linux/drivers/gpu/drm/amd/amdgpu/gfx_v10_0.c

5217 lines
157 KiB
C
Raw Normal View History

/*
* Copyright 2019 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <linux/firmware.h>
#include <drm/drmP.h>
#include "amdgpu.h"
#include "amdgpu_gfx.h"
#include "amdgpu_psp.h"
#include "amdgpu_smu.h"
#include "nv.h"
#include "nvd.h"
#include "gc/gc_10_1_0_offset.h"
#include "gc/gc_10_1_0_sh_mask.h"
#include "navi10_enum.h"
#include "hdp/hdp_5_0_0_offset.h"
#include "ivsrcid/gfx/irqsrcs_gfx_10_1.h"
#include "soc15.h"
#include "soc15_common.h"
#include "clearstate_gfx10.h"
#include "v10_structs.h"
#include "gfx_v10_0.h"
#include "nbio_v2_3.h"
/**
* Navi10 has two graphic rings to share each graphic pipe.
* 1. Primary ring
* 2. Async ring
*
* In bring-up phase, it just used primary ring so set gfx ring number as 1 at
* first.
*/
#define GFX10_NUM_GFX_RINGS 2
#define GFX10_MEC_HPD_SIZE 2048
#define F32_CE_PROGRAM_RAM_SIZE 65536
#define RLCG_UCODE_LOADING_START_ADDRESS 0x00002000L
MODULE_FIRMWARE("amdgpu/navi10_ce.bin");
MODULE_FIRMWARE("amdgpu/navi10_pfp.bin");
MODULE_FIRMWARE("amdgpu/navi10_me.bin");
MODULE_FIRMWARE("amdgpu/navi10_mec.bin");
MODULE_FIRMWARE("amdgpu/navi10_mec2.bin");
MODULE_FIRMWARE("amdgpu/navi10_rlc.bin");
static const struct soc15_reg_golden golden_settings_gc_10_1[] =
{
SOC15_REG_GOLDEN_VALUE(GC, 0, mmCB_HW_CONTROL_4, 0xffffffff, 0x00400014),
SOC15_REG_GOLDEN_VALUE(GC, 0, mmCGTT_CPF_CLK_CTRL, 0xfcff8fff, 0xf8000100),
SOC15_REG_GOLDEN_VALUE(GC, 0, mmCGTT_SPI_CLK_CTRL, 0xc0000000, 0xc0000100),
SOC15_REG_GOLDEN_VALUE(GC, 0, mmCGTT_SQ_CLK_CTRL, 0x60000ff0, 0x60000100),
SOC15_REG_GOLDEN_VALUE(GC, 0, mmCGTT_SQG_CLK_CTRL, 0x40000000, 0x40000100),
SOC15_REG_GOLDEN_VALUE(GC, 0, mmCGTT_VGT_CLK_CTRL, 0xffff8fff, 0xffff8100),
SOC15_REG_GOLDEN_VALUE(GC, 0, mmCGTT_WD_CLK_CTRL, 0xfeff8fff, 0xfeff8100),
SOC15_REG_GOLDEN_VALUE(GC, 0, mmCH_PIPE_STEER, 0xffffffff, 0xe4e4e4e4),
SOC15_REG_GOLDEN_VALUE(GC, 0, mmCH_VC5_ENABLE, 0x00000002, 0x00000000),
SOC15_REG_GOLDEN_VALUE(GC, 0, mmCP_SD_CNTL, 0x000007ff, 0x000005ff),
SOC15_REG_GOLDEN_VALUE(GC, 0, mmDB_DEBUG, 0x20000000, 0x20000000),
SOC15_REG_GOLDEN_VALUE(GC, 0, mmDB_DEBUG2, 0xffffffff, 0x00000420),
SOC15_REG_GOLDEN_VALUE(GC, 0, mmDB_DEBUG3, 0x00000200, 0x00000200),
SOC15_REG_GOLDEN_VALUE(GC, 0, mmDB_DEBUG4, 0x07900000, 0x04900000),
SOC15_REG_GOLDEN_VALUE(GC, 0, mmDB_DFSM_TILES_IN_FLIGHT, 0x0000ffff, 0x0000003f),
SOC15_REG_GOLDEN_VALUE(GC, 0, mmDB_LAST_OF_BURST_CONFIG, 0xffffffff, 0x03860204),
SOC15_REG_GOLDEN_VALUE(GC, 0, mmGCR_GENERAL_CNTL, 0x1ff0ffff, 0x00000500),
SOC15_REG_GOLDEN_VALUE(GC, 0, mmGE_PRIV_CONTROL, 0x000007ff, 0x000001fe),
SOC15_REG_GOLDEN_VALUE(GC, 0, mmGL1_PIPE_STEER, 0xffffffff, 0xe4e4e4e4),
SOC15_REG_GOLDEN_VALUE(GC, 0, mmGL2_PIPE_STEER_0, 0x77777777, 0x10321032),
SOC15_REG_GOLDEN_VALUE(GC, 0, mmGL2_PIPE_STEER_1, 0x77777777, 0x02310231),
SOC15_REG_GOLDEN_VALUE(GC, 0, mmGL2A_ADDR_MATCH_MASK, 0xffffffff, 0xffffffcf),
SOC15_REG_GOLDEN_VALUE(GC, 0, mmGL2C_ADDR_MATCH_MASK, 0xffffffff, 0xffffffcf),
SOC15_REG_GOLDEN_VALUE(GC, 0, mmGL2C_CGTT_SCLK_CTRL, 0x10000000, 0x10000100),
SOC15_REG_GOLDEN_VALUE(GC, 0, mmGL2C_CTRL2, 0xffffffff, 0x1402002f),
SOC15_REG_GOLDEN_VALUE(GC, 0, mmGL2C_CTRL3, 0xffff9fff, 0x00001188),
SOC15_REG_GOLDEN_VALUE(GC, 0, mmPA_SC_ENHANCE, 0x3fffffff, 0x08000009),
SOC15_REG_GOLDEN_VALUE(GC, 0, mmPA_SC_ENHANCE_1, 0x00400000, 0x04440000),
SOC15_REG_GOLDEN_VALUE(GC, 0, mmPA_SC_LINE_STIPPLE_STATE, 0x0000ff0f, 0x00000000),
SOC15_REG_GOLDEN_VALUE(GC, 0, mmRMI_SPARE, 0xffffffff, 0xffff3101),
SOC15_REG_GOLDEN_VALUE(GC, 0, mmSQ_ALU_CLK_CTRL, 0xffffffff, 0xffffffff),
SOC15_REG_GOLDEN_VALUE(GC, 0, mmSQ_ARB_CONFIG, 0x00000100, 0x00000130),
SOC15_REG_GOLDEN_VALUE(GC, 0, mmSQ_LDS_CLK_CTRL, 0xffffffff, 0xffffffff),
SOC15_REG_GOLDEN_VALUE(GC, 0, mmTA_CNTL_AUX, 0xfff7ffff, 0x01030000),
SOC15_REG_GOLDEN_VALUE(GC, 0, mmTCP_CNTL, 0x60000010, 0x479c0010),
SOC15_REG_GOLDEN_VALUE(GC, 0, mmUTCL1_CGTT_CLK_CTRL, 0xfeff0fff, 0x40000100),
SOC15_REG_GOLDEN_VALUE(GC, 0, mmUTCL1_CTRL, 0x00800000, 0x00800000)
};
static const struct soc15_reg_golden golden_settings_gc_10_0_nv10[] =
{
/* Pending on emulation bring up */
};
#define DEFAULT_SH_MEM_CONFIG \
((SH_MEM_ADDRESS_MODE_64 << SH_MEM_CONFIG__ADDRESS_MODE__SHIFT) | \
(SH_MEM_ALIGNMENT_MODE_UNALIGNED << SH_MEM_CONFIG__ALIGNMENT_MODE__SHIFT) | \
(SH_MEM_RETRY_MODE_ALL << SH_MEM_CONFIG__RETRY_MODE__SHIFT) | \
(3 << SH_MEM_CONFIG__INITIAL_INST_PREFETCH__SHIFT))
static void gfx_v10_0_set_ring_funcs(struct amdgpu_device *adev);
static void gfx_v10_0_set_irq_funcs(struct amdgpu_device *adev);
static void gfx_v10_0_set_gds_init(struct amdgpu_device *adev);
static void gfx_v10_0_set_rlc_funcs(struct amdgpu_device *adev);
static int gfx_v10_0_get_cu_info(struct amdgpu_device *adev,
struct amdgpu_cu_info *cu_info);
static uint64_t gfx_v10_0_get_gpu_clock_counter(struct amdgpu_device *adev);
static void gfx_v10_0_select_se_sh(struct amdgpu_device *adev, u32 se_num,
u32 sh_num, u32 instance);
static u32 gfx_v10_0_get_wgp_active_bitmap_per_sh(struct amdgpu_device *adev);
static int gfx_v10_0_rlc_backdoor_autoload_buffer_init(struct amdgpu_device *adev);
static void gfx_v10_0_rlc_backdoor_autoload_buffer_fini(struct amdgpu_device *adev);
static int gfx_v10_0_rlc_backdoor_autoload_enable(struct amdgpu_device *adev);
static int gfx_v10_0_wait_for_rlc_autoload_complete(struct amdgpu_device *adev);
static void gfx_v10_0_ring_emit_ce_meta(struct amdgpu_ring *ring, bool resume);
static void gfx_v10_0_ring_emit_de_meta(struct amdgpu_ring *ring, bool resume);
static void gfx_v10_0_ring_emit_tmz(struct amdgpu_ring *ring, bool start);
static void gfx10_kiq_set_resources(struct amdgpu_ring *kiq_ring, uint64_t queue_mask)
{
amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_SET_RESOURCES, 6));
amdgpu_ring_write(kiq_ring, PACKET3_SET_RESOURCES_VMID_MASK(0) |
PACKET3_SET_RESOURCES_QUEUE_TYPE(0)); /* vmid_mask:0 queue_type:0 (KIQ) */
amdgpu_ring_write(kiq_ring, lower_32_bits(queue_mask)); /* queue mask lo */
amdgpu_ring_write(kiq_ring, upper_32_bits(queue_mask)); /* queue mask hi */
amdgpu_ring_write(kiq_ring, 0); /* gws mask lo */
amdgpu_ring_write(kiq_ring, 0); /* gws mask hi */
amdgpu_ring_write(kiq_ring, 0); /* oac mask */
amdgpu_ring_write(kiq_ring, 0); /* gds heap base:0, gds heap size:0 */
}
static void gfx10_kiq_map_queues(struct amdgpu_ring *kiq_ring,
struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = kiq_ring->adev;
uint64_t mqd_addr = amdgpu_bo_gpu_offset(ring->mqd_obj);
uint64_t wptr_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
uint32_t eng_sel = ring->funcs->type == AMDGPU_RING_TYPE_GFX ? 4 : 0;
amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_MAP_QUEUES, 5));
/* Q_sel:0, vmid:0, vidmem: 1, engine:0, num_Q:1*/
amdgpu_ring_write(kiq_ring, /* Q_sel: 0, vmid: 0, engine: 0, num_Q: 1 */
PACKET3_MAP_QUEUES_QUEUE_SEL(0) | /* Queue_Sel */
PACKET3_MAP_QUEUES_VMID(0) | /* VMID */
PACKET3_MAP_QUEUES_QUEUE(ring->queue) |
PACKET3_MAP_QUEUES_PIPE(ring->pipe) |
PACKET3_MAP_QUEUES_ME((ring->me == 1 ? 0 : 1)) |
PACKET3_MAP_QUEUES_QUEUE_TYPE(0) | /*queue_type: normal compute queue */
PACKET3_MAP_QUEUES_ALLOC_FORMAT(0) | /* alloc format: all_on_one_pipe */
PACKET3_MAP_QUEUES_ENGINE_SEL(eng_sel) |
PACKET3_MAP_QUEUES_NUM_QUEUES(1)); /* num_queues: must be 1 */
amdgpu_ring_write(kiq_ring, PACKET3_MAP_QUEUES_DOORBELL_OFFSET(ring->doorbell_index));
amdgpu_ring_write(kiq_ring, lower_32_bits(mqd_addr));
amdgpu_ring_write(kiq_ring, upper_32_bits(mqd_addr));
amdgpu_ring_write(kiq_ring, lower_32_bits(wptr_addr));
amdgpu_ring_write(kiq_ring, upper_32_bits(wptr_addr));
}
static void gfx10_kiq_unmap_queues(struct amdgpu_ring *kiq_ring,
struct amdgpu_ring *ring,
enum amdgpu_unmap_queues_action action,
u64 gpu_addr, u64 seq)
{
uint32_t eng_sel = ring->funcs->type == AMDGPU_RING_TYPE_GFX ? 4 : 0;
amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_UNMAP_QUEUES, 4));
amdgpu_ring_write(kiq_ring, /* Q_sel: 0, vmid: 0, engine: 0, num_Q: 1 */
PACKET3_UNMAP_QUEUES_ACTION(action) |
PACKET3_UNMAP_QUEUES_QUEUE_SEL(0) |
PACKET3_UNMAP_QUEUES_ENGINE_SEL(eng_sel) |
PACKET3_UNMAP_QUEUES_NUM_QUEUES(1));
amdgpu_ring_write(kiq_ring,
PACKET3_UNMAP_QUEUES_DOORBELL_OFFSET0(ring->doorbell_index));
if (action == PREEMPT_QUEUES_NO_UNMAP) {
amdgpu_ring_write(kiq_ring, lower_32_bits(gpu_addr));
amdgpu_ring_write(kiq_ring, upper_32_bits(gpu_addr));
amdgpu_ring_write(kiq_ring, seq);
} else {
amdgpu_ring_write(kiq_ring, 0);
amdgpu_ring_write(kiq_ring, 0);
amdgpu_ring_write(kiq_ring, 0);
}
}
static void gfx10_kiq_query_status(struct amdgpu_ring *kiq_ring,
struct amdgpu_ring *ring,
u64 addr,
u64 seq)
{
uint32_t eng_sel = ring->funcs->type == AMDGPU_RING_TYPE_GFX ? 4 : 0;
amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_QUERY_STATUS, 5));
amdgpu_ring_write(kiq_ring,
PACKET3_QUERY_STATUS_CONTEXT_ID(0) |
PACKET3_QUERY_STATUS_INTERRUPT_SEL(0) |
PACKET3_QUERY_STATUS_COMMAND(2));
amdgpu_ring_write(kiq_ring, /* Q_sel: 0, vmid: 0, engine: 0, num_Q: 1 */
PACKET3_QUERY_STATUS_DOORBELL_OFFSET(ring->doorbell_index) |
PACKET3_QUERY_STATUS_ENG_SEL(eng_sel));
amdgpu_ring_write(kiq_ring, lower_32_bits(addr));
amdgpu_ring_write(kiq_ring, upper_32_bits(addr));
amdgpu_ring_write(kiq_ring, lower_32_bits(seq));
amdgpu_ring_write(kiq_ring, upper_32_bits(seq));
}
static const struct kiq_pm4_funcs gfx_v10_0_kiq_pm4_funcs = {
.kiq_set_resources = gfx10_kiq_set_resources,
.kiq_map_queues = gfx10_kiq_map_queues,
.kiq_unmap_queues = gfx10_kiq_unmap_queues,
.kiq_query_status = gfx10_kiq_query_status,
.set_resources_size = 8,
.map_queues_size = 7,
.unmap_queues_size = 6,
.query_status_size = 7,
};
static void gfx_v10_0_set_kiq_pm4_funcs(struct amdgpu_device *adev)
{
adev->gfx.kiq.pmf = &gfx_v10_0_kiq_pm4_funcs;
}
static void gfx_v10_0_init_golden_registers(struct amdgpu_device *adev)
{
switch (adev->asic_type) {
case CHIP_NAVI10:
soc15_program_register_sequence(adev,
golden_settings_gc_10_1,
(const u32)ARRAY_SIZE(golden_settings_gc_10_1));
soc15_program_register_sequence(adev,
golden_settings_gc_10_0_nv10,
(const u32)ARRAY_SIZE(golden_settings_gc_10_0_nv10));
break;
default:
break;
}
}
static void gfx_v10_0_scratch_init(struct amdgpu_device *adev)
{
adev->gfx.scratch.num_reg = 8;
adev->gfx.scratch.reg_base = SOC15_REG_OFFSET(GC, 0, mmSCRATCH_REG0);
adev->gfx.scratch.free_mask = (1u << adev->gfx.scratch.num_reg) - 1;
}
static void gfx_v10_0_write_data_to_reg(struct amdgpu_ring *ring, int eng_sel,
bool wc, uint32_t reg, uint32_t val)
{
amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
amdgpu_ring_write(ring, WRITE_DATA_ENGINE_SEL(eng_sel) |
WRITE_DATA_DST_SEL(0) | (wc ? WR_CONFIRM : 0));
amdgpu_ring_write(ring, reg);
amdgpu_ring_write(ring, 0);
amdgpu_ring_write(ring, val);
}
static void gfx_v10_0_wait_reg_mem(struct amdgpu_ring *ring, int eng_sel,
int mem_space, int opt, uint32_t addr0,
uint32_t addr1, uint32_t ref, uint32_t mask,
uint32_t inv)
{
amdgpu_ring_write(ring, PACKET3(PACKET3_WAIT_REG_MEM, 5));
amdgpu_ring_write(ring,
/* memory (1) or register (0) */
(WAIT_REG_MEM_MEM_SPACE(mem_space) |
WAIT_REG_MEM_OPERATION(opt) | /* wait */
WAIT_REG_MEM_FUNCTION(3) | /* equal */
WAIT_REG_MEM_ENGINE(eng_sel)));
if (mem_space)
BUG_ON(addr0 & 0x3); /* Dword align */
amdgpu_ring_write(ring, addr0);
amdgpu_ring_write(ring, addr1);
amdgpu_ring_write(ring, ref);
amdgpu_ring_write(ring, mask);
amdgpu_ring_write(ring, inv); /* poll interval */
}
static int gfx_v10_0_ring_test_ring(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
uint32_t scratch;
uint32_t tmp = 0;
unsigned i;
int r;
r = amdgpu_gfx_scratch_get(adev, &scratch);
if (r) {
DRM_ERROR("amdgpu: cp failed to get scratch reg (%d).\n", r);
return r;
}
WREG32(scratch, 0xCAFEDEAD);
r = amdgpu_ring_alloc(ring, 3);
if (r) {
DRM_ERROR("amdgpu: cp failed to lock ring %d (%d).\n",
ring->idx, r);
amdgpu_gfx_scratch_free(adev, scratch);
return r;
}
amdgpu_ring_write(ring, PACKET3(PACKET3_SET_UCONFIG_REG, 1));
amdgpu_ring_write(ring, (scratch - PACKET3_SET_UCONFIG_REG_START));
amdgpu_ring_write(ring, 0xDEADBEEF);
amdgpu_ring_commit(ring);
for (i = 0; i < adev->usec_timeout; i++) {
tmp = RREG32(scratch);
if (tmp == 0xDEADBEEF)
break;
if (amdgpu_emu_mode == 1)
msleep(1);
else
DRM_UDELAY(1);
}
if (i < adev->usec_timeout) {
if (amdgpu_emu_mode == 1)
DRM_INFO("ring test on %d succeeded in %d msecs\n",
ring->idx, i);
else
DRM_INFO("ring test on %d succeeded in %d usecs\n",
ring->idx, i);
} else {
DRM_ERROR("amdgpu: ring %d test failed (scratch(0x%04X)=0x%08X)\n",
ring->idx, scratch, tmp);
r = -EINVAL;
}
amdgpu_gfx_scratch_free(adev, scratch);
return r;
}
static int gfx_v10_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
{
struct amdgpu_device *adev = ring->adev;
struct amdgpu_ib ib;
struct dma_fence *f = NULL;
uint32_t scratch;
uint32_t tmp = 0;
long r;
r = amdgpu_gfx_scratch_get(adev, &scratch);
if (r) {
DRM_ERROR("amdgpu: failed to get scratch reg (%ld).\n", r);
return r;
}
WREG32(scratch, 0xCAFEDEAD);
memset(&ib, 0, sizeof(ib));
r = amdgpu_ib_get(adev, NULL, 256, &ib);
if (r) {
DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
goto err1;
}
ib.ptr[0] = PACKET3(PACKET3_SET_UCONFIG_REG, 1);
ib.ptr[1] = ((scratch - PACKET3_SET_UCONFIG_REG_START));
ib.ptr[2] = 0xDEADBEEF;
ib.length_dw = 3;
r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
if (r)
goto err2;
r = dma_fence_wait_timeout(f, false, timeout);
if (r == 0) {
DRM_ERROR("amdgpu: IB test timed out.\n");
r = -ETIMEDOUT;
goto err2;
} else if (r < 0) {
DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
goto err2;
}
tmp = RREG32(scratch);
if (tmp == 0xDEADBEEF) {
DRM_INFO("ib test on ring %d succeeded\n", ring->idx);
r = 0;
} else {
DRM_ERROR("amdgpu: ib test failed (scratch(0x%04X)=0x%08X)\n",
scratch, tmp);
r = -EINVAL;
}
err2:
amdgpu_ib_free(adev, &ib, NULL);
dma_fence_put(f);
err1:
amdgpu_gfx_scratch_free(adev, scratch);
return r;
}
static void gfx_v10_0_free_microcode(struct amdgpu_device *adev)
{
release_firmware(adev->gfx.pfp_fw);
adev->gfx.pfp_fw = NULL;
release_firmware(adev->gfx.me_fw);
adev->gfx.me_fw = NULL;
release_firmware(adev->gfx.ce_fw);
adev->gfx.ce_fw = NULL;
release_firmware(adev->gfx.rlc_fw);
adev->gfx.rlc_fw = NULL;
release_firmware(adev->gfx.mec_fw);
adev->gfx.mec_fw = NULL;
release_firmware(adev->gfx.mec2_fw);
adev->gfx.mec2_fw = NULL;
kfree(adev->gfx.rlc.register_list_format);
}
static void gfx_v10_0_init_rlc_ext_microcode(struct amdgpu_device *adev)
{
const struct rlc_firmware_header_v2_1 *rlc_hdr;
rlc_hdr = (const struct rlc_firmware_header_v2_1 *)adev->gfx.rlc_fw->data;
adev->gfx.rlc_srlc_fw_version = le32_to_cpu(rlc_hdr->save_restore_list_cntl_ucode_ver);
adev->gfx.rlc_srlc_feature_version = le32_to_cpu(rlc_hdr->save_restore_list_cntl_feature_ver);
adev->gfx.rlc.save_restore_list_cntl_size_bytes = le32_to_cpu(rlc_hdr->save_restore_list_cntl_size_bytes);
adev->gfx.rlc.save_restore_list_cntl = (u8 *)rlc_hdr + le32_to_cpu(rlc_hdr->save_restore_list_cntl_offset_bytes);
adev->gfx.rlc_srlg_fw_version = le32_to_cpu(rlc_hdr->save_restore_list_gpm_ucode_ver);
adev->gfx.rlc_srlg_feature_version = le32_to_cpu(rlc_hdr->save_restore_list_gpm_feature_ver);
adev->gfx.rlc.save_restore_list_gpm_size_bytes = le32_to_cpu(rlc_hdr->save_restore_list_gpm_size_bytes);
adev->gfx.rlc.save_restore_list_gpm = (u8 *)rlc_hdr + le32_to_cpu(rlc_hdr->save_restore_list_gpm_offset_bytes);
adev->gfx.rlc_srls_fw_version = le32_to_cpu(rlc_hdr->save_restore_list_srm_ucode_ver);
adev->gfx.rlc_srls_feature_version = le32_to_cpu(rlc_hdr->save_restore_list_srm_feature_ver);
adev->gfx.rlc.save_restore_list_srm_size_bytes = le32_to_cpu(rlc_hdr->save_restore_list_srm_size_bytes);
adev->gfx.rlc.save_restore_list_srm = (u8 *)rlc_hdr + le32_to_cpu(rlc_hdr->save_restore_list_srm_offset_bytes);
adev->gfx.rlc.reg_list_format_direct_reg_list_length =
le32_to_cpu(rlc_hdr->reg_list_format_direct_reg_list_length);
}
static void gfx_v10_0_check_gfxoff_flag(struct amdgpu_device *adev)
{
switch (adev->asic_type) {
case CHIP_NAVI10:
adev->pm.pp_feature &= ~PP_GFXOFF_MASK;
break;
default:
break;
}
}
static int gfx_v10_0_init_microcode(struct amdgpu_device *adev)
{
const char *chip_name;
char fw_name[30];
int err;
struct amdgpu_firmware_info *info = NULL;
const struct common_firmware_header *header = NULL;
const struct gfx_firmware_header_v1_0 *cp_hdr;
const struct rlc_firmware_header_v2_0 *rlc_hdr;
unsigned int *tmp = NULL;
unsigned int i = 0;
uint16_t version_major;
uint16_t version_minor;
DRM_DEBUG("\n");
switch (adev->asic_type) {
case CHIP_NAVI10:
chip_name = "navi10";
break;
default:
BUG();
}
snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_pfp.bin", chip_name);
err = request_firmware(&adev->gfx.pfp_fw, fw_name, adev->dev);
if (err)
goto out;
err = amdgpu_ucode_validate(adev->gfx.pfp_fw);
if (err)
goto out;
cp_hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.pfp_fw->data;
adev->gfx.pfp_fw_version = le32_to_cpu(cp_hdr->header.ucode_version);
adev->gfx.pfp_feature_version = le32_to_cpu(cp_hdr->ucode_feature_version);
snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_me.bin", chip_name);
err = request_firmware(&adev->gfx.me_fw, fw_name, adev->dev);
if (err)
goto out;
err = amdgpu_ucode_validate(adev->gfx.me_fw);
if (err)
goto out;
cp_hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.me_fw->data;
adev->gfx.me_fw_version = le32_to_cpu(cp_hdr->header.ucode_version);
adev->gfx.me_feature_version = le32_to_cpu(cp_hdr->ucode_feature_version);
snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_ce.bin", chip_name);
err = request_firmware(&adev->gfx.ce_fw, fw_name, adev->dev);
if (err)
goto out;
err = amdgpu_ucode_validate(adev->gfx.ce_fw);
if (err)
goto out;
cp_hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.ce_fw->data;
adev->gfx.ce_fw_version = le32_to_cpu(cp_hdr->header.ucode_version);
adev->gfx.ce_feature_version = le32_to_cpu(cp_hdr->ucode_feature_version);
snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_rlc.bin", chip_name);
err = request_firmware(&adev->gfx.rlc_fw, fw_name, adev->dev);
if (err)
goto out;
err = amdgpu_ucode_validate(adev->gfx.rlc_fw);
rlc_hdr = (const struct rlc_firmware_header_v2_0 *)adev->gfx.rlc_fw->data;
version_major = le16_to_cpu(rlc_hdr->header.header_version_major);
version_minor = le16_to_cpu(rlc_hdr->header.header_version_minor);
if (version_major == 2 && version_minor == 1)
adev->gfx.rlc.is_rlc_v2_1 = true;
adev->gfx.rlc_fw_version = le32_to_cpu(rlc_hdr->header.ucode_version);
adev->gfx.rlc_feature_version = le32_to_cpu(rlc_hdr->ucode_feature_version);
adev->gfx.rlc.save_and_restore_offset =
le32_to_cpu(rlc_hdr->save_and_restore_offset);
adev->gfx.rlc.clear_state_descriptor_offset =
le32_to_cpu(rlc_hdr->clear_state_descriptor_offset);
adev->gfx.rlc.avail_scratch_ram_locations =
le32_to_cpu(rlc_hdr->avail_scratch_ram_locations);
adev->gfx.rlc.reg_restore_list_size =
le32_to_cpu(rlc_hdr->reg_restore_list_size);
adev->gfx.rlc.reg_list_format_start =
le32_to_cpu(rlc_hdr->reg_list_format_start);
adev->gfx.rlc.reg_list_format_separate_start =
le32_to_cpu(rlc_hdr->reg_list_format_separate_start);
adev->gfx.rlc.starting_offsets_start =
le32_to_cpu(rlc_hdr->starting_offsets_start);
adev->gfx.rlc.reg_list_format_size_bytes =
le32_to_cpu(rlc_hdr->reg_list_format_size_bytes);
adev->gfx.rlc.reg_list_size_bytes =
le32_to_cpu(rlc_hdr->reg_list_size_bytes);
adev->gfx.rlc.register_list_format =
kmalloc(adev->gfx.rlc.reg_list_format_size_bytes +
adev->gfx.rlc.reg_list_size_bytes, GFP_KERNEL);
if (!adev->gfx.rlc.register_list_format) {
err = -ENOMEM;
goto out;
}
tmp = (unsigned int *)((uintptr_t)rlc_hdr +
le32_to_cpu(rlc_hdr->reg_list_format_array_offset_bytes));
for (i = 0 ; i < (rlc_hdr->reg_list_format_size_bytes >> 2); i++)
adev->gfx.rlc.register_list_format[i] = le32_to_cpu(tmp[i]);
adev->gfx.rlc.register_restore = adev->gfx.rlc.register_list_format + i;
tmp = (unsigned int *)((uintptr_t)rlc_hdr +
le32_to_cpu(rlc_hdr->reg_list_array_offset_bytes));
for (i = 0 ; i < (rlc_hdr->reg_list_size_bytes >> 2); i++)
adev->gfx.rlc.register_restore[i] = le32_to_cpu(tmp[i]);
if (adev->gfx.rlc.is_rlc_v2_1)
gfx_v10_0_init_rlc_ext_microcode(adev);
snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_mec.bin", chip_name);
err = request_firmware(&adev->gfx.mec_fw, fw_name, adev->dev);
if (err)
goto out;
err = amdgpu_ucode_validate(adev->gfx.mec_fw);
if (err)
goto out;
cp_hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.mec_fw->data;
adev->gfx.mec_fw_version = le32_to_cpu(cp_hdr->header.ucode_version);
adev->gfx.mec_feature_version = le32_to_cpu(cp_hdr->ucode_feature_version);
snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_mec2.bin", chip_name);
err = request_firmware(&adev->gfx.mec2_fw, fw_name, adev->dev);
if (!err) {
err = amdgpu_ucode_validate(adev->gfx.mec2_fw);
if (err)
goto out;
cp_hdr = (const struct gfx_firmware_header_v1_0 *)
adev->gfx.mec2_fw->data;
adev->gfx.mec2_fw_version =
le32_to_cpu(cp_hdr->header.ucode_version);
adev->gfx.mec2_feature_version =
le32_to_cpu(cp_hdr->ucode_feature_version);
} else {
err = 0;
adev->gfx.mec2_fw = NULL;
}
if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
info = &adev->firmware.ucode[AMDGPU_UCODE_ID_CP_PFP];
info->ucode_id = AMDGPU_UCODE_ID_CP_PFP;
info->fw = adev->gfx.pfp_fw;
header = (const struct common_firmware_header *)info->fw->data;
adev->firmware.fw_size +=
ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
info = &adev->firmware.ucode[AMDGPU_UCODE_ID_CP_ME];
info->ucode_id = AMDGPU_UCODE_ID_CP_ME;
info->fw = adev->gfx.me_fw;
header = (const struct common_firmware_header *)info->fw->data;
adev->firmware.fw_size +=
ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
info = &adev->firmware.ucode[AMDGPU_UCODE_ID_CP_CE];
info->ucode_id = AMDGPU_UCODE_ID_CP_CE;
info->fw = adev->gfx.ce_fw;
header = (const struct common_firmware_header *)info->fw->data;
adev->firmware.fw_size +=
ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
info = &adev->firmware.ucode[AMDGPU_UCODE_ID_RLC_G];
info->ucode_id = AMDGPU_UCODE_ID_RLC_G;
info->fw = adev->gfx.rlc_fw;
header = (const struct common_firmware_header *)info->fw->data;
adev->firmware.fw_size +=
ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
if (adev->gfx.rlc.is_rlc_v2_1 &&
adev->gfx.rlc.save_restore_list_cntl_size_bytes &&
adev->gfx.rlc.save_restore_list_gpm_size_bytes &&
adev->gfx.rlc.save_restore_list_srm_size_bytes) {
info = &adev->firmware.ucode[AMDGPU_UCODE_ID_RLC_RESTORE_LIST_CNTL];
info->ucode_id = AMDGPU_UCODE_ID_RLC_RESTORE_LIST_CNTL;
info->fw = adev->gfx.rlc_fw;
adev->firmware.fw_size +=
ALIGN(adev->gfx.rlc.save_restore_list_cntl_size_bytes, PAGE_SIZE);
info = &adev->firmware.ucode[AMDGPU_UCODE_ID_RLC_RESTORE_LIST_GPM_MEM];
info->ucode_id = AMDGPU_UCODE_ID_RLC_RESTORE_LIST_GPM_MEM;
info->fw = adev->gfx.rlc_fw;
adev->firmware.fw_size +=
ALIGN(adev->gfx.rlc.save_restore_list_gpm_size_bytes, PAGE_SIZE);
info = &adev->firmware.ucode[AMDGPU_UCODE_ID_RLC_RESTORE_LIST_SRM_MEM];
info->ucode_id = AMDGPU_UCODE_ID_RLC_RESTORE_LIST_SRM_MEM;
info->fw = adev->gfx.rlc_fw;
adev->firmware.fw_size +=
ALIGN(adev->gfx.rlc.save_restore_list_srm_size_bytes, PAGE_SIZE);
}
info = &adev->firmware.ucode[AMDGPU_UCODE_ID_CP_MEC1];
info->ucode_id = AMDGPU_UCODE_ID_CP_MEC1;
info->fw = adev->gfx.mec_fw;
header = (const struct common_firmware_header *)info->fw->data;
cp_hdr = (const struct gfx_firmware_header_v1_0 *)info->fw->data;
adev->firmware.fw_size +=
ALIGN(le32_to_cpu(header->ucode_size_bytes) -
le32_to_cpu(cp_hdr->jt_size) * 4, PAGE_SIZE);
info = &adev->firmware.ucode[AMDGPU_UCODE_ID_CP_MEC1_JT];
info->ucode_id = AMDGPU_UCODE_ID_CP_MEC1_JT;
info->fw = adev->gfx.mec_fw;
adev->firmware.fw_size +=
ALIGN(le32_to_cpu(cp_hdr->jt_size) * 4, PAGE_SIZE);
if (adev->gfx.mec2_fw) {
info = &adev->firmware.ucode[AMDGPU_UCODE_ID_CP_MEC2];
info->ucode_id = AMDGPU_UCODE_ID_CP_MEC2;
info->fw = adev->gfx.mec2_fw;
header = (const struct common_firmware_header *)info->fw->data;
cp_hdr = (const struct gfx_firmware_header_v1_0 *)info->fw->data;
adev->firmware.fw_size +=
ALIGN(le32_to_cpu(header->ucode_size_bytes) -
le32_to_cpu(cp_hdr->jt_size) * 4,
PAGE_SIZE);
info = &adev->firmware.ucode[AMDGPU_UCODE_ID_CP_MEC2_JT];
info->ucode_id = AMDGPU_UCODE_ID_CP_MEC2_JT;
info->fw = adev->gfx.mec2_fw;
adev->firmware.fw_size +=
ALIGN(le32_to_cpu(cp_hdr->jt_size) * 4,
PAGE_SIZE);
}
}
out:
if (err) {
dev_err(adev->dev,
"gfx10: Failed to load firmware \"%s\"\n",
fw_name);
release_firmware(adev->gfx.pfp_fw);
adev->gfx.pfp_fw = NULL;
release_firmware(adev->gfx.me_fw);
adev->gfx.me_fw = NULL;
release_firmware(adev->gfx.ce_fw);
adev->gfx.ce_fw = NULL;
release_firmware(adev->gfx.rlc_fw);
adev->gfx.rlc_fw = NULL;
release_firmware(adev->gfx.mec_fw);
adev->gfx.mec_fw = NULL;
release_firmware(adev->gfx.mec2_fw);
adev->gfx.mec2_fw = NULL;
}
gfx_v10_0_check_gfxoff_flag(adev);
return err;
}
static u32 gfx_v10_0_get_csb_size(struct amdgpu_device *adev)
{
u32 count = 0;
const struct cs_section_def *sect = NULL;
const struct cs_extent_def *ext = NULL;
/* begin clear state */
count += 2;
/* context control state */
count += 3;
for (sect = gfx10_cs_data; sect->section != NULL; ++sect) {
for (ext = sect->section; ext->extent != NULL; ++ext) {
if (sect->id == SECT_CONTEXT)
count += 2 + ext->reg_count;
else
return 0;
}
}
/* set PA_SC_TILE_STEERING_OVERRIDE */
count += 3;
/* end clear state */
count += 2;
/* clear state */
count += 2;
return count;
}
static void gfx_v10_0_get_csb_buffer(struct amdgpu_device *adev,
volatile u32 *buffer)
{
u32 count = 0, i;
const struct cs_section_def *sect = NULL;
const struct cs_extent_def *ext = NULL;
int ctx_reg_offset;
if (adev->gfx.rlc.cs_data == NULL)
return;
if (buffer == NULL)
return;
buffer[count++] = cpu_to_le32(PACKET3(PACKET3_PREAMBLE_CNTL, 0));
buffer[count++] = cpu_to_le32(PACKET3_PREAMBLE_BEGIN_CLEAR_STATE);
buffer[count++] = cpu_to_le32(PACKET3(PACKET3_CONTEXT_CONTROL, 1));
buffer[count++] = cpu_to_le32(0x80000000);
buffer[count++] = cpu_to_le32(0x80000000);
for (sect = adev->gfx.rlc.cs_data; sect->section != NULL; ++sect) {
for (ext = sect->section; ext->extent != NULL; ++ext) {
if (sect->id == SECT_CONTEXT) {
buffer[count++] =
cpu_to_le32(PACKET3(PACKET3_SET_CONTEXT_REG, ext->reg_count));
buffer[count++] = cpu_to_le32(ext->reg_index -
PACKET3_SET_CONTEXT_REG_START);
for (i = 0; i < ext->reg_count; i++)
buffer[count++] = cpu_to_le32(ext->extent[i]);
} else {
return;
}
}
}
ctx_reg_offset =
SOC15_REG_OFFSET(GC, 0, mmPA_SC_TILE_STEERING_OVERRIDE) - PACKET3_SET_CONTEXT_REG_START;
buffer[count++] = cpu_to_le32(PACKET3(PACKET3_SET_CONTEXT_REG, 1));
buffer[count++] = cpu_to_le32(ctx_reg_offset);
buffer[count++] = cpu_to_le32(adev->gfx.config.pa_sc_tile_steering_override);
buffer[count++] = cpu_to_le32(PACKET3(PACKET3_PREAMBLE_CNTL, 0));
buffer[count++] = cpu_to_le32(PACKET3_PREAMBLE_END_CLEAR_STATE);
buffer[count++] = cpu_to_le32(PACKET3(PACKET3_CLEAR_STATE, 0));
buffer[count++] = cpu_to_le32(0);
}
static void gfx_v10_0_rlc_fini(struct amdgpu_device *adev)
{
/* clear state block */
amdgpu_bo_free_kernel(&adev->gfx.rlc.clear_state_obj,
&adev->gfx.rlc.clear_state_gpu_addr,
(void **)&adev->gfx.rlc.cs_ptr);
/* jump table block */
amdgpu_bo_free_kernel(&adev->gfx.rlc.cp_table_obj,
&adev->gfx.rlc.cp_table_gpu_addr,
(void **)&adev->gfx.rlc.cp_table_ptr);
}
static int gfx_v10_0_rlc_init(struct amdgpu_device *adev)
{
const struct cs_section_def *cs_data;
int r;
adev->gfx.rlc.cs_data = gfx10_cs_data;
cs_data = adev->gfx.rlc.cs_data;
if (cs_data) {
/* init clear state block */
r = amdgpu_gfx_rlc_init_csb(adev);
if (r)
return r;
}
return 0;
}
static int gfx_v10_0_csb_vram_pin(struct amdgpu_device *adev)
{
int r;
r = amdgpu_bo_reserve(adev->gfx.rlc.clear_state_obj, false);
if (unlikely(r != 0))
return r;
r = amdgpu_bo_pin(adev->gfx.rlc.clear_state_obj,
AMDGPU_GEM_DOMAIN_VRAM);
if (!r)
adev->gfx.rlc.clear_state_gpu_addr =
amdgpu_bo_gpu_offset(adev->gfx.rlc.clear_state_obj);
amdgpu_bo_unreserve(adev->gfx.rlc.clear_state_obj);
return r;
}
static void gfx_v10_0_csb_vram_unpin(struct amdgpu_device *adev)
{
int r;
if (!adev->gfx.rlc.clear_state_obj)
return;
r = amdgpu_bo_reserve(adev->gfx.rlc.clear_state_obj, true);
if (likely(r == 0)) {
amdgpu_bo_unpin(adev->gfx.rlc.clear_state_obj);
amdgpu_bo_unreserve(adev->gfx.rlc.clear_state_obj);
}
}
static void gfx_v10_0_mec_fini(struct amdgpu_device *adev)
{
amdgpu_bo_free_kernel(&adev->gfx.mec.hpd_eop_obj, NULL, NULL);
amdgpu_bo_free_kernel(&adev->gfx.mec.mec_fw_obj, NULL, NULL);
}
static int gfx_v10_0_me_init(struct amdgpu_device *adev)
{
int r;
bitmap_zero(adev->gfx.me.queue_bitmap, AMDGPU_MAX_GFX_QUEUES);
amdgpu_gfx_graphics_queue_acquire(adev);
r = gfx_v10_0_init_microcode(adev);
if (r)
DRM_ERROR("Failed to load gfx firmware!\n");
return r;
}
static int gfx_v10_0_mec_init(struct amdgpu_device *adev)
{
int r;
u32 *hpd;
const __le32 *fw_data = NULL;
unsigned fw_size;
u32 *fw = NULL;
size_t mec_hpd_size;
const struct gfx_firmware_header_v1_0 *mec_hdr = NULL;
bitmap_zero(adev->gfx.mec.queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES);
/* take ownership of the relevant compute queues */
amdgpu_gfx_compute_queue_acquire(adev);
mec_hpd_size = adev->gfx.num_compute_rings * GFX10_MEC_HPD_SIZE;
r = amdgpu_bo_create_reserved(adev, mec_hpd_size, PAGE_SIZE,
AMDGPU_GEM_DOMAIN_GTT,
&adev->gfx.mec.hpd_eop_obj,
&adev->gfx.mec.hpd_eop_gpu_addr,
(void **)&hpd);
if (r) {
dev_warn(adev->dev, "(%d) create HDP EOP bo failed\n", r);
gfx_v10_0_mec_fini(adev);
return r;
}
memset(hpd, 0, adev->gfx.mec.hpd_eop_obj->tbo.mem.size);
amdgpu_bo_kunmap(adev->gfx.mec.hpd_eop_obj);
amdgpu_bo_unreserve(adev->gfx.mec.hpd_eop_obj);
if (adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) {
mec_hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.mec_fw->data;
fw_data = (const __le32 *) (adev->gfx.mec_fw->data +
le32_to_cpu(mec_hdr->header.ucode_array_offset_bytes));
fw_size = le32_to_cpu(mec_hdr->header.ucode_size_bytes);
r = amdgpu_bo_create_reserved(adev, mec_hdr->header.ucode_size_bytes,
PAGE_SIZE, AMDGPU_GEM_DOMAIN_GTT,
&adev->gfx.mec.mec_fw_obj,
&adev->gfx.mec.mec_fw_gpu_addr,
(void **)&fw);
if (r) {
dev_err(adev->dev, "(%d) failed to create mec fw bo\n", r);
gfx_v10_0_mec_fini(adev);
return r;
}
memcpy(fw, fw_data, fw_size);
amdgpu_bo_kunmap(adev->gfx.mec.mec_fw_obj);
amdgpu_bo_unreserve(adev->gfx.mec.mec_fw_obj);
}
return 0;
}
static uint32_t wave_read_ind(struct amdgpu_device *adev, uint32_t wave, uint32_t address)
{
WREG32_SOC15(GC, 0, mmSQ_IND_INDEX,
(wave << SQ_IND_INDEX__WAVE_ID__SHIFT) |
(address << SQ_IND_INDEX__INDEX__SHIFT));
return RREG32_SOC15(GC, 0, mmSQ_IND_DATA);
}
static void wave_read_regs(struct amdgpu_device *adev, uint32_t wave,
uint32_t thread, uint32_t regno,
uint32_t num, uint32_t *out)
{
WREG32_SOC15(GC, 0, mmSQ_IND_INDEX,
(wave << SQ_IND_INDEX__WAVE_ID__SHIFT) |
(regno << SQ_IND_INDEX__INDEX__SHIFT) |
(thread << SQ_IND_INDEX__WORKITEM_ID__SHIFT) |
(SQ_IND_INDEX__AUTO_INCR_MASK));
while (num--)
*(out++) = RREG32_SOC15(GC, 0, mmSQ_IND_DATA);
}
static void gfx_v10_0_read_wave_data(struct amdgpu_device *adev, uint32_t simd, uint32_t wave, uint32_t *dst, int *no_fields)
{
/* in gfx10 the SIMD_ID is specified as part of the INSTANCE
* field when performing a select_se_sh so it should be
* zero here */
WARN_ON(simd != 0);
/* type 2 wave data */
dst[(*no_fields)++] = 2;
dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_STATUS);
dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_PC_LO);
dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_PC_HI);
dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_EXEC_LO);
dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_EXEC_HI);
dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_HW_ID1);
dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_HW_ID2);
dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_INST_DW0);
dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_GPR_ALLOC);
dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_LDS_ALLOC);
dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_TRAPSTS);
dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_IB_STS);
dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_IB_STS2);
dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_IB_DBG1);
dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_M0);
}
static void gfx_v10_0_read_wave_sgprs(struct amdgpu_device *adev, uint32_t simd,
uint32_t wave, uint32_t start,
uint32_t size, uint32_t *dst)
{
WARN_ON(simd != 0);
wave_read_regs(
adev, wave, 0, start + SQIND_WAVE_SGPRS_OFFSET, size,
dst);
}
static void gfx_v10_0_read_wave_vgprs(struct amdgpu_device *adev, uint32_t simd,
uint32_t wave, uint32_t thread,
uint32_t start, uint32_t size,
uint32_t *dst)
{
wave_read_regs(
adev, wave, thread,
start + SQIND_WAVE_VGPRS_OFFSET, size, dst);
}
static void gfx_v10_0_select_me_pipe_q(struct amdgpu_device *adev,
u32 me, u32 pipe, u32 q, u32 vm)
{
nv_grbm_select(adev, me, pipe, q, vm);
}
static const struct amdgpu_gfx_funcs gfx_v10_0_gfx_funcs = {
.get_gpu_clock_counter = &gfx_v10_0_get_gpu_clock_counter,
.select_se_sh = &gfx_v10_0_select_se_sh,
.read_wave_data = &gfx_v10_0_read_wave_data,
.read_wave_sgprs = &gfx_v10_0_read_wave_sgprs,
.read_wave_vgprs = &gfx_v10_0_read_wave_vgprs,
.select_me_pipe_q = &gfx_v10_0_select_me_pipe_q,
};
static void gfx_v10_0_gpu_early_init(struct amdgpu_device *adev)
{
u32 gb_addr_config;
adev->gfx.funcs = &gfx_v10_0_gfx_funcs;
switch (adev->asic_type) {
case CHIP_NAVI10:
adev->gfx.config.max_hw_contexts = 8;
adev->gfx.config.sc_prim_fifo_size_frontend = 0x20;
adev->gfx.config.sc_prim_fifo_size_backend = 0x100;
adev->gfx.config.sc_hiz_tile_fifo_size = 0;
adev->gfx.config.sc_earlyz_tile_fifo_size = 0x4C0;
gb_addr_config = RREG32_SOC15(GC, 0, mmGB_ADDR_CONFIG);
break;
default:
BUG();
break;
}
adev->gfx.config.gb_addr_config = gb_addr_config;
adev->gfx.config.gb_addr_config_fields.num_pipes = 1 <<
REG_GET_FIELD(adev->gfx.config.gb_addr_config,
GB_ADDR_CONFIG, NUM_PIPES);
adev->gfx.config.max_tile_pipes =
adev->gfx.config.gb_addr_config_fields.num_pipes;
adev->gfx.config.gb_addr_config_fields.max_compress_frags = 1 <<
REG_GET_FIELD(adev->gfx.config.gb_addr_config,
GB_ADDR_CONFIG, MAX_COMPRESSED_FRAGS);
adev->gfx.config.gb_addr_config_fields.num_rb_per_se = 1 <<
REG_GET_FIELD(adev->gfx.config.gb_addr_config,
GB_ADDR_CONFIG, NUM_RB_PER_SE);
adev->gfx.config.gb_addr_config_fields.num_se = 1 <<
REG_GET_FIELD(adev->gfx.config.gb_addr_config,
GB_ADDR_CONFIG, NUM_SHADER_ENGINES);
adev->gfx.config.gb_addr_config_fields.pipe_interleave_size = 1 << (8 +
REG_GET_FIELD(adev->gfx.config.gb_addr_config,
GB_ADDR_CONFIG, PIPE_INTERLEAVE_SIZE));
}
static int gfx_v10_0_gfx_ring_init(struct amdgpu_device *adev, int ring_id,
int me, int pipe, int queue)
{
int r;
struct amdgpu_ring *ring;
unsigned int irq_type;
ring = &adev->gfx.gfx_ring[ring_id];
ring->me = me;
ring->pipe = pipe;
ring->queue = queue;
ring->ring_obj = NULL;
ring->use_doorbell = true;
if (!ring_id)
ring->doorbell_index = adev->doorbell_index.gfx_ring0 << 1;
else
ring->doorbell_index = adev->doorbell_index.gfx_ring1 << 1;
sprintf(ring->name, "gfx_%d.%d.%d", ring->me, ring->pipe, ring->queue);
irq_type = AMDGPU_CP_IRQ_GFX_ME0_PIPE0_EOP + ring->pipe;
r = amdgpu_ring_init(adev, ring, 1024,
&adev->gfx.eop_irq, irq_type);
if (r)
return r;
return 0;
}
static int gfx_v10_0_compute_ring_init(struct amdgpu_device *adev, int ring_id,
int mec, int pipe, int queue)
{
int r;
unsigned irq_type;
struct amdgpu_ring *ring = &adev->gfx.compute_ring[ring_id];
ring = &adev->gfx.compute_ring[ring_id];
/* mec0 is me1 */
ring->me = mec + 1;
ring->pipe = pipe;
ring->queue = queue;
ring->ring_obj = NULL;
ring->use_doorbell = true;
ring->doorbell_index = (adev->doorbell_index.mec_ring0 + ring_id) << 1;
ring->eop_gpu_addr = adev->gfx.mec.hpd_eop_gpu_addr
+ (ring_id * GFX10_MEC_HPD_SIZE);
sprintf(ring->name, "comp_%d.%d.%d", ring->me, ring->pipe, ring->queue);
irq_type = AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE0_EOP
+ ((ring->me - 1) * adev->gfx.mec.num_pipe_per_mec)
+ ring->pipe;
/* type-2 packets are deprecated on MEC, use type-3 instead */
r = amdgpu_ring_init(adev, ring, 1024,
&adev->gfx.eop_irq, irq_type);
if (r)
return r;
return 0;
}
static int gfx_v10_0_sw_init(void *handle)
{
int i, j, k, r, ring_id = 0;
struct amdgpu_kiq *kiq;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
switch (adev->asic_type) {
case CHIP_NAVI10:
adev->gfx.me.num_me = 1;
adev->gfx.me.num_pipe_per_me = 2;
adev->gfx.me.num_queue_per_pipe = 1;
adev->gfx.mec.num_mec = 2;
adev->gfx.mec.num_pipe_per_mec = 4;
adev->gfx.mec.num_queue_per_pipe = 8;
break;
default:
adev->gfx.me.num_me = 1;
adev->gfx.me.num_pipe_per_me = 1;
adev->gfx.me.num_queue_per_pipe = 1;
adev->gfx.mec.num_mec = 1;
adev->gfx.mec.num_pipe_per_mec = 4;
adev->gfx.mec.num_queue_per_pipe = 8;
break;
}
/* KIQ event */
r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_GRBM_CP,
GFX_10_1__SRCID__CP_IB2_INTERRUPT_PKT,
&adev->gfx.kiq.irq);
if (r)
return r;
/* EOP Event */
r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_GRBM_CP,
GFX_10_1__SRCID__CP_EOP_INTERRUPT,
&adev->gfx.eop_irq);
if (r)
return r;
/* Privileged reg */
r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_GRBM_CP, GFX_10_1__SRCID__CP_PRIV_REG_FAULT,
&adev->gfx.priv_reg_irq);
if (r)
return r;
/* Privileged inst */
r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_GRBM_CP, GFX_10_1__SRCID__CP_PRIV_INSTR_FAULT,
&adev->gfx.priv_inst_irq);
if (r)
return r;
adev->gfx.gfx_current_status = AMDGPU_GFX_NORMAL_MODE;
gfx_v10_0_scratch_init(adev);
r = gfx_v10_0_me_init(adev);
if (r)
return r;
r = gfx_v10_0_rlc_init(adev);
if (r) {
DRM_ERROR("Failed to init rlc BOs!\n");
return r;
}
r = gfx_v10_0_mec_init(adev);
if (r) {
DRM_ERROR("Failed to init MEC BOs!\n");
return r;
}
/* set up the gfx ring */
for (i = 0; i < adev->gfx.me.num_me; i++) {
for (j = 0; j < adev->gfx.me.num_queue_per_pipe; j++) {
for (k = 0; k < adev->gfx.me.num_pipe_per_me; k++) {
if (!amdgpu_gfx_is_me_queue_enabled(adev, i, k, j))
continue;
r = gfx_v10_0_gfx_ring_init(adev, ring_id,
i, k, j);
if (r)
return r;
ring_id++;
}
}
}
ring_id = 0;
/* set up the compute queues - allocate horizontally across pipes */
for (i = 0; i < adev->gfx.mec.num_mec; ++i) {
for (j = 0; j < adev->gfx.mec.num_queue_per_pipe; j++) {
for (k = 0; k < adev->gfx.mec.num_pipe_per_mec; k++) {
if (!amdgpu_gfx_is_mec_queue_enabled(adev, i, k,
j))
continue;
r = gfx_v10_0_compute_ring_init(adev, ring_id,
i, k, j);
if (r)
return r;
ring_id++;
}
}
}
r = amdgpu_gfx_kiq_init(adev, GFX10_MEC_HPD_SIZE);
if (r) {
DRM_ERROR("Failed to init KIQ BOs!\n");
return r;
}
kiq = &adev->gfx.kiq;
r = amdgpu_gfx_kiq_init_ring(adev, &kiq->ring, &kiq->irq);
if (r)
return r;
r = amdgpu_gfx_mqd_sw_init(adev, sizeof(struct v10_compute_mqd));
if (r)
return r;
/* allocate visible FB for rlc auto-loading fw */
if (adev->firmware.load_type == AMDGPU_FW_LOAD_RLC_BACKDOOR_AUTO) {
r = gfx_v10_0_rlc_backdoor_autoload_buffer_init(adev);
if (r)
return r;
}
adev->gfx.ce_ram_size = F32_CE_PROGRAM_RAM_SIZE;
gfx_v10_0_gpu_early_init(adev);
return 0;
}
static void gfx_v10_0_pfp_fini(struct amdgpu_device *adev)
{
amdgpu_bo_free_kernel(&adev->gfx.pfp.pfp_fw_obj,
&adev->gfx.pfp.pfp_fw_gpu_addr,
(void **)&adev->gfx.pfp.pfp_fw_ptr);
}
static void gfx_v10_0_ce_fini(struct amdgpu_device *adev)
{
amdgpu_bo_free_kernel(&adev->gfx.ce.ce_fw_obj,
&adev->gfx.ce.ce_fw_gpu_addr,
(void **)&adev->gfx.ce.ce_fw_ptr);
}
static void gfx_v10_0_me_fini(struct amdgpu_device *adev)
{
amdgpu_bo_free_kernel(&adev->gfx.me.me_fw_obj,
&adev->gfx.me.me_fw_gpu_addr,
(void **)&adev->gfx.me.me_fw_ptr);
}
static int gfx_v10_0_sw_fini(void *handle)
{
int i;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
for (i = 0; i < adev->gfx.num_gfx_rings; i++)
amdgpu_ring_fini(&adev->gfx.gfx_ring[i]);
for (i = 0; i < adev->gfx.num_compute_rings; i++)
amdgpu_ring_fini(&adev->gfx.compute_ring[i]);
amdgpu_gfx_mqd_sw_fini(adev);
amdgpu_gfx_kiq_free_ring(&adev->gfx.kiq.ring, &adev->gfx.kiq.irq);
amdgpu_gfx_kiq_fini(adev);
gfx_v10_0_pfp_fini(adev);
gfx_v10_0_ce_fini(adev);
gfx_v10_0_me_fini(adev);
gfx_v10_0_rlc_fini(adev);
gfx_v10_0_mec_fini(adev);
if (adev->firmware.load_type == AMDGPU_FW_LOAD_RLC_BACKDOOR_AUTO)
gfx_v10_0_rlc_backdoor_autoload_buffer_fini(adev);
gfx_v10_0_free_microcode(adev);
return 0;
}
