN_ERR PFX "Could not allocate SI data\n");
return;
}
info->addr_source = SI_SMBIOS;
printk(KERN_INFO PFX "probing via SMBIOS\n");
switch (ipmi_data->type) {
case 0x01: /* KCS */
info->si_type = SI_KCS;
break;
case 0x02: /* SMIC */
info->si_type = SI_SMIC;
break;
case 0x03: /* BT */
info->si_type = SI_BT;
break;
default:
kfree(info);
return;
}
switch (ipmi_data->addr_space) {
case IPMI_MEM_ADDR_SPACE:
info->io_setup = mem_setup;
info->io.addr_type = IPMI_MEM_ADDR_SPACE;
break;
case IPMI_IO_ADDR_SPACE:
info->io_setup = port_setup;
info->io.addr_type = IPMI_IO_ADDR_SPACE;
break;
default:
kfree(info);
printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
ipmi_data->addr_space);
return;
}
info->io.addr_data = ipmi_data->base_addr;
info->io.regspacing = ipmi_data->offset;
if (!info->io.regspacing)
info->io.regspacing = DEFAULT_REGSPACING;
info->io.regsize = DEFAULT_REGSPACING;
info->io.regshift = 0;
info->slave_addr = ipmi_data->slave_addr;
info->irq = ipmi_data->irq;
if (info->irq)
info->irq_setup = std_irq_setup;
pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
(info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
info->io.addr_data, info->io.regsize, info->io.regspacing,
info->irq);
if (add_smi(info))
kfree(info);
}
static void dmi_find_bmc(void)
{
const struct dmi_device *dev = NULL;
struct dmi_ipmi_data data;
int rv;
while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
memset(&data, 0, sizeof(data));
rv = decode_dmi((const struct dmi_header *) dev->device_data,
&data);
if (!rv)
try_init_dmi(&data);
}
}
#endif /* CONFIG_DMI */
#ifdef CONFIG_PCI
#define PCI_ERMC_CLASSCODE 0x0C0700
#define PCI_ERMC_CLASSCODE_MASK 0xffffff00
#define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
#define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
#define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
#define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
#define PCI_HP_VENDOR_ID 0x103C
#define PCI_MMC_DEVICE_ID 0x121A
#define PCI_MMC_ADDR_CW 0x10
static void ipmi_pci_cleanup(struct smi_info *info)
{
struct pci_dev *pdev = info->addr_source_data;
pci_disable_device(pdev);
}
static int ipmi_pci_probe_regspacing(struct smi_info *info)
{
if (info->si_type == SI_KCS) {
unsigned char status;
int regspacing;
info->io.regsize = DEFAULT_REGSIZE;
info->io.regshift = 0;
info->io_size = 2;
info->handlers = &kcs_smi_handlers;
/* detect 1, 4, 16byte spacing */
for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
info->io.regspacing = regspacing;
if (info->io_setup(info)) {
dev_err(info->dev,
"Could not setup I/O space\n");
return DEFAULT_REGSPACING;
}
/* write invalid cmd */
info->io.outputb(&info->io, 1, 0x10);
/* read status back */
status = info->io.inputb(&info->io, 1);
info->io_cleanup(info);
if (status)
return regspacing;
regspacing *= 4;
}
}
return DEFAULT_REGSPACING;
}
static int ipmi_pci_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
int rv;
int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
struct smi_info *info;
info = smi_info_alloc();
if (!info)
return -ENOMEM;
info->addr_source = SI_PCI;
dev_info(&pdev->dev, "probing via PCI");
switch (class_type) {
case PCI_ERMC_CLASSCODE_TYPE_SMIC:
info->si_type = SI_SMIC;
break;
case PCI_ERMC_CLASSCODE_TYPE_KCS:
info->si_type = SI_KCS;
break;
case PCI_ERMC_CLASSCODE_TYPE_BT:
info->si_type = SI_BT;
break;
default:
kfree(info);
dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
return -ENOMEM;
}
rv = pci_enable_device(pdev);
if (rv) {
dev_err(&pdev->dev, "couldn't enable PCI device\n");
kfree(info);
return rv;
}
info->addr_source_cleanup = ipmi_pci_cleanup;
info->addr_source_data = pdev;
if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
info->io_setup = port_setup;
info->io.addr_type = IPMI_IO_ADDR_SPACE;
} else {
info->io_setup = mem_setup;
info->io.addr_type = IPMI_MEM_ADDR_SPACE;
}
info->io.addr_data = pci_resource_start(pdev, 0);
info->io.regspacing = ipmi_pci_probe_regspacing(info);
info->io.regsize = DEFAULT_REGSIZE;
info->io.regshift = 0;
info->irq = pdev->irq;
if (info->irq)
info->irq_setup = std_irq_setup;
info->dev = &pdev->dev;
pci_set_drvdata(pdev, info);
dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
&pdev->resource[0], info->io.regsize, info->io.regspacing,
info->irq);
rv = add_smi(info);
if (rv) {
kfree(info);
pci_disable_device(pdev);
}
return rv;
}
static void ipmi_pci_remove(struct pci_dev *pdev)
{
struct smi_info *info = pci_get_drvdata(pdev);
cleanup_one_si(info);
pci_disable_device(pdev);
}
static struct pci_device_id ipmi_pci_devices[] = {
{ PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
{ PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
{ 0, }
};
MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
static struct pci_driver ipmi_pci_driver = {
.name = DEVICE_NAME,
