linux/drivers/s390/crypto/zcrypt_api.c

1491 lines
39 KiB
C
Raw Normal View History

/*
* zcrypt 2.1.0
*
* Copyright IBM Corp. 2001, 2012
* Author(s): Robert Burroughs
* Eric Rossman (edrossma@us.ibm.com)
* Cornelia Huck <cornelia.huck@de.ibm.com>
*
* Hotplug & misc device support: Jochen Roehrig (roehrig@de.ibm.com)
* Major cleanup & driver split: Martin Schwidefsky <schwidefsky@de.ibm.com>
* Ralph Wuerthner <rwuerthn@de.ibm.com>
* MSGTYPE restruct: Holger Dengler <hd@linux.vnet.ibm.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/miscdevice.h>
#include <linux/fs.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/compat.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <linux/atomic.h>
#include <asm/uaccess.h>
#include <linux/hw_random.h>
#include <linux/debugfs.h>
#include <asm/debug.h>
#include "zcrypt_debug.h"
#include "zcrypt_api.h"
#include "zcrypt_msgtype6.h"
/*
* Module description.
*/
MODULE_AUTHOR("IBM Corporation");
MODULE_DESCRIPTION("Cryptographic Coprocessor interface, " \
"Copyright IBM Corp. 2001, 2012");
MODULE_LICENSE("GPL");
static DEFINE_SPINLOCK(zcrypt_device_lock);
static LIST_HEAD(zcrypt_device_list);
static int zcrypt_device_count = 0;
static atomic_t zcrypt_open_count = ATOMIC_INIT(0);
static atomic_t zcrypt_rescan_count = ATOMIC_INIT(0);
atomic_t zcrypt_rescan_req = ATOMIC_INIT(0);
EXPORT_SYMBOL(zcrypt_rescan_req);
static int zcrypt_rng_device_add(void);
static void zcrypt_rng_device_remove(void);
static DEFINE_SPINLOCK(zcrypt_ops_list_lock);
static LIST_HEAD(zcrypt_ops_list);
static debug_info_t *zcrypt_dbf_common;
static debug_info_t *zcrypt_dbf_devices;
static struct dentry *debugfs_root;
/*
* Device attributes common for all crypto devices.
*/
static ssize_t zcrypt_type_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct zcrypt_device *zdev = to_ap_dev(dev)->private;
return snprintf(buf, PAGE_SIZE, "%s\n", zdev->type_string);
}
static DEVICE_ATTR(type, 0444, zcrypt_type_show, NULL);
static ssize_t zcrypt_online_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct zcrypt_device *zdev = to_ap_dev(dev)->private;
return snprintf(buf, PAGE_SIZE, "%d\n", zdev->online);
}
static ssize_t zcrypt_online_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct zcrypt_device *zdev = to_ap_dev(dev)->private;
int online;
if (sscanf(buf, "%d\n", &online) != 1 || online < 0 || online > 1)
return -EINVAL;
zdev->online = online;
ZCRYPT_DBF_DEV(DBF_INFO, zdev, "dev%04xo%dman", zdev->ap_dev->qid,
zdev->online);
if (!online)
ap_flush_queue(zdev->ap_dev);
return count;
}
static DEVICE_ATTR(online, 0644, zcrypt_online_show, zcrypt_online_store);
static struct attribute * zcrypt_device_attrs[] = {
&dev_attr_type.attr,
&dev_attr_online.attr,
NULL,
};
static struct attribute_group zcrypt_device_attr_group = {
.attrs = zcrypt_device_attrs,
};
/**
* Process a rescan of the transport layer.
*
* Returns 1, if the rescan has been processed, otherwise 0.
*/
static inline int zcrypt_process_rescan(void)
{
if (atomic_read(&zcrypt_rescan_req)) {
atomic_set(&zcrypt_rescan_req, 0);
atomic_inc(&zcrypt_rescan_count);
ap_bus_force_rescan();
ZCRYPT_DBF_COMMON(DBF_INFO, "rescan%07d",
atomic_inc_return(&zcrypt_rescan_count));
return 1;
}
return 0;
}
/**
* __zcrypt_increase_preference(): Increase preference of a crypto device.
* @zdev: Pointer the crypto device
*
* Move the device towards the head of the device list.
* Need to be called while holding the zcrypt device list lock.
* Note: cards with speed_rating of 0 are kept at the end of the list.