static void gfx_v10_0_tiling_mode_table_init(struct amdgpu_device *adev)
{
/* TODO */
}
static void gfx_v10_0_select_se_sh(struct amdgpu_device *adev, u32 se_num,
u32 sh_num, u32 instance)
{
u32 data;
if (instance == 0xffffffff)
data = REG_SET_FIELD(0, GRBM_GFX_INDEX,
INSTANCE_BROADCAST_WRITES, 1);
else
data = REG_SET_FIELD(0, GRBM_GFX_INDEX, INSTANCE_INDEX,
instance);
if (se_num == 0xffffffff)
data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SE_BROADCAST_WRITES,
1);
else
data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SE_INDEX, se_num);
if (sh_num == 0xffffffff)
data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SA_BROADCAST_WRITES,
1);
else
data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SA_INDEX, sh_num);
WREG32_SOC15(GC, 0, mmGRBM_GFX_INDEX, data);
}
static u32 gfx_v10_0_get_rb_active_bitmap(struct amdgpu_device *adev)
{
u32 data, mask;
data = RREG32_SOC15(GC, 0, mmCC_RB_BACKEND_DISABLE);
data |= RREG32_SOC15(GC, 0, mmGC_USER_RB_BACKEND_DISABLE);
data &= CC_RB_BACKEND_DISABLE__BACKEND_DISABLE_MASK;
data >>= GC_USER_RB_BACKEND_DISABLE__BACKEND_DISABLE__SHIFT;
mask = amdgpu_gfx_create_bitmask(adev->gfx.config.max_backends_per_se /
adev->gfx.config.max_sh_per_se);
return (~data) & mask;
}
static void gfx_v10_0_setup_rb(struct amdgpu_device *adev)
{
int i, j;
u32 data;
u32 active_rbs = 0;
u32 rb_bitmap_width_per_sh = adev->gfx.config.max_backends_per_se /
adev->gfx.config.max_sh_per_se;
mutex_lock(&adev->grbm_idx_mutex);
for (i = 0; i < adev->gfx.config.max_shader_engines; i++) {
for (j = 0; j < adev->gfx.config.max_sh_per_se; j++) {
gfx_v10_0_select_se_sh(adev, i, j, 0xffffffff);
data = gfx_v10_0_get_rb_active_bitmap(adev);
active_rbs |= data << ((i * adev->gfx.config.max_sh_per_se + j) *
rb_bitmap_width_per_sh);
}
}
gfx_v10_0_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff);
mutex_unlock(&adev->grbm_idx_mutex);
adev->gfx.config.backend_enable_mask = active_rbs;
adev->gfx.config.num_rbs = hweight32(active_rbs);
}
static u32 gfx_v10_0_init_pa_sc_tile_steering_override(struct amdgpu_device *adev)
{
uint32_t num_sc;
uint32_t enabled_rb_per_sh;
uint32_t active_rb_bitmap;
uint32_t num_rb_per_sc;
uint32_t num_packer_per_sc;
uint32_t pa_sc_tile_steering_override;
/* init num_sc */
num_sc = adev->gfx.config.max_shader_engines * adev->gfx.config.max_sh_per_se *
adev->gfx.config.num_sc_per_sh;
/* init num_rb_per_sc */
active_rb_bitmap = gfx_v10_0_get_rb_active_bitmap(adev);
enabled_rb_per_sh = hweight32(active_rb_bitmap);
num_rb_per_sc = enabled_rb_per_sh / adev->gfx.config.num_sc_per_sh;
/* init num_packer_per_sc */
num_packer_per_sc = adev->gfx.config.num_packer_per_sc;
pa_sc_tile_steering_override = 0;
pa_sc_tile_steering_override |=
(order_base_2(num_sc) << PA_SC_TILE_STEERING_OVERRIDE__NUM_SC__SHIFT) &
PA_SC_TILE_STEERING_OVERRIDE__NUM_SC_MASK;
pa_sc_tile_steering_override |=
(order_base_2(num_rb_per_sc) << PA_SC_TILE_STEERING_OVERRIDE__NUM_RB_PER_SC__SHIFT) &
PA_SC_TILE_STEERING_OVERRIDE__NUM_RB_PER_SC_MASK;
pa_sc_tile_steering_override |=
(order_base_2(num_packer_per_sc) << PA_SC_TILE_STEERING_OVERRIDE__NUM_PACKER_PER_SC__SHIFT) &
PA_SC_TILE_STEERING_OVERRIDE__NUM_PACKER_PER_SC_MASK;
return pa_sc_tile_steering_override;
}
#define DEFAULT_SH_MEM_BASES (0x6000)
#define FIRST_COMPUTE_VMID (8)
#define LAST_COMPUTE_VMID (16)
static void gfx_v10_0_init_compute_vmid(struct amdgpu_device *adev)
{
int i;
uint32_t sh_mem_bases;
/*
* Configure apertures:
* LDS: 0x60000000'00000000 - 0x60000001'00000000 (4GB)
* Scratch: 0x60000001'00000000 - 0x60000002'00000000 (4GB)
* GPUVM: 0x60010000'00000000 - 0x60020000'00000000 (1TB)
*/
sh_mem_bases = DEFAULT_SH_MEM_BASES | (DEFAULT_SH_MEM_BASES << 16);
mutex_lock(&adev->srbm_mutex);
for (i = FIRST_COMPUTE_VMID; i < LAST_COMPUTE_VMID; i++) {
nv_grbm_select(adev, 0, 0, 0, i);
/* CP and shaders */
WREG32_SOC15(GC, 0, mmSH_MEM_CONFIG, DEFAULT_SH_MEM_CONFIG);
WREG32_SOC15(GC, 0, mmSH_MEM_BASES, sh_mem_bases);
}
nv_grbm_select(adev, 0, 0, 0, 0);
mutex_unlock(&adev->srbm_mutex);
}
static void gfx_v10_0_tcp_harvest(struct amdgpu_device *adev)
{
int i, j, k;
int max_wgp_per_sh = adev->gfx.config.max_cu_per_sh >> 1;
u32 tmp, wgp_active_bitmap = 0;
u32 gcrd_targets_disable_tcp = 0;
u32 utcl_invreq_disable = 0;
/*
* GCRD_TARGETS_DISABLE field contains
* for Navi10: GL1C=[18:15], SQC=[14:10], TCP=[9:0]
*/
u32 gcrd_targets_disable_mask = amdgpu_gfx_create_bitmask(
2 * max_wgp_per_sh + /* TCP */
max_wgp_per_sh + /* SQC */
4); /* GL1C */
/*
* UTCL1_UTCL0_INVREQ_DISABLE field contains
* for Navi10: SQG=[24], RMI=[23:20], SQC=[19:10], TCP=[9:0]
*/
u32 utcl_invreq_disable_mask = amdgpu_gfx_create_bitmask(
2 * max_wgp_per_sh + /* TCP */
2 * max_wgp_per_sh + /* SQC */
4 + /* RMI */
1); /* SQG */
if (adev->asic_type == CHIP_NAVI10) {
mutex_lock(&adev->grbm_idx_mutex);
for (i = 0; i < adev->gfx.config.max_shader_engines; i++) {
for (j = 0; j < adev->gfx.config.max_sh_per_se; j++) {
gfx_v10_0_select_se_sh(adev, i, j, 0xffffffff);
wgp_active_bitmap = gfx_v10_0_get_wgp_active_bitmap_per_sh(adev);
/*
* Set corresponding TCP bits for the inactive WGPs in
* GCRD_SA_TARGETS_DISABLE
*/
gcrd_targets_disable_tcp = 0;
/* Set TCP & SQC bits in UTCL1_UTCL0_INVREQ_DISABLE */
utcl_invreq_disable = 0;
for (k = 0; k < max_wgp_per_sh; k++) {
if (!(wgp_active_bitmap & (1 << k))) {
gcrd_targets_disable_tcp |= 3 << (2 * k);
utcl_invreq_disable |= (3 << (2 * k)) |
(3 << (2 * (max_wgp_per_sh + k)));
}
}
tmp = RREG32_SOC15(GC, 0, mmUTCL1_UTCL0_INVREQ_DISABLE);
/* only override TCP & SQC bits */
tmp &= 0xffffffff << (4 * max_wgp_per_sh);
tmp |= (utcl_invreq_disable & utcl_invreq_disable_mask);
WREG32_SOC15(GC, 0, mmUTCL1_UTCL0_INVREQ_DISABLE, tmp);
tmp = RREG32_SOC15(GC, 0, mmGCRD_SA_TARGETS_DISABLE);
/* only override TCP bits */
tmp &= 0xffffffff << (2 * max_wgp_per_sh);
tmp |= (gcrd_targets_disable_tcp & gcrd_targets_disable_mask);
WREG32_SOC15(GC, 0, mmGCRD_SA_TARGETS_DISABLE, tmp);
}
}
gfx_v10_0_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff);
mutex_unlock(&adev->grbm_idx_mutex);
}
}
static void gfx_v10_0_constants_init(struct amdgpu_device *adev)
{
u32 tmp;
int i;
WREG32_FIELD15(GC, 0, GRBM_CNTL, READ_TIMEOUT, 0xff);
gfx_v10_0_tiling_mode_table_init(adev);
gfx_v10_0_setup_rb(adev);
gfx_v10_0_get_cu_info(adev, &adev->gfx.cu_info);
adev->gfx.config.pa_sc_tile_steering_override =
gfx_v10_0_init_pa_sc_tile_steering_override(adev);
/* XXX SH_MEM regs */
/* where to put LDS, scratch, GPUVM in FSA64 space */
mutex_lock(&adev->srbm_mutex);
for (i = 0; i < adev->vm_manager.id_mgr[AMDGPU_GFXHUB].num_ids; i++) {
nv_grbm_select(adev, 0, 0, 0, i);
/* CP and shaders */
WREG32_SOC15(GC, 0, mmSH_MEM_CONFIG, DEFAULT_SH_MEM_CONFIG);
if (i != 0) {
tmp = REG_SET_FIELD(0, SH_MEM_BASES, PRIVATE_BASE,
(adev->gmc.private_aperture_start >> 48));
tmp = REG_SET_FIELD(tmp, SH_MEM_BASES, SHARED_BASE,
(adev->gmc.shared_aperture_start >> 48));
WREG32_SOC15(GC, 0, mmSH_MEM_BASES, tmp);
}
}
nv_grbm_select(adev, 0, 0, 0, 0);
mutex_unlock(&adev->srbm_mutex);
gfx_v10_0_init_compute_vmid(adev);
}
static void gfx_v10_0_enable_gui_idle_interrupt(struct amdgpu_device *adev,
bool enable)
{
u32 tmp = RREG32_SOC15(GC, 0, mmCP_INT_CNTL_RING0);
tmp = REG_SET_FIELD(tmp, CP_INT_CNTL_RING0, CNTX_BUSY_INT_ENABLE,
enable ? 1 : 0);
tmp = REG_SET_FIELD(tmp, CP_INT_CNTL_RING0, CNTX_EMPTY_INT_ENABLE,
enable ? 1 : 0);
tmp = REG_SET_FIELD(tmp, CP_INT_CNTL_RING0, CMP_BUSY_INT_ENABLE,
enable ? 1 : 0);
tmp = REG_SET_FIELD(tmp, CP_INT_CNTL_RING0, GFX_IDLE_INT_ENABLE,
enable ? 1 : 0);
WREG32_SOC15(GC, 0, mmCP_INT_CNTL_RING0, tmp);
}
static void gfx_v10_0_init_csb(struct amdgpu_device *adev)
{
/* csib */
WREG32_SOC15(GC, 0, mmRLC_CSIB_ADDR_HI,
adev->gfx.rlc.clear_state_gpu_addr >> 32);
WREG32_SOC15(GC, 0, mmRLC_CSIB_ADDR_LO,
adev->gfx.rlc.clear_state_gpu_addr & 0xfffffffc);
WREG32_SOC15(GC, 0, mmRLC_CSIB_LENGTH, adev->gfx.rlc.clear_state_size);
}
static void gfx_v10_0_init_pg(struct amdgpu_device *adev)
{
gfx_v10_0_init_csb(adev);
amdgpu_gmc_flush_gpu_tlb(adev, 0, 0);
/* TODO: init power gating */
return;
}
void gfx_v10_0_rlc_stop(struct amdgpu_device *adev)
{
u32 tmp = RREG32_SOC15(GC, 0, mmRLC_CNTL);
tmp = REG_SET_FIELD(tmp, RLC_CNTL, RLC_ENABLE_F32, 0);
WREG32_SOC15(GC, 0, mmRLC_CNTL, tmp);
}
static void gfx_v10_0_rlc_reset(struct amdgpu_device *adev)
{
WREG32_FIELD15(GC, 0, GRBM_SOFT_RESET, SOFT_RESET_RLC, 1);
udelay(50);
WREG32_FIELD15(GC, 0, GRBM_SOFT_RESET, SOFT_RESET_RLC, 0);
udelay(50);
}
static void gfx_v10_0_rlc_smu_handshake_cntl(struct amdgpu_device *adev,
bool enable)
{
uint32_t rlc_pg_cntl;
rlc_pg_cntl = RREG32_SOC15(GC, 0, mmRLC_PG_CNTL);
if (!enable) {
/* RLC_PG_CNTL[23] = 0 (default)
* RLC will wait for handshake acks with SMU
* GFXOFF will be enabled
* RLC_PG_CNTL[23] = 1
* RLC will not issue any message to SMU
* hence no handshake between SMU & RLC
* GFXOFF will be disabled
*/
rlc_pg_cntl |= 0x80000;
} else
rlc_pg_cntl &= ~0x80000;
WREG32_SOC15(GC, 0, mmRLC_PG_CNTL, rlc_pg_cntl);
}
static void gfx_v10_0_rlc_start(struct amdgpu_device *adev)
{
/* TODO: enable rlc & smu handshake until smu
* and gfxoff feature works as expected */
if (!(amdgpu_pp_feature_mask & PP_GFXOFF_MASK))
gfx_v10_0_rlc_smu_handshake_cntl(adev, false);
WREG32_FIELD15(GC, 0, RLC_CNTL, RLC_ENABLE_F32, 1);
udelay(50);
}
static void gfx_v10_0_rlc_enable_srm(struct amdgpu_device *adev)
{
uint32_t tmp;
/* enable Save Restore Machine */
tmp = RREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_SRM_CNTL));
tmp |= RLC_SRM_CNTL__AUTO_INCR_ADDR_MASK;
tmp |= RLC_SRM_CNTL__SRM_ENABLE_MASK;
WREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_SRM_CNTL), tmp);
}
static int gfx_v10_0_rlc_load_microcode(struct amdgpu_device *adev)
{
const struct rlc_firmware_header_v2_0 *hdr;
const __le32 *fw_data;
unsigned i, fw_size;
if (!adev->gfx.rlc_fw)
return -EINVAL;
hdr = (const struct rlc_firmware_header_v2_0 *)adev->gfx.rlc_fw->data;
amdgpu_ucode_print_rlc_hdr(&hdr->header);
fw_data = (const __le32 *)(adev->gfx.rlc_fw->data +
le32_to_cpu(hdr->header.ucode_array_offset_bytes));
fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
WREG32_SOC15(GC, 0, mmRLC_GPM_UCODE_ADDR,
RLCG_UCODE_LOADING_START_ADDRESS);
for (i = 0; i < fw_size; i++)
WREG32_SOC15(GC, 0, mmRLC_GPM_UCODE_DATA,
le32_to_cpup(fw_data++));
WREG32_SOC15(GC, 0, mmRLC_GPM_UCODE_ADDR, adev->gfx.rlc_fw_version);
return 0;
}
static int gfx_v10_0_rlc_resume(struct amdgpu_device *adev)
{
int r;
if (amdgpu_sriov_vf(adev))
return 0;
if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
r = gfx_v10_0_wait_for_rlc_autoload_complete(adev);
if (r)
return r;
gfx_v10_0_init_pg(adev);
/* enable RLC SRM */
gfx_v10_0_rlc_enable_srm(adev);
} else {
adev->gfx.rlc.funcs->stop(adev);
/* disable CG */
WREG32_SOC15(GC, 0, mmRLC_CGCG_CGLS_CTRL, 0);
/* disable PG */
WREG32_SOC15(GC, 0, mmRLC_PG_CNTL, 0);
if (adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) {
/* legacy rlc firmware loading */
r = gfx_v10_0_rlc_load_microcode(adev);
if (r)
return r;
} else if (adev->firmware.load_type == AMDGPU_FW_LOAD_RLC_BACKDOOR_AUTO) {
/* rlc backdoor autoload firmware */
r = gfx_v10_0_rlc_backdoor_autoload_enable(adev);
if (r)
return r;
}
gfx_v10_0_init_pg(adev);
adev->gfx.rlc.funcs->start(adev);
if (adev->firmware.load_type == AMDGPU_FW_LOAD_RLC_BACKDOOR_AUTO) {
r = gfx_v10_0_wait_for_rlc_autoload_complete(adev);
if (r)
return r;
}
}
return 0;
}
static struct {
FIRMWARE_ID id;
unsigned int offset;
unsigned int size;
} rlc_autoload_info[FIRMWARE_ID_MAX];
static int gfx_v10_0_parse_rlc_toc(struct amdgpu_device *adev)
{
int ret;
RLC_TABLE_OF_CONTENT *rlc_toc;
ret = amdgpu_bo_create_reserved(adev, adev->psp.toc_bin_size, PAGE_SIZE,
AMDGPU_GEM_DOMAIN_GTT,
&adev->gfx.rlc.rlc_toc_bo,
&adev->gfx.rlc.rlc_toc_gpu_addr,
(void **)&adev->gfx.rlc.rlc_toc_buf);
if (ret) {
dev_err(adev->dev, "(%d) failed to create rlc toc bo\n", ret);
return ret;
}
/* Copy toc from psp sos fw to rlc toc buffer */
memcpy(adev->gfx.rlc.rlc_toc_buf, adev->psp.toc_start_addr, adev->psp.toc_bin_size);
rlc_toc = (RLC_TABLE_OF_CONTENT *)adev->gfx.rlc.rlc_toc_buf;
while (rlc_toc && (rlc_toc->id > FIRMWARE_ID_INVALID) &&
(rlc_toc->id < FIRMWARE_ID_MAX)) {
if ((rlc_toc->id >= FIRMWARE_ID_CP_CE) &&
(rlc_toc->id <= FIRMWARE_ID_CP_MES)) {
/* Offset needs 4KB alignment */
rlc_toc->offset = ALIGN(rlc_toc->offset * 4, PAGE_SIZE);
}
rlc_autoload_info[rlc_toc->id].id = rlc_toc->id;
rlc_autoload_info[rlc_toc->id].offset = rlc_toc->offset * 4;
rlc_autoload_info[rlc_toc->id].size = rlc_toc->size * 4;
rlc_toc++;
};
return 0;
}
static uint32_t gfx_v10_0_calc_toc_total_size(struct amdgpu_device *adev)
{
uint32_t total_size = 0;
FIRMWARE_ID id;
int ret;
ret = gfx_v10_0_parse_rlc_toc(adev);
if (ret) {
dev_err(adev->dev, "failed to parse rlc toc\n");
return 0;
}
for (id = FIRMWARE_ID_RLC_G_UCODE; id < FIRMWARE_ID_MAX; id++)
total_size += rlc_autoload_info[id].size;
/* In case the offset in rlc toc ucode is aligned */
if (total_size < rlc_autoload_info[FIRMWARE_ID_MAX-1].offset)
total_size = rlc_autoload_info[FIRMWARE_ID_MAX-1].offset +
rlc_autoload_info[FIRMWARE_ID_MAX-1].size;
return total_size;
}
static int gfx_v10_0_rlc_backdoor_autoload_buffer_init(struct amdgpu_device *adev)
{
int r;
uint32_t total_size;
total_size = gfx_v10_0_calc_toc_total_size(adev);
r = amdgpu_bo_create_reserved(adev, total_size, PAGE_SIZE,
AMDGPU_GEM_DOMAIN_GTT,
&adev->gfx.rlc.rlc_autoload_bo,
&adev->gfx.rlc.rlc_autoload_gpu_addr,
(void **)&adev->gfx.rlc.rlc_autoload_ptr);
if (r) {
dev_err(adev->dev, "(%d) failed to create fw autoload bo\n", r);
return r;
}
return 0;
}
static void gfx_v10_0_rlc_backdoor_autoload_buffer_fini(struct amdgpu_device *adev)
{
amdgpu_bo_free_kernel(&adev->gfx.rlc.rlc_toc_bo,
&adev->gfx.rlc.rlc_toc_gpu_addr,
(void **)&adev->gfx.rlc.rlc_toc_buf);
amdgpu_bo_free_kernel(&adev->gfx.rlc.rlc_autoload_bo,
&adev->gfx.rlc.rlc_autoload_gpu_addr,
(void **)&adev->gfx.rlc.rlc_autoload_ptr);
}
static void gfx_v10_0_rlc_backdoor_autoload_copy_ucode(struct amdgpu_device *adev,
FIRMWARE_ID id,
const void *fw_data,
uint32_t fw_size)
{
uint32_t toc_offset;
uint32_t toc_fw_size;
char *ptr = adev->gfx.rlc.rlc_autoload_ptr;
if (id <= FIRMWARE_ID_INVALID || id >= FIRMWARE_ID_MAX)
return;
toc_offset = rlc_autoload_info[id].offset;
toc_fw_size = rlc_autoload_info[id].size;
if (fw_size == 0)
fw_size = toc_fw_size;
if (fw_size > toc_fw_size)
fw_size = toc_fw_size;
memcpy(ptr + toc_offset, fw_data, fw_size);
if (fw_size < toc_fw_size)
memset(ptr + toc_offset + fw_size, 0, toc_fw_size - fw_size);
}
static void gfx_v10_0_rlc_backdoor_autoload_copy_toc_ucode(struct amdgpu_device *adev)
{
void *data;
uint32_t size;
data = adev->gfx.rlc.rlc_toc_buf;
size = rlc_autoload_info[FIRMWARE_ID_RLC_TOC].size;
gfx_v10_0_rlc_backdoor_autoload_copy_ucode(adev,
FIRMWARE_ID_RLC_TOC,
data, size);
}
static void gfx_v10_0_rlc_backdoor_autoload_copy_gfx_ucode(struct amdgpu_device *adev)
{
const __le32 *fw_data;
uint32_t fw_size;
const struct gfx_firmware_header_v1_0 *cp_hdr;
const struct rlc_firmware_header_v2_0 *rlc_hdr;
/* pfp ucode */
cp_hdr = (const struct gfx_firmware_header_v1_0 *)
adev->gfx.pfp_fw->data;
fw_data = (const __le32 *)(adev->gfx.pfp_fw->data +
le32_to_cpu(cp_hdr->header.ucode_array_offset_bytes));
fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
gfx_v10_0_rlc_backdoor_autoload_copy_ucode(adev,
FIRMWARE_ID_CP_PFP,
fw_data, fw_size);
/* ce ucode */
cp_hdr = (const struct gfx_firmware_header_v1_0 *)
adev->gfx.ce_fw->data;
fw_data = (const __le32 *)(adev->gfx.ce_fw->data +
le32_to_cpu(cp_hdr->header.ucode_array_offset_bytes));
fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
gfx_v10_0_rlc_backdoor_autoload_copy_ucode(adev,
FIRMWARE_ID_CP_CE,
fw_data, fw_size);
/* me ucode */
cp_hdr = (const struct gfx_firmware_header_v1_0 *)
adev->gfx.me_fw->data;
fw_data = (const __le32 *)(adev->gfx.me_fw->data +
le32_to_cpu(cp_hdr->header.ucode_array_offset_bytes));
fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
gfx_v10_0_rlc_backdoor_autoload_copy_ucode(adev,
FIRMWARE_ID_CP_ME,
fw_data, fw_size);
/* rlc ucode */
rlc_hdr = (const struct rlc_firmware_header_v2_0 *)
adev->gfx.rlc_fw->data;
fw_data = (const __le32 *)(adev->gfx.rlc_fw->data +
le32_to_cpu(rlc_hdr->header.ucode_array_offset_bytes));
fw_size = le32_to_cpu(rlc_hdr->header.ucode_size_bytes);
gfx_v10_0_rlc_backdoor_autoload_copy_ucode(adev,
FIRMWARE_ID_RLC_G_UCODE,
fw_data, fw_size);
/* mec1 ucode */
cp_hdr = (const struct gfx_firmware_header_v1_0 *)
adev->gfx.mec_fw->data;
fw_data = (const __le32 *) (adev->gfx.mec_fw->data +
le32_to_cpu(cp_hdr->header.ucode_array_offset_bytes));
fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) -
cp_hdr->jt_size * 4;
gfx_v10_0_rlc_backdoor_autoload_copy_ucode(adev,
FIRMWARE_ID_CP_MEC,
fw_data, fw_size);
/* mec2 ucode is not necessary if mec2 ucode is same as mec1 */
}
/* Temporarily put sdma part here */
static void gfx_v10_0_rlc_backdoor_autoload_copy_sdma_ucode(struct amdgpu_device *adev)
{
const __le32 *fw_data;
uint32_t fw_size;
const struct sdma_firmware_header_v1_0 *sdma_hdr;
int i;
for (i = 0; i < adev->sdma.num_instances; i++) {
sdma_hdr = (const struct sdma_firmware_header_v1_0 *)
adev->sdma.instance[i].fw->data;
fw_data = (const __le32 *) (adev->sdma.instance[i].fw->data +
le32_to_cpu(sdma_hdr->header.ucode_array_offset_bytes));
fw_size = le32_to_cpu(sdma_hdr->header.ucode_size_bytes);
if (i == 0) {
gfx_v10_0_rlc_backdoor_autoload_copy_ucode(adev,
FIRMWARE_ID_SDMA0_UCODE, fw_data, fw_size);
gfx_v10_0_rlc_backdoor_autoload_copy_ucode(adev,
FIRMWARE_ID_SDMA0_JT,
(uint32_t *)fw_data +
sdma_hdr->jt_offset,
sdma_hdr->jt_size * 4);
} else if (i == 1) {
gfx_v10_0_rlc_backdoor_autoload_copy_ucode(adev,
FIRMWARE_ID_SDMA1_UCODE, fw_data, fw_size);
gfx_v10_0_rlc_backdoor_autoload_copy_ucode(adev,
FIRMWARE_ID_SDMA1_JT,
(uint32_t *)fw_data +
sdma_hdr->jt_offset,
sdma_hdr->jt_size * 4);
}
}
}
static int gfx_v10_0_rlc_backdoor_autoload_enable(struct amdgpu_device *adev)
{
uint32_t rlc_g_offset, rlc_g_size, tmp;
uint64_t gpu_addr;
gfx_v10_0_rlc_backdoor_autoload_copy_toc_ucode(adev);
gfx_v10_0_rlc_backdoor_autoload_copy_sdma_ucode(adev);
gfx_v10_0_rlc_backdoor_autoload_copy_gfx_ucode(adev);
rlc_g_offset = rlc_autoload_info[FIRMWARE_ID_RLC_G_UCODE].offset;
rlc_g_size = rlc_autoload_info[FIRMWARE_ID_RLC_G_UCODE].size;
gpu_addr = adev->gfx.rlc.rlc_autoload_gpu_addr + rlc_g_offset;
WREG32_SOC15(GC, 0, mmRLC_HYP_BOOTLOAD_ADDR_HI, upper_32_bits(gpu_addr));
WREG32_SOC15(GC, 0, mmRLC_HYP_BOOTLOAD_ADDR_LO, lower_32_bits(gpu_addr));
WREG32_SOC15(GC, 0, mmRLC_HYP_BOOTLOAD_SIZE, rlc_g_size);
tmp = RREG32_SOC15(GC, 0, mmRLC_HYP_RESET_VECTOR);
if (!(tmp & (RLC_HYP_RESET_VECTOR__COLD_BOOT_EXIT_MASK |
RLC_HYP_RESET_VECTOR__VDDGFX_EXIT_MASK))) {
DRM_ERROR("Neither COLD_BOOT_EXIT nor VDDGFX_EXIT is set\n");
return -EINVAL;
}
tmp = RREG32_SOC15(GC, 0, mmRLC_CNTL);
if (tmp & RLC_CNTL__RLC_ENABLE_F32_MASK) {
DRM_ERROR("RLC ROM should halt itself\n");
return -EINVAL;
}
return 0;
}
static int gfx_v10_0_rlc_backdoor_autoload_config_me_cache(struct amdgpu_device *adev)
{
uint32_t usec_timeout = 50000; /* wait for 50ms */
uint32_t tmp;
int i;
uint64_t addr;
/* Trigger an invalidation of the L1 instruction caches */
tmp = RREG32_SOC15(GC, 0, mmCP_ME_IC_OP_CNTL);
tmp = REG_SET_FIELD(tmp, CP_ME_IC_OP_CNTL, INVALIDATE_CACHE, 1);
WREG32_SOC15(GC, 0, mmCP_ME_IC_OP_CNTL, tmp);
/* Wait for invalidation complete */
for (i = 0; i < usec_timeout; i++) {
tmp = RREG32_SOC15(GC, 0, mmCP_ME_IC_OP_CNTL);
if (1 == REG_GET_FIELD(tmp, CP_ME_IC_OP_CNTL,
INVALIDATE_CACHE_COMPLETE))
break;
udelay(1);
}
if (i >= usec_timeout) {
dev_err(adev->dev, "failed to invalidate instruction cache\n");
return -EINVAL;
}
/* Program me ucode address into intruction cache address register */
addr = adev->gfx.rlc.rlc_autoload_gpu_addr +
rlc_autoload_info[FIRMWARE_ID_CP_ME].offset;
WREG32_SOC15(GC, 0, mmCP_ME_IC_BASE_LO,
lower_32_bits(addr) & 0xFFFFF000);
WREG32_SOC15(GC, 0, mmCP_ME_IC_BASE_HI,
upper_32_bits(addr));
return 0;
}
static int gfx_v10_0_rlc_backdoor_autoload_config_ce_cache(struct amdgpu_device *adev)
{
uint32_t usec_timeout = 50000; /* wait for 50ms */
uint32_t tmp;
int i;
uint64_t addr;
