linux/tools/objtool/arch.h

94 lines
1.6 KiB
C
Raw Normal View History

treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 13 Based on 2 normalized pattern(s): this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option any later version this program is distributed in the hope that it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details you should have received a copy of the gnu general public license along with this program if not see http www gnu org licenses this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option any later version this program is distributed in the hope that it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details [based] [from] [clk] [highbank] [c] you should have received a copy of the gnu general public license along with this program if not see http www gnu org licenses extracted by the scancode license scanner the SPDX license identifier GPL-2.0-or-later has been chosen to replace the boilerplate/reference in 355 file(s). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Jilayne Lovejoy <opensource@jilayne.com> Reviewed-by: Steve Winslow <swinslow@gmail.com> Reviewed-by: Allison Randal <allison@lohutok.net> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190519154041.837383322@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-19 13:51:43 +00:00
/* SPDX-License-Identifier: GPL-2.0-or-later */
objtool: Add tool to perform compile-time stack metadata validation This adds a host tool named objtool which has a "check" subcommand which analyzes .o files to ensure the validity of stack metadata. It enforces a set of rules on asm code and C inline assembly code so that stack traces can be reliable. For each function, it recursively follows all possible code paths and validates the correct frame pointer state at each instruction. It also follows code paths involving kernel special sections, like .altinstructions, __jump_table, and __ex_table, which can add alternative execution paths to a given instruction (or set of instructions). Similarly, it knows how to follow switch statements, for which gcc sometimes uses jump tables. Here are some of the benefits of validating stack metadata: a) More reliable stack traces for frame pointer enabled kernels Frame pointers are used for debugging purposes. They allow runtime code and debug tools to be able to walk the stack to determine the chain of function call sites that led to the currently executing code. For some architectures, frame pointers are enabled by CONFIG_FRAME_POINTER. For some other architectures they may be required by the ABI (sometimes referred to as "backchain pointers"). For C code, gcc automatically generates instructions for setting up frame pointers when the -fno-omit-frame-pointer option is used. But for asm code, the frame setup instructions have to be written by hand, which most people don't do. So the end result is that CONFIG_FRAME_POINTER is honored for C code but not for most asm code. For stack traces based on frame pointers to be reliable, all functions which call other functions must first create a stack frame and update the frame pointer. If a first function doesn't properly create a stack frame before calling a second function, the *caller* of the first function will be skipped on the stack trace. For example, consider the following example backtrace with frame pointers enabled: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff8127f568>] seq_read+0x108/0x3e0 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 It correctly shows that the caller of cmdline_proc_show() is seq_read(). If we remove the frame pointer logic from cmdline_proc_show() by replacing the frame pointer related instructions with nops, here's what it looks like instead: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 Notice that cmdline_proc_show()'s caller, seq_read(), has been skipped. Instead the stack trace seems to show that cmdline_proc_show() was called by proc_reg_read(). The benefit of "objtool check" here is that because it ensures that *all* functions honor CONFIG_FRAME_POINTER, no functions will ever[*] be skipped on a stack trace. [*] unless an interrupt or exception has occurred at the very beginning of a function before the stack frame has been created, or at the very end of the function after the stack frame has been destroyed. This is an inherent limitation of frame pointers. b) 100% reliable stack traces for DWARF enabled kernels This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. c) Higher live patching compatibility rate This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. To achieve the validation, "objtool check" enforces the following rules: 1. Each callable function must be annotated as such with the ELF function type. In asm code, this is typically done using the ENTRY/ENDPROC macros. If objtool finds a return instruction outside of a function, it flags an error since that usually indicates callable code which should be annotated accordingly. This rule is needed so that objtool can properly identify each callable function in order to analyze its stack metadata. 2. Conversely, each section of code which is *not* callable should *not* be annotated as an ELF function. The ENDPROC macro shouldn't be used in this case. This rule is needed so that objtool can ignore non-callable code. Such code doesn't have to follow any of the other rules. 3. Each callable function which calls another function must have the correct frame pointer logic, if required by CONFIG_FRAME_POINTER or the architecture's back chain rules. This can by done in asm code with the FRAME_BEGIN/FRAME_END macros. This rule ensures that frame pointer based stack traces will work as designed. If function A doesn't create a stack frame before calling function B, the _caller_ of function A will be skipped on the stack trace. 