*/
static void __zcrypt_increase_preference(struct zcrypt_device *zdev)
{
struct zcrypt_device *tmp;
struct list_head *l;
if (zdev->speed_rating == 0)
return;
for (l = zdev->list.prev; l != &zcrypt_device_list; l = l->prev) {
tmp = list_entry(l, struct zcrypt_device, list);
if ((tmp->request_count + 1) * tmp->speed_rating <=
(zdev->request_count + 1) * zdev->speed_rating &&
tmp->speed_rating != 0)
break;
}
if (l == zdev->list.prev)
return;
/* Move zdev behind l */
list_move(&zdev->list, l);
}
/**
* __zcrypt_decrease_preference(): Decrease preference of a crypto device.
* @zdev: Pointer to a crypto device.
*
* Move the device towards the tail of the device list.
* Need to be called while holding the zcrypt device list lock.
* Note: cards with speed_rating of 0 are kept at the end of the list.
*/
static void __zcrypt_decrease_preference(struct zcrypt_device *zdev)
{
struct zcrypt_device *tmp;
struct list_head *l;
if (zdev->speed_rating == 0)
return;
for (l = zdev->list.next; l != &zcrypt_device_list; l = l->next) {
tmp = list_entry(l, struct zcrypt_device, list);
if ((tmp->request_count + 1) * tmp->speed_rating >
(zdev->request_count + 1) * zdev->speed_rating ||
tmp->speed_rating == 0)
break;
}
if (l == zdev->list.next)
return;
/* Move zdev before l */
list_move_tail(&zdev->list, l);
}
static void zcrypt_device_release(struct kref *kref)
{
struct zcrypt_device *zdev =
container_of(kref, struct zcrypt_device, refcount);
zcrypt_device_free(zdev);
}
void zcrypt_device_get(struct zcrypt_device *zdev)
{
kref_get(&zdev->refcount);
}
EXPORT_SYMBOL(zcrypt_device_get);
int zcrypt_device_put(struct zcrypt_device *zdev)
{
return kref_put(&zdev->refcount, zcrypt_device_release);
}
EXPORT_SYMBOL(zcrypt_device_put);
struct zcrypt_device *zcrypt_device_alloc(size_t max_response_size)
{
struct zcrypt_device *zdev;
zdev = kzalloc(sizeof(struct zcrypt_device), GFP_KERNEL);
if (!zdev)
return NULL;
zdev->reply.message = kmalloc(max_response_size, GFP_KERNEL);
if (!zdev->reply.message)
goto out_free;
zdev->reply.length = max_response_size;
spin_lock_init(&zdev->lock);
INIT_LIST_HEAD(&zdev->list);
zdev->dbf_area = zcrypt_dbf_devices;
return zdev;
out_free:
kfree(zdev);
return NULL;
}
EXPORT_SYMBOL(zcrypt_device_alloc);
void zcrypt_device_free(struct zcrypt_device *zdev)
{
kfree(zdev->reply.message);
kfree(zdev);
}
EXPORT_SYMBOL(zcrypt_device_free);
/**
* zcrypt_device_register() - Register a crypto device.
* @zdev: Pointer to a crypto device
*
* Register a crypto device. Returns 0 if successful.
*/
int zcrypt_device_register(struct zcrypt_device *zdev)
{
int rc;
if (!zdev->ops)
return -ENODEV;
rc = sysfs_create_group(&zdev->ap_dev->device.kobj,
&zcrypt_device_attr_group);
if (rc)
goto out;
get_device(&zdev->ap_dev->device);
kref_init(&zdev->refcount);
spin_lock_bh(&zcrypt_device_lock);
zdev->online = 1; /* New devices are online by default. */
ZCRYPT_DBF_DEV(DBF_INFO, zdev, "dev%04xo%dreg", zdev->ap_dev->qid,
zdev->online);
list_add_tail(&zdev->list, &zcrypt_device_list);
__zcrypt_increase_preference(zdev);
zcrypt_device_count++;
spin_unlock_bh(&zcrypt_device_lock);
if (zdev->ops->rng) {
rc = zcrypt_rng_device_add();
if (rc)
goto out_unregister;
}
return 0;
out_unregister:
spin_lock_bh(&zcrypt_device_lock);
zcrypt_device_count--;
list_del_init(&zdev->list);
spin_unlock_bh(&zcrypt_device_lock);
sysfs_remove_group(&zdev->ap_dev->device.kobj,
&zcrypt_device_attr_group);
put_device(&zdev->ap_dev->device);
zcrypt_device_put(zdev);
out:
return rc;
}
EXPORT_SYMBOL(zcrypt_device_register);
/**
* zcrypt_device_unregister(): Unregister a crypto device.