.id_table = ipmi_pci_devices,
.probe = ipmi_pci_probe,
.remove = ipmi_pci_remove,
};
#endif /* CONFIG_PCI */
static struct of_device_id ipmi_match[];
static int ipmi_probe(struct platform_device *dev)
{
#ifdef CONFIG_OF
const struct of_device_id *match;
struct smi_info *info;
struct resource resource;
const __be32 *regsize, *regspacing, *regshift;
struct device_node *np = dev->dev.of_node;
int ret;
int proplen;
dev_info(&dev->dev, "probing via device tree\n");
match = of_match_device(ipmi_match, &dev->dev);
if (!match)
return -EINVAL;
if (!of_device_is_available(np))
return -EINVAL;
ret = of_address_to_resource(np, 0, &resource);
if (ret) {
dev_warn(&dev->dev, PFX "invalid address from OF\n");
return ret;
}
regsize = of_get_property(np, "reg-size", &proplen);
if (regsize && proplen != 4) {
dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
return -EINVAL;
}
regspacing = of_get_property(np, "reg-spacing", &proplen);
if (regspacing && proplen != 4) {
dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
return -EINVAL;
}
regshift = of_get_property(np, "reg-shift", &proplen);
if (regshift && proplen != 4) {
dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
return -EINVAL;
}
info = smi_info_alloc();
if (!info) {
dev_err(&dev->dev,
"could not allocate memory for OF probe\n");
return -ENOMEM;
}
info->si_type = (enum si_type) match->data;
info->addr_source = SI_DEVICETREE;
info->irq_setup = std_irq_setup;
if (resource.flags & IORESOURCE_IO) {
info->io_setup = port_setup;
info->io.addr_type = IPMI_IO_ADDR_SPACE;
} else {
info->io_setup = mem_setup;
info->io.addr_type = IPMI_MEM_ADDR_SPACE;
}
info->io.addr_data = resource.start;
info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
info->io.regshift = regshift ? be32_to_cpup(regshift) : 0;
info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
info->dev = &dev->dev;
dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
info->io.addr_data, info->io.regsize, info->io.regspacing,
info->irq);
dev_set_drvdata(&dev->dev, info);
ret = add_smi(info);
if (ret) {
kfree(info);
return ret;
}
#endif
return 0;
}
static int ipmi_remove(struct platform_device *dev)
{
#ifdef CONFIG_OF
cleanup_one_si(dev_get_drvdata(&dev->dev));
#endif
return 0;
}
static struct of_device_id ipmi_match[] =
{
{ .type = "ipmi", .compatible = "ipmi-kcs",
.data = (void *)(unsigned long) SI_KCS },
{ .type = "ipmi", .compatible = "ipmi-smic",
.data = (void *)(unsigned long) SI_SMIC },
{ .type = "ipmi", .compatible = "ipmi-bt",
.data = (void *)(unsigned long) SI_BT },
{},
};
static struct platform_driver ipmi_driver = {
.driver = {
.name = DEVICE_NAME,
.of_match_table = ipmi_match,
},
.probe = ipmi_probe,
.remove = ipmi_remove,
};
#ifdef CONFIG_PARISC
static int ipmi_parisc_probe(struct parisc_device *dev)
{
struct smi_info *info;
int rv;
info = smi_info_alloc();
if (!info) {
dev_err(&dev->dev,
"could not allocate memory for PARISC probe\n");
return -ENOMEM;
}
info->si_type = SI_KCS;
info->addr_source = SI_DEVICETREE;
info->io_setup = mem_setup;
info->io.addr_type = IPMI_MEM_ADDR_SPACE;
info->io.addr_data = dev->hpa.start;
info->io.regsize = 1;
info->io.regspacing = 1;
info->io.regshift = 0;
info->irq = 0; /* no interrupt */
info->irq_setup = NULL;
info->dev = &dev->dev;
dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
dev_set_drvdata(&dev->dev, info);
rv = add_smi(info);
if (rv) {
kfree(info);
return rv;
}
return 0;
}
static int ipmi_parisc_remove(struct parisc_device *dev)
{
cleanup_one_si(dev_get_drvdata(&dev->dev));
return 0;
}
static struct parisc_device_id ipmi_parisc_tbl[] = {
{ HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
{ 0, }
};
static struct parisc_driver ipmi_parisc_driver = {
.name = "ipmi",
.id_table = ipmi_parisc_tbl,
.probe = ipmi_parisc_probe,
.remove = ipmi_parisc_remove,
};
#endif /* CONFIG_PARISC */
static int wait_for_msg_done(struct smi_info *smi_info)
{
enum si_sm_result smi_result;
smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
for (;;) {
if (smi_result == SI_SM_CALL_WITH_DELAY ||
smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
schedule_timeout_uninterruptible(1);
smi_result = smi_info->handlers->event(
smi_info->si_sm, jiffies_to_usecs(1));
} else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
smi_result = smi_info->handlers->event(
smi_info->si_sm, 0);
} else
break;
}
if (smi_result == SI_SM_HOSED)
/*
* We couldn't get the state machine to run, so whatever's at
* the port is probably not an IPMI SMI interface.
*/
return -ENODEV;
return 0;
}
static int try_get_dev_id(struct smi_info *smi_info)
{
unsigned char msg[2];
unsigned char *resp;
unsigned long resp_len;
int rv = 0;
resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
if (!resp)
return -ENOMEM;
/*
* Do a Get Device ID command, since it comes back with some
* useful info.