4. Dynamic jumps and jumps to undefined symbols are only allowed if: a) the jump is part of a switch statement; or b) the jump matches sibling call semantics and the frame pointer has the same value it had on function entry. This rule is needed so that objtool can reliably analyze all of a function's code paths. If a function jumps to code in another file, and it's not a sibling call, objtool has no way to follow the jump because it only analyzes a single file at a time. 5. A callable function may not execute kernel entry/exit instructions. The only code which needs such instructions is kernel entry code, which shouldn't be be in callable functions anyway. This rule is just a sanity check to ensure that callable functions return normally. It currently only supports x86_64. I tried to make the code generic so that support for other architectures can hopefully be plugged in relatively easily. On my Lenovo laptop with a i7-4810MQ 4-core/8-thread CPU, building the kernel with objtool checking every .o file adds about three seconds of total build time. It hasn't been optimized for performance yet, so there are probably some opportunities for better build performance. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris J Arges <chris.j.arges@canonical.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michal Marek <mmarek@suse.cz> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Pedro Alves <palves@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: live-patching@vger.kernel.org Link: http://lkml.kernel.org/r/f3efb173de43bd067b060de73f856567c0fa1174.1456719558.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-29 04:22:41 +00:00
/*
* Copyright (C) 2015 Josh Poimboeuf <jpoimboe@redhat.com>
*/
#ifndef _ARCH_H
#define _ARCH_H
#include <stdbool.h>
#include <linux/list.h>
objtool: Enable compilation of objtool for all architectures Objtool currently only compiles for x86 architectures. This is fine as it presently does not support tooling for other architectures. However, we would like to be able to convert other kernel tools to run as objtool sub commands because they too process ELF object files. This will allow us to convert tools such as recordmcount to use objtool's ELF code. Since much of recordmcount's ELF code is copy-paste code to/from a variety of other kernel tools (look at modpost for example) this means that if we can convert recordmcount we can convert more. We define weak definitions for subcommand entry functions and other weak definitions for shared functions critical to building existing subcommands. These return 127 when the command is missing which signify tools that do not exist on all architectures. In this case the "check" and "orc" tools do not exist on all architectures so we only add them for x86. Future changes adding support for "check", to arm64 for example, can then modify the SUBCMD_CHECK variable when building for arm64. Objtool is not currently wired in to KConfig to be built for other architectures because it's not needed for those architectures and there are no commands it supports other than those for x86. As more command support is enabled on various architectures the necessary KConfig changes can be made (e.g. adding "STACK_VALIDATION") to trigger building objtool. [ jpoimboe: remove aliases, add __weak macro, add error messages ] Cc: Julien Thierry <jthierry@redhat.com> Signed-off-by: Matt Helsley <mhelsley@vmware.com> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
2020-05-19 20:55:33 +00:00
#include "objtool.h"
#include "cfi.h"
objtool: Add tool to perform compile-time stack metadata validation This adds a host tool named objtool which has a "check" subcommand which analyzes .o files to ensure the validity of stack metadata. It enforces a set of rules on asm code and C inline assembly code so that stack traces can be reliable. For each function, it recursively follows all possible code paths and validates the correct frame pointer state at each instruction. It also follows code paths involving kernel special sections, like .altinstructions, __jump_table, and __ex_table, which can add alternative execution paths to a given instruction (or set of instructions). Similarly, it knows how to follow switch statements, for which gcc sometimes uses jump tables. Here are some of the benefits of validating stack metadata: a) More reliable stack traces for frame pointer enabled kernels Frame pointers are used for debugging purposes. They allow runtime code and debug tools to be able to walk the stack to determine the chain of function call sites that led to the currently executing code. For some architectures, frame pointers are enabled by CONFIG_FRAME_POINTER. For some other architectures they may be required by the ABI (sometimes referred to as "backchain pointers"). For C code, gcc automatically generates instructions for setting up frame pointers when the -fno-omit-frame-pointer option is used. But for asm code, the frame setup instructions have to be written by hand, which most people don't do. So the end result is that CONFIG_FRAME_POINTER is honored for C code but not for most asm code. For stack traces based on frame pointers to be reliable, all functions which call other functions must first create a stack frame and update the frame pointer. If a first function doesn't properly create a stack frame before calling a second function, the *caller* of the first function will be skipped on the stack trace. For example, consider the following example backtrace with frame pointers enabled: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff8127f568>] seq_read+0x108/0x3e0 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 It correctly shows that the caller of cmdline_proc_show() is seq_read(). If