/* Trigger an invalidation of the L1 instruction caches */
tmp = RREG32_SOC15(GC, 0, mmCP_CE_IC_OP_CNTL);
tmp = REG_SET_FIELD(tmp, CP_CE_IC_OP_CNTL, INVALIDATE_CACHE, 1);
WREG32_SOC15(GC, 0, mmCP_CE_IC_OP_CNTL, tmp);
/* Wait for invalidation complete */
for (i = 0; i < usec_timeout; i++) {
tmp = RREG32_SOC15(GC, 0, mmCP_CE_IC_OP_CNTL);
if (1 == REG_GET_FIELD(tmp, CP_CE_IC_OP_CNTL,
INVALIDATE_CACHE_COMPLETE))
break;
udelay(1);
}
if (i >= usec_timeout) {
dev_err(adev->dev, "failed to invalidate instruction cache\n");
return -EINVAL;
}
/* Program ce ucode address into intruction cache address register */
addr = adev->gfx.rlc.rlc_autoload_gpu_addr +
rlc_autoload_info[FIRMWARE_ID_CP_CE].offset;
WREG32_SOC15(GC, 0, mmCP_CE_IC_BASE_LO,
lower_32_bits(addr) & 0xFFFFF000);
WREG32_SOC15(GC, 0, mmCP_CE_IC_BASE_HI,
upper_32_bits(addr));
return 0;
}
static int gfx_v10_0_rlc_backdoor_autoload_config_pfp_cache(struct amdgpu_device *adev)
{
uint32_t usec_timeout = 50000; /* wait for 50ms */
uint32_t tmp;
int i;
uint64_t addr;
/* Trigger an invalidation of the L1 instruction caches */
tmp = RREG32_SOC15(GC, 0, mmCP_PFP_IC_OP_CNTL);
tmp = REG_SET_FIELD(tmp, CP_PFP_IC_OP_CNTL, INVALIDATE_CACHE, 1);
WREG32_SOC15(GC, 0, mmCP_PFP_IC_OP_CNTL, tmp);
/* Wait for invalidation complete */
for (i = 0; i < usec_timeout; i++) {
tmp = RREG32_SOC15(GC, 0, mmCP_PFP_IC_OP_CNTL);
if (1 == REG_GET_FIELD(tmp, CP_PFP_IC_OP_CNTL,
INVALIDATE_CACHE_COMPLETE))
break;
udelay(1);
}
if (i >= usec_timeout) {
dev_err(adev->dev, "failed to invalidate instruction cache\n");
return -EINVAL;
}
/* Program pfp ucode address into intruction cache address register */
addr = adev->gfx.rlc.rlc_autoload_gpu_addr +
rlc_autoload_info[FIRMWARE_ID_CP_PFP].offset;
WREG32_SOC15(GC, 0, mmCP_PFP_IC_BASE_LO,
lower_32_bits(addr) & 0xFFFFF000);
WREG32_SOC15(GC, 0, mmCP_PFP_IC_BASE_HI,
upper_32_bits(addr));
return 0;
}
static int gfx_v10_0_rlc_backdoor_autoload_config_mec_cache(struct amdgpu_device *adev)
{
uint32_t usec_timeout = 50000; /* wait for 50ms */
uint32_t tmp;
int i;
uint64_t addr;
/* Trigger an invalidation of the L1 instruction caches */
tmp = RREG32_SOC15(GC, 0, mmCP_CPC_IC_OP_CNTL);
tmp = REG_SET_FIELD(tmp, CP_CPC_IC_OP_CNTL, INVALIDATE_CACHE, 1);
WREG32_SOC15(GC, 0, mmCP_CPC_IC_OP_CNTL, tmp);
/* Wait for invalidation complete */
for (i = 0; i < usec_timeout; i++) {
tmp = RREG32_SOC15(GC, 0, mmCP_CPC_IC_OP_CNTL);
if (1 == REG_GET_FIELD(tmp, CP_CPC_IC_OP_CNTL,
INVALIDATE_CACHE_COMPLETE))
break;
udelay(1);
}
if (i >= usec_timeout) {
dev_err(adev->dev, "failed to invalidate instruction cache\n");
return -EINVAL;
}
/* Program mec1 ucode address into intruction cache address register */
addr = adev->gfx.rlc.rlc_autoload_gpu_addr +
rlc_autoload_info[FIRMWARE_ID_CP_MEC].offset;
WREG32_SOC15(GC, 0, mmCP_CPC_IC_BASE_LO,
lower_32_bits(addr) & 0xFFFFF000);
WREG32_SOC15(GC, 0, mmCP_CPC_IC_BASE_HI,
upper_32_bits(addr));
return 0;
}
static int gfx_v10_0_wait_for_rlc_autoload_complete(struct amdgpu_device *adev)
{
uint32_t cp_status;
uint32_t bootload_status;
int i, r;
for (i = 0; i < adev->usec_timeout; i++) {
cp_status = RREG32_SOC15(GC, 0, mmCP_STAT);
bootload_status = RREG32_SOC15(GC, 0, mmRLC_RLCS_BOOTLOAD_STATUS);
if ((cp_status == 0) &&
(REG_GET_FIELD(bootload_status,
RLC_RLCS_BOOTLOAD_STATUS, BOOTLOAD_COMPLETE) == 1)) {
break;
}
udelay(1);
}
if (i >= adev->usec_timeout) {
dev_err(adev->dev, "rlc autoload: gc ucode autoload timeout\n");
return -ETIMEDOUT;
}
if (adev->firmware.load_type == AMDGPU_FW_LOAD_RLC_BACKDOOR_AUTO) {
r = gfx_v10_0_rlc_backdoor_autoload_config_me_cache(adev);
if (r)
return r;
r = gfx_v10_0_rlc_backdoor_autoload_config_ce_cache(adev);
if (r)
return r;
r = gfx_v10_0_rlc_backdoor_autoload_config_pfp_cache(adev);
if (r)
return r;
r = gfx_v10_0_rlc_backdoor_autoload_config_mec_cache(adev);
if (r)
return r;
}
return 0;
}
static void gfx_v10_0_cp_gfx_enable(struct amdgpu_device *adev, bool enable)
{
int i;
u32 tmp = RREG32_SOC15(GC, 0, mmCP_ME_CNTL);
tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, ME_HALT, enable ? 0 : 1);
tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, PFP_HALT, enable ? 0 : 1);
tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, CE_HALT, enable ? 0 : 1);
if (!enable) {
for (i = 0; i < adev->gfx.num_gfx_rings; i++)
adev->gfx.gfx_ring[i].sched.ready = false;
}
WREG32_SOC15(GC, 0, mmCP_ME_CNTL, tmp);
udelay(50);
}
static int gfx_v10_0_cp_gfx_load_pfp_microcode(struct amdgpu_device *adev)
{
int r;
const struct gfx_firmware_header_v1_0 *pfp_hdr;
const __le32 *fw_data;
unsigned i, fw_size;
uint32_t tmp;
uint32_t usec_timeout = 50000; /* wait for 50ms */
pfp_hdr = (const struct gfx_firmware_header_v1_0 *)
adev->gfx.pfp_fw->data;
amdgpu_ucode_print_gfx_hdr(&pfp_hdr->header);
fw_data = (const __le32 *)(adev->gfx.pfp_fw->data +
le32_to_cpu(pfp_hdr->header.ucode_array_offset_bytes));
fw_size = le32_to_cpu(pfp_hdr->header.ucode_size_bytes);
r = amdgpu_bo_create_reserved(adev, pfp_hdr->header.ucode_size_bytes,
PAGE_SIZE, AMDGPU_GEM_DOMAIN_GTT,
&adev->gfx.pfp.pfp_fw_obj,
&adev->gfx.pfp.pfp_fw_gpu_addr,
(void **)&adev->gfx.pfp.pfp_fw_ptr);
if (r) {
dev_err(adev->dev, "(%d) failed to create pfp fw bo\n", r);
gfx_v10_0_pfp_fini(adev);
return r;
}
memcpy(adev->gfx.pfp.pfp_fw_ptr, fw_data, fw_size);
amdgpu_bo_kunmap(adev->gfx.pfp.pfp_fw_obj);
amdgpu_bo_unreserve(adev->gfx.pfp.pfp_fw_obj);
/* Trigger an invalidation of the L1 instruction caches */
tmp = RREG32_SOC15(GC, 0, mmCP_PFP_IC_OP_CNTL);
tmp = REG_SET_FIELD(tmp, CP_PFP_IC_OP_CNTL, INVALIDATE_CACHE, 1);
WREG32_SOC15(GC, 0, mmCP_PFP_IC_OP_CNTL, tmp);
/* Wait for invalidation complete */
for (i = 0; i < usec_timeout; i++) {
tmp = RREG32_SOC15(GC, 0, mmCP_PFP_IC_OP_CNTL);
if (1 == REG_GET_FIELD(tmp, CP_PFP_IC_OP_CNTL,
INVALIDATE_CACHE_COMPLETE))
break;
udelay(1);
}
if (i >= usec_timeout) {
dev_err(adev->dev, "failed to invalidate instruction cache\n");
return -EINVAL;
}
if (amdgpu_emu_mode == 1)
adev->nbio_funcs->hdp_flush(adev, NULL);
tmp = RREG32_SOC15(GC, 0, mmCP_PFP_IC_BASE_CNTL);
tmp = REG_SET_FIELD(tmp, CP_PFP_IC_BASE_CNTL, VMID, 0);
tmp = REG_SET_FIELD(tmp, CP_PFP_IC_BASE_CNTL, CACHE_POLICY, 0);
tmp = REG_SET_FIELD(tmp, CP_PFP_IC_BASE_CNTL, EXE_DISABLE, 0);
tmp = REG_SET_FIELD(tmp, CP_PFP_IC_BASE_CNTL, ADDRESS_CLAMP, 1);
WREG32_SOC15(GC, 0, mmCP_PFP_IC_BASE_CNTL, tmp);
WREG32_SOC15(GC, 0, mmCP_PFP_IC_BASE_LO,
adev->gfx.pfp.pfp_fw_gpu_addr & 0xFFFFF000);
WREG32_SOC15(GC, 0, mmCP_PFP_IC_BASE_HI,
upper_32_bits(adev->gfx.pfp.pfp_fw_gpu_addr));
return 0;
}
static int gfx_v10_0_cp_gfx_load_ce_microcode(struct amdgpu_device *adev)
{
int r;
const struct gfx_firmware_header_v1_0 *ce_hdr;
const __le32 *fw_data;
unsigned i, fw_size;
uint32_t tmp;
uint32_t usec_timeout = 50000; /* wait for 50ms */
ce_hdr = (const struct gfx_firmware_header_v1_0 *)
adev->gfx.ce_fw->data;
amdgpu_ucode_print_gfx_hdr(&ce_hdr->header);
fw_data = (const __le32 *)(adev->gfx.ce_fw->data +
le32_to_cpu(ce_hdr->header.ucode_array_offset_bytes));
fw_size = le32_to_cpu(ce_hdr->header.ucode_size_bytes);
r = amdgpu_bo_create_reserved(adev, ce_hdr->header.ucode_size_bytes,
PAGE_SIZE, AMDGPU_GEM_DOMAIN_GTT,
&adev->gfx.ce.ce_fw_obj,
&adev->gfx.ce.ce_fw_gpu_addr,
(void **)&adev->gfx.ce.ce_fw_ptr);
if (r) {
dev_err(adev->dev, "(%d) failed to create ce fw bo\n", r);
gfx_v10_0_ce_fini(adev);
return r;
}
memcpy(adev->gfx.ce.ce_fw_ptr, fw_data, fw_size);
amdgpu_bo_kunmap(adev->gfx.ce.ce_fw_obj);
amdgpu_bo_unreserve(adev->gfx.ce.ce_fw_obj);
/* Trigger an invalidation of the L1 instruction caches */
tmp = RREG32_SOC15(GC, 0, mmCP_CE_IC_OP_CNTL);
tmp = REG_SET_FIELD(tmp, CP_CE_IC_OP_CNTL, INVALIDATE_CACHE, 1);
WREG32_SOC15(GC, 0, mmCP_CE_IC_OP_CNTL, tmp);
/* Wait for invalidation complete */
for (i = 0; i < usec_timeout; i++) {
tmp = RREG32_SOC15(GC, 0, mmCP_CE_IC_OP_CNTL);
if (1 == REG_GET_FIELD(tmp, CP_CE_IC_OP_CNTL,
INVALIDATE_CACHE_COMPLETE))
break;
udelay(1);
}
if (i >= usec_timeout) {
dev_err(adev->dev, "failed to invalidate instruction cache\n");
return -EINVAL;
}
if (amdgpu_emu_mode == 1)
adev->nbio_funcs->hdp_flush(adev, NULL);
tmp = RREG32_SOC15(GC, 0, mmCP_CE_IC_BASE_CNTL);
tmp = REG_SET_FIELD(tmp, CP_CE_IC_BASE_CNTL, VMID, 0);
tmp = REG_SET_FIELD(tmp, CP_CE_IC_BASE_CNTL, CACHE_POLICY, 0);
tmp = REG_SET_FIELD(tmp, CP_CE_IC_BASE_CNTL, EXE_DISABLE, 0);
tmp = REG_SET_FIELD(tmp, CP_CE_IC_BASE_CNTL, ADDRESS_CLAMP, 1);
WREG32_SOC15(GC, 0, mmCP_CE_IC_BASE_LO,
adev->gfx.ce.ce_fw_gpu_addr & 0xFFFFF000);
WREG32_SOC15(GC, 0, mmCP_CE_IC_BASE_HI,
upper_32_bits(adev->gfx.ce.ce_fw_gpu_addr));
return 0;
}
static int gfx_v10_0_cp_gfx_load_me_microcode(struct amdgpu_device *adev)
{
int r;
const struct gfx_firmware_header_v1_0 *me_hdr;
const __le32 *fw_data;
unsigned i, fw_size;
uint32_t tmp;
uint32_t usec_timeout = 50000; /* wait for 50ms */
me_hdr = (const struct gfx_firmware_header_v1_0 *)
adev->gfx.me_fw->data;
amdgpu_ucode_print_gfx_hdr(&me_hdr->header);
fw_data = (const __le32 *)(adev->gfx.me_fw->data +
le32_to_cpu(me_hdr->header.ucode_array_offset_bytes));
fw_size = le32_to_cpu(me_hdr->header.ucode_size_bytes);
r = amdgpu_bo_create_reserved(adev, me_hdr->header.ucode_size_bytes,
PAGE_SIZE, AMDGPU_GEM_DOMAIN_GTT,
&adev->gfx.me.me_fw_obj,
&adev->gfx.me.me_fw_gpu_addr,
(void **)&adev->gfx.me.me_fw_ptr);
if (r) {
dev_err(adev->dev, "(%d) failed to create me fw bo\n", r);
gfx_v10_0_me_fini(adev);
return r;
}
memcpy(adev->gfx.me.me_fw_ptr, fw_data, fw_size);
amdgpu_bo_kunmap(adev->gfx.me.me_fw_obj);
amdgpu_bo_unreserve(adev->gfx.me.me_fw_obj);
/* Trigger an invalidation of the L1 instruction caches */
tmp = RREG32_SOC15(GC, 0, mmCP_ME_IC_OP_CNTL);
tmp = REG_SET_FIELD(tmp, CP_ME_IC_OP_CNTL, INVALIDATE_CACHE, 1);
WREG32_SOC15(GC, 0, mmCP_ME_IC_OP_CNTL, tmp);
/* Wait for invalidation complete */
for (i = 0; i < usec_timeout; i++) {
tmp = RREG32_SOC15(GC, 0, mmCP_ME_IC_OP_CNTL);
if (1 == REG_GET_FIELD(tmp, CP_ME_IC_OP_CNTL,
INVALIDATE_CACHE_COMPLETE))
break;
udelay(1);
}
if (i >= usec_timeout) {
dev_err(adev->dev, "failed to invalidate instruction cache\n");
return -EINVAL;
}
if (amdgpu_emu_mode == 1)
adev->nbio_funcs->hdp_flush(adev, NULL);
tmp = RREG32_SOC15(GC, 0, mmCP_ME_IC_BASE_CNTL);
tmp = REG_SET_FIELD(tmp, CP_ME_IC_BASE_CNTL, VMID, 0);
tmp = REG_SET_FIELD(tmp, CP_ME_IC_BASE_CNTL, CACHE_POLICY, 0);
tmp = REG_SET_FIELD(tmp, CP_ME_IC_BASE_CNTL, EXE_DISABLE, 0);
tmp = REG_SET_FIELD(tmp, CP_ME_IC_BASE_CNTL, ADDRESS_CLAMP, 1);
WREG32_SOC15(GC, 0, mmCP_ME_IC_BASE_LO,
adev->gfx.me.me_fw_gpu_addr & 0xFFFFF000);
WREG32_SOC15(GC, 0, mmCP_ME_IC_BASE_HI,
upper_32_bits(adev->gfx.me.me_fw_gpu_addr));
return 0;
}
static int gfx_v10_0_cp_gfx_load_microcode(struct amdgpu_device *adev)
{
int r;
if (!adev->gfx.me_fw || !adev->gfx.pfp_fw || !adev->gfx.ce_fw)
return -EINVAL;
gfx_v10_0_cp_gfx_enable(adev, false);
r = gfx_v10_0_cp_gfx_load_pfp_microcode(adev);
if (r) {
dev_err(adev->dev, "(%d) failed to load pfp fw\n", r);
return r;
}
r = gfx_v10_0_cp_gfx_load_ce_microcode(adev);
if (r) {
dev_err(adev->dev, "(%d) failed to load ce fw\n", r);
return r;
}
r = gfx_v10_0_cp_gfx_load_me_microcode(adev);
if (r) {
dev_err(adev->dev, "(%d) failed to load me fw\n", r);
return r;
}
return 0;
}
static int gfx_v10_0_cp_gfx_start(struct amdgpu_device *adev)
{
struct amdgpu_ring *ring;
const struct cs_section_def *sect = NULL;
const struct cs_extent_def *ext = NULL;
int r, i;
int ctx_reg_offset;
/* init the CP */
WREG32_SOC15(GC, 0, mmCP_MAX_CONTEXT,
adev->gfx.config.max_hw_contexts - 1);
WREG32_SOC15(GC, 0, mmCP_DEVICE_ID, 1);
gfx_v10_0_cp_gfx_enable(adev, true);
ring = &adev->gfx.gfx_ring[0];
r = amdgpu_ring_alloc(ring, gfx_v10_0_get_csb_size(adev) + 4);
if (r) {
DRM_ERROR("amdgpu: cp failed to lock ring (%d).\n", r);
return r;
}
amdgpu_ring_write(ring, PACKET3(PACKET3_PREAMBLE_CNTL, 0));
amdgpu_ring_write(ring, PACKET3_PREAMBLE_BEGIN_CLEAR_STATE);
amdgpu_ring_write(ring, PACKET3(PACKET3_CONTEXT_CONTROL, 1));
amdgpu_ring_write(ring, 0x80000000);
amdgpu_ring_write(ring, 0x80000000);
for (sect = gfx10_cs_data; sect->section != NULL; ++sect) {
for (ext = sect->section; ext->extent != NULL; ++ext) {
if (sect->id == SECT_CONTEXT) {
amdgpu_ring_write(ring,
PACKET3(PACKET3_SET_CONTEXT_REG,
ext->reg_count));
amdgpu_ring_write(ring, ext->reg_index -
PACKET3_SET_CONTEXT_REG_START);
for (i = 0; i < ext->reg_count; i++)
amdgpu_ring_write(ring, ext->extent[i]);
}
}
}
ctx_reg_offset =
SOC15_REG_OFFSET(GC, 0, mmPA_SC_TILE_STEERING_OVERRIDE) - PACKET3_SET_CONTEXT_REG_START;
amdgpu_ring_write(ring, PACKET3(PACKET3_SET_CONTEXT_REG, 1));
amdgpu_ring_write(ring, ctx_reg_offset);
amdgpu_ring_write(ring, adev->gfx.config.pa_sc_tile_steering_override);
amdgpu_ring_write(ring, PACKET3(PACKET3_PREAMBLE_CNTL, 0));
amdgpu_ring_write(ring, PACKET3_PREAMBLE_END_CLEAR_STATE);
amdgpu_ring_write(ring, PACKET3(PACKET3_CLEAR_STATE, 0));
amdgpu_ring_write(ring, 0);
amdgpu_ring_write(ring, PACKET3(PACKET3_SET_BASE, 2));
amdgpu_ring_write(ring, PACKET3_BASE_INDEX(CE_PARTITION_BASE));
amdgpu_ring_write(ring, 0x8000);
amdgpu_ring_write(ring, 0x8000);
amdgpu_ring_commit(ring);
/* submit cs packet to copy state 0 to next available state */
ring = &adev->gfx.gfx_ring[1];
r = amdgpu_ring_alloc(ring, 2);
if (r) {
DRM_ERROR("amdgpu: cp failed to lock ring (%d).\n", r);
return r;
}
amdgpu_ring_write(ring, PACKET3(PACKET3_CLEAR_STATE, 0));
amdgpu_ring_write(ring, 0);
amdgpu_ring_commit(ring);
return 0;
}
static void gfx_v10_0_cp_gfx_switch_pipe(struct amdgpu_device *adev,
CP_PIPE_ID pipe)
{
u32 tmp;
tmp = RREG32_SOC15(GC, 0, mmGRBM_GFX_CNTL);
tmp = REG_SET_FIELD(tmp, GRBM_GFX_CNTL, PIPEID, pipe);
WREG32_SOC15(GC, 0, mmGRBM_GFX_CNTL, tmp);
}
static void gfx_v10_0_cp_gfx_set_doorbell(struct amdgpu_device *adev,
struct amdgpu_ring *ring)
{
u32 tmp;
tmp = RREG32_SOC15(GC, 0, mmCP_RB_DOORBELL_CONTROL);
if (ring->use_doorbell) {
tmp = REG_SET_FIELD(tmp, CP_RB_DOORBELL_CONTROL,
DOORBELL_OFFSET, ring->doorbell_index);
tmp = REG_SET_FIELD(tmp, CP_RB_DOORBELL_CONTROL,
DOORBELL_EN, 1);
} else {
tmp = REG_SET_FIELD(tmp, CP_RB_DOORBELL_CONTROL,
DOORBELL_EN, 0);
}
WREG32_SOC15(GC, 0, mmCP_RB_DOORBELL_CONTROL, tmp);
tmp = REG_SET_FIELD(0, CP_RB_DOORBELL_RANGE_LOWER,
DOORBELL_RANGE_LOWER, ring->doorbell_index);
WREG32_SOC15(GC, 0, mmCP_RB_DOORBELL_RANGE_LOWER, tmp);
WREG32_SOC15(GC, 0, mmCP_RB_DOORBELL_RANGE_UPPER,
CP_RB_DOORBELL_RANGE_UPPER__DOORBELL_RANGE_UPPER_MASK);
}
static int gfx_v10_0_cp_gfx_resume(struct amdgpu_device *adev)
{
struct amdgpu_ring *ring;
u32 tmp;
u32 rb_bufsz;
u64 rb_addr, rptr_addr, wptr_gpu_addr;
u32 i;
/* Set the write pointer delay */
WREG32_SOC15(GC, 0, mmCP_RB_WPTR_DELAY, 0);
/* set the RB to use vmid 0 */
WREG32_SOC15(GC, 0, mmCP_RB_VMID, 0);
/* Init gfx ring 0 for pipe 0 */
mutex_lock(&adev->srbm_mutex);
gfx_v10_0_cp_gfx_switch_pipe(adev, PIPE_ID0);
mutex_unlock(&adev->srbm_mutex);
/* Set ring buffer size */
ring = &adev->gfx.gfx_ring[0];
rb_bufsz = order_base_2(ring->ring_size / 8);
tmp = REG_SET_FIELD(0, CP_RB0_CNTL, RB_BUFSZ, rb_bufsz);
tmp = REG_SET_FIELD(tmp, CP_RB0_CNTL, RB_BLKSZ, rb_bufsz - 2);
#ifdef __BIG_ENDIAN
tmp = REG_SET_FIELD(tmp, CP_RB0_CNTL, BUF_SWAP, 1);
#endif
WREG32_SOC15(GC, 0, mmCP_RB0_CNTL, tmp);
/* Initialize the ring buffer's write pointers */
ring->wptr = 0;
WREG32_SOC15(GC, 0, mmCP_RB0_WPTR, lower_32_bits(ring->wptr));
WREG32_SOC15(GC, 0, mmCP_RB0_WPTR_HI, upper_32_bits(ring->wptr));
/* set the wb address wether it's enabled or not */
rptr_addr = adev->wb.gpu_addr + (ring->rptr_offs * 4);
WREG32_SOC15(GC, 0, mmCP_RB0_RPTR_ADDR, lower_32_bits(rptr_addr));
WREG32_SOC15(GC, 0, mmCP_RB0_RPTR_ADDR_HI, upper_32_bits(rptr_addr) &
CP_RB_RPTR_ADDR_HI__RB_RPTR_ADDR_HI_MASK);
wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
WREG32_SOC15(GC, 0, mmCP_RB_WPTR_POLL_ADDR_LO,
lower_32_bits(wptr_gpu_addr));
WREG32_SOC15(GC, 0, mmCP_RB_WPTR_POLL_ADDR_HI,
upper_32_bits(wptr_gpu_addr));
mdelay(1);
WREG32_SOC15(GC, 0, mmCP_RB0_CNTL, tmp);
rb_addr = ring->gpu_addr >> 8;
WREG32_SOC15(GC, 0, mmCP_RB0_BASE, rb_addr);
WREG32_SOC15(GC, 0, mmCP_RB0_BASE_HI, upper_32_bits(rb_addr));
WREG32_SOC15(GC, 0, mmCP_RB_ACTIVE, 1);
gfx_v10_0_cp_gfx_set_doorbell(adev, ring);
/* Init gfx ring 1 for pipe 1 */
mutex_lock(&adev->srbm_mutex);
gfx_v10_0_cp_gfx_switch_pipe(adev, PIPE_ID1);
mutex_unlock(&adev->srbm_mutex);
ring = &adev->gfx.gfx_ring[1];
rb_bufsz = order_base_2(ring->ring_size / 8);
tmp = REG_SET_FIELD(0, CP_RB1_CNTL, RB_BUFSZ, rb_bufsz);
tmp = REG_SET_FIELD(tmp, CP_RB1_CNTL, RB_BLKSZ, rb_bufsz - 2);
WREG32_SOC15(GC, 0, mmCP_RB1_CNTL, tmp);
/* Initialize the ring buffer's write pointers */
ring->wptr = 0;
WREG32_SOC15(GC, 0, mmCP_RB1_WPTR, lower_32_bits(ring->wptr));
WREG32_SOC15(GC, 0, mmCP_RB1_WPTR_HI, upper_32_bits(ring->wptr));
/* Set the wb address wether it's enabled or not */
rptr_addr = adev->wb.gpu_addr + (ring->rptr_offs * 4);
WREG32_SOC15(GC, 0, mmCP_RB1_RPTR_ADDR, lower_32_bits(rptr_addr));
WREG32_SOC15(GC, 0, mmCP_RB1_RPTR_ADDR_HI, upper_32_bits(rptr_addr) &
CP_RB1_RPTR_ADDR_HI__RB_RPTR_ADDR_HI_MASK);
wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
WREG32_SOC15(GC, 0, mmCP_RB_WPTR_POLL_ADDR_LO,
lower_32_bits(wptr_gpu_addr));
WREG32_SOC15(GC, 0, mmCP_RB_WPTR_POLL_ADDR_HI,
upper_32_bits(wptr_gpu_addr));
mdelay(1);
WREG32_SOC15(GC, 0, mmCP_RB1_CNTL, tmp);
rb_addr = ring->gpu_addr >> 8;
WREG32_SOC15(GC, 0, mmCP_RB1_BASE, rb_addr);
WREG32_SOC15(GC, 0, mmCP_RB1_BASE_HI, upper_32_bits(rb_addr));
WREG32_SOC15(GC, 0, mmCP_RB1_ACTIVE, 1);
gfx_v10_0_cp_gfx_set_doorbell(adev, ring);
/* Switch to pipe 0 */
mutex_lock(&adev->srbm_mutex);
gfx_v10_0_cp_gfx_switch_pipe(adev, PIPE_ID0);
mutex_unlock(&adev->srbm_mutex);
/* start the ring */
gfx_v10_0_cp_gfx_start(adev);
for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
ring = &adev->gfx.gfx_ring[i];
ring->sched.ready = true;
}
return 0;
}
static void gfx_v10_0_cp_compute_enable(struct amdgpu_device *adev, bool enable)
{
int i;
if (enable) {
WREG32_SOC15(GC, 0, mmCP_MEC_CNTL, 0);
} else {
WREG32_SOC15(GC, 0, mmCP_MEC_CNTL,
(CP_MEC_CNTL__MEC_ME1_HALT_MASK |
CP_MEC_CNTL__MEC_ME2_HALT_MASK));
for (i = 0; i < adev->gfx.num_compute_rings; i++)
adev->gfx.compute_ring[i].sched.ready = false;
adev->gfx.kiq.ring.sched.ready = false;
}
udelay(50);
}
static int gfx_v10_0_cp_compute_load_microcode(struct amdgpu_device *adev)
{
const struct gfx_firmware_header_v1_0 *mec_hdr;
const __le32 *fw_data;
unsigned i;
u32 tmp;
u32 usec_timeout = 50000; /* Wait for 50 ms */
if (!adev->gfx.mec_fw)
return -EINVAL;
gfx_v10_0_cp_compute_enable(adev, false);
mec_hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.mec_fw->data;
amdgpu_ucode_print_gfx_hdr(&mec_hdr->header);
fw_data = (const __le32 *)
(adev->gfx.mec_fw->data +
le32_to_cpu(mec_hdr->header.ucode_array_offset_bytes));
/* Trigger an invalidation of the L1 instruction caches */
tmp = RREG32_SOC15(GC, 0, mmCP_CPC_IC_OP_CNTL);
tmp = REG_SET_FIELD(tmp, CP_CPC_IC_OP_CNTL, INVALIDATE_CACHE, 1);
WREG32_SOC15(GC, 0, mmCP_CPC_IC_OP_CNTL, tmp);
/* Wait for invalidation complete */
for (i = 0; i < usec_timeout; i++) {
tmp = RREG32_SOC15(GC, 0, mmCP_CPC_IC_OP_CNTL);
if (1 == REG_GET_FIELD(tmp, CP_CPC_IC_OP_CNTL,
INVALIDATE_CACHE_COMPLETE))
break;
udelay(1);
}
if (i >= usec_timeout) {
dev_err(adev->dev, "failed to invalidate instruction cache\n");
return -EINVAL;
}
if (amdgpu_emu_mode == 1)
adev->nbio_funcs->hdp_flush(adev, NULL);
tmp = RREG32_SOC15(GC, 0, mmCP_CPC_IC_BASE_CNTL);
tmp = REG_SET_FIELD(tmp, CP_CPC_IC_BASE_CNTL, CACHE_POLICY, 0);
tmp = REG_SET_FIELD(tmp, CP_CPC_IC_BASE_CNTL, EXE_DISABLE, 0);
tmp = REG_SET_FIELD(tmp, CP_CPC_IC_BASE_CNTL, ADDRESS_CLAMP, 1);
WREG32_SOC15(GC, 0, mmCP_CPC_IC_BASE_CNTL, tmp);
WREG32_SOC15(GC, 0, mmCP_CPC_IC_BASE_LO, adev->gfx.mec.mec_fw_gpu_addr &
0xFFFFF000);
WREG32_SOC15(GC, 0, mmCP_CPC_IC_BASE_HI,
upper_32_bits(adev->gfx.mec.mec_fw_gpu_addr));
/* MEC1 */
WREG32_SOC15(GC, 0, mmCP_MEC_ME1_UCODE_ADDR, 0);
for (i = 0; i < mec_hdr->jt_size; i++)
WREG32_SOC15(GC, 0, mmCP_MEC_ME1_UCODE_DATA,
le32_to_cpup(fw_data + mec_hdr->jt_offset + i));
WREG32_SOC15(GC, 0, mmCP_MEC_ME1_UCODE_ADDR, adev->gfx.mec_fw_version);
/*
* TODO: Loading MEC2 firmware is only necessary if MEC2 should run
* different microcode than MEC1.