*/
msg[0] = IPMI_NETFN_APP_REQUEST << 2;
msg[1] = IPMI_GET_DEVICE_ID_CMD;
smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
rv = wait_for_msg_done(smi_info);
if (rv)
goto out;
resp_len = smi_info->handlers->get_result(smi_info->si_sm,
resp, IPMI_MAX_MSG_LENGTH);
/* Check and record info from the get device id, in case we need it. */
rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
out:
kfree(resp);
return rv;
}
static int try_enable_event_buffer(struct smi_info *smi_info)
{
unsigned char msg[3];
unsigned char *resp;
unsigned long resp_len;
int rv = 0;
resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
if (!resp)
return -ENOMEM;
msg[0] = IPMI_NETFN_APP_REQUEST << 2;
msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
rv = wait_for_msg_done(smi_info);
if (rv) {
printk(KERN_WARNING PFX "Error getting response from get"
" global enables command, the event buffer is not"
" enabled.\n");
goto out;
}
resp_len = smi_info->handlers->get_result(smi_info->si_sm,
resp, IPMI_MAX_MSG_LENGTH);
if (resp_len < 4 ||
resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
resp[2] != 0) {
printk(KERN_WARNING PFX "Invalid return from get global"
" enables command, cannot enable the event buffer.\n");
rv = -EINVAL;
goto out;
}
if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
/* buffer is already enabled, nothing to do. */
smi_info->supports_event_msg_buff = true;
goto out;
}
msg[0] = IPMI_NETFN_APP_REQUEST << 2;
msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
rv = wait_for_msg_done(smi_info);
if (rv) {
printk(KERN_WARNING PFX "Error getting response from set"
" global, enables command, the event buffer is not"
" enabled.\n");
goto out;
}
resp_len = smi_info->handlers->get_result(smi_info->si_sm,
resp, IPMI_MAX_MSG_LENGTH);
if (resp_len < 3 ||
resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
printk(KERN_WARNING PFX "Invalid return from get global,"
"enables command, not enable the event buffer.\n");
rv = -EINVAL;
goto out;
}
if (resp[2] != 0)
/*
* An error when setting the event buffer bit means
* that the event buffer is not supported.
*/
rv = -ENOENT;
else
smi_info->supports_event_msg_buff = true;
out:
kfree(resp);
return rv;
}
static int smi_type_proc_show(struct seq_file *m, void *v)
{
struct smi_info *smi = m->private;
return seq_printf(m, "%s\n", si_to_str[smi->si_type]);
}
static int smi_type_proc_open(struct inode *inode, struct file *file)
{
return single_open(file, smi_type_proc_show, PDE_DATA(inode));
}
static const struct file_operations smi_type_proc_ops = {
.open = smi_type_proc_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int smi_si_stats_proc_show(struct seq_file *m, void *v)
{
struct smi_info *smi = m->private;
seq_printf(m, "interrupts_enabled: %d\n",
smi->irq && !smi->interrupt_disabled);
seq_printf(m, "short_timeouts: %u\n",
smi_get_stat(smi, short_timeouts));
seq_printf(m, "long_timeouts: %u\n",
smi_get_stat(smi, long_timeouts));
seq_printf(m, "idles: %u\n",
smi_get_stat(smi, idles));
seq_printf(m, "interrupts: %u\n",
smi_get_stat(smi, interrupts));
seq_printf(m, "attentions: %u\n",
smi_get_stat(smi, attentions));
seq_printf(m, "flag_fetches: %u\n",
smi_get_stat(smi, flag_fetches));
seq_printf(m, "hosed_count: %u\n",
smi_get_stat(smi, hosed_count));
seq_printf(m, "complete_transactions: %u\n",
smi_get_stat(smi, complete_transactions));
seq_printf(m, "events: %u\n",
smi_get_stat(smi, events));
seq_printf(m, "watchdog_pretimeouts: %u\n",
smi_get_stat(smi, watchdog_pretimeouts));
seq_printf(m, "incoming_messages: %u\n",
smi_get_stat(smi, incoming_messages));
return 0;
}
static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
{
return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
}
static const struct file_operations smi_si_stats_proc_ops = {
.open = smi_si_stats_proc_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int smi_params_proc_show(struct seq_file *m, void *v)
{
struct smi_info *smi = m->private;
return seq_printf(m,
"%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
si_to_str[smi->si_type],
addr_space_to_str[smi->io.addr_type],
smi->io.addr_data,
smi->io.regspacing,
smi->io.regsize,
smi->io.regshift,
smi->irq,
smi->slave_addr);
}
static int smi_params_proc_open(struct inode *inode, struct file *file)
{
return single_open(file, smi_params_proc_show, PDE_DATA(inode));
}
static const struct file_operations smi_params_proc_ops = {
.open = smi_params_proc_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
/*
* oem_data_avail_to_receive_msg_avail
* @info - smi_info structure with msg_flags set
*
* Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
* Returns 1 indicating need to re-run handle_flags().
*/
static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
{
smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
RECEIVE_MSG_AVAIL);
return 1;
}
/*
* setup_dell_poweredge_oem_data_handler
* @info - smi_info.device_id must be populated
*
* Systems that match, but have firmware version < 1.40 may assert
* OEM0_DATA_AVAIL on their own, without being told via Set Flags that
* it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
* upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
* as RECEIVE_MSG_AVAIL instead.
