2006-10-04 09:16:22 +00:00
|
|
|
/**
|
|
|
|
* eCryptfs: Linux filesystem encryption layer
|
|
|
|
*
|
|
|
|
* Copyright (C) 1997-2004 Erez Zadok
|
|
|
|
* Copyright (C) 2001-2004 Stony Brook University
|
2007-02-12 08:53:46 +00:00
|
|
|
* Copyright (C) 2004-2007 International Business Machines Corp.
|
2006-10-04 09:16:22 +00:00
|
|
|
* Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
|
|
|
|
* Michael C. Thompsion <mcthomps@us.ibm.com>
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU General Public License as
|
|
|
|
* published by the Free Software Foundation; either version 2 of the
|
|
|
|
* License, or (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful, but
|
|
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
* General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program; if not, write to the Free Software
|
|
|
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
|
|
|
|
* 02111-1307, USA.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/file.h>
|
|
|
|
#include <linux/vmalloc.h>
|
|
|
|
#include <linux/pagemap.h>
|
|
|
|
#include <linux/dcache.h>
|
|
|
|
#include <linux/namei.h>
|
|
|
|
#include <linux/mount.h>
|
2006-12-08 10:36:31 +00:00
|
|
|
#include <linux/fs_stack.h>
|
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
|
|
|
#include <linux/slab.h>
|
2010-10-05 16:53:45 +00:00
|
|
|
#include <linux/xattr.h>
|
2008-07-24 04:30:07 +00:00
|
|
|
#include <asm/unaligned.h>
|
2006-10-04 09:16:22 +00:00
|
|
|
#include "ecryptfs_kernel.h"
|
|
|
|
|
|
|
|
static struct dentry *lock_parent(struct dentry *dentry)
|
|
|
|
{
|
|
|
|
struct dentry *dir;
|
|
|
|
|
2008-05-12 21:02:04 +00:00
|
|
|
dir = dget_parent(dentry);
|
2016-01-22 20:40:57 +00:00
|
|
|
inode_lock_nested(d_inode(dir), I_MUTEX_PARENT);
|
2006-10-04 09:16:22 +00:00
|
|
|
return dir;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void unlock_dir(struct dentry *dir)
|
|
|
|
{
|
2016-01-22 20:40:57 +00:00
|
|
|
inode_unlock(d_inode(dir));
|
2006-10-04 09:16:22 +00:00
|
|
|
dput(dir);
|
|
|
|
}
|
|
|
|
|
2011-05-24 02:18:20 +00:00
|
|
|
static int ecryptfs_inode_test(struct inode *inode, void *lower_inode)
|
|
|
|
{
|
2014-06-26 19:41:59 +00:00
|
|
|
return ecryptfs_inode_to_lower(inode) == lower_inode;
|
2011-05-24 02:18:20 +00:00
|
|
|
}
|
|
|
|
|
2011-05-24 07:16:51 +00:00
|
|
|
static int ecryptfs_inode_set(struct inode *inode, void *opaque)
|
2011-05-24 02:18:20 +00:00
|
|
|
{
|
2011-05-24 07:16:51 +00:00
|
|
|
struct inode *lower_inode = opaque;
|
|
|
|
|
|
|
|
ecryptfs_set_inode_lower(inode, lower_inode);
|
|
|
|
fsstack_copy_attr_all(inode, lower_inode);
|
|
|
|
/* i_size will be overwritten for encrypted regular files */
|
|
|
|
fsstack_copy_inode_size(inode, lower_inode);
|
|
|
|
inode->i_ino = lower_inode->i_ino;
|
2011-05-24 02:18:20 +00:00
|
|
|
inode->i_version++;
|
|
|
|
inode->i_mapping->a_ops = &ecryptfs_aops;
|
2011-05-24 07:16:51 +00:00
|
|
|
|
|
|
|
if (S_ISLNK(inode->i_mode))
|
|
|
|
inode->i_op = &ecryptfs_symlink_iops;
|
|
|
|
else if (S_ISDIR(inode->i_mode))
|
|
|
|
inode->i_op = &ecryptfs_dir_iops;
|
|
|
|
else
|
|
|
|
inode->i_op = &ecryptfs_main_iops;
|
|
|
|
|
|
|
|
if (S_ISDIR(inode->i_mode))
|
|
|
|
inode->i_fop = &ecryptfs_dir_fops;
|
|
|
|
else if (special_file(inode->i_mode))
|
|
|
|
init_special_inode(inode, inode->i_mode, inode->i_rdev);
|
|
|
|
else
|
|
|
|
inode->i_fop = &ecryptfs_main_fops;
|
|
|
|
|
2011-05-24 02:18:20 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2011-05-24 07:16:51 +00:00
|
|
|
static struct inode *__ecryptfs_get_inode(struct inode *lower_inode,
|
|
|
|
struct super_block *sb)
|
2011-05-24 02:18:20 +00:00
|
|
|
{
|
|
|
|
struct inode *inode;
|
|
|
|
|
2011-05-24 07:16:51 +00:00
|
|
|
if (lower_inode->i_sb != ecryptfs_superblock_to_lower(sb))
|
|
|
|
return ERR_PTR(-EXDEV);
|
|
|
|
if (!igrab(lower_inode))
|
|
|
|
return ERR_PTR(-ESTALE);
|
2011-05-24 02:18:20 +00:00
|
|
|
inode = iget5_locked(sb, (unsigned long)lower_inode,
|
|
|
|
ecryptfs_inode_test, ecryptfs_inode_set,
|
|
|
|
lower_inode);
|
|
|
|
if (!inode) {
|
|
|
|
iput(lower_inode);
|
2011-05-24 07:16:51 +00:00
|
|
|
return ERR_PTR(-EACCES);
|
2011-05-24 02:18:20 +00:00
|
|
|
}
|
2011-05-24 07:16:51 +00:00
|
|
|
if (!(inode->i_state & I_NEW))
|
2011-05-24 02:18:20 +00:00
|
|
|
iput(lower_inode);
|
2011-05-24 07:16:51 +00:00
|
|
|
|
|
|
|
return inode;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct inode *ecryptfs_get_inode(struct inode *lower_inode,
|
|
|
|
struct super_block *sb)
|
|
|
|
{
|
|
|
|
struct inode *inode = __ecryptfs_get_inode(lower_inode, sb);
|
|
|
|
|
|
|
|
if (!IS_ERR(inode) && (inode->i_state & I_NEW))
|
|
|
|
unlock_new_inode(inode);
|
|
|
|
|
2011-05-24 02:18:20 +00:00
|
|
|
return inode;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ecryptfs_interpose
|
|
|
|
* @lower_dentry: Existing dentry in the lower filesystem
|
|
|
|
* @dentry: ecryptfs' dentry
|
|
|
|
* @sb: ecryptfs's super_block
|
|
|
|
*
|
|
|
|
* Interposes upper and lower dentries.
|
|
|
|
*
|
|
|
|
* Returns zero on success; non-zero otherwise
|
|
|
|
*/
|
|
|
|
static int ecryptfs_interpose(struct dentry *lower_dentry,
|
2011-05-24 07:16:51 +00:00
|
|
|
struct dentry *dentry, struct super_block *sb)
|
2011-05-24 02:18:20 +00:00
|
|
|
{
|
2015-03-17 22:25:59 +00:00
|
|
|
struct inode *inode = ecryptfs_get_inode(d_inode(lower_dentry), sb);
|
2011-05-24 07:16:51 +00:00
|
|
|
|
2011-05-24 02:18:20 +00:00
|
|
|
if (IS_ERR(inode))
|
|
|
|
return PTR_ERR(inode);
|
2011-05-24 07:16:51 +00:00
|
|
|
d_instantiate(dentry, inode);
|
|
|
|
|
2011-05-24 02:18:20 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2012-05-22 20:09:50 +00:00
|
|
|
static int ecryptfs_do_unlink(struct inode *dir, struct dentry *dentry,
|
|
|
|
struct inode *inode)
|
|
|
|
{
|
|
|
|
struct dentry *lower_dentry = ecryptfs_dentry_to_lower(dentry);
|
|
|
|
struct inode *lower_dir_inode = ecryptfs_inode_to_lower(dir);
|
|
|
|
struct dentry *lower_dir_dentry;
|
|
|
|
int rc;
|
|
|
|
|
|
|
|
dget(lower_dentry);
|
|
|
|
lower_dir_dentry = lock_parent(lower_dentry);
|
2011-09-20 13:14:34 +00:00
|
|
|
rc = vfs_unlink(lower_dir_inode, lower_dentry, NULL);
|
2012-05-22 20:09:50 +00:00
|
|
|
if (rc) {
|
|
|
|
printk(KERN_ERR "Error in vfs_unlink; rc = [%d]\n", rc);
|
|
|
|
goto out_unlock;
|
|
|
|
}
|
|
|
|
fsstack_copy_attr_times(dir, lower_dir_inode);
|
|
|
|
set_nlink(inode, ecryptfs_inode_to_lower(inode)->i_nlink);
|
|
|
|
inode->i_ctime = dir->i_ctime;
|
|
|
|
d_drop(dentry);
|
|
|
|
out_unlock:
|
|
|
|
unlock_dir(lower_dir_dentry);
|
|
|
|
dput(lower_dentry);
|
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
2006-10-04 09:16:22 +00:00
|
|
|
/**
|
|
|
|
* ecryptfs_do_create
|
|
|
|
* @directory_inode: inode of the new file's dentry's parent in ecryptfs
|
|
|
|
* @ecryptfs_dentry: New file's dentry in ecryptfs
|
|
|
|
* @mode: The mode of the new file
|
|
|
|
*
|
|
|
|
* Creates the underlying file and the eCryptfs inode which will link to
|
|
|
|
* it. It will also update the eCryptfs directory inode to mimic the
|
|
|
|
* stat of the lower directory inode.
|
|
|
|
*
|
2011-11-21 23:31:02 +00:00
|
|
|
* Returns the new eCryptfs inode on success; an ERR_PTR on error condition
|
2006-10-04 09:16:22 +00:00
|
|
|
*/
|
2011-11-21 23:31:02 +00:00
|
|
|
static struct inode *
|
2006-10-04 09:16:22 +00:00
|
|
|
ecryptfs_do_create(struct inode *directory_inode,
|
2011-07-26 07:30:54 +00:00
|
|
|
struct dentry *ecryptfs_dentry, umode_t mode)
|
2006-10-04 09:16:22 +00:00
|
|
|
{
|
|
|
|
int rc;
|
|
|
|
struct dentry *lower_dentry;
|
|
|
|
struct dentry *lower_dir_dentry;
|
2011-11-21 23:31:02 +00:00
|
|
|
struct inode *inode;
|
2006-10-04 09:16:22 +00:00
|
|
|
|
|
|
|
lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry);
|
|
|
|
lower_dir_dentry = lock_parent(lower_dentry);
|
2015-03-17 22:25:59 +00:00
|
|
|
rc = vfs_create(d_inode(lower_dir_dentry), lower_dentry, mode, true);
|
2007-10-16 08:28:09 +00:00
|
|
|
if (rc) {
|
2008-01-08 23:33:02 +00:00
|
|
|
printk(KERN_ERR "%s: Failure to create dentry in lower fs; "
|
2008-04-29 07:59:48 +00:00
|
|
|
"rc = [%d]\n", __func__, rc);
|
2011-11-21 23:31:02 +00:00
|
|
|
inode = ERR_PTR(rc);
|
2008-01-08 23:33:02 +00:00
|
|
|
goto out_lock;
|
2006-10-04 09:16:22 +00:00
|
|
|
}
|
2015-03-17 22:25:59 +00:00
|
|
|
inode = __ecryptfs_get_inode(d_inode(lower_dentry),
|
2011-11-21 23:31:02 +00:00
|
|
|
directory_inode->i_sb);
|
2012-05-22 20:09:50 +00:00
|
|
|
if (IS_ERR(inode)) {
|
2015-03-17 22:25:59 +00:00
|
|
|
vfs_unlink(d_inode(lower_dir_dentry), lower_dentry, NULL);
|
2006-10-04 09:16:22 +00:00
|
|
|
goto out_lock;
|
2012-05-22 20:09:50 +00:00
|
|
|
}
|
2015-03-17 22:25:59 +00:00
|
|
|
fsstack_copy_attr_times(directory_inode, d_inode(lower_dir_dentry));
|
|
|
|
fsstack_copy_inode_size(directory_inode, d_inode(lower_dir_dentry));
|
2006-10-04 09:16:22 +00:00
|
|
|
out_lock:
|
|
|
|
unlock_dir(lower_dir_dentry);
|
2011-11-21 23:31:02 +00:00
|
|
|
return inode;
|
2006-10-04 09:16:22 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ecryptfs_initialize_file
|
|
|
|
*
|
|
|
|
* Cause the file to be changed from a basic empty file to an ecryptfs
|
|
|
|
* file with a header and first data page.