we remove the frame pointer logic from cmdline_proc_show() by replacing the frame pointer related instructions with nops, here's what it looks like instead: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 Notice that cmdline_proc_show()'s caller, seq_read(), has been skipped. Instead the stack trace seems to show that cmdline_proc_show() was called by proc_reg_read(). The benefit of "objtool check" here is that because it ensures that *all* functions honor CONFIG_FRAME_POINTER, no functions will ever[*] be skipped on a stack trace. [*] unless an interrupt or exception has occurred at the very beginning of a function before the stack frame has been created, or at the very end of the function after the stack frame has been destroyed. This is an inherent limitation of frame pointers. b) 100% reliable stack traces for DWARF enabled kernels This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. c) Higher live patching compatibility rate This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. To achieve the validation, "objtool check" enforces the following rules: 1. Each callable function must be annotated as such with the ELF function type. In asm code, this is typically done using the ENTRY/ENDPROC macros. If objtool finds a return instruction outside of a function, it flags an error since that usually indicates callable code which should be annotated accordingly. This rule is needed so that objtool can properly identify each callable function in order to analyze its stack metadata. 2. Conversely, each section of code which is *not* callable should *not* be annotated as an ELF function. The ENDPROC macro shouldn't be used in this case. This rule is needed so that objtool can ignore non-callable code. Such code doesn't have to follow any of the other rules. 3. Each callable function which calls another function must have the correct frame pointer logic, if required by CONFIG_FRAME_POINTER or the architecture's back chain rules. This can by done in asm code with the FRAME_BEGIN/FRAME_END macros. This rule ensures that frame pointer based stack traces will work as designed. If function A doesn't create a stack frame before calling function B, the _caller_ of function A will be skipped on the stack trace. 4. Dynamic jumps and jumps to undefined symbols are only allowed if: a) the jump is part of a switch statement; or b) the jump matches sibling call semantics and the frame pointer has the same value it had on function entry. This rule is needed so that objtool can reliably analyze all of a function's code paths. If a function jumps to code in another file, and it's not a sibling call, objtool has no way to follow the jump because it only analyzes a single file at a time. 5. A callable function may not execute kernel entry/exit instructions. The only code which needs such instructions is kernel entry code, which shouldn't be be in callable functions anyway. This rule is just a sanity check to ensure that callable functions return normally. It currently only supports x86_64. I tried to make the code generic so that support for other architectures can hopefully be plugged in relatively easily. On my Lenovo laptop with a i7-4810MQ 4-core/8-thread CPU, building the kernel with objtool checking every .o file adds about three seconds of total build time. It hasn't been optimized for performance yet, so there are probably some opportunities for better build performance. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris J Arges <chris.j.arges@canonical.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michal Marek <mmarek@suse.cz> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Pedro Alves <palves@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: live-patching@vger.kernel.org Link: http://lkml.kernel.org/r/f3efb173de43bd067b060de73f856567c0fa1174.1456719558.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-29 04:22:41 +00:00
#ifdef INSN_USE_ORC
objtool: Enable compilation of objtool for all architectures Objtool currently only compiles for x86 architectures. This is fine as it presently does not support tooling for other architectures. However, we would like to be able to convert other kernel tools to run as objtool sub commands because they too process ELF object files. This will allow us to convert tools such as recordmcount to use objtool's ELF code. Since much of recordmcount's ELF code is copy-paste code to/from a variety of other kernel tools (look at modpost for example) this means that if we can convert recordmcount we can convert more. We define weak definitions for subcommand entry functions and other weak definitions for shared functions critical to building existing subcommands. These return 127 when the command is missing which signify tools that do not exist on all architectures. In this case the "check" and "orc" tools do not exist on all architectures so we only add them for x86. Future changes adding support for "check", to arm64 for example, can then modify the SUBCMD_CHECK variable when building for arm64. Objtool is not currently wired in to KConfig to be built for other architectures because it's not needed for those architectures and there are no commands it supports other than those for x86. As more command support is enabled on various architectures the necessary KConfig changes can be made (e.g. adding "STACK_VALIDATION") to trigger building objtool. [ jpoimboe: remove aliases, add __weak macro, add error messages ] Cc: Julien Thierry <jthierry@redhat.com> Signed-off-by: Matt Helsley <mhelsley@vmware.com> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
2020-05-19 20:55:33 +00:00
#include <asm/orc_types.h>
#endif