*
* As Dell has no plans to release IPMI 1.5 firmware that *ever*
* assert the OEM[012] bits, and if it did, the driver would have to
* change to handle that properly, we don't actually check for the
* firmware version.
* Device ID = 0x20 BMC on PowerEdge 8G servers
* Device Revision = 0x80
* Firmware Revision1 = 0x01 BMC version 1.40
* Firmware Revision2 = 0x40 BCD encoded
* IPMI Version = 0x51 IPMI 1.5
* Manufacturer ID = A2 02 00 Dell IANA
*
* Additionally, PowerEdge systems with IPMI < 1.5 may also assert
* OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
*
*/
#define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
#define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
#define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
#define DELL_IANA_MFR_ID 0x0002a2
static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
{
struct ipmi_device_id *id = &smi_info->device_id;
if (id->manufacturer_id == DELL_IANA_MFR_ID) {
if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
smi_info->oem_data_avail_handler =
oem_data_avail_to_receive_msg_avail;
} else if (ipmi_version_major(id) < 1 ||
(ipmi_version_major(id) == 1 &&
ipmi_version_minor(id) < 5)) {
smi_info->oem_data_avail_handler =
oem_data_avail_to_receive_msg_avail;
}
}
}
#define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
static void return_hosed_msg_badsize(struct smi_info *smi_info)
{
struct ipmi_smi_msg *msg = smi_info->curr_msg;
/* Make it a response */
msg->rsp[0] = msg->data[0] | 4;
msg->rsp[1] = msg->data[1];
msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
msg->rsp_size = 3;
smi_info->curr_msg = NULL;
deliver_recv_msg(smi_info, msg);
}
/*
* dell_poweredge_bt_xaction_handler
* @info - smi_info.device_id must be populated
*
* Dell PowerEdge servers with the BT interface (x6xx and 1750) will
* not respond to a Get SDR command if the length of the data
* requested is exactly 0x3A, which leads to command timeouts and no
* data returned. This intercepts such commands, and causes userspace
* callers to try again with a different-sized buffer, which succeeds.
*/
#define STORAGE_NETFN 0x0A
#define STORAGE_CMD_GET_SDR 0x23
static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
unsigned long unused,
void *in)
{
struct smi_info *smi_info = in;
unsigned char *data = smi_info->curr_msg->data;
unsigned int size = smi_info->curr_msg->data_size;
if (size >= 8 &&
(data[0]>>2) == STORAGE_NETFN &&
data[1] == STORAGE_CMD_GET_SDR &&
data[7] == 0x3A) {
return_hosed_msg_badsize(smi_info);
return NOTIFY_STOP;
}
return NOTIFY_DONE;
}
static struct notifier_block dell_poweredge_bt_xaction_notifier = {
.notifier_call = dell_poweredge_bt_xaction_handler,
};
/*
* setup_dell_poweredge_bt_xaction_handler
* @info - smi_info.device_id must be filled in already
*
* Fills in smi_info.device_id.start_transaction_pre_hook
* when we know what function to use there.
*/
static void
setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
{
struct ipmi_device_id *id = &smi_info->device_id;
if (id->manufacturer_id == DELL_IANA_MFR_ID &&
smi_info->si_type == SI_BT)
register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
}
/*
* setup_oem_data_handler
* @info - smi_info.device_id must be filled in already
*
* Fills in smi_info.device_id.oem_data_available_handler
* when we know what function to use there.
*/
static void setup_oem_data_handler(struct smi_info *smi_info)
{
setup_dell_poweredge_oem_data_handler(smi_info);
}
static void setup_xaction_handlers(struct smi_info *smi_info)
{
setup_dell_poweredge_bt_xaction_handler(smi_info);
}
static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
{
if (smi_info->thread != NULL)
kthread_stop(smi_info->thread);
if (smi_info->timer_running)
del_timer_sync(&smi_info->si_timer);
}
static struct ipmi_default_vals
{
int type;
int port;
} ipmi_defaults[] =
{
{ .type = SI_KCS, .port = 0xca2 },
{ .type = SI_SMIC, .port = 0xca9 },
{ .type = SI_BT, .port = 0xe4 },
{ .port = 0 }
};
static void default_find_bmc(void)
{
struct smi_info *info;
int i;
for (i = 0; ; i++) {
if (!ipmi_defaults[i].port)