|
|
|
|
*
|
|
|
|
* Returns zero on success
|
|
|
|
*/
|
2012-06-21 06:50:59 +00:00
|
|
|
int ecryptfs_initialize_file(struct dentry *ecryptfs_dentry,
|
|
|
|
struct inode *ecryptfs_inode)
|
2006-10-04 09:16:22 +00:00
|
|
|
{
|
2007-10-16 08:28:10 +00:00
|
|
|
struct ecryptfs_crypt_stat *crypt_stat =
|
2011-11-21 23:31:02 +00:00
|
|
|
&ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
|
2006-10-04 09:16:22 +00:00
|
|
|
int rc = 0;
|
|
|
|
|
2011-11-21 23:31:02 +00:00
|
|
|
if (S_ISDIR(ecryptfs_inode->i_mode)) {
|
2006-10-04 09:16:22 +00:00
|
|
|
ecryptfs_printk(KERN_DEBUG, "This is a directory\n");
|
2007-02-12 08:53:49 +00:00
|
|
|
crypt_stat->flags &= ~(ECRYPTFS_ENCRYPTED);
|
2007-10-16 08:28:10 +00:00
|
|
|
goto out;
|
2006-10-04 09:16:22 +00:00
|
|
|
}
|
|
|
|
ecryptfs_printk(KERN_DEBUG, "Initializing crypto context\n");
|
2011-11-21 23:31:02 +00:00
|
|
|
rc = ecryptfs_new_file_context(ecryptfs_inode);
|
2006-10-04 09:16:22 +00:00
|
|
|
if (rc) {
|
2007-10-16 08:28:10 +00:00
|
|
|
ecryptfs_printk(KERN_ERR, "Error creating new file "
|
|
|
|
"context; rc = [%d]\n", rc);
|
|
|
|
goto out;
|
2006-10-04 09:16:22 +00:00
|
|
|
}
|
2011-11-21 23:31:02 +00:00
|
|
|
rc = ecryptfs_get_lower_file(ecryptfs_dentry, ecryptfs_inode);
|
2010-11-03 10:11:28 +00:00
|
|
|
if (rc) {
|
|
|
|
printk(KERN_ERR "%s: Error attempting to initialize "
|
eCryptfs: Add reference counting to lower files
For any given lower inode, eCryptfs keeps only one lower file open and
multiplexes all eCryptfs file operations through that lower file. The
lower file was considered "persistent" and stayed open from the first
lookup through the lifetime of the inode.
This patch keeps the notion of a single, per-inode lower file, but adds
reference counting around the lower file so that it is closed when not
currently in use. If the reference count is at 0 when an operation (such
as open, create, etc.) needs to use the lower file, a new lower file is
opened. Since the file is no longer persistent, all references to the
term persistent file are changed to lower file.
Locking is added around the sections of code that opens the lower file
and assign the pointer in the inode info, as well as the code the fputs
the lower file when all eCryptfs users are done with it.
This patch is needed to fix issues, when mounted on top of the NFSv3
client, where the lower file is left silly renamed until the eCryptfs
inode is destroyed.
Signed-off-by: Tyler Hicks <tyhicks@linux.vnet.ibm.com>
2011-04-14 20:35:11 +00:00
|
|
|
"the lower file for the dentry with name "
|
2013-12-10 15:26:48 +00:00
|
|
|
"[%pd]; rc = [%d]\n", __func__,
|
|
|
|
ecryptfs_dentry, rc);
|
2010-11-03 10:11:28 +00:00
|
|
|
goto out;
|
2008-07-24 04:30:08 +00:00
|
|
|
}
|
2011-11-21 23:31:02 +00:00
|
|
|
rc = ecryptfs_write_metadata(ecryptfs_dentry, ecryptfs_inode);
|
eCryptfs: Add reference counting to lower files
For any given lower inode, eCryptfs keeps only one lower file open and
multiplexes all eCryptfs file operations through that lower file. The
lower file was considered "persistent" and stayed open from the first
lookup through the lifetime of the inode.
This patch keeps the notion of a single, per-inode lower file, but adds
reference counting around the lower file so that it is closed when not
currently in use. If the reference count is at 0 when an operation (such
as open, create, etc.) needs to use the lower file, a new lower file is
opened. Since the file is no longer persistent, all references to the
term persistent file are changed to lower file.
Locking is added around the sections of code that opens the lower file
and assign the pointer in the inode info, as well as the code the fputs
the lower file when all eCryptfs users are done with it.
This patch is needed to fix issues, when mounted on top of the NFSv3
client, where the lower file is left silly renamed until the eCryptfs
inode is destroyed.
Signed-off-by: Tyler Hicks <tyhicks@linux.vnet.ibm.com>
2011-04-14 20:35:11 +00:00
|
|
|
if (rc)
|
2007-10-16 08:28:10 +00:00
|
|
|
printk(KERN_ERR "Error writing headers; rc = [%d]\n", rc);
|
2011-11-21 23:31:02 +00:00
|
|
|
ecryptfs_put_lower_file(ecryptfs_inode);
|
2006-10-04 09:16:22 +00:00
|
|
|
out:
|
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ecryptfs_create
|
|
|
|
* @dir: The inode of the directory in which to create the file.
|
|
|
|
* @dentry: The eCryptfs dentry
|
|
|
|
* @mode: The mode of the new file.
|
|
|
|
*
|
|
|
|
* Creates a new file.
|
|
|
|
*
|
|
|
|
* Returns zero on success; non-zero on error condition
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
ecryptfs_create(struct inode *directory_inode, struct dentry *ecryptfs_dentry,
|
2012-06-10 22:05:36 +00:00
|
|
|
umode_t mode, bool excl)
|
2006-10-04 09:16:22 +00:00
|
|
|
{
|
2011-11-21 23:31:02 +00:00
|
|
|
struct inode *ecryptfs_inode;
|
2006-10-04 09:16:22 +00:00
|
|
|
int rc;
|
|
|
|
|
2011-11-21 23:31:02 +00:00
|
|
|
ecryptfs_inode = ecryptfs_do_create(directory_inode, ecryptfs_dentry,
|
|
|
|
mode);
|
2015-08-12 10:29:44 +00:00
|
|
|
if (IS_ERR(ecryptfs_inode)) {
|
2006-10-04 09:16:22 +00:00
|
|
|
ecryptfs_printk(KERN_WARNING, "Failed to create file in"
|
|
|
|
"lower filesystem\n");
|
2011-11-21 23:31:02 +00:00
|
|
|
rc = PTR_ERR(ecryptfs_inode);
|
2006-10-04 09:16:22 +00:00
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
/* At this point, a file exists on "disk"; we need to make sure
|
|
|
|
* that this on disk file is prepared to be an ecryptfs file */
|
2011-11-21 23:31:02 +00:00
|
|
|
rc = ecryptfs_initialize_file(ecryptfs_dentry, ecryptfs_inode);
|
|
|
|
if (rc) {
|
2012-05-22 20:09:50 +00:00
|
|
|
ecryptfs_do_unlink(directory_inode, ecryptfs_dentry,
|
|
|
|
ecryptfs_inode);
|
2015-12-05 23:23:48 +00:00
|
|
|
iget_failed(ecryptfs_inode);
|
2011-11-21 23:31:02 +00:00
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
unlock_new_inode(ecryptfs_inode);
|
2012-07-19 05:18:15 +00:00
|
|
|
d_instantiate(ecryptfs_dentry, ecryptfs_inode);
|
2006-10-04 09:16:22 +00:00
|
|
|
out:
|
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
2011-05-24 09:56:23 +00:00
|
|
|
static int ecryptfs_i_size_read(struct dentry *dentry, struct inode *inode)
|
|
|
|
{
|
|
|
|
struct ecryptfs_crypt_stat *crypt_stat;
|
|
|
|
int rc;
|
|
|
|
|
|
|
|
rc = ecryptfs_get_lower_file(dentry, inode);
|
|
|
|
if (rc) {
|
|
|
|
printk(KERN_ERR "%s: Error attempting to initialize "
|
|
|
|
"the lower file for the dentry with name "
|
2013-12-10 15:26:48 +00:00
|
|
|
"[%pd]; rc = [%d]\n", __func__,
|
|
|
|
dentry, rc);
|
2011-05-24 09:56:23 +00:00
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
|
|
|
crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
|
|
|
|
/* TODO: lock for crypt_stat comparison */
|
|
|
|
if (!(crypt_stat->flags & ECRYPTFS_POLICY_APPLIED))
|
|
|
|
ecryptfs_set_default_sizes(crypt_stat);
|
|
|
|
|
|
|
|
rc = ecryptfs_read_and_validate_header_region(inode);
|
|
|
|
ecryptfs_put_lower_file(inode);
|
|
|
|
if (rc) {
|
|
|
|
rc = ecryptfs_read_and_validate_xattr_region(dentry, inode);
|
|
|
|
if (!rc)
|
|
|
|
crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Must return 0 to allow non-eCryptfs files to be looked up, too */
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2006-10-04 09:16:22 +00:00
|
|
|
/**
|
2011-05-24 07:16:51 +00:00
|
|
|
* ecryptfs_lookup_interpose - Dentry interposition for a lookup
|
2006-10-04 09:16:22 +00:00
|
|
|
*/
|
2016-03-28 04:30:35 +00:00
|
|
|
static struct dentry *ecryptfs_lookup_interpose(struct dentry *dentry,
|
|
|
|
struct dentry *lower_dentry)
|
2006-10-04 09:16:22 +00:00
|
|
|
{
|
2015-03-17 22:25:59 +00:00
|
|
|
struct inode *inode, *lower_inode = d_inode(lower_dentry);
|
2011-05-24 09:56:23 +00:00
|
|
|
struct ecryptfs_dentry_info *dentry_info;
|
2006-10-04 09:16:22 +00:00
|
|
|
struct vfsmount *lower_mnt;
|
2011-05-24 09:56:23 +00:00
|
|
|
int rc = 0;
|
|
|
|
|
|
|
|
dentry_info = kmem_cache_alloc(ecryptfs_dentry_info_cache, GFP_KERNEL);
|
|
|
|
if (!dentry_info) {
|
2009-01-06 22:42:00 +00:00
|
|
|
printk(KERN_ERR "%s: Out of memory whilst attempting "
|
|
|
|
"to allocate ecryptfs_dentry_info struct\n",
|
|
|
|
__func__);
|
2011-05-24 09:56:23 +00:00
|
|
|
dput(lower_dentry);
|
2016-03-28 04:30:35 +00:00
|
|
|
return ERR_PTR(-ENOMEM);
|
2006-10-04 09:16:22 +00:00
|
|
|
}
|
2012-07-20 08:09:19 +00:00
|
|
|
|
|
|
|
lower_mnt = mntget(ecryptfs_dentry_to_lower_mnt(dentry->d_parent));
|
2016-03-28 04:30:35 +00:00
|
|
|
fsstack_copy_attr_atime(d_inode(dentry->d_parent),
|
|
|
|
d_inode(lower_dentry->d_parent));
|
2013-07-05 14:59:33 +00:00
|
|
|
BUG_ON(!d_count(lower_dentry));
|
2012-07-20 08:09:19 +00:00
|
|
|
|
|
|
|
ecryptfs_set_dentry_private(dentry, dentry_info);
|
2013-09-16 00:50:13 +00:00
|
|
|
dentry_info->lower_path.mnt = lower_mnt;
|
|
|
|
dentry_info->lower_path.dentry = lower_dentry;
|
2011-05-24 09:56:23 +00:00
|
|
|
|
2015-03-17 22:25:59 +00:00
|
|
|
if (d_really_is_negative(lower_dentry)) {
|
2006-10-04 09:16:22 +00:00
|
|
|
/* We want to add because we couldn't find in lower */
|
2011-05-24 09:56:23 +00:00
|
|
|
d_add(dentry, NULL);
|
2016-03-28 04:30:35 +00:00
|
|
|
return NULL;
|
2006-10-04 09:16:22 +00:00
|
|
|
}
|
2016-03-28 04:30:35 +00:00
|
|
|
inode = __ecryptfs_get_inode(lower_inode, dentry->d_sb);
|
2011-05-24 07:16:51 +00:00
|
|
|
if (IS_ERR(inode)) {
|
2011-05-24 09:56:23 +00:00
|
|
|
printk(KERN_ERR "%s: Error interposing; rc = [%ld]\n",
|
|
|
|
__func__, PTR_ERR(inode));
|
2016-03-28 04:30:35 +00:00
|
|
|
return ERR_CAST(inode);
|
2008-07-24 04:30:08 +00:00
|
|
|
}
|
2011-05-24 09:56:23 +00:00
|
|
|
if (S_ISREG(inode->i_mode)) {
|
|
|
|
rc = ecryptfs_i_size_read(dentry, inode);
|
2007-02-12 08:53:46 +00:00
|
|
|
if (rc) {
|
2011-05-24 09:56:23 +00:00
|
|
|
make_bad_inode(inode);
|
2016-03-28 04:30:35 +00:00
|
|
|
return ERR_PTR(rc);
|
2006-10-04 09:16:22 +00:00
|
|
|
}
|
|
|
|
}
|
2011-05-24 09:56:23 +00:00
|
|
|
|
2011-05-24 08:49:02 +00:00
|
|
|
if (inode->i_state & I_NEW)
|
|
|
|
unlock_new_inode(inode);
|
2016-03-28 04:30:35 +00:00
|
|
|
return d_splice_alias(inode, dentry);
|
2009-01-06 22:42:00 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ecryptfs_lookup
|
|
|
|
* @ecryptfs_dir_inode: The eCryptfs directory inode
|
|
|
|
* @ecryptfs_dentry: The eCryptfs dentry that we are looking up
|
2015-05-12 12:29:38 +00:00
|
|
|
* @flags: lookup flags
|
2009-01-06 22:42:00 +00:00
|
|
|
*
|
|
|
|
* Find a file on disk. If the file does not exist, then we'll add it to the
|
|
|
|
* dentry cache and continue on to read it from the disk.