objtool: Enable compilation of objtool for all architectures Objtool currently only compiles for x86 architectures. This is fine as it presently does not support tooling for other architectures. However, we would like to be able to convert other kernel tools to run as objtool sub commands because they too process ELF object files. This will allow us to convert tools such as recordmcount to use objtool's ELF code. Since much of recordmcount's ELF code is copy-paste code to/from a variety of other kernel tools (look at modpost for example) this means that if we can convert recordmcount we can convert more. We define weak definitions for subcommand entry functions and other weak definitions for shared functions critical to building existing subcommands. These return 127 when the command is missing which signify tools that do not exist on all architectures. In this case the "check" and "orc" tools do not exist on all architectures so we only add them for x86. Future changes adding support for "check", to arm64 for example, can then modify the SUBCMD_CHECK variable when building for arm64. Objtool is not currently wired in to KConfig to be built for other architectures because it's not needed for those architectures and there are no commands it supports other than those for x86. As more command support is enabled on various architectures the necessary KConfig changes can be made (e.g. adding "STACK_VALIDATION") to trigger building objtool. [ jpoimboe: remove aliases, add __weak macro, add error messages ] Cc: Julien Thierry <jthierry@redhat.com> Signed-off-by: Matt Helsley <mhelsley@vmware.com> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
2020-05-19 20:55:33 +00:00
enum insn_type {
INSN_JUMP_CONDITIONAL,
INSN_JUMP_UNCONDITIONAL,
INSN_JUMP_DYNAMIC,
INSN_JUMP_DYNAMIC_CONDITIONAL,
INSN_CALL,
INSN_CALL_DYNAMIC,
INSN_RETURN,
INSN_CONTEXT_SWITCH,
INSN_BUG,
INSN_NOP,
INSN_STAC,
INSN_CLAC,
INSN_STD,
INSN_CLD,
INSN_OTHER,
};
objtool: Add tool to perform compile-time stack metadata validation This adds a host tool named objtool which has a "check" subcommand which analyzes .o files to ensure the validity of stack metadata. It enforces a set of rules on asm code and C inline assembly code so that stack traces can be reliable. For each function, it recursively follows all possible code paths and validates the correct frame pointer state at each instruction. It also follows code paths involving kernel special sections, like .altinstructions, __jump_table, and __ex_table, which can add alternative execution paths to a given instruction (or set of instructions). Similarly, it knows how to follow switch statements, for which gcc sometimes uses jump tables. Here are some of the benefits of validating stack metadata: a) More reliable stack traces for frame pointer enabled kernels Frame pointers are used for debugging purposes. They allow runtime code and debug tools to be able to walk the stack to determine the chain of function call sites that led to the currently executing code. For some architectures, frame pointers are enabled by CONFIG_FRAME_POINTER. For some other architectures they may be required by the ABI (sometimes referred to as "backchain pointers"). For C code, gcc automatically generates instructions for setting up frame pointers when the -fno-omit-frame-pointer option is used. But for asm code, the frame setup instructions have to be written by hand, which most people don't do. So the end result is that CONFIG_FRAME_POINTER is honored for C code but not for most asm code. For stack traces based on frame pointers to be reliable, all functions which call other functions must first create a stack frame and update the frame pointer. If a first function doesn't properly create a stack frame before calling a second function, the *caller* of the first function will be skipped on the stack trace. For example, consider the following example backtrace with frame pointers enabled: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff8127f568>] seq_read+0x108/0x3e0 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 It correctly shows that the caller of cmdline_proc_show() is seq_read(). If we remove the frame pointer logic from cmdline_proc_show() by replacing the frame pointer related instructions with nops, here's what it looks like instead: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 Notice that cmdline_proc_show()'s caller, seq_read(), has been skipped. Instead the stack trace seems to show that cmdline_proc_show() was called by proc_reg_read(). The benefit of "objtool check" here is that because it ensures that *all* functions honor CONFIG_FRAME_POINTER, no functions will ever[*] be skipped on a stack trace. [*] unless an interrupt or exception has occurred at the very beginning of a function before the stack frame has been created, or at the very end of the function after the stack frame has been destroyed. This is an inherent limitation of frame pointers. b) 100% reliable stack traces for DWARF enabled kernels This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. c) Higher live patching compatibility rate This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. To achieve the validation, "objtool check" enforces the following rules: 1. Each callable function must be annotated as such with the ELF function type. In asm code, this is typically done using the ENTRY/ENDPROC macros. If objtool finds a return instruction outside of a function, it flags an error since that usually indicates callable code which should be annotated accordingly. This rule is needed so that objtool can properly identify each callable function in order to analyze its stack metadata. 2. Conversely, each section of code which is *not* callable should *not* be annotated as an ELF function. The ENDPROC macro shouldn't be used in this case. This rule is needed so that objtool can ignore non-callable code. Such code doesn't have to follow any of the other rules. 