break;
#ifdef CONFIG_PPC
if (check_legacy_ioport(ipmi_defaults[i].port))
continue;
#endif
info = smi_info_alloc();
if (!info)
return;
info->addr_source = SI_DEFAULT;
info->si_type = ipmi_defaults[i].type;
info->io_setup = port_setup;
info->io.addr_data = ipmi_defaults[i].port;
info->io.addr_type = IPMI_IO_ADDR_SPACE;
info->io.addr = NULL;
info->io.regspacing = DEFAULT_REGSPACING;
info->io.regsize = DEFAULT_REGSPACING;
info->io.regshift = 0;
if (add_smi(info) == 0) {
if ((try_smi_init(info)) == 0) {
/* Found one... */
printk(KERN_INFO PFX "Found default %s"
" state machine at %s address 0x%lx\n",
si_to_str[info->si_type],
addr_space_to_str[info->io.addr_type],
info->io.addr_data);
} else
cleanup_one_si(info);
} else {
kfree(info);
}
}
}
static int is_new_interface(struct smi_info *info)
{
struct smi_info *e;
list_for_each_entry(e, &smi_infos, link) {
if (e->io.addr_type != info->io.addr_type)
continue;
if (e->io.addr_data == info->io.addr_data)
return 0;
}
return 1;
}
static int add_smi(struct smi_info *new_smi)
{
int rv = 0;
printk(KERN_INFO PFX "Adding %s-specified %s state machine",
ipmi_addr_src_to_str(new_smi->addr_source),
si_to_str[new_smi->si_type]);
mutex_lock(&smi_infos_lock);
if (!is_new_interface(new_smi)) {
printk(KERN_CONT " duplicate interface\n");
rv = -EBUSY;
goto out_err;
}
printk(KERN_CONT "\n");
/* So we know not to free it unless we have allocated one. */
new_smi->intf = NULL;
new_smi->si_sm = NULL;
new_smi->handlers = NULL;
list_add_tail(&new_smi->link, &smi_infos);
out_err:
mutex_unlock(&smi_infos_lock);
return rv;
}
static int try_smi_init(struct smi_info *new_smi)
{
int rv = 0;
int i;
printk(KERN_INFO PFX "Trying %s-specified %s state"
" machine at %s address 0x%lx, slave address 0x%x,"
" irq %d\n",
ipmi_addr_src_to_str(new_smi->addr_source),
si_to_str[new_smi->si_type],
addr_space_to_str[new_smi->io.addr_type],
new_smi->io.addr_data,
new_smi->slave_addr, new_smi->irq);
switch (new_smi->si_type) {
case SI_KCS:
new_smi->handlers = &kcs_smi_handlers;
break;
case SI_SMIC:
new_smi->handlers = &smic_smi_handlers;
break;
case SI_BT:
new_smi->handlers = &bt_smi_handlers;
break;
default:
/* No support for anything else yet. */
rv = -EIO;
goto out_err;
}
/* Allocate the state machine's data and initialize it. */
new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
if (!new_smi->si_sm) {
printk(KERN_ERR PFX
"Could not allocate state machine memory\n");
rv = -ENOMEM;
goto out_err;
}
new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
&new_smi->io);
/* Now that we know the I/O size, we can set up the I/O. */
rv = new_smi->io_setup(new_smi);
if (rv) {
printk(KERN_ERR PFX "Could not set up I/O space\n");
goto out_err;
}
/* Do low-level detection first. */
if (new_smi->handlers->detect(new_smi->si_sm)) {
if (new_smi->addr_source)
printk(KERN_INFO PFX "Interface detection failed\n");
rv = -ENODEV;
goto out_err;
}
/*
* Attempt a get device id command. If it fails, we probably
* don't have a BMC here.
*/
rv = try_get_dev_id(new_smi);
if (rv) {
if (new_smi->addr_source)
printk(KERN_INFO PFX "There appears to be no BMC"
" at this location\n");
goto out_err;
}
setup_oem_data_handler(new_smi);
setup_xaction_handlers(new_smi);
new_smi->waiting_msg = NULL;
new_smi->curr_msg = NULL;
atomic_set(&new_smi->req_events, 0);
new_smi->run_to_completion = false;
for (i = 0; i < SI_NUM_STATS; i++)
atomic_set(&new_smi->stats[i], 0);
new_smi->interrupt_disabled = true;
atomic_set(&new_smi->need_watch, 0);
new_smi->intf_num = smi_num;
smi_num++;
rv = try_enable_event_buffer(new_smi);
if (rv == 0)
new_smi->has_event_buffer = true;
/*
* Start clearing the flags before we enable interrupts or the
* timer to avoid racing with the timer.
*/
start_clear_flags(new_smi);
/*
* IRQ is defined to be set when non-zero. req_events will
* cause a global flags check that will enable interrupts.
*/
if (new_smi->irq) {
new_smi->interrupt_disabled = false;
atomic_set(&new_smi->req_events, 1);
}
if (!new_smi->dev) {
/*
* If we don't already have a device from something
* else (like PCI), then register a new one.