|
|
|
|
*/
|
|
|
|
static struct dentry *ecryptfs_lookup(struct inode *ecryptfs_dir_inode,
|
|
|
|
struct dentry *ecryptfs_dentry,
|
2012-06-10 21:13:09 +00:00
|
|
|
unsigned int flags)
|
2009-01-06 22:42:00 +00:00
|
|
|
{
|
|
|
|
char *encrypted_and_encoded_name = NULL;
|
2016-03-28 04:43:29 +00:00
|
|
|
struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
|
2009-01-06 22:42:00 +00:00
|
|
|
struct dentry *lower_dir_dentry, *lower_dentry;
|
2016-03-28 04:43:29 +00:00
|
|
|
const char *name = ecryptfs_dentry->d_name.name;
|
|
|
|
size_t len = ecryptfs_dentry->d_name.len;
|
2016-03-28 04:30:35 +00:00
|
|
|
struct dentry *res;
|
2009-01-06 22:42:00 +00:00
|
|
|
int rc = 0;
|
|
|
|
|
|
|
|
lower_dir_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry->d_parent);
|
2016-03-28 04:43:29 +00:00
|
|
|
|
2009-03-20 07:23:57 +00:00
|
|
|
mount_crypt_stat = &ecryptfs_superblock_to_private(
|
|
|
|
ecryptfs_dentry->d_sb)->mount_crypt_stat;
|
2016-03-28 04:43:29 +00:00
|
|
|
if (mount_crypt_stat
|
|
|
|
&& (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
|
|
|
|
rc = ecryptfs_encrypt_and_encode_filename(
|
|
|
|
&encrypted_and_encoded_name, &len,
|
|
|
|
mount_crypt_stat, name, len);
|
|
|
|
if (rc) {
|
|
|
|
printk(KERN_ERR "%s: Error attempting to encrypt and encode "
|
|
|
|
"filename; rc = [%d]\n", __func__, rc);
|
|
|
|
return ERR_PTR(rc);
|
|
|
|
}
|
|
|
|
name = encrypted_and_encoded_name;
|
2009-01-06 22:42:00 +00:00
|
|
|
}
|
2016-03-28 04:43:29 +00:00
|
|
|
|
|
|
|
lower_dentry = lookup_one_len_unlocked(name, lower_dir_dentry, len);
|
2009-01-06 22:42:00 +00:00
|
|
|
if (IS_ERR(lower_dentry)) {
|
2011-02-18 00:51:24 +00:00
|
|
|
ecryptfs_printk(KERN_DEBUG, "%s: lookup_one_len() returned "
|
2016-03-28 04:30:35 +00:00
|
|
|
"[%ld] on lower_dentry = [%s]\n", __func__,
|
|
|
|
PTR_ERR(lower_dentry),
|
2016-03-28 04:43:29 +00:00
|
|
|
name);
|
2016-03-28 04:30:35 +00:00
|
|
|
res = ERR_CAST(lower_dentry);
|
2016-03-28 04:43:29 +00:00
|
|
|
} else {
|
|
|
|
res = ecryptfs_lookup_interpose(ecryptfs_dentry, lower_dentry);
|
2009-01-06 22:42:00 +00:00
|
|
|
}
|
|
|
|
kfree(encrypted_and_encoded_name);
|
2016-03-28 04:30:35 +00:00
|
|
|
return res;
|
2006-10-04 09:16:22 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int ecryptfs_link(struct dentry *old_dentry, struct inode *dir,
|
|
|
|
struct dentry *new_dentry)
|
|
|
|
{
|
|
|
|
struct dentry *lower_old_dentry;
|
|
|
|
struct dentry *lower_new_dentry;
|
|
|
|
struct dentry *lower_dir_dentry;
|
|
|
|
u64 file_size_save;
|
|
|
|
int rc;
|
|
|
|
|
2015-03-17 22:25:59 +00:00
|
|
|
file_size_save = i_size_read(d_inode(old_dentry));
|
2006-10-04 09:16:22 +00:00
|
|
|
lower_old_dentry = ecryptfs_dentry_to_lower(old_dentry);
|
|
|
|
lower_new_dentry = ecryptfs_dentry_to_lower(new_dentry);
|
|
|
|
dget(lower_old_dentry);
|
|
|
|
dget(lower_new_dentry);
|
|
|
|
lower_dir_dentry = lock_parent(lower_new_dentry);
|
2015-03-17 22:25:59 +00:00
|
|
|
rc = vfs_link(lower_old_dentry, d_inode(lower_dir_dentry),
|
2011-09-20 21:14:31 +00:00
|
|
|
lower_new_dentry, NULL);
|
2015-03-17 22:25:59 +00:00
|
|
|
if (rc || d_really_is_negative(lower_new_dentry))
|
2006-10-04 09:16:22 +00:00
|
|
|
goto out_lock;
|
2011-05-24 07:16:51 +00:00
|
|
|
rc = ecryptfs_interpose(lower_new_dentry, new_dentry, dir->i_sb);
|
2006-10-04 09:16:22 +00:00
|
|
|
if (rc)
|
|
|
|
goto out_lock;
|
2015-03-17 22:25:59 +00:00
|
|
|
fsstack_copy_attr_times(dir, d_inode(lower_dir_dentry));
|
|
|
|
fsstack_copy_inode_size(dir, d_inode(lower_dir_dentry));
|
|
|
|
set_nlink(d_inode(old_dentry),
|
|
|
|
ecryptfs_inode_to_lower(d_inode(old_dentry))->i_nlink);
|
|
|
|
i_size_write(d_inode(new_dentry), file_size_save);
|
2006-10-04 09:16:22 +00:00
|
|
|
out_lock:
|
|
|
|
unlock_dir(lower_dir_dentry);
|
|
|
|
dput(lower_new_dentry);
|
|
|
|
dput(lower_old_dentry);
|
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int ecryptfs_unlink(struct inode *dir, struct dentry *dentry)
|
|
|
|
{
|
2015-03-17 22:25:59 +00:00
|
|
|
return ecryptfs_do_unlink(dir, dentry, d_inode(dentry));
|
2006-10-04 09:16:22 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int ecryptfs_symlink(struct inode *dir, struct dentry *dentry,
|
|
|
|
const char *symname)
|
|
|
|
{
|
|
|
|
int rc;
|
|
|
|
struct dentry *lower_dentry;
|
|
|
|
struct dentry *lower_dir_dentry;
|
|
|
|
char *encoded_symname;
|
2009-01-06 22:42:00 +00:00
|
|
|
size_t encoded_symlen;
|
|
|
|
struct ecryptfs_mount_crypt_stat *mount_crypt_stat = NULL;
|
2006-10-04 09:16:22 +00:00
|
|
|
|
|
|
|
lower_dentry = ecryptfs_dentry_to_lower(dentry);
|
|
|
|
dget(lower_dentry);
|
|
|
|
lower_dir_dentry = lock_parent(lower_dentry);
|
2009-01-06 22:42:00 +00:00
|
|
|
mount_crypt_stat = &ecryptfs_superblock_to_private(
|
|
|
|
dir->i_sb)->mount_crypt_stat;
|
|
|
|
rc = ecryptfs_encrypt_and_encode_filename(&encoded_symname,
|
|
|
|
&encoded_symlen,
|
|
|
|
mount_crypt_stat, symname,
|
|
|
|
strlen(symname));
|
|
|
|
if (rc)
|
2006-10-04 09:16:22 +00:00
|
|
|
goto out_lock;
|
2015-03-17 22:25:59 +00:00
|
|
|
rc = vfs_symlink(d_inode(lower_dir_dentry), lower_dentry,
|
2008-06-24 14:50:16 +00:00
|
|
|
encoded_symname);
|
2006-10-04 09:16:22 +00:00
|
|
|
kfree(encoded_symname);
|
2015-03-17 22:25:59 +00:00
|
|
|
if (rc || d_really_is_negative(lower_dentry))
|
2006-10-04 09:16:22 +00:00
|
|
|
goto out_lock;
|
2011-05-24 07:16:51 +00:00
|
|
|
rc = ecryptfs_interpose(lower_dentry, dentry, dir->i_sb);
|
2006-10-04 09:16:22 +00:00
|
|
|
if (rc)
|
|
|
|
goto out_lock;
|
2015-03-17 22:25:59 +00:00
|
|
|
fsstack_copy_attr_times(dir, d_inode(lower_dir_dentry));
|
|
|
|
fsstack_copy_inode_size(dir, d_inode(lower_dir_dentry));
|
2006-10-04 09:16:22 +00:00
|
|
|
out_lock:
|
|
|
|
unlock_dir(lower_dir_dentry);
|
|
|
|
dput(lower_dentry);
|
2015-03-17 22:25:59 +00:00
|
|
|
if (d_really_is_negative(dentry))
|
2006-10-04 09:16:22 +00:00
|
|
|
d_drop(dentry);
|
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
2011-07-26 05:41:39 +00:00
|
|
|
static int ecryptfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
|
2006-10-04 09:16:22 +00:00
|
|
|
{
|
|
|
|
int rc;
|
|
|
|
struct dentry *lower_dentry;
|
|
|
|
struct dentry *lower_dir_dentry;
|
|
|
|
|
|
|
|
lower_dentry = ecryptfs_dentry_to_lower(dentry);
|
|
|
|
lower_dir_dentry = lock_parent(lower_dentry);
|
2015-03-17 22:25:59 +00:00
|
|
|
rc = vfs_mkdir(d_inode(lower_dir_dentry), lower_dentry, mode);
|
|
|
|
if (rc || d_really_is_negative(lower_dentry))
|
2006-10-04 09:16:22 +00:00
|
|
|
goto out;
|
2011-05-24 07:16:51 +00:00
|
|
|
rc = ecryptfs_interpose(lower_dentry, dentry, dir->i_sb);
|
2006-10-04 09:16:22 +00:00
|
|
|
if (rc)
|
|
|
|
goto out;
|
2015-03-17 22:25:59 +00:00
|
|
|
fsstack_copy_attr_times(dir, d_inode(lower_dir_dentry));
|
|
|
|
fsstack_copy_inode_size(dir, d_inode(lower_dir_dentry));
|
|
|
|
set_nlink(dir, d_inode(lower_dir_dentry)->i_nlink);
|
2006-10-04 09:16:22 +00:00
|
|
|
out:
|
|
|
|
unlock_dir(lower_dir_dentry);
|
2015-03-17 22:25:59 +00:00
|
|
|
if (d_really_is_negative(dentry))
|
2006-10-04 09:16:22 +00:00
|
|
|
d_drop(dentry);
|
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int ecryptfs_rmdir(struct inode *dir, struct dentry *dentry)
|
|
|
|
{
|
|
|
|
struct dentry *lower_dentry;
|
|
|
|
struct dentry *lower_dir_dentry;
|
2006-10-31 06:07:20 +00:00
|
|
|
int rc;
|
2006-10-04 09:16:22 +00:00
|
|
|
|
|
|
|
lower_dentry = ecryptfs_dentry_to_lower(dentry);
|
2006-10-31 06:07:20 +00:00
|
|
|
dget(dentry);
|
2006-10-04 09:16:22 +00:00
|
|
|
lower_dir_dentry = lock_parent(lower_dentry);
|
2006-10-31 06:07:20 +00:00
|
|
|
dget(lower_dentry);
|
2015-03-17 22:25:59 +00:00
|
|
|
rc = vfs_rmdir(d_inode(lower_dir_dentry), lower_dentry);
|
2006-10-31 06:07:20 +00:00
|
|
|
dput(lower_dentry);
|
2015-03-17 22:25:59 +00:00
|
|
|
if (!rc && d_really_is_positive(dentry))
|
|
|
|
clear_nlink(d_inode(dentry));
|
|
|
|
fsstack_copy_attr_times(dir, d_inode(lower_dir_dentry));
|
|
|
|
set_nlink(dir, d_inode(lower_dir_dentry)->i_nlink);
|
2006-10-04 09:16:22 +00:00
|
|
|
unlock_dir(lower_dir_dentry);
|
|
|
|
if (!rc)
|
|
|
|
d_drop(dentry);
|
2006-10-31 06:07:20 +00:00
|
|
|
dput(dentry);
|
2006-10-04 09:16:22 +00:00
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2011-07-26 05:52:52 +00:00
|
|
|
ecryptfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
|