3. Each callable function which calls another function must have the correct frame pointer logic, if required by CONFIG_FRAME_POINTER or the architecture's back chain rules. This can by done in asm code with the FRAME_BEGIN/FRAME_END macros. This rule ensures that frame pointer based stack traces will work as designed. If function A doesn't create a stack frame before calling function B, the _caller_ of function A will be skipped on the stack trace. 4. Dynamic jumps and jumps to undefined symbols are only allowed if: a) the jump is part of a switch statement; or b) the jump matches sibling call semantics and the frame pointer has the same value it had on function entry. This rule is needed so that objtool can reliably analyze all of a function's code paths. If a function jumps to code in another file, and it's not a sibling call, objtool has no way to follow the jump because it only analyzes a single file at a time. 5. A callable function may not execute kernel entry/exit instructions. The only code which needs such instructions is kernel entry code, which shouldn't be be in callable functions anyway. This rule is just a sanity check to ensure that callable functions return normally. It currently only supports x86_64. I tried to make the code generic so that support for other architectures can hopefully be plugged in relatively easily. On my Lenovo laptop with a i7-4810MQ 4-core/8-thread CPU, building the kernel with objtool checking every .o file adds about three seconds of total build time. It hasn't been optimized for performance yet, so there are probably some opportunities for better build performance. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris J Arges <chris.j.arges@canonical.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michal Marek <mmarek@suse.cz> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Pedro Alves <palves@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: live-patching@vger.kernel.org Link: http://lkml.kernel.org/r/f3efb173de43bd067b060de73f856567c0fa1174.1456719558.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-29 04:22:41 +00:00
enum op_dest_type {
OP_DEST_REG,
OP_DEST_REG_INDIRECT,
OP_DEST_MEM,
OP_DEST_PUSH,
OP_DEST_PUSHF,
OP_DEST_LEAVE,
};
struct op_dest {
enum op_dest_type type;
unsigned char reg;
int offset;
};
enum op_src_type {
OP_SRC_REG,
OP_SRC_REG_INDIRECT,
OP_SRC_CONST,
OP_SRC_POP,
OP_SRC_POPF,
OP_SRC_ADD,
OP_SRC_AND,
};
struct op_src {
enum op_src_type type;
unsigned char reg;
int offset;
};
struct stack_op {
struct op_dest dest;
struct op_src src;
struct list_head list;
};
struct instruction;
void arch_initial_func_cfi_state(struct cfi_init_state *state);
int arch_decode_instruction(const struct elf *elf, const struct section *sec,
objtool: Add tool to perform compile-time stack metadata validation This adds a host tool named objtool which has a "check" subcommand which analyzes .o files to ensure the validity of stack metadata. It enforces a set of rules on asm code and C inline assembly code so that stack traces can be reliable. For each function, it recursively follows all possible code paths and validates the correct frame pointer state at each instruction. It also follows code paths involving kernel special sections, like .altinstructions, __jump_table, and __ex_table, which can add alternative execution paths to a given instruction (or set of instructions). Similarly, it knows how to follow switch statements, for which gcc sometimes uses jump tables. Here are some of the benefits of validating stack metadata: a) More reliable stack traces for frame pointer enabled kernels Frame pointers are used for debugging purposes. They allow runtime code and debug tools to be able to walk the stack to determine the chain of function call sites that led to the currently executing code. For some architectures, frame pointers are enabled by CONFIG_FRAME_POINTER. For some other architectures they may be required by the ABI (sometimes referred to as "backchain pointers"). For C code, gcc automatically generates instructions for setting up frame pointers when the -fno-omit-frame-pointer option is used. But for asm code, the frame setup instructions have to be written by hand, which most people don't do. So the end result is that CONFIG_FRAME_POINTER is honored for C code but not for most asm code. For stack traces based on frame pointers to be reliable, all functions which call other functions must first create a stack frame and update the frame pointer. If a first function doesn't properly create a stack frame before calling a second function, the *caller* of the first function will be skipped on the stack trace. For example, consider the following example backtrace with frame pointers enabled: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff8127f568>] seq_read+0x108/0x3e0 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 It correctly shows that the caller of cmdline_proc_show() is seq_read(). If we remove the frame pointer logic from cmdline_proc_show() by replacing the frame pointer related instructions with nops, here's what it looks like instead: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 Notice that cmdline_proc_show()'s caller, seq_read(), has been skipped. Instead the stack trace seems to show that cmdline_proc_show() was called by proc_reg_read(). The benefit of "objtool check" here is that because it ensures that *all* functions honor CONFIG_FRAME_POINTER, no functions will ever[*] be skipped on a stack trace. [*] unless an interrupt or exception has occurred at the very beginning of a function before the stack frame has been created, or at the very end of the function after the stack frame has been destroyed. This is an inherent limitation of frame pointers. b) 100% reliable stack traces for DWARF enabled kernels This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. c) Higher live patching compatibility rate This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. To achieve the validation, "objtool check" enforces the following rules: 1. Each callable function must be annotated as such with the ELF function type. In asm code, this is typically done using the ENTRY/ENDPROC macros. If objtool finds a return instruction outside of a function, it flags an error since that usually indicates callable code which should be annotated accordingly. This rule is needed so that objtool can properly identify each callable function in order to analyze its stack metadata. 