*/
new_smi->pdev = platform_device_alloc("ipmi_si",
new_smi->intf_num);
if (!new_smi->pdev) {
printk(KERN_ERR PFX
"Unable to allocate platform device\n");
goto out_err;
}
new_smi->dev = &new_smi->pdev->dev;
new_smi->dev->driver = &ipmi_driver.driver;
[PATCH] ipmi: use platform_device_add() instead of platform_device_register() to register device allocated dynamically I got below warning when running 2.6.19-rc5-mm1 on my ia64 machine. WARNING at lib/kobject.c:172 kobject_init() Call Trace: [<a0000001000137c0>] show_stack+0x40/0xa0 sp=e0000002ff9f7bc0 bsp=e0000002ff9f0d10 [<a000000100013850>] dump_stack+0x30/0x60 sp=e0000002ff9f7d90 bsp=e0000002ff9f0cf8 [<a000000100407bb0>] kobject_init+0x90/0x160 sp=e0000002ff9f7d90 bsp=e0000002ff9f0cd0 [<a0000001005ae080>] device_initialize+0x40/0x1c0 sp=e0000002ff9f7da0 bsp=e0000002ff9f0cb0 [<a0000001005b88c0>] platform_device_register+0x20/0x60 sp=e0000002ff9f7dd0 bsp=e0000002ff9f0c90 [<a000000100592560>] try_smi_init+0xbc0/0x11e0 sp=e0000002ff9f7dd0 bsp=e0000002ff9f0c50 [<a000000100594900>] init_ipmi_si+0xaa0/0x12e0 sp=e0000002ff9f7de0 bsp=e0000002ff9f0bd8 [<a000000100009910>] init+0x350/0x780 sp=e0000002ff9f7e00 bsp=e0000002ff9f0ba8 [<a000000100011d30>] kernel_thread_helper+0x30/0x60 sp=e0000002ff9f7e30 bsp=e0000002ff9f0b80 [<a0000001000090c0>] start_kernel_thread+0x20/0x40 sp=e0000002ff9f7e30 bsp=e0000002ff9f0b80 WARNING at lib/kobject.c:172 kobject_init() Call Trace: [<a0000001000137c0>] show_stack+0x40/0xa0 sp=e0000002ff9f7b40 bsp=e0000002ff9f0db0 [<a000000100013850>] dump_stack+0x30/0x60 sp=e0000002ff9f7d10 bsp=e0000002ff9f0d98 [<a000000100407bb0>] kobject_init+0x90/0x160 sp=e0000002ff9f7d10 bsp=e0000002ff9f0d70 [<a0000001005ae080>] device_initialize+0x40/0x1c0 sp=e0000002ff9f7d20 bsp=e0000002ff9f0d50 [<a0000001005b88c0>] platform_device_register+0x20/0x60 sp=e0000002ff9f7d50 bsp=e0000002ff9f0d30 [<a00000010058ac00>] ipmi_register_smi+0xcc0/0x18e0 sp=e0000002ff9f7d50 bsp=e0000002ff9f0c90 [<a000000100592600>] try_smi_init+0xc60/0x11e0 sp=e0000002ff9f7dd0 bsp=e0000002ff9f0c50 [<a000000100594900>] init_ipmi_si+0xaa0/0x12e0 sp=e0000002ff9f7de0 bsp=e0000002ff9f0bd8 [<a000000100009910>] init+0x350/0x780 sp=e0000002ff9f7e00 bsp=e0000002ff9f0ba8 [<a000000100011d30>] kernel_thread_helper+0x30/0x60 sp=e0000002ff9f7e30 bsp=e0000002ff9f0b80 [<a0000001000090c0>] start_kernel_thread+0x20/0x40 sp=e0000002ff9f7e30 bsp=e0000002ff9f0b80 The root cause is the device struct is initialized twice. If the device is allocated dynamically by platform_device_alloc, platform_device_alloc will initialize struct device, then, platform_device_add should be used to register the device. The difference between platform_device_register and platform_device_add is platform_device_register will initiate the device while platform_device_add won't. Signed-off-by: Zhang Yanmin <yanmin.zhang@intel.com> Cc: Corey Minyard <minyard@acm.org> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-11-16 09:19:08 +00:00
rv = platform_device_add(new_smi->pdev);
if (rv) {
printk(KERN_ERR PFX
"Unable to register system interface device:"
" %d\n",
rv);
goto out_err;
}
new_smi->dev_registered = true;
}
rv = ipmi_register_smi(&handlers,
new_smi,
&new_smi->device_id,
new_smi->dev,
new_smi->slave_addr);
if (rv) {
dev_err(new_smi->dev, "Unable to register device: error %d\n",
rv);
goto out_err_stop_timer;
}
rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
&smi_type_proc_ops,
new_smi);
if (rv) {
dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
goto out_err_stop_timer;
}
rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
&smi_si_stats_proc_ops,
new_smi);
if (rv) {
dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
goto out_err_stop_timer;
}
rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
&smi_params_proc_ops,
new_smi);
if (rv) {
dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
goto out_err_stop_timer;
}
dev_info(new_smi->dev, "IPMI %s interface initialized\n",
si_to_str[new_smi->si_type]);
return 0;
out_err_stop_timer:
wait_for_timer_and_thread(new_smi);
out_err:
new_smi->interrupt_disabled = true;
if (new_smi->intf) {
ipmi_smi_t intf = new_smi->intf;
new_smi->intf = NULL;
ipmi_unregister_smi(intf);
}
if (new_smi->irq_cleanup) {
new_smi->irq_cleanup(new_smi);
new_smi->irq_cleanup = NULL;
}
/*
* Wait until we know that we are out of any interrupt
* handlers might have been running before we freed the
* interrupt.