*/
return 0;
}
static void gfx_v10_0_kiq_setting(struct amdgpu_ring *ring)
{
uint32_t tmp;
struct amdgpu_device *adev = ring->adev;
/* tell RLC which is KIQ queue */
tmp = RREG32_SOC15(GC, 0, mmRLC_CP_SCHEDULERS);
tmp &= 0xffffff00;
tmp |= (ring->me << 5) | (ring->pipe << 3) | (ring->queue);
WREG32_SOC15(GC, 0, mmRLC_CP_SCHEDULERS, tmp);
tmp |= 0x80;
WREG32_SOC15(GC, 0, mmRLC_CP_SCHEDULERS, tmp);
}
static int gfx_v10_0_gfx_mqd_init(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
struct v10_gfx_mqd *mqd = ring->mqd_ptr;
uint64_t hqd_gpu_addr, wb_gpu_addr;
uint32_t tmp;
uint32_t rb_bufsz;
/* set up gfx hqd wptr */
mqd->cp_gfx_hqd_wptr = 0;
mqd->cp_gfx_hqd_wptr_hi = 0;
/* set the pointer to the MQD */
mqd->cp_mqd_base_addr = ring->mqd_gpu_addr & 0xfffffffc;
mqd->cp_mqd_base_addr_hi = upper_32_bits(ring->mqd_gpu_addr);
/* set up mqd control */
tmp = RREG32_SOC15(GC, 0, mmCP_GFX_MQD_CONTROL);
tmp = REG_SET_FIELD(tmp, CP_GFX_MQD_CONTROL, VMID, 0);
tmp = REG_SET_FIELD(tmp, CP_GFX_MQD_CONTROL, PRIV_STATE, 1);
tmp = REG_SET_FIELD(tmp, CP_GFX_MQD_CONTROL, CACHE_POLICY, 0);
mqd->cp_gfx_mqd_control = tmp;
/* set up gfx_hqd_vimd with 0x0 to indicate the ring buffer's vmid */
tmp = RREG32_SOC15(GC, 0, mmCP_GFX_HQD_VMID);
tmp = REG_SET_FIELD(tmp, CP_GFX_HQD_VMID, VMID, 0);
mqd->cp_gfx_hqd_vmid = 0;
/* set up default queue priority level
* 0x0 = low priority, 0x1 = high priority */
tmp = RREG32_SOC15(GC, 0, mmCP_GFX_HQD_QUEUE_PRIORITY);
tmp = REG_SET_FIELD(tmp, CP_GFX_HQD_QUEUE_PRIORITY, PRIORITY_LEVEL, 0);
mqd->cp_gfx_hqd_queue_priority = tmp;
/* set up time quantum */
tmp = RREG32_SOC15(GC, 0, mmCP_GFX_HQD_QUANTUM);
tmp = REG_SET_FIELD(tmp, CP_GFX_HQD_QUANTUM, QUANTUM_EN, 1);
mqd->cp_gfx_hqd_quantum = tmp;
/* set up gfx hqd base. this is similar as CP_RB_BASE */
hqd_gpu_addr = ring->gpu_addr >> 8;
mqd->cp_gfx_hqd_base = hqd_gpu_addr;
mqd->cp_gfx_hqd_base_hi = upper_32_bits(hqd_gpu_addr);
/* set up hqd_rptr_addr/_hi, similar as CP_RB_RPTR */
wb_gpu_addr = adev->wb.gpu_addr + (ring->rptr_offs * 4);
mqd->cp_gfx_hqd_rptr_addr = wb_gpu_addr & 0xfffffffc;
mqd->cp_gfx_hqd_rptr_addr_hi =
upper_32_bits(wb_gpu_addr) & 0xffff;
/* set up rb_wptr_poll addr */
wb_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
mqd->cp_rb_wptr_poll_addr_lo = wb_gpu_addr & 0xfffffffc;
mqd->cp_rb_wptr_poll_addr_hi = upper_32_bits(wb_gpu_addr) & 0xffff;
/* set up the gfx_hqd_control, similar as CP_RB0_CNTL */
rb_bufsz = order_base_2(ring->ring_size / 4) - 1;
tmp = RREG32_SOC15(GC, 0, mmCP_GFX_HQD_CNTL);
tmp = REG_SET_FIELD(tmp, CP_GFX_HQD_CNTL, RB_BUFSZ, rb_bufsz);
tmp = REG_SET_FIELD(tmp, CP_GFX_HQD_CNTL, RB_BLKSZ, rb_bufsz - 2);
#ifdef __BIG_ENDIAN
tmp = REG_SET_FIELD(tmp, CP_GFX_HQD_CNTL, BUF_SWAP, 1);
#endif
mqd->cp_gfx_hqd_cntl = tmp;
/* set up cp_doorbell_control */
tmp = RREG32_SOC15(GC, 0, mmCP_RB_DOORBELL_CONTROL);
if (ring->use_doorbell) {
tmp = REG_SET_FIELD(tmp, CP_RB_DOORBELL_CONTROL,
DOORBELL_OFFSET, ring->doorbell_index);
tmp = REG_SET_FIELD(tmp, CP_RB_DOORBELL_CONTROL,
DOORBELL_EN, 1);
} else
tmp = REG_SET_FIELD(tmp, CP_RB_DOORBELL_CONTROL,
DOORBELL_EN, 0);
mqd->cp_rb_doorbell_control = tmp;
/* reset read and write pointers, similar to CP_RB0_WPTR/_RPTR */
ring->wptr = 0;
mqd->cp_gfx_hqd_rptr = RREG32_SOC15(GC, 0, mmCP_GFX_HQD_RPTR);
/* active the queue */
mqd->cp_gfx_hqd_active = 1;
return 0;
}
#ifdef BRING_UP_DEBUG
static int gfx_v10_0_gfx_queue_init_register(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
struct v10_gfx_mqd *mqd = ring->mqd_ptr;
/* set mmCP_GFX_HQD_WPTR/_HI to 0 */
WREG32_SOC15(GC, 0, mmCP_GFX_HQD_WPTR, mqd->cp_gfx_hqd_wptr);
WREG32_SOC15(GC, 0, mmCP_GFX_HQD_WPTR_HI, mqd->cp_gfx_hqd_wptr_hi);
/* set GFX_MQD_BASE */
WREG32_SOC15(GC, 0, mmCP_MQD_BASE_ADDR, mqd->cp_mqd_base_addr);
WREG32_SOC15(GC, 0, mmCP_MQD_BASE_ADDR_HI, mqd->cp_mqd_base_addr_hi);
/* set GFX_MQD_CONTROL */
WREG32_SOC15(GC, 0, mmCP_GFX_MQD_CONTROL, mqd->cp_gfx_mqd_control);
/* set GFX_HQD_VMID to 0 */
WREG32_SOC15(GC, 0, mmCP_GFX_HQD_VMID, mqd->cp_gfx_hqd_vmid);
WREG32_SOC15(GC, 0, mmCP_GFX_HQD_QUEUE_PRIORITY,
mqd->cp_gfx_hqd_queue_priority);
WREG32_SOC15(GC, 0, mmCP_GFX_HQD_QUANTUM, mqd->cp_gfx_hqd_quantum);
/* set GFX_HQD_BASE, similar as CP_RB_BASE */
WREG32_SOC15(GC, 0, mmCP_GFX_HQD_BASE, mqd->cp_gfx_hqd_base);
WREG32_SOC15(GC, 0, mmCP_GFX_HQD_BASE_HI, mqd->cp_gfx_hqd_base_hi);
/* set GFX_HQD_RPTR_ADDR, similar as CP_RB_RPTR */
WREG32_SOC15(GC, 0, mmCP_GFX_HQD_RPTR_ADDR, mqd->cp_gfx_hqd_rptr_addr);
WREG32_SOC15(GC, 0, mmCP_GFX_HQD_RPTR_ADDR_HI, mqd->cp_gfx_hqd_rptr_addr_hi);
/* set GFX_HQD_CNTL, similar as CP_RB_CNTL */
WREG32_SOC15(GC, 0, mmCP_GFX_HQD_CNTL, mqd->cp_gfx_hqd_cntl);
/* set RB_WPTR_POLL_ADDR */
WREG32_SOC15(GC, 0, mmCP_RB_WPTR_POLL_ADDR_LO, mqd->cp_rb_wptr_poll_addr_lo);
WREG32_SOC15(GC, 0, mmCP_RB_WPTR_POLL_ADDR_HI, mqd->cp_rb_wptr_poll_addr_hi);
/* set RB_DOORBELL_CONTROL */
WREG32_SOC15(GC, 0, mmCP_RB_DOORBELL_CONTROL, mqd->cp_rb_doorbell_control);
/* active the queue */
WREG32_SOC15(GC, 0, mmCP_GFX_HQD_ACTIVE, mqd->cp_gfx_hqd_active);
return 0;
}
#endif
static int gfx_v10_0_gfx_init_queue(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
struct v10_gfx_mqd *mqd = ring->mqd_ptr;
if (!adev->in_gpu_reset && !adev->in_suspend) {
memset((void *)mqd, 0, sizeof(*mqd));
mutex_lock(&adev->srbm_mutex);
nv_grbm_select(adev, ring->me, ring->pipe, ring->queue, 0);
gfx_v10_0_gfx_mqd_init(ring);
#ifdef BRING_UP_DEBUG
gfx_v10_0_gfx_queue_init_register(ring);
#endif
nv_grbm_select(adev, 0, 0, 0, 0);
mutex_unlock(&adev->srbm_mutex);
if (adev->gfx.me.mqd_backup[AMDGPU_MAX_GFX_RINGS])
memcpy(adev->gfx.me.mqd_backup[AMDGPU_MAX_GFX_RINGS], mqd, sizeof(*mqd));
} else if (adev->in_gpu_reset) {
/* reset mqd with the backup copy */
if (adev->gfx.me.mqd_backup[AMDGPU_MAX_GFX_RINGS])
memcpy(mqd, adev->gfx.me.mqd_backup[AMDGPU_MAX_GFX_RINGS], sizeof(*mqd));
/* reset the ring */
ring->wptr = 0;
amdgpu_ring_clear_ring(ring);
#ifdef BRING_UP_DEBUG
mutex_lock(&adev->srbm_mutex);
nv_grbm_select(adev, ring->me, ring->pipe, ring->queue, 0);
gfx_v10_0_gfx_queue_init_register(ring);
nv_grbm_select(adev, 0, 0, 0, 0);
mutex_unlock(&adev->srbm_mutex);
#endif
} else {
amdgpu_ring_clear_ring(ring);
}
return 0;
}
#ifndef BRING_UP_DEBUG
static int gfx_v10_0_kiq_enable_kgq(struct amdgpu_device *adev)
{
struct amdgpu_kiq *kiq = &adev->gfx.kiq;
struct amdgpu_ring *kiq_ring = &adev->gfx.kiq.ring;
int r, i;
if (!kiq->pmf || !kiq->pmf->kiq_map_queues)
return -EINVAL;
r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size *
adev->gfx.num_gfx_rings);
if (r) {
DRM_ERROR("Failed to lock KIQ (%d).\n", r);
return r;
}
for (i = 0; i < adev->gfx.num_gfx_rings; i++)
kiq->pmf->kiq_map_queues(kiq_ring, &adev->gfx.gfx_ring[i]);
r = amdgpu_ring_test_ring(kiq_ring);
if (r) {
DRM_ERROR("kfq enable failed\n");
kiq_ring->sched.ready = false;
}
return r;
}
#endif
static int gfx_v10_0_cp_async_gfx_ring_resume(struct amdgpu_device *adev)
{
int r, i;
struct amdgpu_ring *ring;
for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
ring = &adev->gfx.gfx_ring[i];
r = amdgpu_bo_reserve(ring->mqd_obj, false);
if (unlikely(r != 0))
goto done;
r = amdgpu_bo_kmap(ring->mqd_obj, (void **)&ring->mqd_ptr);
if (!r) {
r = gfx_v10_0_gfx_init_queue(ring);
amdgpu_bo_kunmap(ring->mqd_obj);
ring->mqd_ptr = NULL;
}
amdgpu_bo_unreserve(ring->mqd_obj);
if (r)
goto done;
}
#ifndef BRING_UP_DEBUG
r = gfx_v10_0_kiq_enable_kgq(adev);
if (r)
goto done;
#endif
r = gfx_v10_0_cp_gfx_start(adev);
if (r)
goto done;
for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
ring = &adev->gfx.gfx_ring[i];
ring->sched.ready = true;
}
done:
return r;
}
static int gfx_v10_0_compute_mqd_init(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
struct v10_compute_mqd *mqd = ring->mqd_ptr;
uint64_t hqd_gpu_addr, wb_gpu_addr, eop_base_addr;
uint32_t tmp;
mqd->header = 0xC0310800;
mqd->compute_pipelinestat_enable = 0x00000001;
mqd->compute_static_thread_mgmt_se0 = 0xffffffff;
mqd->compute_static_thread_mgmt_se1 = 0xffffffff;
mqd->compute_static_thread_mgmt_se2 = 0xffffffff;
mqd->compute_static_thread_mgmt_se3 = 0xffffffff;
mqd->compute_misc_reserved = 0x00000003;
eop_base_addr = ring->eop_gpu_addr >> 8;
mqd->cp_hqd_eop_base_addr_lo = eop_base_addr;
mqd->cp_hqd_eop_base_addr_hi = upper_32_bits(eop_base_addr);
/* set the EOP size, register value is 2^(EOP_SIZE+1) dwords */
tmp = RREG32_SOC15(GC, 0, mmCP_HQD_EOP_CONTROL);
tmp = REG_SET_FIELD(tmp, CP_HQD_EOP_CONTROL, EOP_SIZE,
(order_base_2(GFX10_MEC_HPD_SIZE / 4) - 1));
mqd->cp_hqd_eop_control = tmp;
/* enable doorbell? */
tmp = RREG32_SOC15(GC, 0, mmCP_HQD_PQ_DOORBELL_CONTROL);
if (ring->use_doorbell) {
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL,
DOORBELL_OFFSET, ring->doorbell_index);
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL,
DOORBELL_EN, 1);
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL,
DOORBELL_SOURCE, 0);
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL,
DOORBELL_HIT, 0);
} else {
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL,
DOORBELL_EN, 0);
}
mqd->cp_hqd_pq_doorbell_control = tmp;
/* disable the queue if it's active */
ring->wptr = 0;
mqd->cp_hqd_dequeue_request = 0;
mqd->cp_hqd_pq_rptr = 0;
mqd->cp_hqd_pq_wptr_lo = 0;
mqd->cp_hqd_pq_wptr_hi = 0;
/* set the pointer to the MQD */
mqd->cp_mqd_base_addr_lo = ring->mqd_gpu_addr & 0xfffffffc;
mqd->cp_mqd_base_addr_hi = upper_32_bits(ring->mqd_gpu_addr);
/* set MQD vmid to 0 */
tmp = RREG32_SOC15(GC, 0, mmCP_MQD_CONTROL);
tmp = REG_SET_FIELD(tmp, CP_MQD_CONTROL, VMID, 0);
mqd->cp_mqd_control = tmp;
/* set the pointer to the HQD, this is similar CP_RB0_BASE/_HI */
hqd_gpu_addr = ring->gpu_addr >> 8;
mqd->cp_hqd_pq_base_lo = hqd_gpu_addr;
mqd->cp_hqd_pq_base_hi = upper_32_bits(hqd_gpu_addr);
/* set up the HQD, this is similar to CP_RB0_CNTL */
tmp = RREG32_SOC15(GC, 0, mmCP_HQD_PQ_CONTROL);
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, QUEUE_SIZE,
(order_base_2(ring->ring_size / 4) - 1));
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, RPTR_BLOCK_SIZE,
((order_base_2(AMDGPU_GPU_PAGE_SIZE / 4) - 1) << 8));
#ifdef __BIG_ENDIAN
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, ENDIAN_SWAP, 1);
#endif
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, UNORD_DISPATCH, 0);
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, TUNNEL_DISPATCH, 0);
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, PRIV_STATE, 1);
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, KMD_QUEUE, 1);
mqd->cp_hqd_pq_control = tmp;
/* set the wb address whether it's enabled or not */
wb_gpu_addr = adev->wb.gpu_addr + (ring->rptr_offs * 4);
mqd->cp_hqd_pq_rptr_report_addr_lo = wb_gpu_addr & 0xfffffffc;
mqd->cp_hqd_pq_rptr_report_addr_hi =
upper_32_bits(wb_gpu_addr) & 0xffff;
/* only used if CP_PQ_WPTR_POLL_CNTL.CP_PQ_WPTR_POLL_CNTL__EN_MASK=1 */
wb_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
mqd->cp_hqd_pq_wptr_poll_addr_lo = wb_gpu_addr & 0xfffffffc;
mqd->cp_hqd_pq_wptr_poll_addr_hi = upper_32_bits(wb_gpu_addr) & 0xffff;
tmp = 0;
/* enable the doorbell if requested */
if (ring->use_doorbell) {
tmp = RREG32_SOC15(GC, 0, mmCP_HQD_PQ_DOORBELL_CONTROL);
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL,
DOORBELL_OFFSET, ring->doorbell_index);
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL,
DOORBELL_EN, 1);
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL,
DOORBELL_SOURCE, 0);
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL,
DOORBELL_HIT, 0);
}
mqd->cp_hqd_pq_doorbell_control = tmp;
/* reset read and write pointers, similar to CP_RB0_WPTR/_RPTR */
ring->wptr = 0;
mqd->cp_hqd_pq_rptr = RREG32_SOC15(GC, 0, mmCP_HQD_PQ_RPTR);
/* set the vmid for the queue */
mqd->cp_hqd_vmid = 0;
tmp = RREG32_SOC15(GC, 0, mmCP_HQD_PERSISTENT_STATE);
tmp = REG_SET_FIELD(tmp, CP_HQD_PERSISTENT_STATE, PRELOAD_SIZE, 0x53);
mqd->cp_hqd_persistent_state = tmp;
/* set MIN_IB_AVAIL_SIZE */
tmp = RREG32_SOC15(GC, 0, mmCP_HQD_IB_CONTROL);
tmp = REG_SET_FIELD(tmp, CP_HQD_IB_CONTROL, MIN_IB_AVAIL_SIZE, 3);
mqd->cp_hqd_ib_control = tmp;
/* activate the queue */
mqd->cp_hqd_active = 1;
return 0;
}
static int gfx_v10_0_kiq_init_register(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
struct v10_compute_mqd *mqd = ring->mqd_ptr;
int j;
/* disable wptr polling */
WREG32_FIELD15(GC, 0, CP_PQ_WPTR_POLL_CNTL, EN, 0);
/* write the EOP addr */
WREG32_SOC15(GC, 0, mmCP_HQD_EOP_BASE_ADDR,
mqd->cp_hqd_eop_base_addr_lo);
WREG32_SOC15(GC, 0, mmCP_HQD_EOP_BASE_ADDR_HI,
mqd->cp_hqd_eop_base_addr_hi);
/* set the EOP size, register value is 2^(EOP_SIZE+1) dwords */
WREG32_SOC15(GC, 0, mmCP_HQD_EOP_CONTROL,
mqd->cp_hqd_eop_control);
/* enable doorbell? */
WREG32_SOC15(GC, 0, mmCP_HQD_PQ_DOORBELL_CONTROL,
mqd->cp_hqd_pq_doorbell_control);
/* disable the queue if it's active */
if (RREG32_SOC15(GC, 0, mmCP_HQD_ACTIVE) & 1) {
WREG32_SOC15(GC, 0, mmCP_HQD_DEQUEUE_REQUEST, 1);
for (j = 0; j < adev->usec_timeout; j++) {
if (!(RREG32_SOC15(GC, 0, mmCP_HQD_ACTIVE) & 1))
break;
udelay(1);
}
WREG32_SOC15(GC, 0, mmCP_HQD_DEQUEUE_REQUEST,
mqd->cp_hqd_dequeue_request);
WREG32_SOC15(GC, 0, mmCP_HQD_PQ_RPTR,
mqd->cp_hqd_pq_rptr);
WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_LO,
mqd->cp_hqd_pq_wptr_lo);
WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_HI,
mqd->cp_hqd_pq_wptr_hi);
}
/* set the pointer to the MQD */
WREG32_SOC15(GC, 0, mmCP_MQD_BASE_ADDR,
mqd->cp_mqd_base_addr_lo);
WREG32_SOC15(GC, 0, mmCP_MQD_BASE_ADDR_HI,
mqd->cp_mqd_base_addr_hi);
/* set MQD vmid to 0 */
WREG32_SOC15(GC, 0, mmCP_MQD_CONTROL,
mqd->cp_mqd_control);
/* set the pointer to the HQD, this is similar CP_RB0_BASE/_HI */
WREG32_SOC15(GC, 0, mmCP_HQD_PQ_BASE,
mqd->cp_hqd_pq_base_lo);
WREG32_SOC15(GC, 0, mmCP_HQD_PQ_BASE_HI,
mqd->cp_hqd_pq_base_hi);
/* set up the HQD, this is similar to CP_RB0_CNTL */
WREG32_SOC15(GC, 0, mmCP_HQD_PQ_CONTROL,
mqd->cp_hqd_pq_control);
/* set the wb address whether it's enabled or not */
WREG32_SOC15(GC, 0, mmCP_HQD_PQ_RPTR_REPORT_ADDR,
mqd->cp_hqd_pq_rptr_report_addr_lo);
WREG32_SOC15(GC, 0, mmCP_HQD_PQ_RPTR_REPORT_ADDR_HI,
mqd->cp_hqd_pq_rptr_report_addr_hi);
/* only used if CP_PQ_WPTR_POLL_CNTL.CP_PQ_WPTR_POLL_CNTL__EN_MASK=1 */
WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR,
mqd->cp_hqd_pq_wptr_poll_addr_lo);
WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR_HI,
mqd->cp_hqd_pq_wptr_poll_addr_hi);
/* enable the doorbell if requested */
if (ring->use_doorbell) {
WREG32_SOC15(GC, 0, mmCP_MEC_DOORBELL_RANGE_LOWER,
(adev->doorbell_index.kiq * 2) << 2);
WREG32_SOC15(GC, 0, mmCP_MEC_DOORBELL_RANGE_UPPER,
(adev->doorbell_index.userqueue_end * 2) << 2);
}
WREG32_SOC15(GC, 0, mmCP_HQD_PQ_DOORBELL_CONTROL,
mqd->cp_hqd_pq_doorbell_control);
/* reset read and write pointers, similar to CP_RB0_WPTR/_RPTR */
WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_LO,
mqd->cp_hqd_pq_wptr_lo);
WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_HI,
mqd->cp_hqd_pq_wptr_hi);
/* set the vmid for the queue */
WREG32_SOC15(GC, 0, mmCP_HQD_VMID, mqd->cp_hqd_vmid);
WREG32_SOC15(GC, 0, mmCP_HQD_PERSISTENT_STATE,
mqd->cp_hqd_persistent_state);
/* activate the queue */
WREG32_SOC15(GC, 0, mmCP_HQD_ACTIVE,
mqd->cp_hqd_active);
if (ring->use_doorbell)
WREG32_FIELD15(GC, 0, CP_PQ_STATUS, DOORBELL_ENABLE, 1);
return 0;
}
static int gfx_v10_0_kiq_init_queue(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
struct v10_compute_mqd *mqd = ring->mqd_ptr;
int mqd_idx = AMDGPU_MAX_COMPUTE_RINGS;
gfx_v10_0_kiq_setting(ring);
if (adev->in_gpu_reset) { /* for GPU_RESET case */
/* reset MQD to a clean status */
if (adev->gfx.mec.mqd_backup[mqd_idx])
memcpy(mqd, adev->gfx.mec.mqd_backup[mqd_idx], sizeof(*mqd));
/* reset ring buffer */
ring->wptr = 0;
amdgpu_ring_clear_ring(ring);
mutex_lock(&adev->srbm_mutex);
nv_grbm_select(adev, ring->me, ring->pipe, ring->queue, 0);
gfx_v10_0_kiq_init_register(ring);
nv_grbm_select(adev, 0, 0, 0, 0);
mutex_unlock(&adev->srbm_mutex);
} else {
memset((void *)mqd, 0, sizeof(*mqd));
mutex_lock(&adev->srbm_mutex);
nv_grbm_select(adev, ring->me, ring->pipe, ring->queue, 0);
gfx_v10_0_compute_mqd_init(ring);
gfx_v10_0_kiq_init_register(ring);
nv_grbm_select(adev, 0, 0, 0, 0);
mutex_unlock(&adev->srbm_mutex);
if (adev->gfx.mec.mqd_backup[mqd_idx])
memcpy(adev->gfx.mec.mqd_backup[mqd_idx], mqd, sizeof(*mqd));
}
return 0;
}
static int gfx_v10_0_kcq_init_queue(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
struct v10_compute_mqd *mqd = ring->mqd_ptr;
int mqd_idx = ring - &adev->gfx.compute_ring[0];
if (!adev->in_gpu_reset && !adev->in_suspend) {
memset((void *)mqd, 0, sizeof(*mqd));
mutex_lock(&adev->srbm_mutex);
nv_grbm_select(adev, ring->me, ring->pipe, ring->queue, 0);
gfx_v10_0_compute_mqd_init(ring);
nv_grbm_select(adev, 0, 0, 0, 0);
mutex_unlock(&adev->srbm_mutex);
if (adev->gfx.mec.mqd_backup[mqd_idx])
memcpy(adev->gfx.mec.mqd_backup[mqd_idx], mqd, sizeof(*mqd));
} else if (adev->in_gpu_reset) { /* for GPU_RESET case */
/* reset MQD to a clean status */
if (adev->gfx.mec.mqd_backup[mqd_idx])
memcpy(mqd, adev->gfx.mec.mqd_backup[mqd_idx], sizeof(*mqd));
/* reset ring buffer */
ring->wptr = 0;
amdgpu_ring_clear_ring(ring);
} else {
amdgpu_ring_clear_ring(ring);
}
return 0;
}
static int gfx_v10_0_kiq_resume(struct amdgpu_device *adev)
{
struct amdgpu_ring *ring;
int r;
ring = &adev->gfx.kiq.ring;
r = amdgpu_bo_reserve(ring->mqd_obj, false);
if (unlikely(r != 0))
return r;
r = amdgpu_bo_kmap(ring->mqd_obj, (void **)&ring->mqd_ptr);
if (unlikely(r != 0))
return r;
gfx_v10_0_kiq_init_queue(ring);
amdgpu_bo_kunmap(ring->mqd_obj);
ring->mqd_ptr = NULL;
amdgpu_bo_unreserve(ring->mqd_obj);
ring->sched.ready = true;
return 0;
}
static int gfx_v10_0_kcq_resume(struct amdgpu_device *adev)
{
struct amdgpu_ring *ring = NULL;
int r = 0, i;
gfx_v10_0_cp_compute_enable(adev, true);
for (i = 0; i < adev->gfx.num_compute_rings; i++) {
ring = &adev->gfx.compute_ring[i];
r = amdgpu_bo_reserve(ring->mqd_obj, false);
if (unlikely(r != 0))
goto done;
r = amdgpu_bo_kmap(ring->mqd_obj, (void **)&ring->mqd_ptr);
if (!r) {
r = gfx_v10_0_kcq_init_queue(ring);