* @zdev: Pointer to crypto device
*
* Unregister a crypto device.
*/
void zcrypt_device_unregister(struct zcrypt_device *zdev)
{
if (zdev->ops->rng)
zcrypt_rng_device_remove();
spin_lock_bh(&zcrypt_device_lock);
zcrypt_device_count--;
list_del_init(&zdev->list);
spin_unlock_bh(&zcrypt_device_lock);
sysfs_remove_group(&zdev->ap_dev->device.kobj,
&zcrypt_device_attr_group);
put_device(&zdev->ap_dev->device);
zcrypt_device_put(zdev);
}
EXPORT_SYMBOL(zcrypt_device_unregister);
void zcrypt_msgtype_register(struct zcrypt_ops *zops)
{
if (zops->owner) {
spin_lock_bh(&zcrypt_ops_list_lock);
list_add_tail(&zops->list, &zcrypt_ops_list);
spin_unlock_bh(&zcrypt_ops_list_lock);
}
}
EXPORT_SYMBOL(zcrypt_msgtype_register);
void zcrypt_msgtype_unregister(struct zcrypt_ops *zops)
{
spin_lock_bh(&zcrypt_ops_list_lock);
list_del_init(&zops->list);
spin_unlock_bh(&zcrypt_ops_list_lock);
}
EXPORT_SYMBOL(zcrypt_msgtype_unregister);
static inline
struct zcrypt_ops *__ops_lookup(unsigned char *name, int variant)
{
struct zcrypt_ops *zops;
int found = 0;
spin_lock_bh(&zcrypt_ops_list_lock);
list_for_each_entry(zops, &zcrypt_ops_list, list) {
if ((zops->variant == variant) &&
(!strncmp(zops->owner->name, name, MODULE_NAME_LEN))) {
found = 1;
break;
}
}
spin_unlock_bh(&zcrypt_ops_list_lock);
if (!found)
return NULL;
return zops;
}
struct zcrypt_ops *zcrypt_msgtype_request(unsigned char *name, int variant)
{
struct zcrypt_ops *zops = NULL;
zops = __ops_lookup(name, variant);
if (!zops) {
request_module("%s", name);
zops = __ops_lookup(name, variant);
}
if ((!zops) || (!try_module_get(zops->owner)))
return NULL;
return zops;
}
EXPORT_SYMBOL(zcrypt_msgtype_request);
void zcrypt_msgtype_release(struct zcrypt_ops *zops)
{
if (zops)
module_put(zops->owner);
}
EXPORT_SYMBOL(zcrypt_msgtype_release);
/**
* zcrypt_read (): Not supported beyond zcrypt 1.3.1.
*
* This function is not supported beyond zcrypt 1.3.1.
*/
static ssize_t zcrypt_read(struct file *filp, char __user *buf,
size_t count, loff_t *f_pos)
{
return -EPERM;
}
/**
* zcrypt_write(): Not allowed.
*
* Write is is not allowed
*/
static ssize_t zcrypt_write(struct file *filp, const char __user *buf,
size_t count, loff_t *f_pos)
{
return -EPERM;
}
/**
* zcrypt_open(): Count number of users.
*
* Device open function to count number of users.
*/
static int zcrypt_open(struct inode *inode, struct file *filp)
{
atomic_inc(&zcrypt_open_count);
return nonseekable_open(inode, filp);
}
/**
* zcrypt_release(): Count number of users.
*
* Device close function to count number of users.
*/
static int zcrypt_release(struct inode *inode, struct file *filp)
{
atomic_dec(&zcrypt_open_count);
return 0;
}
/*
* zcrypt ioctls.