*/
synchronize_sched();
if (new_smi->si_sm) {
if (new_smi->handlers)
new_smi->handlers->cleanup(new_smi->si_sm);
kfree(new_smi->si_sm);
new_smi->si_sm = NULL;
}
if (new_smi->addr_source_cleanup) {
new_smi->addr_source_cleanup(new_smi);
new_smi->addr_source_cleanup = NULL;
}
if (new_smi->io_cleanup) {
new_smi->io_cleanup(new_smi);
new_smi->io_cleanup = NULL;
}
if (new_smi->dev_registered) {
platform_device_unregister(new_smi->pdev);
new_smi->dev_registered = false;
}
return rv;
}
static int init_ipmi_si(void)
{
int i;
char *str;
int rv;
struct smi_info *e;
enum ipmi_addr_src type = SI_INVALID;
if (initialized)
return 0;
initialized = 1;
if (si_tryplatform) {
rv = platform_driver_register(&ipmi_driver);
if (rv) {
printk(KERN_ERR PFX "Unable to register "
"driver: %d\n", rv);
return rv;
}
}
/* Parse out the si_type string into its components. */
str = si_type_str;
if (*str != '\0') {
for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
si_type[i] = str;
str = strchr(str, ',');
if (str) {
*str = '\0';
str++;
} else {
break;
}
}
}
printk(KERN_INFO "IPMI System Interface driver.\n");
/* If the user gave us a device, they presumably want us to use it */
if (!hardcode_find_bmc())
return 0;
#ifdef CONFIG_PCI
if (si_trypci) {
rv = pci_register_driver(&ipmi_pci_driver);
if (rv)
printk(KERN_ERR PFX "Unable to register "
"PCI driver: %d\n", rv);
else
pci_registered = true;
}
#endif
#ifdef CONFIG_ACPI
if (si_tryacpi) {
pnp_register_driver(&ipmi_pnp_driver);
pnp_registered = true;
}
#endif
#ifdef CONFIG_DMI
if (si_trydmi)
dmi_find_bmc();
#endif
#ifdef CONFIG_ACPI
if (si_tryacpi)
spmi_find_bmc();
#endif
#ifdef CONFIG_PARISC
register_parisc_driver(&ipmi_parisc_driver);
parisc_registered = true;
/* poking PC IO addresses will crash machine, don't do it */
si_trydefaults = 0;
#endif
/* We prefer devices with interrupts, but in the case of a machine
with multiple BMCs we assume that there will be several instances
of a given type so if we succeed in registering a type then also
try to register everything else of the same type */
mutex_lock(&smi_infos_lock);
list_for_each_entry(e, &smi_infos, link) {
/* Try to register a device if it has an IRQ and we either
haven't successfully registered a device yet or this
device has the same type as one we successfully registered */
if (e->irq && (!type || e->addr_source == type)) {
if (!try_smi_init(e)) {
type = e->addr_source;
}
}
}
/* type will only have been set if we successfully registered an si */
if (type) {
mutex_unlock(&smi_infos_lock);
return 0;
}
/* Fall back to the preferred device */
list_for_each_entry(e, &smi_infos, link) {
if (!e->irq && (!type || e->addr_source == type)) {
if (!try_smi_init(e)) {
type = e->addr_source;
}
}
}
mutex_unlock(&smi_infos_lock);
if (type)
return 0;
if (si_trydefaults) {
mutex_lock(&smi_infos_lock);
if (list_empty(&smi_infos)) {
/* No BMC was found, try defaults. */
mutex_unlock(&smi_infos_lock);
default_find_bmc();
} else
mutex_unlock(&smi_infos_lock);
}
mutex_lock(&smi_infos_lock);
if (unload_when_empty && list_empty(&smi_infos)) {
mutex_unlock(&smi_infos_lock);
cleanup_ipmi_si();
printk(KERN_WARNING PFX
"Unable to find any System Interface(s)\n");
return -ENODEV;
} else {
mutex_unlock(&smi_infos_lock);
return 0;
}
}
module_init(init_ipmi_si);
static void cleanup_one_si(struct smi_info *to_clean)
{
int rv = 0;
if (!to_clean)
return;
if (to_clean->intf) {
ipmi_smi_t intf = to_clean->intf;
to_clean->intf = NULL;
rv = ipmi_unregister_smi(intf);
if (rv) {
pr_err(PFX "Unable to unregister device: errno=%d\n",
rv);
}
}
ipmi: Clear drvdata when interface is removed This patch fixes a bug on hotmod removing. After ipmi interface is removed using hotmod, kernel panic occurs when rmmod impi_si. For example, try this: # echo "remove,"`cat /proc/ipmi/0/params` > \ /sys/module/ipmi_si/parameters/hotmod # rmmod ipmi_si Then, rmmod fails with the following messages. ------------[ cut here ]------------ WARNING: CPU: 12 PID: 10819 at /mnt/repos/linux/lib/list_debug.c:53 __list_del_entry+0x63/0xd0() CPU: 12 PID: 10819 Comm: rmmod Not tainted 3.17.0-rc1 #19 Hardware name: FUJITSU-SV PRIMERGY BX920 S2/D3030, BIOS 080015 Rev.3D81.3030 02/10/2012 Call Trace: dump_stack+0x45/0x56 warn_slowpath_common+0x7d/0xa0 warn_slowpath_fmt+0x4c/0x50 __list_del_entry+0x63/0xd0 list_del+0xd/0x30 cleanup_one_si+0x2a/0x230 [ipmi_si] ipmi_pnp_remove+0x15/0x20 [ipmi_si] pnp_device_remove+0x24/0x40 __device_release_driver+0x7f/0xf0 driver_detach+0xb0/0xc0 bus_remove_driver+0x55/0xd0 driver_unregister+0x2c/0x50 pnp_unregister_driver+0x12/0x20 cleanup_ipmi_si+0xbc/0xf0 [ipmi_si] SyS_delete_module+0x132/0x1c0 system_call_fastpath+0x16/0x1b ---[ end trace 70b4377268f85c23 ]--- list_del in cleanup_one_si() fails because the smi_info is already removed when hotmod removing. When ipmi interface is removed by hotmod, smi_info is removed by cleanup_one_si(), but is is still set in drvdata. Therefore when rmmod ipmi_si, ipmi_pnp_remove tries to remove it again and fails. By this patch, a pointer to smi_info in drvdata is cleared when hotmod removing so that it will be not accessed when rmmod. changelog: v2: - Clear drvdata in cleanup_one_si - Change subject v1: https://lkml.org/lkml/2014/9/8/741 Signed-off-by: Takao Indoh <indou.takao@jp.fujitsu.com> Signed-off-by: Corey Minyard <cminyard@mvista.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-06 19:17:53 +00:00
if (to_clean->dev)
dev_set_drvdata(to_clean->dev, NULL);
list_del(&to_clean->link);
/*
* Make sure that interrupts, the timer and the thread are
* stopped and will not run again.