amdgpu_bo_kunmap(ring->mqd_obj);
ring->mqd_ptr = NULL;
}
amdgpu_bo_unreserve(ring->mqd_obj);
if (r)
goto done;
}
r = amdgpu_gfx_enable_kcq(adev);
done:
return r;
}
static int gfx_v10_0_cp_resume(struct amdgpu_device *adev)
{
int r, i;
struct amdgpu_ring *ring;
if (!(adev->flags & AMD_IS_APU))
gfx_v10_0_enable_gui_idle_interrupt(adev, false);
if (adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) {
/* legacy firmware loading */
r = gfx_v10_0_cp_gfx_load_microcode(adev);
if (r)
return r;
r = gfx_v10_0_cp_compute_load_microcode(adev);
if (r)
return r;
}
r = gfx_v10_0_kiq_resume(adev);
if (r)
return r;
r = gfx_v10_0_kcq_resume(adev);
if (r)
return r;
if (!amdgpu_async_gfx_ring) {
r = gfx_v10_0_cp_gfx_resume(adev);
if (r)
return r;
} else {
r = gfx_v10_0_cp_async_gfx_ring_resume(adev);
if (r)
return r;
}
for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
ring = &adev->gfx.gfx_ring[i];
DRM_INFO("gfx %d ring me %d pipe %d q %d\n",
i, ring->me, ring->pipe, ring->queue);
r = amdgpu_ring_test_ring(ring);
if (r) {
ring->sched.ready = false;
return r;
}
}
for (i = 0; i < adev->gfx.num_compute_rings; i++) {
ring = &adev->gfx.compute_ring[i];
ring->sched.ready = true;
DRM_INFO("compute ring %d mec %d pipe %d q %d\n",
i, ring->me, ring->pipe, ring->queue);
r = amdgpu_ring_test_ring(ring);
if (r)
ring->sched.ready = false;
}
return 0;
}
static void gfx_v10_0_cp_enable(struct amdgpu_device *adev, bool enable)
{
gfx_v10_0_cp_gfx_enable(adev, enable);
gfx_v10_0_cp_compute_enable(adev, enable);
}
static bool gfx_v10_0_check_grbm_cam_remapping(struct amdgpu_device *adev)
{
uint32_t data, pattern = 0xDEADBEEF;
/* check if mmVGT_ESGS_RING_SIZE_UMD
* has been remapped to mmVGT_ESGS_RING_SIZE */
data = RREG32_SOC15(GC, 0, mmVGT_ESGS_RING_SIZE);
WREG32_SOC15(GC, 0, mmVGT_ESGS_RING_SIZE, 0);
WREG32_SOC15(GC, 0, mmVGT_ESGS_RING_SIZE_UMD, pattern);
if (RREG32_SOC15(GC, 0, mmVGT_ESGS_RING_SIZE) == pattern) {
WREG32_SOC15(GC, 0, mmVGT_ESGS_RING_SIZE_UMD, data);
return true;
} else {
WREG32_SOC15(GC, 0, mmVGT_ESGS_RING_SIZE, data);
return false;
}
}
static void gfx_v10_0_setup_grbm_cam_remapping(struct amdgpu_device *adev)
{
uint32_t data;
/* initialize cam_index to 0
* index will auto-inc after each data writting */
WREG32_SOC15(GC, 0, mmGRBM_CAM_INDEX, 0);
/* mmVGT_TF_RING_SIZE_UMD -> mmVGT_TF_RING_SIZE */
data = (SOC15_REG_OFFSET(GC, 0, mmVGT_TF_RING_SIZE_UMD) <<
GRBM_CAM_DATA__CAM_ADDR__SHIFT) |
(SOC15_REG_OFFSET(GC, 0, mmVGT_TF_RING_SIZE) <<
GRBM_CAM_DATA__CAM_REMAPADDR__SHIFT);
WREG32_SOC15(GC, 0, mmGRBM_CAM_DATA_UPPER, 0);
WREG32_SOC15(GC, 0, mmGRBM_CAM_DATA, data);
/* mmVGT_TF_MEMORY_BASE_UMD -> mmVGT_TF_MEMORY_BASE */
data = (SOC15_REG_OFFSET(GC, 0, mmVGT_TF_MEMORY_BASE_UMD) <<
GRBM_CAM_DATA__CAM_ADDR__SHIFT) |
(SOC15_REG_OFFSET(GC, 0, mmVGT_TF_MEMORY_BASE) <<
GRBM_CAM_DATA__CAM_REMAPADDR__SHIFT);
WREG32_SOC15(GC, 0, mmGRBM_CAM_DATA_UPPER, 0);
WREG32_SOC15(GC, 0, mmGRBM_CAM_DATA, data);
/* mmVGT_TF_MEMORY_BASE_HI_UMD -> mmVGT_TF_MEMORY_BASE_HI */
data = (SOC15_REG_OFFSET(GC, 0, mmVGT_TF_MEMORY_BASE_HI_UMD) <<
GRBM_CAM_DATA__CAM_ADDR__SHIFT) |
(SOC15_REG_OFFSET(GC, 0, mmVGT_TF_MEMORY_BASE_HI) <<
GRBM_CAM_DATA__CAM_REMAPADDR__SHIFT);
WREG32_SOC15(GC, 0, mmGRBM_CAM_DATA_UPPER, 0);
WREG32_SOC15(GC, 0, mmGRBM_CAM_DATA, data);
/* mmVGT_HS_OFFCHIP_PARAM_UMD -> mmVGT_HS_OFFCHIP_PARAM */
data = (SOC15_REG_OFFSET(GC, 0, mmVGT_HS_OFFCHIP_PARAM_UMD) <<
GRBM_CAM_DATA__CAM_ADDR__SHIFT) |
(SOC15_REG_OFFSET(GC, 0, mmVGT_HS_OFFCHIP_PARAM) <<
GRBM_CAM_DATA__CAM_REMAPADDR__SHIFT);
WREG32_SOC15(GC, 0, mmGRBM_CAM_DATA_UPPER, 0);
WREG32_SOC15(GC, 0, mmGRBM_CAM_DATA, data);
/* mmVGT_ESGS_RING_SIZE_UMD -> mmVGT_ESGS_RING_SIZE */
data = (SOC15_REG_OFFSET(GC, 0, mmVGT_ESGS_RING_SIZE_UMD) <<
GRBM_CAM_DATA__CAM_ADDR__SHIFT) |
(SOC15_REG_OFFSET(GC, 0, mmVGT_ESGS_RING_SIZE) <<
GRBM_CAM_DATA__CAM_REMAPADDR__SHIFT);
WREG32_SOC15(GC, 0, mmGRBM_CAM_DATA_UPPER, 0);
WREG32_SOC15(GC, 0, mmGRBM_CAM_DATA, data);
/* mmVGT_GSVS_RING_SIZE_UMD -> mmVGT_GSVS_RING_SIZE */
data = (SOC15_REG_OFFSET(GC, 0, mmVGT_GSVS_RING_SIZE_UMD) <<
GRBM_CAM_DATA__CAM_ADDR__SHIFT) |
(SOC15_REG_OFFSET(GC, 0, mmVGT_GSVS_RING_SIZE) <<
GRBM_CAM_DATA__CAM_REMAPADDR__SHIFT);
WREG32_SOC15(GC, 0, mmGRBM_CAM_DATA_UPPER, 0);
WREG32_SOC15(GC, 0, mmGRBM_CAM_DATA, data);
/* mmSPI_CONFIG_CNTL_REMAP -> mmSPI_CONFIG_CNTL */
data = (SOC15_REG_OFFSET(GC, 0, mmSPI_CONFIG_CNTL_REMAP) <<
GRBM_CAM_DATA__CAM_ADDR__SHIFT) |
(SOC15_REG_OFFSET(GC, 0, mmSPI_CONFIG_CNTL) <<
GRBM_CAM_DATA__CAM_REMAPADDR__SHIFT);
WREG32_SOC15(GC, 0, mmGRBM_CAM_DATA_UPPER, 0);
WREG32_SOC15(GC, 0, mmGRBM_CAM_DATA, data);
}
static int gfx_v10_0_hw_init(void *handle)
{
int r;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
r = gfx_v10_0_csb_vram_pin(adev);
if (r)
return r;
if (!amdgpu_emu_mode)
gfx_v10_0_init_golden_registers(adev);
if (adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) {
/**
* For gfx 10, rlc firmware loading relies on smu firmware is
* loaded firstly, so in direct type, it has to load smc ucode
* here before rlc.
*/
r = smu_load_microcode(&adev->smu);
if (r)
return r;
r = smu_check_fw_status(&adev->smu);
if (r) {
pr_err("SMC firmware status is not correct\n");
return r;
}
}
/* if GRBM CAM not remapped, set up the remapping */
if (!gfx_v10_0_check_grbm_cam_remapping(adev))
gfx_v10_0_setup_grbm_cam_remapping(adev);
gfx_v10_0_constants_init(adev);
r = gfx_v10_0_rlc_resume(adev);
if (r)
return r;
/*
* init golden registers and rlc resume may override some registers,
* reconfig them here
*/
gfx_v10_0_tcp_harvest(adev);
r = gfx_v10_0_cp_resume(adev);
if (r)
return r;
return r;
}
#ifndef BRING_UP_DEBUG
static int gfx_v10_0_kiq_disable_kgq(struct amdgpu_device *adev)
{
struct amdgpu_kiq *kiq = &adev->gfx.kiq;
struct amdgpu_ring *kiq_ring = &kiq->ring;
int i;
if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues)
return -EINVAL;
if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size *
adev->gfx.num_gfx_rings))
return -ENOMEM;
for (i = 0; i < adev->gfx.num_gfx_rings; i++)
kiq->pmf->kiq_unmap_queues(kiq_ring, &adev->gfx.gfx_ring[i],
PREEMPT_QUEUES, 0, 0);
return amdgpu_ring_test_ring(kiq_ring);
}
#endif
static int gfx_v10_0_hw_fini(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
int r;
amdgpu_irq_put(adev, &adev->gfx.priv_reg_irq, 0);
amdgpu_irq_put(adev, &adev->gfx.priv_inst_irq, 0);
#ifndef BRING_UP_DEBUG
if (amdgpu_async_gfx_ring) {
r = gfx_v10_0_kiq_disable_kgq(adev);
if (r)
DRM_ERROR("KGQ disable failed\n");
}
#endif
if (amdgpu_gfx_disable_kcq(adev))
DRM_ERROR("KCQ disable failed\n");
if (amdgpu_sriov_vf(adev)) {
pr_debug("For SRIOV client, shouldn't do anything.\n");
return 0;
}
gfx_v10_0_cp_enable(adev, false);
gfx_v10_0_enable_gui_idle_interrupt(adev, false);
gfx_v10_0_csb_vram_unpin(adev);
return 0;
}
static int gfx_v10_0_suspend(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
adev->in_suspend = true;
return gfx_v10_0_hw_fini(adev);
}
static int gfx_v10_0_resume(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
int r;
r = gfx_v10_0_hw_init(adev);
adev->in_suspend = false;
return r;
}
static bool gfx_v10_0_is_idle(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
if (REG_GET_FIELD(RREG32_SOC15(GC, 0, mmGRBM_STATUS),
GRBM_STATUS, GUI_ACTIVE))
return false;
else
return true;
}
static int gfx_v10_0_wait_for_idle(void *handle)
{
unsigned i;
u32 tmp;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
for (i = 0; i < adev->usec_timeout; i++) {
/* read MC_STATUS */
tmp = RREG32_SOC15(GC, 0, mmGRBM_STATUS) &
GRBM_STATUS__GUI_ACTIVE_MASK;
if (!REG_GET_FIELD(tmp, GRBM_STATUS, GUI_ACTIVE))
return 0;
udelay(1);
}
return -ETIMEDOUT;
}
static int gfx_v10_0_soft_reset(void *handle)
{
u32 grbm_soft_reset = 0;
u32 tmp;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
/* GRBM_STATUS */
tmp = RREG32_SOC15(GC, 0, mmGRBM_STATUS);
if (tmp & (GRBM_STATUS__PA_BUSY_MASK | GRBM_STATUS__SC_BUSY_MASK |
GRBM_STATUS__BCI_BUSY_MASK | GRBM_STATUS__SX_BUSY_MASK |
GRBM_STATUS__TA_BUSY_MASK | GRBM_STATUS__DB_BUSY_MASK |
GRBM_STATUS__CB_BUSY_MASK | GRBM_STATUS__GDS_BUSY_MASK |
GRBM_STATUS__SPI_BUSY_MASK | GRBM_STATUS__GE_BUSY_NO_DMA_MASK
| GRBM_STATUS__BCI_BUSY_MASK)) {
grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset,
GRBM_SOFT_RESET, SOFT_RESET_CP,
1);
grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset,
GRBM_SOFT_RESET, SOFT_RESET_GFX,
1);
}
if (tmp & (GRBM_STATUS__CP_BUSY_MASK | GRBM_STATUS__CP_COHERENCY_BUSY_MASK)) {
grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset,
GRBM_SOFT_RESET, SOFT_RESET_CP,
1);
}
/* GRBM_STATUS2 */
tmp = RREG32_SOC15(GC, 0, mmGRBM_STATUS2);
if (REG_GET_FIELD(tmp, GRBM_STATUS2, RLC_BUSY))
grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset,
GRBM_SOFT_RESET, SOFT_RESET_RLC,
1);
if (grbm_soft_reset) {
/* stop the rlc */
gfx_v10_0_rlc_stop(adev);
/* Disable GFX parsing/prefetching */
gfx_v10_0_cp_gfx_enable(adev, false);
/* Disable MEC parsing/prefetching */
gfx_v10_0_cp_compute_enable(adev, false);
if (grbm_soft_reset) {
tmp = RREG32_SOC15(GC, 0, mmGRBM_SOFT_RESET);
tmp |= grbm_soft_reset;
dev_info(adev->dev, "GRBM_SOFT_RESET=0x%08X\n", tmp);
WREG32_SOC15(GC, 0, mmGRBM_SOFT_RESET, tmp);
tmp = RREG32_SOC15(GC, 0, mmGRBM_SOFT_RESET);
udelay(50);
tmp &= ~grbm_soft_reset;
WREG32_SOC15(GC, 0, mmGRBM_SOFT_RESET, tmp);
tmp = RREG32_SOC15(GC, 0, mmGRBM_SOFT_RESET);
}
/* Wait a little for things to settle down */
udelay(50);
}
return 0;
}
static uint64_t gfx_v10_0_get_gpu_clock_counter(struct amdgpu_device *adev)
{
uint64_t clock;
mutex_lock(&adev->gfx.gpu_clock_mutex);
WREG32_SOC15(GC, 0, mmRLC_CAPTURE_GPU_CLOCK_COUNT, 1);
clock = (uint64_t)RREG32_SOC15(GC, 0, mmRLC_GPU_CLOCK_COUNT_LSB) |
((uint64_t)RREG32_SOC15(GC, 0, mmRLC_GPU_CLOCK_COUNT_MSB) << 32ULL);
mutex_unlock(&adev->gfx.gpu_clock_mutex);
return clock;
}
static void gfx_v10_0_ring_emit_gds_switch(struct amdgpu_ring *ring,
uint32_t vmid,
uint32_t gds_base, uint32_t gds_size,
uint32_t gws_base, uint32_t gws_size,
uint32_t oa_base, uint32_t oa_size)
{
struct amdgpu_device *adev = ring->adev;
/* GDS Base */
gfx_v10_0_write_data_to_reg(ring, 0, false,
SOC15_REG_OFFSET(GC, 0, mmGDS_VMID0_BASE) + 2 * vmid,
gds_base);
/* GDS Size */
gfx_v10_0_write_data_to_reg(ring, 0, false,
SOC15_REG_OFFSET(GC, 0, mmGDS_VMID0_SIZE) + 2 * vmid,
gds_size);
/* GWS */
gfx_v10_0_write_data_to_reg(ring, 0, false,
SOC15_REG_OFFSET(GC, 0, mmGDS_GWS_VMID0) + vmid,
gws_size << GDS_GWS_VMID0__SIZE__SHIFT | gws_base);
/* OA */
gfx_v10_0_write_data_to_reg(ring, 0, false,
SOC15_REG_OFFSET(GC, 0, mmGDS_OA_VMID0) + vmid,
(1 << (oa_size + oa_base)) - (1 << oa_base));
}
static int gfx_v10_0_early_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
adev->gfx.num_gfx_rings = GFX10_NUM_GFX_RINGS;
adev->gfx.num_compute_rings = AMDGPU_MAX_COMPUTE_RINGS;
gfx_v10_0_set_kiq_pm4_funcs(adev);
gfx_v10_0_set_ring_funcs(adev);
gfx_v10_0_set_irq_funcs(adev);
gfx_v10_0_set_gds_init(adev);
gfx_v10_0_set_rlc_funcs(adev);
return 0;
}
static int gfx_v10_0_late_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
int r;
r = amdgpu_irq_get(adev, &adev->gfx.priv_reg_irq, 0);
if (r)
return r;
r = amdgpu_irq_get(adev, &adev->gfx.priv_inst_irq, 0);
if (r)
return r;
return 0;
}
static bool gfx_v10_0_is_rlc_enabled(struct amdgpu_device *adev)
{
uint32_t rlc_cntl;
/* if RLC is not enabled, do nothing */
rlc_cntl = RREG32_SOC15(GC, 0, mmRLC_CNTL);
return (REG_GET_FIELD(rlc_cntl, RLC_CNTL, RLC_ENABLE_F32)) ? true : false;
}
static void gfx_v10_0_set_safe_mode(struct amdgpu_device *adev)
{
uint32_t data;
unsigned i;
data = RLC_SAFE_MODE__CMD_MASK;
data |= (1 << RLC_SAFE_MODE__MESSAGE__SHIFT);
WREG32_SOC15(GC, 0, mmRLC_SAFE_MODE, data);
/* wait for RLC_SAFE_MODE */
for (i = 0; i < adev->usec_timeout; i++) {
if (!REG_GET_FIELD(RREG32_SOC15(GC, 0, mmRLC_SAFE_MODE), RLC_SAFE_MODE, CMD))
break;
udelay(1);
}
}
static void gfx_v10_0_unset_safe_mode(struct amdgpu_device *adev)
{
uint32_t data;
data = RLC_SAFE_MODE__CMD_MASK;
WREG32_SOC15(GC, 0, mmRLC_SAFE_MODE, data);
}
static void gfx_v10_0_update_medium_grain_clock_gating(struct amdgpu_device *adev,
bool enable)
{
uint32_t data, def;
/* It is disabled by HW by default */
if (enable && (adev->cg_flags & AMD_CG_SUPPORT_GFX_MGCG)) {
/* 1 - RLC_CGTT_MGCG_OVERRIDE */
def = data = RREG32_SOC15(GC, 0, mmRLC_CGTT_MGCG_OVERRIDE);
data &= ~(RLC_CGTT_MGCG_OVERRIDE__GRBM_CGTT_SCLK_OVERRIDE_MASK |
RLC_CGTT_MGCG_OVERRIDE__GFXIP_MGCG_OVERRIDE_MASK |
RLC_CGTT_MGCG_OVERRIDE__GFXIP_MGLS_OVERRIDE_MASK);
/* only for Vega10 & Raven1 */
data |= RLC_CGTT_MGCG_OVERRIDE__RLC_CGTT_SCLK_OVERRIDE_MASK;
if (def != data)
WREG32_SOC15(GC, 0, mmRLC_CGTT_MGCG_OVERRIDE, data);
/* MGLS is a global flag to control all MGLS in GFX */
if (adev->cg_flags & AMD_CG_SUPPORT_GFX_MGLS) {
/* 2 - RLC memory Light sleep */
if (adev->cg_flags & AMD_CG_SUPPORT_GFX_RLC_LS) {
def = data = RREG32_SOC15(GC, 0, mmRLC_MEM_SLP_CNTL);
data |= RLC_MEM_SLP_CNTL__RLC_MEM_LS_EN_MASK;
if (def != data)
WREG32_SOC15(GC, 0, mmRLC_MEM_SLP_CNTL, data);
}
/* 3 - CP memory Light sleep */
if (adev->cg_flags & AMD_CG_SUPPORT_GFX_CP_LS) {
def = data = RREG32_SOC15(GC, 0, mmCP_MEM_SLP_CNTL);
data |= CP_MEM_SLP_CNTL__CP_MEM_LS_EN_MASK;
if (def != data)
WREG32_SOC15(GC, 0, mmCP_MEM_SLP_CNTL, data);
}
}
} else {
/* 1 - MGCG_OVERRIDE */
def = data = RREG32_SOC15(GC, 0, mmRLC_CGTT_MGCG_OVERRIDE);
data |= (RLC_CGTT_MGCG_OVERRIDE__RLC_CGTT_SCLK_OVERRIDE_MASK |
RLC_CGTT_MGCG_OVERRIDE__GRBM_CGTT_SCLK_OVERRIDE_MASK |
RLC_CGTT_MGCG_OVERRIDE__GFXIP_MGCG_OVERRIDE_MASK |
RLC_CGTT_MGCG_OVERRIDE__GFXIP_MGLS_OVERRIDE_MASK);
if (def != data)
WREG32_SOC15(GC, 0, mmRLC_CGTT_MGCG_OVERRIDE, data);
/* 2 - disable MGLS in RLC */
data = RREG32_SOC15(GC, 0, mmRLC_MEM_SLP_CNTL);
if (data & RLC_MEM_SLP_CNTL__RLC_MEM_LS_EN_MASK) {
data &= ~RLC_MEM_SLP_CNTL__RLC_MEM_LS_EN_MASK;
WREG32_SOC15(GC, 0, mmRLC_MEM_SLP_CNTL, data);
}
/* 3 - disable MGLS in CP */
data = RREG32_SOC15(GC, 0, mmCP_MEM_SLP_CNTL);
if (data & CP_MEM_SLP_CNTL__CP_MEM_LS_EN_MASK) {
data &= ~CP_MEM_SLP_CNTL__CP_MEM_LS_EN_MASK;
WREG32_SOC15(GC, 0, mmCP_MEM_SLP_CNTL, data);
}
}
}
static void gfx_v10_0_update_3d_clock_gating(struct amdgpu_device *adev,
bool enable)
{
uint32_t data, def;
/* Enable 3D CGCG/CGLS */
if (enable && (adev->cg_flags & AMD_CG_SUPPORT_GFX_3D_CGCG)) {
/* write cmd to clear cgcg/cgls ov */
def = data = RREG32_SOC15(GC, 0, mmRLC_CGTT_MGCG_OVERRIDE);
/* unset CGCG override */
data &= ~RLC_CGTT_MGCG_OVERRIDE__GFXIP_GFX3D_CG_OVERRIDE_MASK;
/* update CGCG and CGLS override bits */
if (def != data)
WREG32_SOC15(GC, 0, mmRLC_CGTT_MGCG_OVERRIDE, data);
/* enable 3Dcgcg FSM(0x0000363f) */
def = RREG32_SOC15(GC, 0, mmRLC_CGCG_CGLS_CTRL_3D);
data = (0x36 << RLC_CGCG_CGLS_CTRL_3D__CGCG_GFX_IDLE_THRESHOLD__SHIFT) |
RLC_CGCG_CGLS_CTRL_3D__CGCG_EN_MASK;
if (adev->cg_flags & AMD_CG_SUPPORT_GFX_3D_CGLS)
data |= (0x000F << RLC_CGCG_CGLS_CTRL_3D__CGLS_REP_COMPANSAT_DELAY__SHIFT) |
RLC_CGCG_CGLS_CTRL_3D__CGLS_EN_MASK;
if (def != data)
WREG32_SOC15(GC, 0, mmRLC_CGCG_CGLS_CTRL_3D, data);
/* set IDLE_POLL_COUNT(0x00900100) */
def = RREG32_SOC15(GC, 0, mmCP_RB_WPTR_POLL_CNTL);
data = (0x0100 << CP_RB_WPTR_POLL_CNTL__POLL_FREQUENCY__SHIFT) |
(0x0090 << CP_RB_WPTR_POLL_CNTL__IDLE_POLL_COUNT__SHIFT);
if (def != data)
WREG32_SOC15(GC, 0, mmCP_RB_WPTR_POLL_CNTL, data);
} else {
/* Disable CGCG/CGLS */
def = data = RREG32_SOC15(GC, 0, mmRLC_CGCG_CGLS_CTRL_3D);
/* disable cgcg, cgls should be disabled */
data &= ~(RLC_CGCG_CGLS_CTRL_3D__CGCG_EN_MASK |
RLC_CGCG_CGLS_CTRL_3D__CGLS_EN_MASK);
/* disable cgcg and cgls in FSM */
if (def != data)
WREG32_SOC15(GC, 0, mmRLC_CGCG_CGLS_CTRL_3D, data);
}
}
static void gfx_v10_0_update_coarse_grain_clock_gating(struct amdgpu_device *adev,
bool enable)
{
uint32_t def, data;
if (enable && (adev->cg_flags & AMD_CG_SUPPORT_GFX_CGCG)) {
def = data = RREG32_SOC15(GC, 0, mmRLC_CGTT_MGCG_OVERRIDE);
/* unset CGCG override */
data &= ~RLC_CGTT_MGCG_OVERRIDE__GFXIP_CGCG_OVERRIDE_MASK;
if (adev->cg_flags & AMD_CG_SUPPORT_GFX_CGLS)
data &= ~RLC_CGTT_MGCG_OVERRIDE__GFXIP_CGLS_OVERRIDE_MASK;
else
data |= RLC_CGTT_MGCG_OVERRIDE__GFXIP_CGLS_OVERRIDE_MASK;
/* update CGCG and CGLS override bits */
if (def != data)
WREG32_SOC15(GC, 0, mmRLC_CGTT_MGCG_OVERRIDE, data);
/* enable cgcg FSM(0x0000363F) */
def = RREG32_SOC15(GC, 0, mmRLC_CGCG_CGLS_CTRL);
data = (0x36 << RLC_CGCG_CGLS_CTRL__CGCG_GFX_IDLE_THRESHOLD__SHIFT) |
RLC_CGCG_CGLS_CTRL__CGCG_EN_MASK;
if (adev->cg_flags & AMD_CG_SUPPORT_GFX_CGLS)
data |= (0x000F << RLC_CGCG_CGLS_CTRL__CGLS_REP_COMPANSAT_DELAY__SHIFT) |
RLC_CGCG_CGLS_CTRL__CGLS_EN_MASK;
if (def != data)
WREG32_SOC15(GC, 0, mmRLC_CGCG_CGLS_CTRL, data);
/* set IDLE_POLL_COUNT(0x00900100) */
def = RREG32_SOC15(GC, 0, mmCP_RB_WPTR_POLL_CNTL);
data = (0x0100 << CP_RB_WPTR_POLL_CNTL__POLL_FREQUENCY__SHIFT) |
(0x0090 << CP_RB_WPTR_POLL_CNTL__IDLE_POLL_COUNT__SHIFT);
if (def != data)
WREG32_SOC15(GC, 0, mmCP_RB_WPTR_POLL_CNTL, data);
} else {
def = data = RREG32_SOC15(GC, 0, mmRLC_CGCG_CGLS_CTRL);
/* reset CGCG/CGLS bits */
data &= ~(RLC_CGCG_CGLS_CTRL__CGCG_EN_MASK | RLC_CGCG_CGLS_CTRL__CGLS_EN_MASK);
/* disable cgcg and cgls in FSM */
if (def != data)
WREG32_SOC15(GC, 0, mmRLC_CGCG_CGLS_CTRL, data);
}
}
static int gfx_v10_0_update_gfx_clock_gating(struct amdgpu_device *adev,
bool enable)
{
amdgpu_gfx_rlc_enter_safe_mode(adev);
if (enable) {
/* CGCG/CGLS should be enabled after MGCG/MGLS
* === MGCG + MGLS ===
*/
gfx_v10_0_update_medium_grain_clock_gating(adev, enable);
/* === CGCG /CGLS for GFX 3D Only === */
gfx_v10_0_update_3d_clock_gating(adev, enable);
/* === CGCG + CGLS === */
gfx_v10_0_update_coarse_grain_clock_gating(adev, enable);
} else {
/* CGCG/CGLS should be disabled before MGCG/MGLS
* === CGCG + CGLS ===
*/
gfx_v10_0_update_coarse_grain_clock_gating(adev, enable);
/* === CGCG /CGLS for GFX 3D Only === */
gfx_v10_0_update_3d_clock_gating(adev, enable);
/* === MGCG + MGLS === */
gfx_v10_0_update_medium_grain_clock_gating(adev, enable);
}
if (adev->cg_flags &
(AMD_CG_SUPPORT_GFX_MGCG |
AMD_CG_SUPPORT_GFX_CGLS |
AMD_CG_SUPPORT_GFX_CGCG |
AMD_CG_SUPPORT_GFX_CGLS |
AMD_CG_SUPPORT_GFX_3D_CGCG |
AMD_CG_SUPPORT_GFX_3D_CGLS))