*/
static long zcrypt_rsa_modexpo(struct ica_rsa_modexpo *mex)
{
struct zcrypt_device *zdev;
int rc;
if (mex->outputdatalength < mex->inputdatalength)
return -EINVAL;
/*
* As long as outputdatalength is big enough, we can set the
* outputdatalength equal to the inputdatalength, since that is the
* number of bytes we will copy in any case
*/
mex->outputdatalength = mex->inputdatalength;
spin_lock_bh(&zcrypt_device_lock);
list_for_each_entry(zdev, &zcrypt_device_list, list) {
if (!zdev->online ||
!zdev->ops->rsa_modexpo ||
zdev->min_mod_size > mex->inputdatalength ||
zdev->max_mod_size < mex->inputdatalength)
continue;
zcrypt_device_get(zdev);
get_device(&zdev->ap_dev->device);
zdev->request_count++;
__zcrypt_decrease_preference(zdev);
if (try_module_get(zdev->ap_dev->drv->driver.owner)) {
spin_unlock_bh(&zcrypt_device_lock);
rc = zdev->ops->rsa_modexpo(zdev, mex);
spin_lock_bh(&zcrypt_device_lock);
module_put(zdev->ap_dev->drv->driver.owner);
}
else
rc = -EAGAIN;
zdev->request_count--;
__zcrypt_increase_preference(zdev);
put_device(&zdev->ap_dev->device);
zcrypt_device_put(zdev);
spin_unlock_bh(&zcrypt_device_lock);
return rc;
}
spin_unlock_bh(&zcrypt_device_lock);
return -ENODEV;
}
static long zcrypt_rsa_crt(struct ica_rsa_modexpo_crt *crt)
{
struct zcrypt_device *zdev;
unsigned long long z1, z2, z3;
int rc, copied;
if (crt->outputdatalength < crt->inputdatalength ||
(crt->inputdatalength & 1))
return -EINVAL;
/*
* As long as outputdatalength is big enough, we can set the
* outputdatalength equal to the inputdatalength, since that is the
* number of bytes we will copy in any case
*/
crt->outputdatalength = crt->inputdatalength;
copied = 0;
restart:
spin_lock_bh(&zcrypt_device_lock);
list_for_each_entry(zdev, &zcrypt_device_list, list) {
if (!zdev->online ||
!zdev->ops->rsa_modexpo_crt ||
zdev->min_mod_size > crt->inputdatalength ||
zdev->max_mod_size < crt->inputdatalength)
continue;
if (zdev->short_crt && crt->inputdatalength > 240) {
/*
* Check inputdata for leading zeros for cards
* that can't handle np_prime, bp_key, or
* u_mult_inv > 128 bytes.
*/
if (copied == 0) {
unsigned int len;
spin_unlock_bh(&zcrypt_device_lock);
/* len is max 256 / 2 - 120 = 8
* For bigger device just assume len of leading
* 0s is 8 as stated in the requirements for
* ica_rsa_modexpo_crt struct in zcrypt.h.
*/
if (crt->inputdatalength <= 256)
len = crt->inputdatalength / 2 - 120;
else
len = 8;
if (len > sizeof(z1))
return -EFAULT;
z1 = z2 = z3 = 0;
if (copy_from_user(&z1, crt->np_prime, len) ||
copy_from_user(&z2, crt->bp_key, len) ||
copy_from_user(&z3, crt->u_mult_inv, len))
return -EFAULT;
z1 = z2 = z3 = 0;
copied = 1;
/*
* We have to restart device lookup -
* the device list may have changed by now.