*/
if (to_clean->irq_cleanup)
to_clean->irq_cleanup(to_clean);
wait_for_timer_and_thread(to_clean);
/*
* Timeouts are stopped, now make sure the interrupts are off
* in the BMC. Note that timers and CPU interrupts are off,
* so no need for locks.
*/
while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
poll(to_clean);
schedule_timeout_uninterruptible(1);
}
disable_si_irq(to_clean);
while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
poll(to_clean);
schedule_timeout_uninterruptible(1);
}
if (to_clean->handlers)
to_clean->handlers->cleanup(to_clean->si_sm);
kfree(to_clean->si_sm);
if (to_clean->addr_source_cleanup)
to_clean->addr_source_cleanup(to_clean);
if (to_clean->io_cleanup)
to_clean->io_cleanup(to_clean);
if (to_clean->dev_registered)
platform_device_unregister(to_clean->pdev);
kfree(to_clean);
}
static void cleanup_ipmi_si(void)
{
struct smi_info *e, *tmp_e;
if (!initialized)
return;
#ifdef CONFIG_PCI
if (pci_registered)
pci_unregister_driver(&ipmi_pci_driver);
#endif
#ifdef CONFIG_ACPI
ipmi: fix hardcoded ipmi device exit path warning When modprobe.conf has options ipmi_si type="kcs" ports=0xCA2 regspacings="4" ipmi_si can be loaded properly, but when try to unload it get: Sep 20 15:00:27 xx abrt: Kerneloops: Reported 1 kernel oopses to Abrt Sep 20 15:00:27 xx abrtd: Directory 'kerneloops-1285020027-1' creation detected Sep 20 15:00:27 xx abrtd: New crash /var/spool/abrt/kerneloops-1285020027-1, processing Sep 20 15:01:09 xx kernel: ------------[ cut here ]------------ Sep 20 15:01:09 xx kernel: WARNING: at drivers/base/driver.c:262 driver_unregister+0x8a/0xa0() Sep 20 15:01:09 xx kernel: Hardware name: Sun Fire x4800 Sep 20 15:01:09 xx kernel: Unexpected driver unregister! Sep 20 15:01:09 xx kernel: Modules linked in: ipmi_si(-) ipmi_msghandler ip6table_filter ip6_tables ebtable_nat ebtables ipt_MASQUERADE iptable_nat nf_nat bridge stp llc autofs4 sunrpc cpufreq_ondemand acpi_cpufreq freq_table mperf xt_physdev be2iscsi iscsi_boot_sysfs bnx2i cnic uio cxgb3i iw_cxgb3 cxgb3 mdio ib_iser rdma_cm ib_cm iw_cm ib_sa ib_mad ib_core ib_addr ipv6 iscsi_tcp libiscsi_tcp libiscsi scsi_transport_iscsi dm_mirror dm_region_hash dm_log dm_mod vhost_net macvtap macvlan tun kvm_intel kvm uinput sg ses enclosure ahci libahci pcspkr i2c_i801 i2c_core iTCO_wdt iTCO_vendor_support igb dca i7core_edac edac_core ext3 jbd mbcache sd_mod crc_t10dif megaraid_sas [last unloaded: ipmi_devintf] Sep 20 15:01:09 xx kernel: Pid: 10625, comm: modprobe Tainted: G W 2.6.36-rc5-tip+ #6 Sep 20 15:01:09 xx kernel: Call Trace: Sep 20 15:01:09 xx kernel: [<ffffffff810600df>] warn_slowpath_common+0x7f/0xc0 Sep 20 15:01:09 xx kernel: [<ffffffff810601d6>] warn_slowpath_fmt+0x46/0x50 Sep 20 15:01:09 xx kernel: [<ffffffff812ff60a>] driver_unregister+0x8a/0xa0 Sep 20 15:01:09 xx kernel: [<ffffffff812ae112>] pnp_unregister_driver+0x12/0x20 Sep 20 15:01:09 xx kernel: [<ffffffffa01d0327>] cleanup_ipmi_si+0x3c/0xa7 [ipmi_si] Sep 20 15:01:09 xx kernel: [<ffffffff81099a60>] sys_delete_module+0x1a0/0x270 Sep 20 15:01:09 xx kernel: [<ffffffff814b7070>] ? do_page_fault+0x150/0x320 Sep 20 15:01:09 xx kernel: [<ffffffff8100b072>] system_call_fastpath+0x16/0x1b Sep 20 15:01:09 xx kernel: ---[ end trace 0d1967161adcee0d ]--- We need to check if ipmi_pnp_driver is loaded before we try to unload it. Signed-off-by: Yinghai Lu <yinghai@kernel.org> Cc: Corey Minyard <minyard@acm.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-09-22 20:05:15 +00:00
if (pnp_registered)
pnp_unregister_driver(&ipmi_pnp_driver);
#endif
#ifdef CONFIG_PARISC
if (parisc_registered)
unregister_parisc_driver(&ipmi_parisc_driver);
#endif
platform_driver_unregister(&ipmi_driver);
mutex_lock(&smi_infos_lock);
list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
cleanup_one_si(e);
mutex_unlock(&smi_infos_lock);
}
module_exit(cleanup_ipmi_si);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
" system interfaces.");