2006-10-04 09:16:22 +00:00
|
|
|
{
|
|
|
|
int rc;
|
|
|
|
struct dentry *lower_dentry;
|
|
|
|
struct dentry *lower_dir_dentry;
|
|
|
|
|
|
|
|
lower_dentry = ecryptfs_dentry_to_lower(dentry);
|
|
|
|
lower_dir_dentry = lock_parent(lower_dentry);
|
2015-03-17 22:25:59 +00:00
|
|
|
rc = vfs_mknod(d_inode(lower_dir_dentry), lower_dentry, mode, dev);
|
|
|
|
if (rc || d_really_is_negative(lower_dentry))
|
2006-10-04 09:16:22 +00:00
|
|
|
goto out;
|
2011-05-24 07:16:51 +00:00
|
|
|
rc = ecryptfs_interpose(lower_dentry, dentry, dir->i_sb);
|
2006-10-04 09:16:22 +00:00
|
|
|
if (rc)
|
|
|
|
goto out;
|
2015-03-17 22:25:59 +00:00
|
|
|
fsstack_copy_attr_times(dir, d_inode(lower_dir_dentry));
|
|
|
|
fsstack_copy_inode_size(dir, d_inode(lower_dir_dentry));
|
2006-10-04 09:16:22 +00:00
|
|
|
out:
|
|
|
|
unlock_dir(lower_dir_dentry);
|
2015-03-17 22:25:59 +00:00
|
|
|
if (d_really_is_negative(dentry))
|
2006-10-04 09:16:22 +00:00
|
|
|
d_drop(dentry);
|
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
ecryptfs_rename(struct inode *old_dir, struct dentry *old_dentry,
|
fs: make remaining filesystems use .rename2
This is trivial to do:
- add flags argument to foo_rename()
- check if flags is zero
- assign foo_rename() to .rename2 instead of .rename
This doesn't mean it's impossible to support RENAME_NOREPLACE for these
filesystems, but it is not trivial, like for local filesystems.
RENAME_NOREPLACE must guarantee atomicity (i.e. it shouldn't be possible
for a file to be created on one host while it is overwritten by rename on
another host).
Filesystems converted:
9p, afs, ceph, coda, ecryptfs, kernfs, lustre, ncpfs, nfs, ocfs2, orangefs.
After this, we can get rid of the duplicate interfaces for rename.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: David Howells <dhowells@redhat.com> [AFS]
Acked-by: Mike Marshall <hubcap@omnibond.com>
Cc: Eric Van Hensbergen <ericvh@gmail.com>
Cc: Ilya Dryomov <idryomov@gmail.com>
Cc: Jan Harkes <jaharkes@cs.cmu.edu>
Cc: Tyler Hicks <tyhicks@canonical.com>
Cc: Oleg Drokin <oleg.drokin@intel.com>
Cc: Trond Myklebust <trond.myklebust@primarydata.com>
Cc: Mark Fasheh <mfasheh@suse.com>
2016-09-27 09:03:58 +00:00
|
|
|
struct inode *new_dir, struct dentry *new_dentry,
|
|
|
|
unsigned int flags)
|
2006-10-04 09:16:22 +00:00
|
|
|
{
|
|
|
|
int rc;
|
|
|
|
struct dentry *lower_old_dentry;
|
|
|
|
struct dentry *lower_new_dentry;
|
|
|
|
struct dentry *lower_old_dir_dentry;
|
|
|
|
struct dentry *lower_new_dir_dentry;
|
2009-12-06 02:17:09 +00:00
|
|
|
struct dentry *trap = NULL;
|
2012-09-13 19:00:56 +00:00
|
|
|
struct inode *target_inode;
|
2006-10-04 09:16:22 +00:00
|
|
|
|
fs: make remaining filesystems use .rename2
This is trivial to do:
- add flags argument to foo_rename()
- check if flags is zero
- assign foo_rename() to .rename2 instead of .rename
This doesn't mean it's impossible to support RENAME_NOREPLACE for these
filesystems, but it is not trivial, like for local filesystems.
RENAME_NOREPLACE must guarantee atomicity (i.e. it shouldn't be possible
for a file to be created on one host while it is overwritten by rename on
another host).
Filesystems converted:
9p, afs, ceph, coda, ecryptfs, kernfs, lustre, ncpfs, nfs, ocfs2, orangefs.
After this, we can get rid of the duplicate interfaces for rename.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: David Howells <dhowells@redhat.com> [AFS]
Acked-by: Mike Marshall <hubcap@omnibond.com>
Cc: Eric Van Hensbergen <ericvh@gmail.com>
Cc: Ilya Dryomov <idryomov@gmail.com>
Cc: Jan Harkes <jaharkes@cs.cmu.edu>
Cc: Tyler Hicks <tyhicks@canonical.com>
Cc: Oleg Drokin <oleg.drokin@intel.com>
Cc: Trond Myklebust <trond.myklebust@primarydata.com>
Cc: Mark Fasheh <mfasheh@suse.com>
2016-09-27 09:03:58 +00:00
|
|
|
if (flags)
|
|
|
|
return -EINVAL;
|
|
|
|
|
2006-10-04 09:16:22 +00:00
|
|
|
lower_old_dentry = ecryptfs_dentry_to_lower(old_dentry);
|
|
|
|
lower_new_dentry = ecryptfs_dentry_to_lower(new_dentry);
|
|
|
|
dget(lower_old_dentry);
|
|
|
|
dget(lower_new_dentry);
|
|
|
|
lower_old_dir_dentry = dget_parent(lower_old_dentry);
|
|
|
|
lower_new_dir_dentry = dget_parent(lower_new_dentry);
|
2015-03-17 22:25:59 +00:00
|
|
|
target_inode = d_inode(new_dentry);
|
2009-12-06 02:17:09 +00:00
|
|
|
trap = lock_rename(lower_old_dir_dentry, lower_new_dir_dentry);
|
|
|
|
/* source should not be ancestor of target */
|
|
|
|
if (trap == lower_old_dentry) {
|
|
|
|
rc = -EINVAL;
|
|
|
|
goto out_lock;
|
|
|
|
}
|
|
|
|
/* target should not be ancestor of source */
|
|
|
|
if (trap == lower_new_dentry) {
|
|
|
|
rc = -ENOTEMPTY;
|
|
|
|
goto out_lock;
|
|
|
|
}
|
2015-03-17 22:25:59 +00:00
|
|
|
rc = vfs_rename(d_inode(lower_old_dir_dentry), lower_old_dentry,
|
|
|
|
d_inode(lower_new_dir_dentry), lower_new_dentry,
|
2014-04-01 15:08:42 +00:00
|
|
|
NULL, 0);
|
2006-10-04 09:16:22 +00:00
|
|
|
if (rc)
|
|
|
|
goto out_lock;
|
2012-09-13 19:00:56 +00:00
|
|
|
if (target_inode)
|
|
|
|
fsstack_copy_attr_all(target_inode,
|
|
|
|
ecryptfs_inode_to_lower(target_inode));
|
2015-03-17 22:25:59 +00:00
|
|
|
fsstack_copy_attr_all(new_dir, d_inode(lower_new_dir_dentry));
|
2006-10-04 09:16:22 +00:00
|
|
|
if (new_dir != old_dir)
|
2015-03-17 22:25:59 +00:00
|
|
|
fsstack_copy_attr_all(old_dir, d_inode(lower_old_dir_dentry));
|
2006-10-04 09:16:22 +00:00
|
|
|
out_lock:
|
|
|
|
unlock_rename(lower_old_dir_dentry, lower_new_dir_dentry);
|
2011-04-12 16:23:09 +00:00
|
|
|
dput(lower_new_dir_dentry);
|
|
|
|
dput(lower_old_dir_dentry);
|
2006-10-04 09:16:22 +00:00
|
|
|
dput(lower_new_dentry);
|
|
|
|
dput(lower_old_dentry);
|
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
2013-11-30 03:51:47 +00:00
|
|
|
static char *ecryptfs_readlink_lower(struct dentry *dentry, size_t *bufsiz)
|
2006-10-04 09:16:22 +00:00
|
|
|
{
|
2010-03-22 05:41:35 +00:00
|
|
|
struct dentry *lower_dentry = ecryptfs_dentry_to_lower(dentry);
|
2006-10-04 09:16:22 +00:00
|
|
|
char *lower_buf;
|
2013-11-30 03:51:47 +00:00
|
|
|
char *buf;
|
2009-01-06 22:42:00 +00:00
|
|
|
mm_segment_t old_fs;
|
|
|
|
int rc;
|
2006-10-04 09:16:22 +00:00
|
|
|
|
2012-05-03 13:34:20 +00:00
|
|
|
lower_buf = kmalloc(PATH_MAX, GFP_KERNEL);
|
2013-11-30 03:51:47 +00:00
|
|
|
if (!lower_buf)
|
|
|
|
return ERR_PTR(-ENOMEM);
|
2006-10-04 09:16:22 +00:00
|
|
|
old_fs = get_fs();
|
|
|
|
set_fs(get_ds());
|
2015-03-17 22:25:59 +00:00
|
|
|
rc = d_inode(lower_dentry)->i_op->readlink(lower_dentry,
|
2006-10-04 09:16:22 +00:00
|
|
|
(char __user *)lower_buf,
|
2012-05-03 13:34:20 +00:00
|
|
|
PATH_MAX);
|
2006-10-04 09:16:22 +00:00
|
|
|
set_fs(old_fs);
|
2010-03-22 05:41:35 +00:00
|
|
|
if (rc < 0)
|
|
|
|
goto out;
|
2013-11-30 03:51:47 +00:00
|
|
|
rc = ecryptfs_decode_and_decrypt_filename(&buf, bufsiz, dentry->d_sb,
|
2012-05-03 13:34:20 +00:00
|
|
|
lower_buf, rc);
|
2010-03-22 05:41:35 +00:00
|
|
|
out:
|
2006-10-04 09:16:22 +00:00
|
|
|
kfree(lower_buf);
|
2013-11-30 03:51:47 +00:00
|
|
|
return rc ? ERR_PTR(rc) : buf;
|
2010-03-22 05:41:35 +00:00
|
|
|
}
|
|
|
|
|
2015-11-17 15:20:54 +00:00
|
|
|
static const char *ecryptfs_get_link(struct dentry *dentry,
|
2015-12-29 20:58:39 +00:00
|
|
|
struct inode *inode,
|
|
|
|
struct delayed_call *done)
|
2010-03-22 05:41:35 +00:00
|
|
|
{
|
2013-11-30 03:51:47 +00:00
|
|
|
size_t len;
|
2015-11-17 15:20:54 +00:00
|
|
|
char *buf;
|
|
|
|
|
|
|
|
if (!dentry)
|
|
|
|
return ERR_PTR(-ECHILD);
|
|
|
|
|
|
|
|
buf = ecryptfs_readlink_lower(dentry, &len);
|
2013-11-30 03:51:47 +00:00
|
|
|
if (IS_ERR(buf))
|
2015-05-02 17:32:22 +00:00
|
|
|
return buf;
|
2015-03-17 22:25:59 +00:00
|
|
|
fsstack_copy_attr_atime(d_inode(dentry),
|
|
|
|
d_inode(ecryptfs_dentry_to_lower(dentry)));
|
2012-05-03 13:34:20 +00:00
|
|
|
buf[len] = '\0';
|
2015-12-29 20:58:39 +00:00
|
|
|
set_delayed_call(done, kfree_link, buf);
|
|
|
|
return buf;
|
2006-10-04 09:16:22 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* upper_size_to_lower_size
|
|
|
|
* @crypt_stat: Crypt_stat associated with file
|
|
|
|
* @upper_size: Size of the upper file
|
|
|
|
*
|
2008-02-06 09:38:32 +00:00
|
|
|
* Calculate the required size of the lower file based on the
|
2006-10-04 09:16:22 +00:00
|
|
|
* specified size of the upper file. This calculation is based on the
|
|
|
|
* number of headers in the underlying file and the extent size.