*/
goto restart;
}
if (z1 != 0ULL || z2 != 0ULL || z3 != 0ULL)
/* The device can't handle this request. */
continue;
}
zcrypt_device_get(zdev);
get_device(&zdev->ap_dev->device);
zdev->request_count++;
__zcrypt_decrease_preference(zdev);
if (try_module_get(zdev->ap_dev->drv->driver.owner)) {
spin_unlock_bh(&zcrypt_device_lock);
rc = zdev->ops->rsa_modexpo_crt(zdev, crt);
spin_lock_bh(&zcrypt_device_lock);
module_put(zdev->ap_dev->drv->driver.owner);
}
else
rc = -EAGAIN;
zdev->request_count--;
__zcrypt_increase_preference(zdev);
put_device(&zdev->ap_dev->device);
zcrypt_device_put(zdev);
spin_unlock_bh(&zcrypt_device_lock);
return rc;
}
spin_unlock_bh(&zcrypt_device_lock);
return -ENODEV;
}
static long zcrypt_send_cprb(struct ica_xcRB *xcRB)
{
struct zcrypt_device *zdev;
int rc;
spin_lock_bh(&zcrypt_device_lock);
list_for_each_entry(zdev, &zcrypt_device_list, list) {
if (!zdev->online || !zdev->ops->send_cprb ||
(zdev->ops->variant == MSGTYPE06_VARIANT_EP11) ||
(xcRB->user_defined != AUTOSELECT &&
AP_QID_DEVICE(zdev->ap_dev->qid) != xcRB->user_defined))
continue;
zcrypt_device_get(zdev);
get_device(&zdev->ap_dev->device);
zdev->request_count++;
__zcrypt_decrease_preference(zdev);
if (try_module_get(zdev->ap_dev->drv->driver.owner)) {
spin_unlock_bh(&zcrypt_device_lock);
rc = zdev->ops->send_cprb(zdev, xcRB);
spin_lock_bh(&zcrypt_device_lock);
module_put(zdev->ap_dev->drv->driver.owner);
}
else
rc = -EAGAIN;
zdev->request_count--;
__zcrypt_increase_preference(zdev);
put_device(&zdev->ap_dev->device);
zcrypt_device_put(zdev);
spin_unlock_bh(&zcrypt_device_lock);
return rc;
}
spin_unlock_bh(&zcrypt_device_lock);
return -ENODEV;
}
struct ep11_target_dev_list {
unsigned short targets_num;
struct ep11_target_dev *targets;
};
static bool is_desired_ep11dev(unsigned int dev_qid,
struct ep11_target_dev_list dev_list)
{
int n;
for (n = 0; n < dev_list.targets_num; n++, dev_list.targets++) {
if ((AP_QID_DEVICE(dev_qid) == dev_list.targets->ap_id) &&
(AP_QID_QUEUE(dev_qid) == dev_list.targets->dom_id)) {
return true;
}
}
return false;
}
static long zcrypt_send_ep11_cprb(struct ep11_urb *xcrb)
{
struct zcrypt_device *zdev;
bool autoselect = false;
int rc;
struct ep11_target_dev_list ep11_dev_list = {
.targets_num = 0x00,
.targets = NULL,
};
ep11_dev_list.targets_num = (unsigned short) xcrb->targets_num;
/* empty list indicates autoselect (all available targets) */
if (ep11_dev_list.targets_num == 0)
autoselect = true;
else {
ep11_dev_list.targets = kcalloc((unsigned short)
xcrb->targets_num,
sizeof(struct ep11_target_dev),
GFP_KERNEL);
if (!ep11_dev_list.targets)
return -ENOMEM;
if (copy_from_user(ep11_dev_list.targets,
(struct ep11_target_dev __force __user *)
xcrb->targets, xcrb->targets_num *
sizeof(struct ep11_target_dev)))
return -EFAULT;
}
spin_lock_bh(&zcrypt_device_lock);
list_for_each_entry(zdev, &zcrypt_device_list, list) {
/* check if device is eligible */
if (!zdev->online ||
zdev->ops->variant != MSGTYPE06_VARIANT_EP11)
continue;
/* check if device is selected as valid target */
if (!is_desired_ep11dev(zdev->ap_dev->qid, ep11_dev_list) &&
!autoselect)
continue;
zcrypt_device_get(zdev);
get_device(&zdev->ap_dev->device);
zdev->request_count++;
__zcrypt_decrease_preference(zdev);
if (try_module_get(zdev->ap_dev->drv->driver.owner)) {
spin_unlock_bh(&zcrypt_device_lock);
rc = zdev->ops->send_ep11_cprb(zdev, xcrb);
spin_lock_bh(&zcrypt_device_lock);