2. Conversely, each section of code which is *not* callable should *not* be annotated as an ELF function. The ENDPROC macro shouldn't be used in this case. This rule is needed so that objtool can ignore non-callable code. Such code doesn't have to follow any of the other rules. 3. Each callable function which calls another function must have the correct frame pointer logic, if required by CONFIG_FRAME_POINTER or the architecture's back chain rules. This can by done in asm code with the FRAME_BEGIN/FRAME_END macros. This rule ensures that frame pointer based stack traces will work as designed. If function A doesn't create a stack frame before calling function B, the _caller_ of function A will be skipped on the stack trace. 4. Dynamic jumps and jumps to undefined symbols are only allowed if: a) the jump is part of a switch statement; or b) the jump matches sibling call semantics and the frame pointer has the same value it had on function entry. This rule is needed so that objtool can reliably analyze all of a function's code paths. If a function jumps to code in another file, and it's not a sibling call, objtool has no way to follow the jump because it only analyzes a single file at a time. 5. A callable function may not execute kernel entry/exit instructions. The only code which needs such instructions is kernel entry code, which shouldn't be be in callable functions anyway. This rule is just a sanity check to ensure that callable functions return normally. It currently only supports x86_64. I tried to make the code generic so that support for other architectures can hopefully be plugged in relatively easily. On my Lenovo laptop with a i7-4810MQ 4-core/8-thread CPU, building the kernel with objtool checking every .o file adds about three seconds of total build time. It hasn't been optimized for performance yet, so there are probably some opportunities for better build performance. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris J Arges <chris.j.arges@canonical.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michal Marek <mmarek@suse.cz> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Pedro Alves <palves@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: live-patching@vger.kernel.org Link: http://lkml.kernel.org/r/f3efb173de43bd067b060de73f856567c0fa1174.1456719558.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-29 04:22:41 +00:00
unsigned long offset, unsigned int maxlen,
unsigned int *len, enum insn_type *type,
unsigned long *immediate,
struct list_head *ops_list);
bool arch_callee_saved_reg(unsigned char reg);
objtool: Add tool to perform compile-time stack metadata validation This adds a host tool named objtool which has a "check" subcommand which analyzes .o files to ensure the validity of stack metadata. It enforces a set of rules on asm code and C inline assembly code so that stack traces can be reliable. For each function, it recursively follows all possible code paths and validates the correct frame pointer state at each instruction. It also follows code paths involving kernel special sections, like .altinstructions, __jump_table, and __ex_table, which can add alternative execution paths to a given instruction (or set of instructions). Similarly, it knows how to follow switch statements, for which gcc sometimes uses jump tables. Here are some of the benefits of validating stack metadata: a) More reliable stack traces for frame pointer enabled kernels Frame pointers are used for debugging purposes. They allow runtime code and debug tools to be able to walk the stack to determine the chain of function call sites that led to the currently executing code. For some architectures, frame pointers are enabled by CONFIG_FRAME_POINTER. For some other architectures they may be required by the ABI (sometimes referred to as "backchain pointers"). For C code, gcc automatically generates instructions for setting up frame pointers when the -fno-omit-frame-pointer option is used. But for asm code, the frame setup instructions have to be written by hand, which most people don't do. So the end result is that CONFIG_FRAME_POINTER is honored for C code but not for most asm code. For stack traces based on frame pointers to be reliable, all functions which call other functions must first create a stack frame and update the frame pointer. If a first function doesn't properly create a stack frame before calling a second function, the *caller* of the first function will be skipped on the stack trace. For example, consider the following example backtrace with frame pointers enabled: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff8127f568>] seq_read+0x108/0x3e0 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 It correctly shows that the caller of cmdline_proc_show() is seq_read(). If we remove the frame pointer logic from cmdline_proc_show() by replacing the frame pointer related instructions with nops, here's what it looks like instead: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 Notice that cmdline_proc_show()'s caller, seq_read(), has been