|
|
|
|
*
|
|
|
|
* Returns Calculated size of the lower file.
|
|
|
|
*/
|
|
|
|
static loff_t
|
|
|
|
upper_size_to_lower_size(struct ecryptfs_crypt_stat *crypt_stat,
|
|
|
|
loff_t upper_size)
|
|
|
|
{
|
|
|
|
loff_t lower_size;
|
|
|
|
|
2010-02-11 13:10:38 +00:00
|
|
|
lower_size = ecryptfs_lower_header_size(crypt_stat);
|
2006-10-04 09:16:22 +00:00
|
|
|
if (upper_size != 0) {
|
|
|
|
loff_t num_extents;
|
|
|
|
|
|
|
|
num_extents = upper_size >> crypt_stat->extent_shift;
|
|
|
|
if (upper_size & ~crypt_stat->extent_mask)
|
|
|
|
num_extents++;
|
|
|
|
lower_size += (num_extents * crypt_stat->extent_size);
|
|
|
|
}
|
|
|
|
return lower_size;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
2009-10-14 21:18:27 +00:00
|
|
|
* truncate_upper
|
2006-10-04 09:16:22 +00:00
|
|
|
* @dentry: The ecryptfs layer dentry
|
2009-10-14 21:18:27 +00:00
|
|
|
* @ia: Address of the ecryptfs inode's attributes
|
|
|
|
* @lower_ia: Address of the lower inode's attributes
|
2006-10-04 09:16:22 +00:00
|
|
|
*
|
|
|
|
* Function to handle truncations modifying the size of the file. Note
|
|
|
|
* that the file sizes are interpolated. When expanding, we are simply
|
2009-10-14 21:18:27 +00:00
|
|
|
* writing strings of 0's out. When truncating, we truncate the upper
|
|
|
|
* inode and update the lower_ia according to the page index
|
|
|
|
* interpolations. If ATTR_SIZE is set in lower_ia->ia_valid upon return,
|
|
|
|
* the caller must use lower_ia in a call to notify_change() to perform
|
|
|
|
* the truncation of the lower inode.
|
2006-10-04 09:16:22 +00:00
|
|
|
*
|
|
|
|
* Returns zero on success; non-zero otherwise
|
|
|
|
*/
|
2009-10-14 21:18:27 +00:00
|
|
|
static int truncate_upper(struct dentry *dentry, struct iattr *ia,
|
|
|
|
struct iattr *lower_ia)
|
2006-10-04 09:16:22 +00:00
|
|
|
{
|
|
|
|
int rc = 0;
|
2015-03-17 22:25:59 +00:00
|
|
|
struct inode *inode = d_inode(dentry);
|
2006-10-04 09:16:22 +00:00
|
|
|
struct ecryptfs_crypt_stat *crypt_stat;
|
|
|
|
loff_t i_size = i_size_read(inode);
|
|
|
|
loff_t lower_size_before_truncate;
|
|
|
|
loff_t lower_size_after_truncate;
|
|
|
|
|
2009-10-14 21:18:27 +00:00
|
|
|
if (unlikely((ia->ia_size == i_size))) {
|
|
|
|
lower_ia->ia_valid &= ~ATTR_SIZE;
|
eCryptfs: Add reference counting to lower files
For any given lower inode, eCryptfs keeps only one lower file open and
multiplexes all eCryptfs file operations through that lower file. The
lower file was considered "persistent" and stayed open from the first
lookup through the lifetime of the inode.
This patch keeps the notion of a single, per-inode lower file, but adds
reference counting around the lower file so that it is closed when not
currently in use. If the reference count is at 0 when an operation (such
as open, create, etc.) needs to use the lower file, a new lower file is
opened. Since the file is no longer persistent, all references to the
term persistent file are changed to lower file.
Locking is added around the sections of code that opens the lower file
and assign the pointer in the inode info, as well as the code the fputs
the lower file when all eCryptfs users are done with it.
This patch is needed to fix issues, when mounted on top of the NFSv3
client, where the lower file is left silly renamed until the eCryptfs
inode is destroyed.
Signed-off-by: Tyler Hicks <tyhicks@linux.vnet.ibm.com>
2011-04-14 20:35:11 +00:00
|
|
|
return 0;
|
2009-10-14 21:18:27 +00:00
|
|
|
}
|
2011-05-24 08:49:02 +00:00
|
|
|
rc = ecryptfs_get_lower_file(dentry, inode);
|
eCryptfs: Add reference counting to lower files
For any given lower inode, eCryptfs keeps only one lower file open and
multiplexes all eCryptfs file operations through that lower file. The
lower file was considered "persistent" and stayed open from the first
lookup through the lifetime of the inode.
This patch keeps the notion of a single, per-inode lower file, but adds
reference counting around the lower file so that it is closed when not
currently in use. If the reference count is at 0 when an operation (such
as open, create, etc.) needs to use the lower file, a new lower file is
opened. Since the file is no longer persistent, all references to the
term persistent file are changed to lower file.
Locking is added around the sections of code that opens the lower file
and assign the pointer in the inode info, as well as the code the fputs
the lower file when all eCryptfs users are done with it.
This patch is needed to fix issues, when mounted on top of the NFSv3
client, where the lower file is left silly renamed until the eCryptfs
inode is destroyed.
Signed-off-by: Tyler Hicks <tyhicks@linux.vnet.ibm.com>
2011-04-14 20:35:11 +00:00
|
|
|
if (rc)
|
|
|
|
return rc;
|
2015-03-17 22:25:59 +00:00
|
|
|
crypt_stat = &ecryptfs_inode_to_private(d_inode(dentry))->crypt_stat;
|
2006-10-04 09:16:22 +00:00
|
|
|
/* Switch on growing or shrinking file */
|
2009-10-14 21:18:27 +00:00
|
|
|
if (ia->ia_size > i_size) {
|
2007-10-16 08:28:10 +00:00
|
|
|
char zero[] = { 0x00 };
|
|
|
|
|
2009-10-14 21:18:27 +00:00
|
|
|
lower_ia->ia_valid &= ~ATTR_SIZE;
|
2007-10-16 08:28:10 +00:00
|
|
|
/* Write a single 0 at the last position of the file;
|
|
|
|
* this triggers code that will fill in 0's throughout
|
|
|
|
* the intermediate portion of the previous end of the
|
|
|
|
* file and the new and of the file */
|
2010-05-21 15:09:58 +00:00
|
|
|
rc = ecryptfs_write(inode, zero,
|
2009-10-14 21:18:27 +00:00
|
|
|
(ia->ia_size - 1), 1);
|
|
|
|
} else { /* ia->ia_size < i_size_read(inode) */
|
|
|
|
/* We're chopping off all the pages down to the page
|
|
|
|
* in which ia->ia_size is located. Fill in the end of
|
2016-04-01 12:29:48 +00:00
|
|
|
* that page from (ia->ia_size & ~PAGE_MASK) to
|
|
|
|
* PAGE_SIZE with zeros. */
|
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros
PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time
ago with promise that one day it will be possible to implement page
cache with bigger chunks than PAGE_SIZE.
This promise never materialized. And unlikely will.
We have many places where PAGE_CACHE_SIZE assumed to be equal to
PAGE_SIZE. And it's constant source of confusion on whether
PAGE_CACHE_* or PAGE_* constant should be used in a particular case,
especially on the border between fs and mm.
Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much
breakage to be doable.
Let's stop pretending that pages in page cache are special. They are
not.
The changes are pretty straight-forward:
- <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN};
- page_cache_get() -> get_page();
- page_cache_release() -> put_page();
This patch contains automated changes generated with coccinelle using
script below. For some reason, coccinelle doesn't patch header files.
I've called spatch for them manually.
The only adjustment after coccinelle is revert of changes to
PAGE_CAHCE_ALIGN definition: we are going to drop it later.
There are few places in the code where coccinelle didn't reach. I'll
fix them manually in a separate patch. Comments and documentation also
will be addressed with the separate patch.
virtual patch
@@
expression E;
@@
- E << (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
expression E;
@@
- E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
@@
- PAGE_CACHE_SHIFT
+ PAGE_SHIFT
@@
@@
- PAGE_CACHE_SIZE
+ PAGE_SIZE
@@
@@
- PAGE_CACHE_MASK
+ PAGE_MASK
@@
expression E;
@@
- PAGE_CACHE_ALIGN(E)
+ PAGE_ALIGN(E)
@@
expression E;
@@
- page_cache_get(E)
+ get_page(E)
@@
expression E;
@@
- page_cache_release(E)
+ put_page(E)
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 12:29:47 +00:00
|
|
|
size_t num_zeros = (PAGE_SIZE
|
|
|
|
- (ia->ia_size & ~PAGE_MASK));
|
2007-10-16 08:28:10 +00:00
|
|
|
|
2009-04-13 20:29:27 +00:00
|
|
|
if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
|
2010-06-04 09:30:04 +00:00
|
|
|
truncate_setsize(inode, ia->ia_size);
|
2009-10-14 21:18:27 +00:00
|
|
|
lower_ia->ia_size = ia->ia_size;
|
|
|
|
lower_ia->ia_valid |= ATTR_SIZE;
|
2010-05-21 15:09:58 +00:00
|
|
|
goto out;
|
2009-04-13 20:29:27 +00:00
|
|
|
}
|
2007-10-16 08:28:10 +00:00
|
|
|
if (num_zeros) {
|
|
|
|
char *zeros_virt;
|
|
|
|
|
|
|
|
zeros_virt = kzalloc(num_zeros, GFP_KERNEL);
|
|
|
|
if (!zeros_virt) {
|
|
|
|
rc = -ENOMEM;
|
2010-05-21 15:09:58 +00:00
|
|
|
goto out;
|
2007-10-16 08:28:10 +00:00
|
|
|
}
|
2010-05-21 15:09:58 +00:00
|
|
|
rc = ecryptfs_write(inode, zeros_virt,
|
2009-10-14 21:18:27 +00:00
|
|
|
ia->ia_size, num_zeros);
|
2007-10-16 08:28:10 +00:00
|
|
|
kfree(zeros_virt);
|
2007-10-16 08:28:06 +00:00
|
|
|
if (rc) {
|
2007-06-27 21:09:44 +00:00
|
|
|
printk(KERN_ERR "Error attempting to zero out "
|
|
|
|
"the remainder of the end page on "
|
|
|
|
"reducing truncate; rc = [%d]\n", rc);
|
2010-05-21 15:09:58 +00:00
|
|
|
goto out;
|
2007-06-27 21:09:44 +00:00
|
|
|
}
|
|
|
|
}
|
2010-06-04 09:30:04 +00:00
|
|
|
truncate_setsize(inode, ia->ia_size);
|
2007-10-16 08:28:08 +00:00
|
|
|
rc = ecryptfs_write_inode_size_to_metadata(inode);
|
2007-02-12 08:53:46 +00:00
|
|
|
if (rc) {
|
|
|
|
printk(KERN_ERR "Problem with "
|
|
|
|
"ecryptfs_write_inode_size_to_metadata; "
|
|
|
|
"rc = [%d]\n", rc);
|
2010-05-21 15:09:58 +00:00
|
|
|
goto out;
|
2007-02-12 08:53:46 +00:00
|
|
|
}
|
2006-10-04 09:16:22 +00:00
|
|
|
/* We are reducing the size of the ecryptfs file, and need to
|
|
|
|
* know if we need to reduce the size of the lower file. */
|
|
|
|
lower_size_before_truncate =
|
|
|
|
upper_size_to_lower_size(crypt_stat, i_size);
|
|
|
|
lower_size_after_truncate =
|
2009-10-14 21:18:27 +00:00
|
|
|
upper_size_to_lower_size(crypt_stat, ia->ia_size);
|
|
|
|
if (lower_size_after_truncate < lower_size_before_truncate) {
|
|
|
|
lower_ia->ia_size = lower_size_after_truncate;
|
|
|
|
lower_ia->ia_valid |= ATTR_SIZE;
|
|
|
|
} else
|
|
|
|
lower_ia->ia_valid &= ~ATTR_SIZE;
|
2006-10-04 09:16:22 +00:00
|
|
|
}
|
|
|
|
out:
|
eCryptfs: Add reference counting to lower files
For any given lower inode, eCryptfs keeps only one lower file open and
multiplexes all eCryptfs file operations through that lower file. The
lower file was considered "persistent" and stayed open from the first
lookup through the lifetime of the inode.