module_put(zdev->ap_dev->drv->driver.owner);
} else {
rc = -EAGAIN;
}
zdev->request_count--;
__zcrypt_increase_preference(zdev);
put_device(&zdev->ap_dev->device);
zcrypt_device_put(zdev);
spin_unlock_bh(&zcrypt_device_lock);
return rc;
}
spin_unlock_bh(&zcrypt_device_lock);
return -ENODEV;
}
static long zcrypt_rng(char *buffer)
{
struct zcrypt_device *zdev;
int rc;
spin_lock_bh(&zcrypt_device_lock);
list_for_each_entry(zdev, &zcrypt_device_list, list) {
if (!zdev->online || !zdev->ops->rng)
continue;
zcrypt_device_get(zdev);
get_device(&zdev->ap_dev->device);
zdev->request_count++;
__zcrypt_decrease_preference(zdev);
if (try_module_get(zdev->ap_dev->drv->driver.owner)) {
spin_unlock_bh(&zcrypt_device_lock);
rc = zdev->ops->rng(zdev, buffer);
spin_lock_bh(&zcrypt_device_lock);
module_put(zdev->ap_dev->drv->driver.owner);
} else
rc = -EAGAIN;
zdev->request_count--;
__zcrypt_increase_preference(zdev);
put_device(&zdev->ap_dev->device);
zcrypt_device_put(zdev);
spin_unlock_bh(&zcrypt_device_lock);
return rc;
}
spin_unlock_bh(&zcrypt_device_lock);
return -ENODEV;
}
static void zcrypt_status_mask(char status[AP_DEVICES])
{
struct zcrypt_device *zdev;
memset(status, 0, sizeof(char) * AP_DEVICES);
spin_lock_bh(&zcrypt_device_lock);
list_for_each_entry(zdev, &zcrypt_device_list, list)
status[AP_QID_DEVICE(zdev->ap_dev->qid)] =
zdev->online ? zdev->user_space_type : 0x0d;
spin_unlock_bh(&zcrypt_device_lock);
}
static void zcrypt_qdepth_mask(char qdepth[AP_DEVICES])
{
struct zcrypt_device *zdev;
memset(qdepth, 0, sizeof(char) * AP_DEVICES);
spin_lock_bh(&zcrypt_device_lock);
list_for_each_entry(zdev, &zcrypt_device_list, list) {
spin_lock(&zdev->ap_dev->lock);
qdepth[AP_QID_DEVICE(zdev->ap_dev->qid)] =
zdev->ap_dev->pendingq_count +
zdev->ap_dev->requestq_count;
spin_unlock(&zdev->ap_dev->lock);
}
spin_unlock_bh(&zcrypt_device_lock);
}
static void zcrypt_perdev_reqcnt(int reqcnt[AP_DEVICES])
{
struct zcrypt_device *zdev;
memset(reqcnt, 0, sizeof(int) * AP_DEVICES);
spin_lock_bh(&zcrypt_device_lock);
list_for_each_entry(zdev, &zcrypt_device_list, list) {
spin_lock(&zdev->ap_dev->lock);
reqcnt[AP_QID_DEVICE(zdev->ap_dev->qid)] =
zdev->ap_dev->total_request_count;
spin_unlock(&zdev->ap_dev->lock);
}
spin_unlock_bh(&zcrypt_device_lock);
}
static int zcrypt_pendingq_count(void)
{
struct zcrypt_device *zdev;
int pendingq_count = 0;
spin_lock_bh(&zcrypt_device_lock);
list_for_each_entry(zdev, &zcrypt_device_list, list) {
spin_lock(&zdev->ap_dev->lock);
pendingq_count += zdev->ap_dev->pendingq_count;
spin_unlock(&zdev->ap_dev->lock);
}
spin_unlock_bh(&zcrypt_device_lock);
return pendingq_count;
}
static int zcrypt_requestq_count(void)
{
struct zcrypt_device *zdev;
int requestq_count = 0;
spin_lock_bh(&zcrypt_device_lock);
list_for_each_entry(zdev, &zcrypt_device_list, list) {
spin_lock(&zdev->ap_dev->lock);
requestq_count += zdev->ap_dev->requestq_count;
spin_unlock(&zdev->ap_dev->lock);
}
spin_unlock_bh(&zcrypt_device_lock);
return requestq_count;
}
static int zcrypt_count_type(int type)
{
struct zcrypt_device *zdev;
int device_count = 0;
spin_lock_bh(&zcrypt_device_lock);
list_for_each_entry(zdev, &zcrypt_device_list, list)
if (zdev->user_space_type == type)
device_count++;
spin_unlock_bh(&zcrypt_device_lock);
return device_count;
}
/**
* zcrypt_ica_status(): Old, depracted combi status call.
*
* Old, deprecated combi status call.