skipped. Instead the stack trace seems to show that cmdline_proc_show() was called by proc_reg_read(). The benefit of "objtool check" here is that because it ensures that *all* functions honor CONFIG_FRAME_POINTER, no functions will ever[*] be skipped on a stack trace. [*] unless an interrupt or exception has occurred at the very beginning of a function before the stack frame has been created, or at the very end of the function after the stack frame has been destroyed. This is an inherent limitation of frame pointers. b) 100% reliable stack traces for DWARF enabled kernels This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. c) Higher live patching compatibility rate This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. To achieve the validation, "objtool check" enforces the following rules: 1. Each callable function must be annotated as such with the ELF function type. In asm code, this is typically done using the ENTRY/ENDPROC macros. If objtool finds a return instruction outside of a function, it flags an error since that usually indicates callable code which should be annotated accordingly. This rule is needed so that objtool can properly identify each callable function in order to analyze its stack metadata. 2. Conversely, each section of code which is *not* callable should *not* be annotated as an ELF function. The ENDPROC macro shouldn't be used in this case. This rule is needed so that objtool can ignore non-callable code. Such code doesn't have to follow any of the other rules. 3. Each callable function which calls another function must have the correct frame pointer logic, if required by CONFIG_FRAME_POINTER or the architecture's back chain rules. This can by done in asm code with the FRAME_BEGIN/FRAME_END macros. This rule ensures that frame pointer based stack traces will work as designed. If function A doesn't create a stack frame before calling function B, the _caller_ of function A will be skipped on the stack trace. 4. Dynamic jumps and jumps to undefined symbols are only allowed if: a) the jump is part of a switch statement; or b) the jump matches sibling call semantics and the frame pointer has the same value it had on function entry. This rule is needed so that objtool can reliably analyze all of a function's code paths. If a function jumps to code in another file, and it's not a sibling call, objtool has no way to follow the jump because it only analyzes a single file at a time. 5. A callable function may not execute kernel entry/exit instructions. The only code which needs such instructions is kernel entry code, which shouldn't be be in callable functions anyway. This rule is just a sanity check to ensure that callable functions return normally. It currently only supports x86_64. I tried to make the code generic so that support for other architectures can hopefully be plugged in relatively easily. On my Lenovo laptop with a i7-4810MQ 4-core/8-thread CPU, building the kernel with objtool checking every .o file adds about three seconds of total build time. It hasn't been optimized for performance yet, so there are probably some opportunities for better build performance. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris J Arges <chris.j.arges@canonical.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michal Marek <mmarek@suse.cz> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Pedro Alves <palves@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: live-patching@vger.kernel.org Link: http://lkml.kernel.org/r/f3efb173de43bd067b060de73f856567c0fa1174.1456719558.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-29 04:22:41 +00:00
unsigned long arch_jump_destination(struct instruction *insn);
objtool: Rename rela to reloc Before supporting additional relocation types rename the relevant types and functions from "rela" to "reloc". This work be done with the following regex: sed -e 's/struct rela/struct reloc/g' \ -e 's/\([_\*]\)rela\(s\{0,1\}\)/\1reloc\2/g' \ -e 's/tmprela\(s\{0,1\}\)/tmpreloc\1/g' \ -e 's/relasec/relocsec/g' \ -e 's/rela_list/reloc_list/g' \ -e 's/rela_hash/reloc_hash/g' \ -e 's/add_rela/add_reloc/g' \ -e 's/rela->/reloc->/g' \ -e '/rela[,\.]/{ s/\([^\.>]\)rela\([\.,]\)/\1reloc\2/g ; }' \ -e 's/rela =/reloc =/g' \ -e 's/relas =/relocs =/g' \ -e 's/relas\[/relocs[/g' \ -e 's/relaname =/relocname =/g' \ -e 's/= rela\;/= reloc\;/g' \ -e 's/= relas\;/= relocs\;/g' \ -e 's/= relaname\;/= relocname\;/g' \ -e 's/, rela)/, reloc)/g' \ -e 's/\([ @]\)rela\([ "]\)/\1reloc\2/g' \ -e 's/ rela$/ reloc/g' \ -e 's/, relaname/, relocname/g' \ -e 's/sec->rela/sec->reloc/g' \ -e 's/(\(!\{0,1\}\)rela/(\1reloc/g' \ -i \ arch.h \ arch/x86/decode.c \ check.c \ check.h \ elf.c \ elf.h \ orc_gen.c \ special.c Notable exceptions which complicate the regex include gelf_* library calls and standard/expected section names which still use "rela" because they encode the type of relocation expected. Also, keep "rela" in the struct because it encodes a specific type of relocation we currently expect. It will eventually turn into a member of an anonymous union when a susequent patch adds implicit addend, or "rel", relocation support. Signed-off-by: Matt Helsley <mhelsley@vmware.com> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
2020-05-29 21:01:13 +00:00
unsigned long arch_dest_reloc_offset(int addend);
const char *arch_nop_insn(int len);
int arch_decode_hint_reg(struct instruction *insn, u8 sp_reg);