This patch keeps the notion of a single, per-inode lower file, but adds
reference counting around the lower file so that it is closed when not
currently in use. If the reference count is at 0 when an operation (such
as open, create, etc.) needs to use the lower file, a new lower file is
opened. Since the file is no longer persistent, all references to the
term persistent file are changed to lower file.
Locking is added around the sections of code that opens the lower file
and assign the pointer in the inode info, as well as the code the fputs
the lower file when all eCryptfs users are done with it.
This patch is needed to fix issues, when mounted on top of the NFSv3
client, where the lower file is left silly renamed until the eCryptfs
inode is destroyed.
Signed-off-by: Tyler Hicks <tyhicks@linux.vnet.ibm.com>
2011-04-14 20:35:11 +00:00
|
|
|
ecryptfs_put_lower_file(inode);
|
2006-10-04 09:16:22 +00:00
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
eCryptfs: Check inode changes in setattr
Most filesystems call inode_change_ok() very early in ->setattr(), but
eCryptfs didn't call it at all. It allowed the lower filesystem to make
the call in its ->setattr() function. Then, eCryptfs would copy the
appropriate inode attributes from the lower inode to the eCryptfs inode.
This patch changes that and actually calls inode_change_ok() on the
eCryptfs inode, fairly early in ecryptfs_setattr(). Ideally, the call
would happen earlier in ecryptfs_setattr(), but there are some possible
inode initialization steps that must happen first.
Since the call was already being made on the lower inode, the change in
functionality should be minimal, except for the case of a file extending
truncate call. In that case, inode_newsize_ok() was never being
called on the eCryptfs inode. Rather than inode_newsize_ok() catching
maximum file size errors early on, eCryptfs would encrypt zeroed pages
and write them to the lower filesystem until the lower filesystem's
write path caught the error in generic_write_checks(). This patch
introduces a new function, called ecryptfs_inode_newsize_ok(), which
checks if the new lower file size is within the appropriate limits when
the truncate operation will be growing the lower file.
In summary this change prevents eCryptfs truncate operations (and the
resulting page encryptions), which would exceed the lower filesystem
limits or FSIZE rlimits, from ever starting.
Signed-off-by: Tyler Hicks <tyhicks@canonical.com>
Reviewed-by: Li Wang <liwang@nudt.edu.cn>
Cc: <stable@vger.kernel.org>
2012-01-20 02:33:44 +00:00
|
|
|
static int ecryptfs_inode_newsize_ok(struct inode *inode, loff_t offset)
|
|
|
|
{
|
|
|
|
struct ecryptfs_crypt_stat *crypt_stat;
|
|
|
|
loff_t lower_oldsize, lower_newsize;
|
|
|
|
|
|
|
|
crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
|
|
|
|
lower_oldsize = upper_size_to_lower_size(crypt_stat,
|
|
|
|
i_size_read(inode));
|
|
|
|
lower_newsize = upper_size_to_lower_size(crypt_stat, offset);
|
|
|
|
if (lower_newsize > lower_oldsize) {
|
|
|
|
/*
|
|
|
|
* The eCryptfs inode and the new *lower* size are mixed here
|
|
|
|
* because we may not have the lower i_mutex held and/or it may
|
|
|
|
* not be appropriate to call inode_newsize_ok() with inodes
|
|
|
|
* from other filesystems.
|
|
|
|
*/
|
|
|
|
return inode_newsize_ok(inode, lower_newsize);
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2009-10-14 21:18:27 +00:00
|
|
|
/**
|
|
|
|
* ecryptfs_truncate
|
|
|
|
* @dentry: The ecryptfs layer dentry
|
|
|
|
* @new_length: The length to expand the file to
|
|
|
|
*
|
|
|
|
* Simple function that handles the truncation of an eCryptfs inode and
|
|
|
|
* its corresponding lower inode.
|
|
|
|
*
|
|
|
|
* Returns zero on success; non-zero otherwise
|
|
|
|
*/
|
|
|
|
int ecryptfs_truncate(struct dentry *dentry, loff_t new_length)
|
|
|
|
{
|
|
|
|
struct iattr ia = { .ia_valid = ATTR_SIZE, .ia_size = new_length };
|
|
|
|
struct iattr lower_ia = { .ia_valid = 0 };
|
|
|
|
int rc;
|
|
|
|
|
2015-03-17 22:25:59 +00:00
|
|
|
rc = ecryptfs_inode_newsize_ok(d_inode(dentry), new_length);
|
eCryptfs: Check inode changes in setattr
Most filesystems call inode_change_ok() very early in ->setattr(), but
eCryptfs didn't call it at all. It allowed the lower filesystem to make
the call in its ->setattr() function. Then, eCryptfs would copy the
appropriate inode attributes from the lower inode to the eCryptfs inode.
This patch changes that and actually calls inode_change_ok() on the
eCryptfs inode, fairly early in ecryptfs_setattr(). Ideally, the call
would happen earlier in ecryptfs_setattr(), but there are some possible
inode initialization steps that must happen first.
Since the call was already being made on the lower inode, the change in
functionality should be minimal, except for the case of a file extending
truncate call. In that case, inode_newsize_ok() was never being
called on the eCryptfs inode. Rather than inode_newsize_ok() catching
maximum file size errors early on, eCryptfs would encrypt zeroed pages
and write them to the lower filesystem until the lower filesystem's
write path caught the error in generic_write_checks(). This patch
introduces a new function, called ecryptfs_inode_newsize_ok(), which
checks if the new lower file size is within the appropriate limits when
the truncate operation will be growing the lower file.
In summary this change prevents eCryptfs truncate operations (and the
resulting page encryptions), which would exceed the lower filesystem
limits or FSIZE rlimits, from ever starting.
Signed-off-by: Tyler Hicks <tyhicks@canonical.com>
Reviewed-by: Li Wang <liwang@nudt.edu.cn>
Cc: <stable@vger.kernel.org>
2012-01-20 02:33:44 +00:00
|
|
|
if (rc)
|
|
|
|
return rc;
|
|
|
|
|
2009-10-14 21:18:27 +00:00
|
|
|
rc = truncate_upper(dentry, &ia, &lower_ia);
|
|
|
|
if (!rc && lower_ia.ia_valid & ATTR_SIZE) {
|
|
|
|
struct dentry *lower_dentry = ecryptfs_dentry_to_lower(dentry);
|
|
|
|
|
2016-01-22 20:40:57 +00:00
|
|
|
inode_lock(d_inode(lower_dentry));
|
2011-09-20 21:19:26 +00:00
|
|
|
rc = notify_change(lower_dentry, &lower_ia, NULL);
|
2016-01-22 20:40:57 +00:00
|
|
|
inode_unlock(d_inode(lower_dentry));
|
2009-10-14 21:18:27 +00:00
|
|
|
}
|
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
2006-10-04 09:16:22 +00:00
|
|
|
static int
|
2011-06-20 23:28:19 +00:00
|
|
|
ecryptfs_permission(struct inode *inode, int mask)
|
2006-10-04 09:16:22 +00:00
|
|
|
{
|
2008-07-22 04:07:17 +00:00
|
|
|
return inode_permission(ecryptfs_inode_to_lower(inode), mask);
|
2006-10-04 09:16:22 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ecryptfs_setattr
|
|
|
|
* @dentry: dentry handle to the inode to modify
|
|
|
|
* @ia: Structure with flags of what to change and values
|
|
|
|
*
|
|
|
|
* Updates the metadata of an inode. If the update is to the size
|
|
|
|
* i.e. truncation, then ecryptfs_truncate will handle the size modification
|
|
|
|
* of both the ecryptfs inode and the lower inode.
|
|
|
|
*
|
|
|
|
* All other metadata changes will be passed right to the lower filesystem,
|
|
|
|
* and we will just update our inode to look like the lower.
|
|
|
|
*/
|
|
|
|
static int ecryptfs_setattr(struct dentry *dentry, struct iattr *ia)
|
|
|
|
{
|
|
|
|
int rc = 0;
|
|
|
|
struct dentry *lower_dentry;
|
2009-10-14 21:18:27 +00:00
|
|
|
struct iattr lower_ia;
|
2006-10-04 09:16:22 +00:00
|
|
|
struct inode *inode;
|
|
|
|
struct inode *lower_inode;
|
|
|
|
struct ecryptfs_crypt_stat *crypt_stat;
|
|
|
|
|
2015-03-17 22:25:59 +00:00
|
|
|
crypt_stat = &ecryptfs_inode_to_private(d_inode(dentry))->crypt_stat;
|
2016-04-16 07:01:09 +00:00
|
|
|
if (!(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED)) {
|
|
|
|
rc = ecryptfs_init_crypt_stat(crypt_stat);
|
|
|
|
if (rc)
|
|
|
|
return rc;
|
|
|
|
}
|
2015-03-17 22:25:59 +00:00
|
|
|
inode = d_inode(dentry);
|
2006-10-04 09:16:22 +00:00
|
|
|
lower_inode = ecryptfs_inode_to_lower(inode);
|
2007-06-27 21:09:44 +00:00
|
|
|
lower_dentry = ecryptfs_dentry_to_lower(dentry);
|
|
|
|
mutex_lock(&crypt_stat->cs_mutex);
|
VFS: (Scripted) Convert S_ISLNK/DIR/REG(dentry->d_inode) to d_is_*(dentry)
Convert the following where appropriate:
(1) S_ISLNK(dentry->d_inode) to d_is_symlink(dentry).
(2) S_ISREG(dentry->d_inode) to d_is_reg(dentry).
(3) S_ISDIR(dentry->d_inode) to d_is_dir(dentry). This is actually more
complicated than it appears as some calls should be converted to
d_can_lookup() instead. The difference is whether the directory in
question is a real dir with a ->lookup op or whether it's a fake dir with
a ->d_automount op.
In some circumstances, we can subsume checks for dentry->d_inode not being
NULL into this, provided we the code isn't in a filesystem that expects
d_inode to be NULL if the dirent really *is* negative (ie. if we're going to
use d_inode() rather than d_backing_inode() to get the inode pointer).
Note that the dentry type field may be set to something other than
DCACHE_MISS_TYPE when d_inode is NULL in the case of unionmount, where the VFS
manages the fall-through from a negative dentry to a lower layer. In such a
case, the dentry type of the negative union dentry is set to the same as the
type of the lower dentry.
However, if you know d_inode is not NULL at the call site, then you can use
the d_is_xxx() functions even in a filesystem.
There is one further complication: a 0,0 chardev dentry may be labelled
DCACHE_WHITEOUT_TYPE rather than DCACHE_SPECIAL_TYPE. Strictly, this was
intended for special directory entry types that don't have attached inodes.