gfx_v10_0_enable_gui_idle_interrupt(adev, enable);
amdgpu_gfx_rlc_exit_safe_mode(adev);
return 0;
}
static const struct amdgpu_rlc_funcs gfx_v10_0_rlc_funcs = {
.is_rlc_enabled = gfx_v10_0_is_rlc_enabled,
.set_safe_mode = gfx_v10_0_set_safe_mode,
.unset_safe_mode = gfx_v10_0_unset_safe_mode,
.init = gfx_v10_0_rlc_init,
.get_csb_size = gfx_v10_0_get_csb_size,
.get_csb_buffer = gfx_v10_0_get_csb_buffer,
.resume = gfx_v10_0_rlc_resume,
.stop = gfx_v10_0_rlc_stop,
.reset = gfx_v10_0_rlc_reset,
.start = gfx_v10_0_rlc_start
};
static int gfx_v10_0_set_powergating_state(void *handle,
enum amd_powergating_state state)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
bool enable = (state == AMD_PG_STATE_GATE) ? true : false;
switch (adev->asic_type) {
case CHIP_NAVI10:
if (!enable) {
amdgpu_gfx_off_ctrl(adev, false);
cancel_delayed_work_sync(&adev->gfx.gfx_off_delay_work);
} else
amdgpu_gfx_off_ctrl(adev, true);
break;
default:
break;
}
return 0;
}
static int gfx_v10_0_set_clockgating_state(void *handle,
enum amd_clockgating_state state)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
switch (adev->asic_type) {
case CHIP_NAVI10:
gfx_v10_0_update_gfx_clock_gating(adev,
state == AMD_CG_STATE_GATE ? true : false);
break;
default:
break;
}
return 0;
}
static void gfx_v10_0_get_clockgating_state(void *handle, u32 *flags)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
int data;
/* AMD_CG_SUPPORT_GFX_MGCG */
data = RREG32_SOC15(GC, 0, mmRLC_CGTT_MGCG_OVERRIDE);
if (!(data & RLC_CGTT_MGCG_OVERRIDE__GFXIP_MGCG_OVERRIDE_MASK))
*flags |= AMD_CG_SUPPORT_GFX_MGCG;
/* AMD_CG_SUPPORT_GFX_CGCG */
data = RREG32_SOC15(GC, 0, mmRLC_CGCG_CGLS_CTRL);
if (data & RLC_CGCG_CGLS_CTRL__CGCG_EN_MASK)
*flags |= AMD_CG_SUPPORT_GFX_CGCG;
/* AMD_CG_SUPPORT_GFX_CGLS */
if (data & RLC_CGCG_CGLS_CTRL__CGLS_EN_MASK)
*flags |= AMD_CG_SUPPORT_GFX_CGLS;
/* AMD_CG_SUPPORT_GFX_RLC_LS */
data = RREG32_SOC15(GC, 0, mmRLC_MEM_SLP_CNTL);
if (data & RLC_MEM_SLP_CNTL__RLC_MEM_LS_EN_MASK)
*flags |= AMD_CG_SUPPORT_GFX_RLC_LS | AMD_CG_SUPPORT_GFX_MGLS;
/* AMD_CG_SUPPORT_GFX_CP_LS */
data = RREG32_SOC15(GC, 0, mmCP_MEM_SLP_CNTL);
if (data & CP_MEM_SLP_CNTL__CP_MEM_LS_EN_MASK)
*flags |= AMD_CG_SUPPORT_GFX_CP_LS | AMD_CG_SUPPORT_GFX_MGLS;
/* AMD_CG_SUPPORT_GFX_3D_CGCG */
data = RREG32_SOC15(GC, 0, mmRLC_CGCG_CGLS_CTRL_3D);
if (data & RLC_CGCG_CGLS_CTRL_3D__CGCG_EN_MASK)
*flags |= AMD_CG_SUPPORT_GFX_3D_CGCG;
/* AMD_CG_SUPPORT_GFX_3D_CGLS */
if (data & RLC_CGCG_CGLS_CTRL_3D__CGLS_EN_MASK)
*flags |= AMD_CG_SUPPORT_GFX_3D_CGLS;
}
static u64 gfx_v10_0_ring_get_rptr_gfx(struct amdgpu_ring *ring)
{
return ring->adev->wb.wb[ring->rptr_offs]; /* gfx10 is 32bit rptr*/
}
static u64 gfx_v10_0_ring_get_wptr_gfx(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
u64 wptr;
/* XXX check if swapping is necessary on BE */
if (ring->use_doorbell) {
wptr = atomic64_read((atomic64_t *)&adev->wb.wb[ring->wptr_offs]);
} else {
wptr = RREG32_SOC15(GC, 0, mmCP_RB0_WPTR);
wptr += (u64)RREG32_SOC15(GC, 0, mmCP_RB0_WPTR_HI) << 32;
}
return wptr;
}
static void gfx_v10_0_ring_set_wptr_gfx(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
if (ring->use_doorbell) {
/* XXX check if swapping is necessary on BE */
atomic64_set((atomic64_t *)&adev->wb.wb[ring->wptr_offs], ring->wptr);
WDOORBELL64(ring->doorbell_index, ring->wptr);
} else {
WREG32_SOC15(GC, 0, mmCP_RB0_WPTR, lower_32_bits(ring->wptr));
WREG32_SOC15(GC, 0, mmCP_RB0_WPTR_HI, upper_32_bits(ring->wptr));
}
}
static u64 gfx_v10_0_ring_get_rptr_compute(struct amdgpu_ring *ring)
{
return ring->adev->wb.wb[ring->rptr_offs]; /* gfx10 hardware is 32bit rptr */
}
static u64 gfx_v10_0_ring_get_wptr_compute(struct amdgpu_ring *ring)
{
u64 wptr;
/* XXX check if swapping is necessary on BE */
if (ring->use_doorbell)
wptr = atomic64_read((atomic64_t *)&ring->adev->wb.wb[ring->wptr_offs]);
else
BUG();
return wptr;
}
static void gfx_v10_0_ring_set_wptr_compute(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
/* XXX check if swapping is necessary on BE */
if (ring->use_doorbell) {
atomic64_set((atomic64_t *)&adev->wb.wb[ring->wptr_offs], ring->wptr);
WDOORBELL64(ring->doorbell_index, ring->wptr);
} else {
BUG(); /* only DOORBELL method supported on gfx10 now */
}
}
static void gfx_v10_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
u32 ref_and_mask, reg_mem_engine;
const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio_funcs->hdp_flush_reg;
if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) {
switch (ring->me) {
case 1:
ref_and_mask = nbio_hf_reg->ref_and_mask_cp2 << ring->pipe;
break;
case 2:
ref_and_mask = nbio_hf_reg->ref_and_mask_cp6 << ring->pipe;
break;
default:
return;
}
reg_mem_engine = 0;
} else {
ref_and_mask = nbio_hf_reg->ref_and_mask_cp0;
reg_mem_engine = 1; /* pfp */
}
gfx_v10_0_wait_reg_mem(ring, reg_mem_engine, 0, 1,
adev->nbio_funcs->get_hdp_flush_req_offset(adev),
adev->nbio_funcs->get_hdp_flush_done_offset(adev),
ref_and_mask, ref_and_mask, 0x20);
}
static void gfx_v10_0_ring_emit_ib_gfx(struct amdgpu_ring *ring,
struct amdgpu_job *job,
struct amdgpu_ib *ib,
uint32_t flags)
{
unsigned vmid = AMDGPU_JOB_GET_VMID(job);
u32 header, control = 0;
/* Prevent a hw deadlock due to a wave ID mismatch between ME and GDS.
* This resets the wave ID counters. (needed by transform feedback)
* TODO: This might only be needed on a VMID switch when we change
* the GDS OA mapping, not sure.
*/
amdgpu_ring_write(ring, PACKET3(PACKET3_SET_CONFIG_REG, 1));
amdgpu_ring_write(ring, mmVGT_GS_MAX_WAVE_ID);
amdgpu_ring_write(ring, ring->adev->gds.vgt_gs_max_wave_id);
if (ib->flags & AMDGPU_IB_FLAG_CE)
header = PACKET3(PACKET3_INDIRECT_BUFFER_CNST, 2);
else
header = PACKET3(PACKET3_INDIRECT_BUFFER, 2);
control |= ib->length_dw | (vmid << 24);
if (amdgpu_mcbp && (ib->flags & AMDGPU_IB_FLAG_PREEMPT)) {
control |= INDIRECT_BUFFER_PRE_ENB(1);
if (flags & AMDGPU_IB_PREEMPTED)
control |= INDIRECT_BUFFER_PRE_RESUME(1);
if (!(ib->flags & AMDGPU_IB_FLAG_CE))
gfx_v10_0_ring_emit_de_meta(ring,
flags & AMDGPU_IB_PREEMPTED ? true : false);
}
amdgpu_ring_write(ring, header);
BUG_ON(ib->gpu_addr & 0x3); /* Dword align */
amdgpu_ring_write(ring,
#ifdef __BIG_ENDIAN
(2 << 0) |
#endif
lower_32_bits(ib->gpu_addr));
amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
amdgpu_ring_write(ring, control);
}
static void gfx_v10_0_ring_emit_ib_compute(struct amdgpu_ring *ring,
struct amdgpu_job *job,
struct amdgpu_ib *ib,
uint32_t flags)
{
unsigned vmid = AMDGPU_JOB_GET_VMID(job);
u32 control = INDIRECT_BUFFER_VALID | ib->length_dw | (vmid << 24);
/* Currently, there is a high possibility to get wave ID mismatch
* between ME and GDS, leading to a hw deadlock, because ME generates
* different wave IDs than the GDS expects. This situation happens
* randomly when at least 5 compute pipes use GDS ordered append.
* The wave IDs generated by ME are also wrong after suspend/resume.
* Those are probably bugs somewhere else in the kernel driver.
*
* Writing GDS_COMPUTE_MAX_WAVE_ID resets wave ID counters in ME and
* GDS to 0 for this ring (me/pipe).
*/
if (ib->flags & AMDGPU_IB_FLAG_RESET_GDS_MAX_WAVE_ID) {
amdgpu_ring_write(ring, PACKET3(PACKET3_SET_CONFIG_REG, 1));
amdgpu_ring_write(ring, mmGDS_COMPUTE_MAX_WAVE_ID);
amdgpu_ring_write(ring, ring->adev->gds.gds_compute_max_wave_id);
}
amdgpu_ring_write(ring, PACKET3(PACKET3_INDIRECT_BUFFER, 2));
BUG_ON(ib->gpu_addr & 0x3); /* Dword align */
amdgpu_ring_write(ring,
#ifdef __BIG_ENDIAN
(2 << 0) |
#endif
lower_32_bits(ib->gpu_addr));
amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
amdgpu_ring_write(ring, control);
}
static void gfx_v10_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr,
u64 seq, unsigned flags)
{
struct amdgpu_device *adev = ring->adev;
bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
bool int_sel = flags & AMDGPU_FENCE_FLAG_INT;
/* Interrupt not work fine on GFX10.1 model yet. Use fallback instead */
if (adev->pdev->device == 0x50)
int_sel = false;
/* RELEASE_MEM - flush caches, send int */
amdgpu_ring_write(ring, PACKET3(PACKET3_RELEASE_MEM, 6));
amdgpu_ring_write(ring, (PACKET3_RELEASE_MEM_GCR_SEQ |
PACKET3_RELEASE_MEM_GCR_GL2_WB |
PACKET3_RELEASE_MEM_GCR_GLM_INV | /* must be set with GLM_WB */
PACKET3_RELEASE_MEM_GCR_GLM_WB |
PACKET3_RELEASE_MEM_CACHE_POLICY(3) |
PACKET3_RELEASE_MEM_EVENT_TYPE(CACHE_FLUSH_AND_INV_TS_EVENT) |
PACKET3_RELEASE_MEM_EVENT_INDEX(5)));
amdgpu_ring_write(ring, (PACKET3_RELEASE_MEM_DATA_SEL(write64bit ? 2 : 1) |
PACKET3_RELEASE_MEM_INT_SEL(int_sel ? 2 : 0)));
/*
* the address should be Qword aligned if 64bit write, Dword
* aligned if only send 32bit data low (discard data high)
*/
if (write64bit)
BUG_ON(addr & 0x7);
else
BUG_ON(addr & 0x3);
amdgpu_ring_write(ring, lower_32_bits(addr));
amdgpu_ring_write(ring, upper_32_bits(addr));
amdgpu_ring_write(ring, lower_32_bits(seq));
amdgpu_ring_write(ring, upper_32_bits(seq));
amdgpu_ring_write(ring, 0);
}
static void gfx_v10_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
{
int usepfp = (ring->funcs->type == AMDGPU_RING_TYPE_GFX);
uint32_t seq = ring->fence_drv.sync_seq;
uint64_t addr = ring->fence_drv.gpu_addr;
gfx_v10_0_wait_reg_mem(ring, usepfp, 1, 0, lower_32_bits(addr),
upper_32_bits(addr), seq, 0xffffffff, 4);
}
static void gfx_v10_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
unsigned vmid, uint64_t pd_addr)
{
amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
/* compute doesn't have PFP */
if (ring->funcs->type == AMDGPU_RING_TYPE_GFX) {
/* sync PFP to ME, otherwise we might get invalid PFP reads */
amdgpu_ring_write(ring, PACKET3(PACKET3_PFP_SYNC_ME, 0));
amdgpu_ring_write(ring, 0x0);
}
}
static void gfx_v10_0_ring_emit_fence_kiq(struct amdgpu_ring *ring, u64 addr,
u64 seq, unsigned int flags)
{
struct amdgpu_device *adev = ring->adev;
/* we only allocate 32bit for each seq wb address */
BUG_ON(flags & AMDGPU_FENCE_FLAG_64BIT);
/* write fence seq to the "addr" */
amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) |
WRITE_DATA_DST_SEL(5) | WR_CONFIRM));
amdgpu_ring_write(ring, lower_32_bits(addr));
amdgpu_ring_write(ring, upper_32_bits(addr));
amdgpu_ring_write(ring, lower_32_bits(seq));
if (flags & AMDGPU_FENCE_FLAG_INT) {
/* set register to trigger INT */
amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) |
WRITE_DATA_DST_SEL(0) | WR_CONFIRM));
amdgpu_ring_write(ring, SOC15_REG_OFFSET(GC, 0, mmCPC_INT_STATUS));
amdgpu_ring_write(ring, 0);
amdgpu_ring_write(ring, 0x20000000); /* src_id is 178 */
}
}
static void gfx_v10_0_ring_emit_sb(struct amdgpu_ring *ring)
{
amdgpu_ring_write(ring, PACKET3(PACKET3_SWITCH_BUFFER, 0));
amdgpu_ring_write(ring, 0);
}
static void gfx_v10_0_ring_emit_cntxcntl(struct amdgpu_ring *ring, uint32_t flags)
{
uint32_t dw2 = 0;
if (amdgpu_mcbp)
gfx_v10_0_ring_emit_ce_meta(ring,
flags & AMDGPU_IB_PREEMPTED ? true : false);
gfx_v10_0_ring_emit_tmz(ring, true);
dw2 |= 0x80000000; /* set load_enable otherwise this package is just NOPs */
if (flags & AMDGPU_HAVE_CTX_SWITCH) {
/* set load_global_config & load_global_uconfig */
dw2 |= 0x8001;
/* set load_cs_sh_regs */
dw2 |= 0x01000000;
/* set load_per_context_state & load_gfx_sh_regs for GFX */
dw2 |= 0x10002;
/* set load_ce_ram if preamble presented */
if (AMDGPU_PREAMBLE_IB_PRESENT & flags)
dw2 |= 0x10000000;
} else {
/* still load_ce_ram if this is the first time preamble presented
* although there is no context switch happens.
*/
if (AMDGPU_PREAMBLE_IB_PRESENT_FIRST & flags)
dw2 |= 0x10000000;
}
amdgpu_ring_write(ring, PACKET3(PACKET3_CONTEXT_CONTROL, 1));
amdgpu_ring_write(ring, dw2);
amdgpu_ring_write(ring, 0);
}
static unsigned gfx_v10_0_ring_emit_init_cond_exec(struct amdgpu_ring *ring)
{
unsigned ret;
amdgpu_ring_write(ring, PACKET3(PACKET3_COND_EXEC, 3));
amdgpu_ring_write(ring, lower_32_bits(ring->cond_exe_gpu_addr));
amdgpu_ring_write(ring, upper_32_bits(ring->cond_exe_gpu_addr));
amdgpu_ring_write(ring, 0); /* discard following DWs if *cond_exec_gpu_addr==0 */
ret = ring->wptr & ring->buf_mask;
amdgpu_ring_write(ring, 0x55aa55aa); /* patch dummy value later */
return ret;
}
static void gfx_v10_0_ring_emit_patch_cond_exec(struct amdgpu_ring *ring, unsigned offset)
{
unsigned cur;
BUG_ON(offset > ring->buf_mask);
BUG_ON(ring->ring[offset] != 0x55aa55aa);
cur = (ring->wptr - 1) & ring->buf_mask;
if (likely(cur > offset))
ring->ring[offset] = cur - offset;
else
ring->ring[offset] = (ring->buf_mask + 1) - offset + cur;
}
static int gfx_v10_0_ring_preempt_ib(struct amdgpu_ring *ring)
{
int i, r = 0;
struct amdgpu_device *adev = ring->adev;
struct amdgpu_kiq *kiq = &adev->gfx.kiq;
struct amdgpu_ring *kiq_ring = &kiq->ring;
if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues)
return -EINVAL;
if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size))
return -ENOMEM;
/* assert preemption condition */
amdgpu_ring_set_preempt_cond_exec(ring, false);
/* assert IB preemption, emit the trailing fence */
kiq->pmf->kiq_unmap_queues(kiq_ring, ring, PREEMPT_QUEUES_NO_UNMAP,
ring->trail_fence_gpu_addr,
++ring->trail_seq);
amdgpu_ring_commit(kiq_ring);
/* poll the trailing fence */
for (i = 0; i < adev->usec_timeout; i++) {
if (ring->trail_seq ==
le32_to_cpu(*(ring->trail_fence_cpu_addr)))
break;
DRM_UDELAY(1);
}
if (i >= adev->usec_timeout) {
r = -EINVAL;
DRM_ERROR("ring %d failed to preempt ib\n", ring->idx);
}
/* deassert preemption condition */
amdgpu_ring_set_preempt_cond_exec(ring, true);
return r;
}
static void gfx_v10_0_ring_emit_ce_meta(struct amdgpu_ring *ring, bool resume)
{
struct amdgpu_device *adev = ring->adev;
struct v10_ce_ib_state ce_payload = {0};
uint64_t csa_addr;
int cnt;
cnt = (sizeof(ce_payload) >> 2) + 4 - 2;
csa_addr = amdgpu_csa_vaddr(ring->adev);
amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, cnt));
amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(2) |
WRITE_DATA_DST_SEL(8) |
WR_CONFIRM) |
WRITE_DATA_CACHE_POLICY(0));
amdgpu_ring_write(ring, lower_32_bits(csa_addr +
offsetof(struct v10_gfx_meta_data, ce_payload)));
amdgpu_ring_write(ring, upper_32_bits(csa_addr +
offsetof(struct v10_gfx_meta_data, ce_payload)));
if (resume)
amdgpu_ring_write_multiple(ring, adev->virt.csa_cpu_addr +
offsetof(struct v10_gfx_meta_data,
ce_payload),
sizeof(ce_payload) >> 2);
else
amdgpu_ring_write_multiple(ring, (void *)&ce_payload,
sizeof(ce_payload) >> 2);
}
static void gfx_v10_0_ring_emit_de_meta(struct amdgpu_ring *ring, bool resume)
{
struct amdgpu_device *adev = ring->adev;
struct v10_de_ib_state de_payload = {0};
uint64_t csa_addr, gds_addr;
int cnt;
csa_addr = amdgpu_csa_vaddr(ring->adev);
gds_addr = ALIGN(csa_addr + AMDGPU_CSA_SIZE - adev->gds.gds_size,
PAGE_SIZE);
de_payload.gds_backup_addrlo = lower_32_bits(gds_addr);
de_payload.gds_backup_addrhi = upper_32_bits(gds_addr);
cnt = (sizeof(de_payload) >> 2) + 4 - 2;
amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, cnt));
amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(1) |
WRITE_DATA_DST_SEL(8) |
WR_CONFIRM) |
WRITE_DATA_CACHE_POLICY(0));
amdgpu_ring_write(ring, lower_32_bits(csa_addr +
offsetof(struct v10_gfx_meta_data, de_payload)));
amdgpu_ring_write(ring, upper_32_bits(csa_addr +
offsetof(struct v10_gfx_meta_data, de_payload)));
if (resume)
amdgpu_ring_write_multiple(ring, adev->virt.csa_cpu_addr +
offsetof(struct v10_gfx_meta_data,
de_payload),
sizeof(de_payload) >> 2);
else
amdgpu_ring_write_multiple(ring, (void *)&de_payload,
sizeof(de_payload) >> 2);
}
static void gfx_v10_0_ring_emit_tmz(struct amdgpu_ring *ring, bool start)
{
amdgpu_ring_write(ring, PACKET3(PACKET3_FRAME_CONTROL, 0));
amdgpu_ring_write(ring, FRAME_CMD(start ? 0 : 1)); /* frame_end */
}
static void gfx_v10_0_ring_emit_rreg(struct amdgpu_ring *ring, uint32_t reg)
{
struct amdgpu_device *adev = ring->adev;
amdgpu_ring_write(ring, PACKET3(PACKET3_COPY_DATA, 4));
amdgpu_ring_write(ring, 0 | /* src: register*/
(5 << 8) | /* dst: memory */
(1 << 20)); /* write confirm */
amdgpu_ring_write(ring, reg);
amdgpu_ring_write(ring, 0);
amdgpu_ring_write(ring, lower_32_bits(adev->wb.gpu_addr +
adev->virt.reg_val_offs * 4));
amdgpu_ring_write(ring, upper_32_bits(adev->wb.gpu_addr +
adev->virt.reg_val_offs * 4));
}
static void gfx_v10_0_ring_emit_wreg(struct amdgpu_ring *ring, uint32_t reg,
uint32_t val)
{
uint32_t cmd = 0;
switch (ring->funcs->type) {
case AMDGPU_RING_TYPE_GFX:
cmd = WRITE_DATA_ENGINE_SEL(1) | WR_CONFIRM;
break;
case AMDGPU_RING_TYPE_KIQ:
cmd = (1 << 16); /* no inc addr */
break;
default:
cmd = WR_CONFIRM;
break;
}
amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
amdgpu_ring_write(ring, cmd);
amdgpu_ring_write(ring, reg);
amdgpu_ring_write(ring, 0);
amdgpu_ring_write(ring, val);
}
static void gfx_v10_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
uint32_t val, uint32_t mask)
{
gfx_v10_0_wait_reg_mem(ring, 0, 0, 0, reg, 0, val, mask, 0x20);
}
static void
gfx_v10_0_set_gfx_eop_interrupt_state(struct amdgpu_device *adev,
uint32_t me, uint32_t pipe,
enum amdgpu_interrupt_state state)
{
uint32_t cp_int_cntl, cp_int_cntl_reg;
if (!me) {
switch (pipe) {
case 0:
cp_int_cntl_reg = SOC15_REG_OFFSET(GC, 0, mmCP_INT_CNTL_RING0);
break;
case 1:
cp_int_cntl_reg = SOC15_REG_OFFSET(GC, 0, mmCP_INT_CNTL_RING1);
break;
default:
DRM_DEBUG("invalid pipe %d\n", pipe);
return;
}
} else {
DRM_DEBUG("invalid me %d\n", me);
return;
}
switch (state) {
case AMDGPU_IRQ_STATE_DISABLE:
cp_int_cntl = RREG32(cp_int_cntl_reg);
cp_int_cntl = REG_SET_FIELD(cp_int_cntl, CP_INT_CNTL_RING0,
TIME_STAMP_INT_ENABLE, 0);
WREG32(cp_int_cntl_reg, cp_int_cntl);
case AMDGPU_IRQ_STATE_ENABLE:
cp_int_cntl = RREG32(cp_int_cntl_reg);
cp_int_cntl = REG_SET_FIELD(cp_int_cntl, CP_INT_CNTL_RING0,
TIME_STAMP_INT_ENABLE, 1);
WREG32(cp_int_cntl_reg, cp_int_cntl);
break;
default:
break;
}
}
static void gfx_v10_0_set_compute_eop_interrupt_state(struct amdgpu_device *adev,
int me, int pipe,
enum amdgpu_interrupt_state state)
{
u32 mec_int_cntl, mec_int_cntl_reg;
/*
* amdgpu controls only the first MEC. That's why this function only
* handles the setting of interrupts for this specific MEC. All other
* pipes' interrupts are set by amdkfd.