objtool: Add tool to perform compile-time stack metadata validation This adds a host tool named objtool which has a "check" subcommand which analyzes .o files to ensure the validity of stack metadata. It enforces a set of rules on asm code and C inline assembly code so that stack traces can be reliable. For each function, it recursively follows all possible code paths and validates the correct frame pointer state at each instruction. It also follows code paths involving kernel special sections, like .altinstructions, __jump_table, and __ex_table, which can add alternative execution paths to a given instruction (or set of instructions). Similarly, it knows how to follow switch statements, for which gcc sometimes uses jump tables. Here are some of the benefits of validating stack metadata: a) More reliable stack traces for frame pointer enabled kernels Frame pointers are used for debugging purposes. They allow runtime code and debug tools to be able to walk the stack to determine the chain of function call sites that led to the currently executing code. For some architectures, frame pointers are enabled by CONFIG_FRAME_POINTER. For some other architectures they may be required by the ABI (sometimes referred to as "backchain pointers"). For C code, gcc automatically generates instructions for setting up frame pointers when the -fno-omit-frame-pointer option is used. But for asm code, the frame setup instructions have to be written by hand, which most people don't do. So the end result is that CONFIG_FRAME_POINTER is honored for C code but not for most asm code. For stack traces based on frame pointers to be reliable, all functions which call other functions must first create a stack frame and update the frame pointer. If a first function doesn't properly create a stack frame before calling a second function, the *caller* of the first function will be skipped on the stack trace. For example, consider the following example backtrace with frame pointers enabled: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff8127f568>] seq_read+0x108/0x3e0 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 It correctly shows that the caller of cmdline_proc_show() is seq_read(). If we remove the frame pointer logic from cmdline_proc_show() by replacing the frame pointer related instructions with nops, here's what it looks like instead: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 Notice that cmdline_proc_show()'s caller, seq_read(), has been skipped. Instead the stack trace seems to show that cmdline_proc_show() was called by proc_reg_read(). The benefit of "objtool check" here is that because it ensures that *all* functions honor CONFIG_FRAME_POINTER, no functions will ever[*] be skipped on a stack trace. [*] unless an interrupt or exception has occurred at the very beginning of a function before the stack frame has been created, or at the very end of the function after the stack frame has been destroyed. This is an inherent limitation of frame pointers. b) 100% reliable stack traces for DWARF enabled kernels This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. c) Higher live patching compatibility rate This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. To achieve the validation, "objtool check" enforces the following rules: 1. Each callable function must be annotated as such with the ELF function type. In asm code, this is typically done using the ENTRY/ENDPROC macros. If objtool finds a return instruction outside of a function, it flags an error since that usually indicates callable code which should be annotated accordingly. This rule is needed so that objtool can properly identify each callable function in order to analyze its stack metadata. 2. Conversely, each section of code which is *not* callable should *not* be annotated as an ELF function. The ENDPROC macro shouldn't be used in this case. This rule is needed so that objtool can ignore non-callable code. Such code doesn't have to follow any of the other rules. 3. Each callable function which calls another function must have the correct frame pointer logic, if required by CONFIG_FRAME_POINTER or the architecture's back chain rules. This can by done in asm code with the FRAME_BEGIN/FRAME_END macros. This rule ensures that frame pointer based stack traces will work as designed. If function A doesn't create a stack frame before calling function B, the _caller_ of function A will be skipped on the stack trace. 4. Dynamic jumps and jumps to undefined symbols are only allowed if: a) the jump is part of a switch statement; or b) the jump matches sibling call semantics and the frame pointer has the same value it had on function entry. This rule is needed so that objtool can reliably analyze all of a function's code paths. If a function jumps to code in another file, and it's not a sibling call, objtool has no way to follow the jump because it only analyzes a single file at a time. 5. A callable function may not execute kernel entry/exit instructions. The only code which needs such instructions is kernel entry code, which shouldn't be be in callable functions anyway. This rule is just a sanity check to ensure that callable functions return normally. It currently only supports x86_64. I tried to make the code generic so that support for other architectures can hopefully be plugged in relatively easily. On my Lenovo laptop with a i7-4810MQ 4-core/8-thread CPU, building the kernel with objtool checking every .o file adds about three seconds of total build time. It hasn't been optimized for performance yet, so there are probably some opportunities for better build performance. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris J Arges <chris.j.arges@canonical.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michal Marek <mmarek@suse.cz> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Pedro Alves <palves@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: live-patching@vger.kernel.org Link: http://lkml.kernel.org/r/f3efb173de43bd067b060de73f856567c0fa1174.1456719558.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-29 04:22:41 +00:00
#endif /* _ARCH_H */