The following perl+coccinelle script was used:
use strict;
my @callers;
open($fd, 'git grep -l \'S_IS[A-Z].*->d_inode\' |') ||
die "Can't grep for S_ISDIR and co. callers";
@callers = <$fd>;
close($fd);
unless (@callers) {
print "No matches\n";
exit(0);
}
my @cocci = (
'@@',
'expression E;',
'@@',
'',
'- S_ISLNK(E->d_inode->i_mode)',
'+ d_is_symlink(E)',
'',
'@@',
'expression E;',
'@@',
'',
'- S_ISDIR(E->d_inode->i_mode)',
'+ d_is_dir(E)',
'',
'@@',
'expression E;',
'@@',
'',
'- S_ISREG(E->d_inode->i_mode)',
'+ d_is_reg(E)' );
my $coccifile = "tmp.sp.cocci";
open($fd, ">$coccifile") || die $coccifile;
print($fd "$_\n") || die $coccifile foreach (@cocci);
close($fd);
foreach my $file (@callers) {
chomp $file;
print "Processing ", $file, "\n";
system("spatch", "--sp-file", $coccifile, $file, "--in-place", "--no-show-diff") == 0 ||
die "spatch failed";
}
[AV: overlayfs parts skipped]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-01-29 12:02:35 +00:00
|
|
|
if (d_is_dir(dentry))
|
2007-06-27 21:09:44 +00:00
|
|
|
crypt_stat->flags &= ~(ECRYPTFS_ENCRYPTED);
|
VFS: (Scripted) Convert S_ISLNK/DIR/REG(dentry->d_inode) to d_is_*(dentry)
Convert the following where appropriate:
(1) S_ISLNK(dentry->d_inode) to d_is_symlink(dentry).
(2) S_ISREG(dentry->d_inode) to d_is_reg(dentry).
(3) S_ISDIR(dentry->d_inode) to d_is_dir(dentry). This is actually more
complicated than it appears as some calls should be converted to
d_can_lookup() instead. The difference is whether the directory in
question is a real dir with a ->lookup op or whether it's a fake dir with
a ->d_automount op.
In some circumstances, we can subsume checks for dentry->d_inode not being
NULL into this, provided we the code isn't in a filesystem that expects
d_inode to be NULL if the dirent really *is* negative (ie. if we're going to
use d_inode() rather than d_backing_inode() to get the inode pointer).
Note that the dentry type field may be set to something other than
DCACHE_MISS_TYPE when d_inode is NULL in the case of unionmount, where the VFS
manages the fall-through from a negative dentry to a lower layer. In such a
case, the dentry type of the negative union dentry is set to the same as the
type of the lower dentry.
However, if you know d_inode is not NULL at the call site, then you can use
the d_is_xxx() functions even in a filesystem.
There is one further complication: a 0,0 chardev dentry may be labelled
DCACHE_WHITEOUT_TYPE rather than DCACHE_SPECIAL_TYPE. Strictly, this was
intended for special directory entry types that don't have attached inodes.
The following perl+coccinelle script was used:
use strict;
my @callers;
open($fd, 'git grep -l \'S_IS[A-Z].*->d_inode\' |') ||
die "Can't grep for S_ISDIR and co. callers";
@callers = <$fd>;
close($fd);
unless (@callers) {
print "No matches\n";
exit(0);
}
my @cocci = (
'@@',
'expression E;',
'@@',
'',
'- S_ISLNK(E->d_inode->i_mode)',
'+ d_is_symlink(E)',
'',
'@@',
'expression E;',
'@@',
'',
'- S_ISDIR(E->d_inode->i_mode)',
'+ d_is_dir(E)',
'',
'@@',
'expression E;',
'@@',
'',
'- S_ISREG(E->d_inode->i_mode)',
'+ d_is_reg(E)' );
my $coccifile = "tmp.sp.cocci";
open($fd, ">$coccifile") || die $coccifile;
print($fd "$_\n") || die $coccifile foreach (@cocci);
close($fd);
foreach my $file (@callers) {
chomp $file;
print "Processing ", $file, "\n";
system("spatch", "--sp-file", $coccifile, $file, "--in-place", "--no-show-diff") == 0 ||
die "spatch failed";
}
[AV: overlayfs parts skipped]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-01-29 12:02:35 +00:00
|
|
|
else if (d_is_reg(dentry)
|
2007-07-19 08:47:54 +00:00
|
|
|
&& (!(crypt_stat->flags & ECRYPTFS_POLICY_APPLIED)
|
|
|
|
|| !(crypt_stat->flags & ECRYPTFS_KEY_VALID))) {
|
2007-06-27 21:09:44 +00:00
|
|
|
struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
|
|
|
|
|
|
|
|
mount_crypt_stat = &ecryptfs_superblock_to_private(
|
|
|
|
dentry->d_sb)->mount_crypt_stat;
|
2011-05-24 08:49:02 +00:00
|
|
|
rc = ecryptfs_get_lower_file(dentry, inode);
|
eCryptfs: Add reference counting to lower files
For any given lower inode, eCryptfs keeps only one lower file open and
multiplexes all eCryptfs file operations through that lower file. The
lower file was considered "persistent" and stayed open from the first
lookup through the lifetime of the inode.
This patch keeps the notion of a single, per-inode lower file, but adds
reference counting around the lower file so that it is closed when not
currently in use. If the reference count is at 0 when an operation (such
as open, create, etc.) needs to use the lower file, a new lower file is
opened. Since the file is no longer persistent, all references to the
term persistent file are changed to lower file.
Locking is added around the sections of code that opens the lower file
and assign the pointer in the inode info, as well as the code the fputs
the lower file when all eCryptfs users are done with it.
This patch is needed to fix issues, when mounted on top of the NFSv3
client, where the lower file is left silly renamed until the eCryptfs
inode is destroyed.
Signed-off-by: Tyler Hicks <tyhicks@linux.vnet.ibm.com>
2011-04-14 20:35:11 +00:00
|
|
|
if (rc) {
|
|
|
|
mutex_unlock(&crypt_stat->cs_mutex);
|
|
|
|
goto out;
|
|
|
|
}
|
2007-10-16 08:28:10 +00:00
|
|
|
rc = ecryptfs_read_metadata(dentry);
|
eCryptfs: Add reference counting to lower files
For any given lower inode, eCryptfs keeps only one lower file open and
multiplexes all eCryptfs file operations through that lower file. The
lower file was considered "persistent" and stayed open from the first
lookup through the lifetime of the inode.
This patch keeps the notion of a single, per-inode lower file, but adds
reference counting around the lower file so that it is closed when not
currently in use. If the reference count is at 0 when an operation (such
as open, create, etc.) needs to use the lower file, a new lower file is
opened. Since the file is no longer persistent, all references to the
term persistent file are changed to lower file.
Locking is added around the sections of code that opens the lower file
and assign the pointer in the inode info, as well as the code the fputs
the lower file when all eCryptfs users are done with it.
This patch is needed to fix issues, when mounted on top of the NFSv3
client, where the lower file is left silly renamed until the eCryptfs
inode is destroyed.
Signed-off-by: Tyler Hicks <tyhicks@linux.vnet.ibm.com>
2011-04-14 20:35:11 +00:00
|
|
|
ecryptfs_put_lower_file(inode);
|
2007-10-16 08:28:06 +00:00
|
|
|
if (rc) {
|
2007-06-27 21:09:44 +00:00
|
|
|
if (!(mount_crypt_stat->flags
|
|
|
|
& ECRYPTFS_PLAINTEXT_PASSTHROUGH_ENABLED)) {
|
|
|
|
rc = -EIO;
|
2008-02-06 09:38:35 +00:00
|
|
|
printk(KERN_WARNING "Either the lower file "
|
2007-06-27 21:09:44 +00:00
|
|
|
"is not in a valid eCryptfs format, "
|
2008-02-06 09:38:35 +00:00
|
|
|
"or the key could not be retrieved. "
|
|
|
|
"Plaintext passthrough mode is not "
|
2007-06-27 21:09:44 +00:00
|
|
|
"enabled; returning -EIO\n");
|
|
|
|
mutex_unlock(&crypt_stat->cs_mutex);
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
rc = 0;
|
2011-03-15 19:54:00 +00:00
|
|
|
crypt_stat->flags &= ~(ECRYPTFS_I_SIZE_INITIALIZED
|
|
|
|
| ECRYPTFS_ENCRYPTED);
|
2007-06-27 21:09:44 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
mutex_unlock(&crypt_stat->cs_mutex);
|
eCryptfs: Check inode changes in setattr
Most filesystems call inode_change_ok() very early in ->setattr(), but
eCryptfs didn't call it at all. It allowed the lower filesystem to make
the call in its ->setattr() function. Then, eCryptfs would copy the
appropriate inode attributes from the lower inode to the eCryptfs inode.
This patch changes that and actually calls inode_change_ok() on the
eCryptfs inode, fairly early in ecryptfs_setattr(). Ideally, the call
would happen earlier in ecryptfs_setattr(), but there are some possible
inode initialization steps that must happen first.
Since the call was already being made on the lower inode, the change in
functionality should be minimal, except for the case of a file extending
truncate call. In that case, inode_newsize_ok() was never being
called on the eCryptfs inode. Rather than inode_newsize_ok() catching
maximum file size errors early on, eCryptfs would encrypt zeroed pages
and write them to the lower filesystem until the lower filesystem's
write path caught the error in generic_write_checks(). This patch
introduces a new function, called ecryptfs_inode_newsize_ok(), which
checks if the new lower file size is within the appropriate limits when
the truncate operation will be growing the lower file.
In summary this change prevents eCryptfs truncate operations (and the
resulting page encryptions), which would exceed the lower filesystem
limits or FSIZE rlimits, from ever starting.
Signed-off-by: Tyler Hicks <tyhicks@canonical.com>
Reviewed-by: Li Wang <liwang@nudt.edu.cn>
Cc: <stable@vger.kernel.org>
2012-01-20 02:33:44 +00:00
|
|
|
|
2016-05-26 14:55:18 +00:00
|
|
|
rc = setattr_prepare(dentry, ia);
|
eCryptfs: Check inode changes in setattr
Most filesystems call inode_change_ok() very early in ->setattr(), but
eCryptfs didn't call it at all. It allowed the lower filesystem to make
the call in its ->setattr() function. Then, eCryptfs would copy the
appropriate inode attributes from the lower inode to the eCryptfs inode.
This patch changes that and actually calls inode_change_ok() on the
eCryptfs inode, fairly early in ecryptfs_setattr(). Ideally, the call
would happen earlier in ecryptfs_setattr(), but there are some possible
inode initialization steps that must happen first.
Since the call was already being made on the lower inode, the change in
functionality should be minimal, except for the case of a file extending
truncate call. In that case, inode_newsize_ok() was never being
called on the eCryptfs inode. Rather than inode_newsize_ok() catching
maximum file size errors early on, eCryptfs would encrypt zeroed pages
and write them to the lower filesystem until the lower filesystem's
write path caught the error in generic_write_checks(). This patch
introduces a new function, called ecryptfs_inode_newsize_ok(), which
checks if the new lower file size is within the appropriate limits when
the truncate operation will be growing the lower file.
In summary this change prevents eCryptfs truncate operations (and the
resulting page encryptions), which would exceed the lower filesystem
limits or FSIZE rlimits, from ever starting.