*/
if (me == 1) {
switch (pipe) {
case 0:
mec_int_cntl_reg = SOC15_REG_OFFSET(GC, 0, mmCP_ME1_PIPE0_INT_CNTL);
break;
case 1:
mec_int_cntl_reg = SOC15_REG_OFFSET(GC, 0, mmCP_ME1_PIPE1_INT_CNTL);
break;
case 2:
mec_int_cntl_reg = SOC15_REG_OFFSET(GC, 0, mmCP_ME1_PIPE2_INT_CNTL);
break;
case 3:
mec_int_cntl_reg = SOC15_REG_OFFSET(GC, 0, mmCP_ME1_PIPE3_INT_CNTL);
break;
default:
DRM_DEBUG("invalid pipe %d\n", pipe);
return;
}
} else {
DRM_DEBUG("invalid me %d\n", me);
return;
}
switch (state) {
case AMDGPU_IRQ_STATE_DISABLE:
mec_int_cntl = RREG32(mec_int_cntl_reg);
mec_int_cntl = REG_SET_FIELD(mec_int_cntl, CP_ME1_PIPE0_INT_CNTL,
TIME_STAMP_INT_ENABLE, 0);
WREG32(mec_int_cntl_reg, mec_int_cntl);
break;
case AMDGPU_IRQ_STATE_ENABLE:
mec_int_cntl = RREG32(mec_int_cntl_reg);
mec_int_cntl = REG_SET_FIELD(mec_int_cntl, CP_ME1_PIPE0_INT_CNTL,
TIME_STAMP_INT_ENABLE, 1);
WREG32(mec_int_cntl_reg, mec_int_cntl);
break;
default:
break;
}
}
static int gfx_v10_0_set_eop_interrupt_state(struct amdgpu_device *adev,
struct amdgpu_irq_src *src,
unsigned type,
enum amdgpu_interrupt_state state)
{
switch (type) {
case AMDGPU_CP_IRQ_GFX_ME0_PIPE0_EOP:
gfx_v10_0_set_gfx_eop_interrupt_state(adev, 0, 0, state);
break;
case AMDGPU_CP_IRQ_GFX_ME0_PIPE1_EOP:
gfx_v10_0_set_gfx_eop_interrupt_state(adev, 0, 1, state);
break;
case AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE0_EOP:
gfx_v10_0_set_compute_eop_interrupt_state(adev, 1, 0, state);
break;
case AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE1_EOP:
gfx_v10_0_set_compute_eop_interrupt_state(adev, 1, 1, state);
break;
case AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE2_EOP:
gfx_v10_0_set_compute_eop_interrupt_state(adev, 1, 2, state);
break;
case AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE3_EOP:
gfx_v10_0_set_compute_eop_interrupt_state(adev, 1, 3, state);
break;
case AMDGPU_CP_IRQ_COMPUTE_MEC2_PIPE0_EOP:
gfx_v10_0_set_compute_eop_interrupt_state(adev, 2, 0, state);
break;
case AMDGPU_CP_IRQ_COMPUTE_MEC2_PIPE1_EOP:
gfx_v10_0_set_compute_eop_interrupt_state(adev, 2, 1, state);
break;
case AMDGPU_CP_IRQ_COMPUTE_MEC2_PIPE2_EOP:
gfx_v10_0_set_compute_eop_interrupt_state(adev, 2, 2, state);
break;
case AMDGPU_CP_IRQ_COMPUTE_MEC2_PIPE3_EOP:
gfx_v10_0_set_compute_eop_interrupt_state(adev, 2, 3, state);
break;
default:
break;
}
return 0;
}
static int gfx_v10_0_eop_irq(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
int i;
u8 me_id, pipe_id, queue_id;
struct amdgpu_ring *ring;
DRM_DEBUG("IH: CP EOP\n");
me_id = (entry->ring_id & 0x0c) >> 2;
pipe_id = (entry->ring_id & 0x03) >> 0;
queue_id = (entry->ring_id & 0x70) >> 4;
switch (me_id) {
case 0:
if (pipe_id == 0)
amdgpu_fence_process(&adev->gfx.gfx_ring[0]);
else
amdgpu_fence_process(&adev->gfx.gfx_ring[1]);
break;
case 1:
case 2:
for (i = 0; i < adev->gfx.num_compute_rings; i++) {
ring = &adev->gfx.compute_ring[i];
/* Per-queue interrupt is supported for MEC starting from VI.
* The interrupt can only be enabled/disabled per pipe instead of per queue.
*/
if ((ring->me == me_id) && (ring->pipe == pipe_id) && (ring->queue == queue_id))
amdgpu_fence_process(ring);
}
break;
}
return 0;
}
static int gfx_v10_0_set_priv_reg_fault_state(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
unsigned type,
enum amdgpu_interrupt_state state)
{
switch (state) {
case AMDGPU_IRQ_STATE_DISABLE:
case AMDGPU_IRQ_STATE_ENABLE:
WREG32_FIELD15(GC, 0, CP_INT_CNTL_RING0,
PRIV_REG_INT_ENABLE,
state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
break;
default:
break;
}
return 0;
}
static int gfx_v10_0_set_priv_inst_fault_state(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
unsigned type,
enum amdgpu_interrupt_state state)
{
switch (state) {
case AMDGPU_IRQ_STATE_DISABLE:
case AMDGPU_IRQ_STATE_ENABLE:
WREG32_FIELD15(GC, 0, CP_INT_CNTL_RING0,
PRIV_INSTR_INT_ENABLE,
state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
default:
break;
}
return 0;
}
static void gfx_v10_0_handle_priv_fault(struct amdgpu_device *adev,
struct amdgpu_iv_entry *entry)
{
u8 me_id, pipe_id, queue_id;
struct amdgpu_ring *ring;
int i;
me_id = (entry->ring_id & 0x0c) >> 2;
pipe_id = (entry->ring_id & 0x03) >> 0;
queue_id = (entry->ring_id & 0x70) >> 4;
switch (me_id) {
case 0:
for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
ring = &adev->gfx.gfx_ring[i];
/* we only enabled 1 gfx queue per pipe for now */
if (ring->me == me_id && ring->pipe == pipe_id)
drm_sched_fault(&ring->sched);
}
break;
case 1:
case 2:
for (i = 0; i < adev->gfx.num_compute_rings; i++) {
ring = &adev->gfx.compute_ring[i];
if (ring->me == me_id && ring->pipe == pipe_id &&
ring->queue == queue_id)
drm_sched_fault(&ring->sched);
}
break;
default:
BUG();
}
}
static int gfx_v10_0_priv_reg_irq(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
DRM_ERROR("Illegal register access in command stream\n");
gfx_v10_0_handle_priv_fault(adev, entry);
return 0;
}
static int gfx_v10_0_priv_inst_irq(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
DRM_ERROR("Illegal instruction in command stream\n");
gfx_v10_0_handle_priv_fault(adev, entry);
return 0;
}
static int gfx_v10_0_kiq_set_interrupt_state(struct amdgpu_device *adev,
struct amdgpu_irq_src *src,
unsigned int type,
enum amdgpu_interrupt_state state)
{
uint32_t tmp, target;
struct amdgpu_ring *ring = &(adev->gfx.kiq.ring);
if (ring->me == 1)
target = SOC15_REG_OFFSET(GC, 0, mmCP_ME1_PIPE0_INT_CNTL);
else
target = SOC15_REG_OFFSET(GC, 0, mmCP_ME2_PIPE0_INT_CNTL);
target += ring->pipe;
switch (type) {
case AMDGPU_CP_KIQ_IRQ_DRIVER0:
if (state == AMDGPU_IRQ_STATE_DISABLE) {
tmp = RREG32_SOC15(GC, 0, mmCPC_INT_CNTL);
tmp = REG_SET_FIELD(tmp, CPC_INT_CNTL,
GENERIC2_INT_ENABLE, 0);
WREG32_SOC15(GC, 0, mmCPC_INT_CNTL, tmp);
tmp = RREG32(target);
tmp = REG_SET_FIELD(tmp, CP_ME2_PIPE0_INT_CNTL,
GENERIC2_INT_ENABLE, 0);
WREG32(target, tmp);
} else {
tmp = RREG32_SOC15(GC, 0, mmCPC_INT_CNTL);
tmp = REG_SET_FIELD(tmp, CPC_INT_CNTL,
GENERIC2_INT_ENABLE, 1);
WREG32_SOC15(GC, 0, mmCPC_INT_CNTL, tmp);
tmp = RREG32(target);
tmp = REG_SET_FIELD(tmp, CP_ME2_PIPE0_INT_CNTL,
GENERIC2_INT_ENABLE, 1);
WREG32(target, tmp);
}
break;
default:
BUG(); /* kiq only support GENERIC2_INT now */
break;
}
return 0;
}
static int gfx_v10_0_kiq_irq(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
u8 me_id, pipe_id, queue_id;
struct amdgpu_ring *ring = &(adev->gfx.kiq.ring);
me_id = (entry->ring_id & 0x0c) >> 2;
pipe_id = (entry->ring_id & 0x03) >> 0;
queue_id = (entry->ring_id & 0x70) >> 4;
DRM_DEBUG("IH: CPC GENERIC2_INT, me:%d, pipe:%d, queue:%d\n",
me_id, pipe_id, queue_id);
amdgpu_fence_process(ring);
return 0;
}
static const struct amd_ip_funcs gfx_v10_0_ip_funcs = {
.name = "gfx_v10_0",
.early_init = gfx_v10_0_early_init,
.late_init = gfx_v10_0_late_init,
.sw_init = gfx_v10_0_sw_init,
.sw_fini = gfx_v10_0_sw_fini,
.hw_init = gfx_v10_0_hw_init,
.hw_fini = gfx_v10_0_hw_fini,
.suspend = gfx_v10_0_suspend,
.resume = gfx_v10_0_resume,
.is_idle = gfx_v10_0_is_idle,
.wait_for_idle = gfx_v10_0_wait_for_idle,
.soft_reset = gfx_v10_0_soft_reset,
.set_clockgating_state = gfx_v10_0_set_clockgating_state,
.set_powergating_state = gfx_v10_0_set_powergating_state,
.get_clockgating_state = gfx_v10_0_get_clockgating_state,
};
static const struct amdgpu_ring_funcs gfx_v10_0_ring_funcs_gfx = {
.type = AMDGPU_RING_TYPE_GFX,
.align_mask = 0xff,
.nop = PACKET3(PACKET3_NOP, 0x3FFF),
.support_64bit_ptrs = true,
.vmhub = AMDGPU_GFXHUB,
.get_rptr = gfx_v10_0_ring_get_rptr_gfx,
.get_wptr = gfx_v10_0_ring_get_wptr_gfx,
.set_wptr = gfx_v10_0_ring_set_wptr_gfx,
.emit_frame_size = /* totally 242 maximum if 16 IBs */
5 + /* COND_EXEC */
7 + /* PIPELINE_SYNC */
SOC15_FLUSH_GPU_TLB_NUM_WREG * 5 +
SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 7 +
2 + /* VM_FLUSH */
8 + /* FENCE for VM_FLUSH */
20 + /* GDS switch */
4 + /* double SWITCH_BUFFER,
* the first COND_EXEC jump to the place
* just prior to this double SWITCH_BUFFER
*/
5 + /* COND_EXEC */
7 + /* HDP_flush */
4 + /* VGT_flush */
14 + /* CE_META */
31 + /* DE_META */
3 + /* CNTX_CTRL */
5 + /* HDP_INVL */
8 + 8 + /* FENCE x2 */
2, /* SWITCH_BUFFER */
.emit_ib_size = 7, /* gfx_v10_0_ring_emit_ib_gfx */
.emit_ib = gfx_v10_0_ring_emit_ib_gfx,
.emit_fence = gfx_v10_0_ring_emit_fence,
.emit_pipeline_sync = gfx_v10_0_ring_emit_pipeline_sync,
.emit_vm_flush = gfx_v10_0_ring_emit_vm_flush,
.emit_gds_switch = gfx_v10_0_ring_emit_gds_switch,
.emit_hdp_flush = gfx_v10_0_ring_emit_hdp_flush,
.test_ring = gfx_v10_0_ring_test_ring,
.test_ib = gfx_v10_0_ring_test_ib,
.insert_nop = amdgpu_ring_insert_nop,
.pad_ib = amdgpu_ring_generic_pad_ib,
.emit_switch_buffer = gfx_v10_0_ring_emit_sb,
.emit_cntxcntl = gfx_v10_0_ring_emit_cntxcntl,
.init_cond_exec = gfx_v10_0_ring_emit_init_cond_exec,
.patch_cond_exec = gfx_v10_0_ring_emit_patch_cond_exec,
.preempt_ib = gfx_v10_0_ring_preempt_ib,
.emit_tmz = gfx_v10_0_ring_emit_tmz,
.emit_wreg = gfx_v10_0_ring_emit_wreg,
.emit_reg_wait = gfx_v10_0_ring_emit_reg_wait,
};
static const struct amdgpu_ring_funcs gfx_v10_0_ring_funcs_compute = {
.type = AMDGPU_RING_TYPE_COMPUTE,
.align_mask = 0xff,
.nop = PACKET3(PACKET3_NOP, 0x3FFF),
.support_64bit_ptrs = true,
.vmhub = AMDGPU_GFXHUB,
.get_rptr = gfx_v10_0_ring_get_rptr_compute,
.get_wptr = gfx_v10_0_ring_get_wptr_compute,
.set_wptr = gfx_v10_0_ring_set_wptr_compute,
.emit_frame_size =
20 + /* gfx_v10_0_ring_emit_gds_switch */
7 + /* gfx_v10_0_ring_emit_hdp_flush */
5 + /* hdp invalidate */
7 + /* gfx_v10_0_ring_emit_pipeline_sync */
SOC15_FLUSH_GPU_TLB_NUM_WREG * 5 +
SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 7 +
2 + /* gfx_v10_0_ring_emit_vm_flush */
8 + 8 + 8, /* gfx_v10_0_ring_emit_fence x3 for user fence, vm fence */
.emit_ib_size = 7, /* gfx_v10_0_ring_emit_ib_compute */
.emit_ib = gfx_v10_0_ring_emit_ib_compute,
.emit_fence = gfx_v10_0_ring_emit_fence,
.emit_pipeline_sync = gfx_v10_0_ring_emit_pipeline_sync,
.emit_vm_flush = gfx_v10_0_ring_emit_vm_flush,
.emit_gds_switch = gfx_v10_0_ring_emit_gds_switch,
.emit_hdp_flush = gfx_v10_0_ring_emit_hdp_flush,
.test_ring = gfx_v10_0_ring_test_ring,
.test_ib = gfx_v10_0_ring_test_ib,
.insert_nop = amdgpu_ring_insert_nop,
.pad_ib = amdgpu_ring_generic_pad_ib,
.emit_wreg = gfx_v10_0_ring_emit_wreg,
.emit_reg_wait = gfx_v10_0_ring_emit_reg_wait,
};
static const struct amdgpu_ring_funcs gfx_v10_0_ring_funcs_kiq = {
.type = AMDGPU_RING_TYPE_KIQ,
.align_mask = 0xff,
.nop = PACKET3(PACKET3_NOP, 0x3FFF),
.support_64bit_ptrs = true,
.vmhub = AMDGPU_GFXHUB,
.get_rptr = gfx_v10_0_ring_get_rptr_compute,
.get_wptr = gfx_v10_0_ring_get_wptr_compute,
.set_wptr = gfx_v10_0_ring_set_wptr_compute,
.emit_frame_size =
20 + /* gfx_v10_0_ring_emit_gds_switch */
7 + /* gfx_v10_0_ring_emit_hdp_flush */
5 + /*hdp invalidate */
7 + /* gfx_v10_0_ring_emit_pipeline_sync */
SOC15_FLUSH_GPU_TLB_NUM_WREG * 5 +
SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 7 +
2 + /* gfx_v10_0_ring_emit_vm_flush */
8 + 8 + 8, /* gfx_v10_0_ring_emit_fence_kiq x3 for user fence, vm fence */
.emit_ib_size = 7, /* gfx_v10_0_ring_emit_ib_compute */
.emit_ib = gfx_v10_0_ring_emit_ib_compute,
.emit_fence = gfx_v10_0_ring_emit_fence_kiq,
.test_ring = gfx_v10_0_ring_test_ring,
.test_ib = gfx_v10_0_ring_test_ib,
.insert_nop = amdgpu_ring_insert_nop,
.pad_ib = amdgpu_ring_generic_pad_ib,
.emit_rreg = gfx_v10_0_ring_emit_rreg,
.emit_wreg = gfx_v10_0_ring_emit_wreg,
.emit_reg_wait = gfx_v10_0_ring_emit_reg_wait,
};
static void gfx_v10_0_set_ring_funcs(struct amdgpu_device *adev)
{
int i;
adev->gfx.kiq.ring.funcs = &gfx_v10_0_ring_funcs_kiq;
for (i = 0; i < adev->gfx.num_gfx_rings; i++)
adev->gfx.gfx_ring[i].funcs = &gfx_v10_0_ring_funcs_gfx;
for (i = 0; i < adev->gfx.num_compute_rings; i++)
adev->gfx.compute_ring[i].funcs = &gfx_v10_0_ring_funcs_compute;
}
static const struct amdgpu_irq_src_funcs gfx_v10_0_eop_irq_funcs = {
.set = gfx_v10_0_set_eop_interrupt_state,
.process = gfx_v10_0_eop_irq,
};
static const struct amdgpu_irq_src_funcs gfx_v10_0_priv_reg_irq_funcs = {
.set = gfx_v10_0_set_priv_reg_fault_state,
.process = gfx_v10_0_priv_reg_irq,
};
static const struct amdgpu_irq_src_funcs gfx_v10_0_priv_inst_irq_funcs = {
.set = gfx_v10_0_set_priv_inst_fault_state,
.process = gfx_v10_0_priv_inst_irq,
};
static const struct amdgpu_irq_src_funcs gfx_v10_0_kiq_irq_funcs = {
.set = gfx_v10_0_kiq_set_interrupt_state,
.process = gfx_v10_0_kiq_irq,
};
static void gfx_v10_0_set_irq_funcs(struct amdgpu_device *adev)
{
adev->gfx.eop_irq.num_types = AMDGPU_CP_IRQ_LAST;
adev->gfx.eop_irq.funcs = &gfx_v10_0_eop_irq_funcs;
adev->gfx.kiq.irq.num_types = AMDGPU_CP_KIQ_IRQ_LAST;
adev->gfx.kiq.irq.funcs = &gfx_v10_0_kiq_irq_funcs;
adev->gfx.priv_reg_irq.num_types = 1;
adev->gfx.priv_reg_irq.funcs = &gfx_v10_0_priv_reg_irq_funcs;
adev->gfx.priv_inst_irq.num_types = 1;
adev->gfx.priv_inst_irq.funcs = &gfx_v10_0_priv_inst_irq_funcs;
}
static void gfx_v10_0_set_rlc_funcs(struct amdgpu_device *adev)
{
switch (adev->asic_type) {
case CHIP_NAVI10:
adev->gfx.rlc.funcs = &gfx_v10_0_rlc_funcs;
break;
default:
break;
}
}
static void gfx_v10_0_set_gds_init(struct amdgpu_device *adev)
{
/* init asic gds info */
switch (adev->asic_type) {
case CHIP_NAVI10:
default:
adev->gds.gds_size = 0x10000;
adev->gds.gds_compute_max_wave_id = 0x4ff;
adev->gds.vgt_gs_max_wave_id = 0x3ff;
break;
}
adev->gds.gws_size = 64;
adev->gds.oa_size = 16;
}
static void gfx_v10_0_set_user_wgp_inactive_bitmap_per_sh(struct amdgpu_device *adev,
u32 bitmap)
{
u32 data;
if (!bitmap)
return;
data = bitmap << GC_USER_SHADER_ARRAY_CONFIG__INACTIVE_WGPS__SHIFT;
data &= GC_USER_SHADER_ARRAY_CONFIG__INACTIVE_WGPS_MASK;
WREG32_SOC15(GC, 0, mmGC_USER_SHADER_ARRAY_CONFIG, data);
}
static u32 gfx_v10_0_get_wgp_active_bitmap_per_sh(struct amdgpu_device *adev)
{
u32 data, wgp_bitmask;
data = RREG32_SOC15(GC, 0, mmCC_GC_SHADER_ARRAY_CONFIG);
data |= RREG32_SOC15(GC, 0, mmGC_USER_SHADER_ARRAY_CONFIG);
data &= CC_GC_SHADER_ARRAY_CONFIG__INACTIVE_WGPS_MASK;
data >>= CC_GC_SHADER_ARRAY_CONFIG__INACTIVE_WGPS__SHIFT;
wgp_bitmask =
amdgpu_gfx_create_bitmask(adev->gfx.config.max_cu_per_sh >> 1);
return (~data) & wgp_bitmask;
}
static u32 gfx_v10_0_get_cu_active_bitmap_per_sh(struct amdgpu_device *adev)
{
u32 wgp_idx, wgp_active_bitmap;
u32 cu_bitmap_per_wgp, cu_active_bitmap;
wgp_active_bitmap = gfx_v10_0_get_wgp_active_bitmap_per_sh(adev);
cu_active_bitmap = 0;
for (wgp_idx = 0; wgp_idx < 16; wgp_idx++) {
/* if there is one WGP enabled, it means 2 CUs will be enabled */
cu_bitmap_per_wgp = 3 << (2 * wgp_idx);
if (wgp_active_bitmap & (1 << wgp_idx))
cu_active_bitmap |= cu_bitmap_per_wgp;
}
return cu_active_bitmap;
}
static int gfx_v10_0_get_cu_info(struct amdgpu_device *adev,
struct amdgpu_cu_info *cu_info)
{
int i, j, k, counter, active_cu_number = 0;
u32 mask, bitmap, ao_bitmap, ao_cu_mask = 0;
unsigned disable_masks[4 * 2];
if (!adev || !cu_info)
return -EINVAL;
amdgpu_gfx_parse_disable_cu(disable_masks, 4, 2);
mutex_lock(&adev->grbm_idx_mutex);
for (i = 0; i < adev->gfx.config.max_shader_engines; i++) {
for (j = 0; j < adev->gfx.config.max_sh_per_se; j++) {
mask = 1;
ao_bitmap = 0;
counter = 0;
gfx_v10_0_select_se_sh(adev, i, j, 0xffffffff);
if (i < 4 && j < 2)
gfx_v10_0_set_user_wgp_inactive_bitmap_per_sh(
adev, disable_masks[i * 2 + j]);
bitmap = gfx_v10_0_get_cu_active_bitmap_per_sh(adev);
cu_info->bitmap[i][j] = bitmap;
for (k = 0; k < adev->gfx.config.max_cu_per_sh; k++) {
if (bitmap & mask) {
if (counter < adev->gfx.config.max_cu_per_sh)
ao_bitmap |= mask;
counter++;
}
mask <<= 1;
}
active_cu_number += counter;
if (i < 2 && j < 2)
ao_cu_mask |= (ao_bitmap << (i * 16 + j * 8));
cu_info->ao_cu_bitmap[i][j] = ao_bitmap;
}
}
gfx_v10_0_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff);
mutex_unlock(&adev->grbm_idx_mutex);
cu_info->number = active_cu_number;
cu_info->ao_cu_mask = ao_cu_mask;
cu_info->simd_per_cu = NUM_SIMD_PER_CU;
return 0;
}
const struct amdgpu_ip_block_version gfx_v10_0_ip_block =
{
.type = AMD_IP_BLOCK_TYPE_GFX,
.major = 10,
.minor = 0,
.rev = 0,
.funcs = &gfx_v10_0_ip_funcs,
};