Signed-off-by: Tyler Hicks <tyhicks@canonical.com>
Reviewed-by: Li Wang <liwang@nudt.edu.cn>
Cc: <stable@vger.kernel.org>
2012-01-20 02:33:44 +00:00
|
|
|
if (rc)
|
|
|
|
goto out;
|
|
|
|
if (ia->ia_valid & ATTR_SIZE) {
|
|
|
|
rc = ecryptfs_inode_newsize_ok(inode, ia->ia_size);
|
|
|
|
if (rc)
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
2009-10-14 21:18:27 +00:00
|
|
|
memcpy(&lower_ia, ia, sizeof(lower_ia));
|
|
|
|
if (ia->ia_valid & ATTR_FILE)
|
|
|
|
lower_ia.ia_file = ecryptfs_file_to_lower(ia->ia_file);
|
2006-10-04 09:16:22 +00:00
|
|
|
if (ia->ia_valid & ATTR_SIZE) {
|
2009-10-14 21:18:27 +00:00
|
|
|
rc = truncate_upper(dentry, ia, &lower_ia);
|
2006-10-04 09:16:22 +00:00
|
|
|
if (rc < 0)
|
|
|
|
goto out;
|
|
|
|
}
|
2007-10-18 10:05:17 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* mode change is for clearing setuid/setgid bits. Allow lower fs
|
|
|
|
* to interpret this in its own way.
|
|
|
|
*/
|
2009-10-14 21:18:27 +00:00
|
|
|
if (lower_ia.ia_valid & (ATTR_KILL_SUID | ATTR_KILL_SGID))
|
|
|
|
lower_ia.ia_valid &= ~ATTR_MODE;
|
2007-10-18 10:05:17 +00:00
|
|
|
|
2016-01-22 20:40:57 +00:00
|
|
|
inode_lock(d_inode(lower_dentry));
|
2011-09-20 21:19:26 +00:00
|
|
|
rc = notify_change(lower_dentry, &lower_ia, NULL);
|
2016-01-22 20:40:57 +00:00
|
|
|
inode_unlock(d_inode(lower_dentry));
|
2006-10-04 09:16:22 +00:00
|
|
|
out:
|
2009-12-03 00:51:54 +00:00
|
|
|
fsstack_copy_attr_all(inode, lower_inode);
|
2006-10-04 09:16:22 +00:00
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
2013-01-17 20:19:35 +00:00
|
|
|
static int ecryptfs_getattr_link(struct vfsmount *mnt, struct dentry *dentry,
|
|
|
|
struct kstat *stat)
|
2010-03-22 05:41:35 +00:00
|
|
|
{
|
|
|
|
struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
|
|
|
|
int rc = 0;
|
|
|
|
|
|
|
|
mount_crypt_stat = &ecryptfs_superblock_to_private(
|
|
|
|
dentry->d_sb)->mount_crypt_stat;
|
2015-03-17 22:25:59 +00:00
|
|
|
generic_fillattr(d_inode(dentry), stat);
|
2010-03-22 05:41:35 +00:00
|
|
|
if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
|
|
|
|
char *target;
|
|
|
|
size_t targetsiz;
|
|
|
|
|
2013-11-30 03:51:47 +00:00
|
|
|
target = ecryptfs_readlink_lower(dentry, &targetsiz);
|
|
|
|
if (!IS_ERR(target)) {
|
2010-03-22 05:41:35 +00:00
|
|
|
kfree(target);
|
|
|
|
stat->size = targetsiz;
|
2013-11-30 03:51:47 +00:00
|
|
|
} else {
|
|
|
|
rc = PTR_ERR(target);
|
2010-03-22 05:41:35 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
2013-01-17 20:19:35 +00:00
|
|
|
static int ecryptfs_getattr(struct vfsmount *mnt, struct dentry *dentry,
|
|
|
|
struct kstat *stat)
|
2009-11-04 08:48:01 +00:00
|
|
|
{
|
|
|
|
struct kstat lower_stat;
|
|
|
|
int rc;
|
|
|
|
|
2013-01-24 07:18:08 +00:00
|
|
|
rc = vfs_getattr(ecryptfs_dentry_to_lower_path(dentry), &lower_stat);
|
2009-11-04 08:48:01 +00:00
|
|
|
if (!rc) {
|
2015-03-17 22:25:59 +00:00
|
|
|
fsstack_copy_attr_all(d_inode(dentry),
|
|
|
|
ecryptfs_inode_to_lower(d_inode(dentry)));
|
|
|
|
generic_fillattr(d_inode(dentry), stat);
|
2009-11-04 08:48:01 +00:00
|
|
|
stat->blocks = lower_stat.blocks;
|
|
|
|
}
|
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
2007-02-12 08:53:46 +00:00
|
|
|
int
|
2016-05-27 15:06:05 +00:00
|
|
|
ecryptfs_setxattr(struct dentry *dentry, struct inode *inode,
|
|
|
|
const char *name, const void *value,
|
2006-10-04 09:16:22 +00:00
|
|
|
size_t size, int flags)
|
|
|
|
{
|
2016-09-29 15:48:42 +00:00
|
|
|
int rc;
|
2006-10-04 09:16:22 +00:00
|
|
|
struct dentry *lower_dentry;
|
|
|
|
|
|
|
|
lower_dentry = ecryptfs_dentry_to_lower(dentry);
|
2016-09-29 15:48:42 +00:00
|
|
|
if (!(d_inode(lower_dentry)->i_opflags & IOP_XATTR)) {
|
2010-03-23 16:51:38 +00:00
|
|
|
rc = -EOPNOTSUPP;
|
2006-10-04 09:16:22 +00:00
|
|
|
goto out;
|
|
|
|
}
|
2010-10-05 16:53:45 +00:00
|
|
|
rc = vfs_setxattr(lower_dentry, name, value, size, flags);
|
2016-05-27 15:06:05 +00:00
|
|
|
if (!rc && inode)
|
|
|
|
fsstack_copy_attr_all(inode, d_inode(lower_dentry));
|
2006-10-04 09:16:22 +00:00
|
|
|
out:
|
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
2007-10-16 08:28:10 +00:00
|
|
|
ssize_t
|
2016-04-11 04:48:00 +00:00
|
|
|
ecryptfs_getxattr_lower(struct dentry *lower_dentry, struct inode *lower_inode,
|
|
|
|
const char *name, void *value, size_t size)
|
2007-10-16 08:28:10 +00:00
|
|
|
{
|
2016-09-29 15:48:42 +00:00
|
|
|
int rc;
|
2007-10-16 08:28:10 +00:00
|
|
|
|
2016-09-29 15:48:42 +00:00
|
|
|
if (!(lower_inode->i_opflags & IOP_XATTR)) {
|
2010-03-23 16:51:38 +00:00
|
|
|
rc = -EOPNOTSUPP;
|
2007-10-16 08:28:10 +00:00
|
|
|
goto out;
|
|
|
|
}
|
2016-04-11 04:48:00 +00:00
|
|
|
inode_lock(lower_inode);
|
2016-09-29 15:48:42 +00:00
|
|
|
rc = __vfs_getxattr(lower_dentry, lower_inode, name, value, size);
|
2016-04-11 04:48:00 +00:00
|
|
|
inode_unlock(lower_inode);
|
2007-10-16 08:28:10 +00:00
|
|
|
out:
|
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
2008-02-06 09:38:32 +00:00
|
|
|
static ssize_t
|
2016-04-11 04:48:00 +00:00
|
|
|
ecryptfs_getxattr(struct dentry *dentry, struct inode *inode,
|
|
|
|
const char *name, void *value, size_t size)
|
2006-10-04 09:16:22 +00:00
|
|
|
{
|
2016-04-11 04:48:00 +00:00
|
|
|
return ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
|
|
|
|
ecryptfs_inode_to_lower(inode),
|
|
|
|
name, value, size);
|
2006-10-04 09:16:22 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static ssize_t
|
|
|
|
ecryptfs_listxattr(struct dentry *dentry, char *list, size_t size)
|
|
|
|
{
|
|
|
|
int rc = 0;
|
|
|
|
struct dentry *lower_dentry;
|
|
|
|
|
|
|
|
lower_dentry = ecryptfs_dentry_to_lower(dentry);
|
2015-03-17 22:25:59 +00:00
|
|
|
if (!d_inode(lower_dentry)->i_op->listxattr) {
|
2010-03-23 16:51:38 +00:00
|
|
|
rc = -EOPNOTSUPP;
|
2006-10-04 09:16:22 +00:00
|
|
|
goto out;
|
|
|
|
}
|
2016-01-22 20:40:57 +00:00
|
|
|
inode_lock(d_inode(lower_dentry));
|
2015-03-17 22:25:59 +00:00
|
|
|
rc = d_inode(lower_dentry)->i_op->listxattr(lower_dentry, list, size);
|
2016-01-22 20:40:57 +00:00
|
|
|
inode_unlock(d_inode(lower_dentry));
|
2006-10-04 09:16:22 +00:00
|
|
|
out:
|
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
2016-09-29 15:48:36 +00:00
|
|
|
static int ecryptfs_removexattr(struct dentry *dentry, struct inode *inode,
|
|
|
|
const char *name)
|
2006-10-04 09:16:22 +00:00
|
|
|
{
|
2016-09-29 15:48:42 +00:00
|
|
|
int rc;
|
2006-10-04 09:16:22 +00:00
|
|
|
struct dentry *lower_dentry;
|
2016-09-29 15:48:36 +00:00
|
|
|
struct inode *lower_inode;
|
2006-10-04 09:16:22 +00:00
|
|
|
|
|
|
|
lower_dentry = ecryptfs_dentry_to_lower(dentry);
|
2016-09-29 15:48:36 +00:00
|
|
|
lower_inode = ecryptfs_inode_to_lower(inode);
|
2016-09-29 15:48:42 +00:00
|
|
|
if (!(lower_inode->i_opflags & IOP_XATTR)) {
|
2010-03-23 16:51:38 +00:00
|
|
|
rc = -EOPNOTSUPP;
|
2006-10-04 09:16:22 +00:00
|
|
|
goto out;
|
|
|
|
}
|
2016-09-29 15:48:36 +00:00
|
|
|
inode_lock(lower_inode);
|
2016-09-29 15:48:42 +00:00
|
|
|
rc = __vfs_removexattr(lower_dentry, name);
|
2016-09-29 15:48:36 +00:00
|
|
|
inode_unlock(lower_inode);
|
2006-10-04 09:16:22 +00:00
|
|
|
out:
|
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
2007-02-12 08:55:38 +00:00
|
|
|
const struct inode_operations ecryptfs_symlink_iops = {
|
2012-05-03 13:34:20 +00:00
|
|
|
.readlink = generic_readlink,
|
2015-11-17 15:20:54 +00:00
|
|
|
.get_link = ecryptfs_get_link,
|
2006-10-04 09:16:22 +00:00
|
|
|
.permission = ecryptfs_permission,
|
|
|
|
.setattr = ecryptfs_setattr,
|
2010-03-22 05:41:35 +00:00
|
|
|
.getattr = ecryptfs_getattr_link,
|
2006-10-04 09:16:22 +00:00
|
|
|
.listxattr = ecryptfs_listxattr,
|
|
|
|
};
|
|
|
|
|
2007-02-12 08:55:38 +00:00
|
|
|
const struct inode_operations ecryptfs_dir_iops = {
|
2006-10-04 09:16:22 +00:00
|
|
|
.create = ecryptfs_create,
|
|
|
|
.lookup = ecryptfs_lookup,
|
|
|
|
.link = ecryptfs_link,
|
|
|
|
.unlink = ecryptfs_unlink,
|
|
|
|
.symlink = ecryptfs_symlink,
|
|
|
|
.mkdir = ecryptfs_mkdir,
|
|
|
|
.rmdir = ecryptfs_rmdir,
|
|
|
|
.mknod = ecryptfs_mknod,
|
|
|
|
.rename = ecryptfs_rename,
|
|
|
|
.permission = ecryptfs_permission,
|
|
|
|
.setattr = ecryptfs_setattr,
|
|
|
|
.listxattr = ecryptfs_listxattr,
|
|
|
|
};
|
|
|
|
|
2007-02-12 08:55:38 +00:00
|
|
|
const struct inode_operations ecryptfs_main_iops = {
|
2006-10-04 09:16:22 +00:00
|
|
|
.permission = ecryptfs_permission,
|
|
|
|
.setattr = ecryptfs_setattr,
|
2009-11-04 08:48:01 +00:00
|
|
|
.getattr = ecryptfs_getattr,
|
2006-10-04 09:16:22 +00:00
|
|
|
.listxattr = ecryptfs_listxattr,
|
2016-09-29 15:48:36 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
static int ecryptfs_xattr_get(const struct xattr_handler *handler,
|
|
|
|
struct dentry *dentry, struct inode *inode,
|
|
|
|
const char *name, void *buffer, size_t size)
|
|
|
|
{
|
|
|
|
return ecryptfs_getxattr(dentry, inode, name, buffer, size);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int ecryptfs_xattr_set(const struct xattr_handler *handler,
|
|
|
|
struct dentry *dentry, struct inode *inode,
|
|
|
|
const char *name, const void *value, size_t size,
|
|
|
|
int flags)
|
|
|
|
{
|
|
|
|
if (value)
|
|
|
|
return ecryptfs_setxattr(dentry, inode, name, value, size, flags);
|
|
|
|
else {
|
|
|
|
BUG_ON(flags != XATTR_REPLACE);
|
|
|
|
return ecryptfs_removexattr(dentry, inode, name);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
const struct xattr_handler ecryptfs_xattr_handler = {
|
|
|
|
.prefix = "", /* match anything */
|
|
|
|
.get = ecryptfs_xattr_get,
|
|
|
|
.set = ecryptfs_xattr_set,
|
|
|
|
};
|
|
|
|
|
|
|
|
const struct xattr_handler *ecryptfs_xattr_handlers[] = {
|
|
|
|
&ecryptfs_xattr_handler,
|
|
|
|
NULL
|
2006-10-04 09:16:22 +00:00
|
|
|
};
|