*/
static long zcrypt_ica_status(struct file *filp, unsigned long arg)
{
struct ica_z90_status *pstat;
int ret;
pstat = kzalloc(sizeof(*pstat), GFP_KERNEL);
if (!pstat)
return -ENOMEM;
pstat->totalcount = zcrypt_device_count;
pstat->leedslitecount = zcrypt_count_type(ZCRYPT_PCICA);
pstat->leeds2count = zcrypt_count_type(ZCRYPT_PCICC);
pstat->requestqWaitCount = zcrypt_requestq_count();
pstat->pendingqWaitCount = zcrypt_pendingq_count();
pstat->totalOpenCount = atomic_read(&zcrypt_open_count);
pstat->cryptoDomain = ap_domain_index;
zcrypt_status_mask(pstat->status);
zcrypt_qdepth_mask(pstat->qdepth);
ret = 0;
if (copy_to_user((void __user *) arg, pstat, sizeof(*pstat)))
ret = -EFAULT;
kfree(pstat);
return ret;
}
static long zcrypt_unlocked_ioctl(struct file *filp, unsigned int cmd,
unsigned long arg)
{
int rc;
switch (cmd) {
case ICARSAMODEXPO: {
struct ica_rsa_modexpo __user *umex = (void __user *) arg;
struct ica_rsa_modexpo mex;
if (copy_from_user(&mex, umex, sizeof(mex)))
return -EFAULT;
do {
rc = zcrypt_rsa_modexpo(&mex);
} while (rc == -EAGAIN);
/* on failure: retry once again after a requested rescan */
if ((rc == -ENODEV) && (zcrypt_process_rescan()))
do {
rc = zcrypt_rsa_modexpo(&mex);
} while (rc == -EAGAIN);
if (rc)
return rc;
return put_user(mex.outputdatalength, &umex->outputdatalength);
}
case ICARSACRT: {
struct ica_rsa_modexpo_crt __user *ucrt = (void __user *) arg;
struct ica_rsa_modexpo_crt crt;
if (copy_from_user(&crt, ucrt, sizeof(crt)))
return -EFAULT;
do {
rc = zcrypt_rsa_crt(&crt);
} while (rc == -EAGAIN);
/* on failure: retry once again after a requested rescan */
if ((rc == -ENODEV) && (zcrypt_process_rescan()))
do {
rc = zcrypt_rsa_crt(&crt);
} while (rc == -EAGAIN);
if (rc)
return rc;
return put_user(crt.outputdatalength, &ucrt->outputdatalength);
}
case ZSECSENDCPRB: {
struct ica_xcRB __user *uxcRB = (void __user *) arg;
struct ica_xcRB xcRB;
if (copy_from_user(&xcRB, uxcRB, sizeof(xcRB)))
return -EFAULT;
do {
rc = zcrypt_send_cprb(&xcRB);
} while (rc == -EAGAIN);
/* on failure: retry once again after a requested rescan */
if ((rc == -ENODEV) && (zcrypt_process_rescan()))
do {
rc = zcrypt_send_cprb(&xcRB);
} while (rc == -EAGAIN);
if (copy_to_user(uxcRB, &xcRB, sizeof(xcRB)))
return -EFAULT;
return rc;
}
case ZSENDEP11CPRB: {
struct ep11_urb __user *uxcrb = (void __user *)arg;
struct ep11_urb xcrb;
if (copy_from_user(&xcrb, uxcrb, sizeof(xcrb)))
return -EFAULT;
do {
rc = zcrypt_send_ep11_cprb(&xcrb);
} while (rc == -EAGAIN);
/* on failure: retry once again after a requested rescan */
if ((rc == -ENODEV) && (zcrypt_process_rescan()))
do {
rc = zcrypt_send_ep11_cprb(&xcrb);
} while (rc == -EAGAIN);
if (copy_to_user(uxcrb, &xcrb, sizeof(xcrb)))
return -EFAULT;
return rc;
}
case Z90STAT_STATUS_MASK: {
char status[AP_DEVICES];
zcrypt_status_mask(status);
if (copy_to_user((char __user *) arg, status,
sizeof(char) * AP_DEVICES))
return -EFAULT;
return 0;
}
case Z90STAT_QDEPTH_MASK: {
char qdepth[AP_DEVICES];
zcrypt_qdepth_mask(qdepth);
if (copy_to_user((char __user *) arg, qdepth,
sizeof(char) * AP_DEVICES))
return -EFAULT;
return 0;
}
case Z90STAT_PERDEV_REQCNT: {
int reqcnt[AP_DEVICES];
zcrypt_perdev_reqcnt(reqcnt);
if (copy_to_user((int __user *) arg, reqcnt,
sizeof(int) * AP_DEVICES))
return -EFAULT;
return 0;
}
case Z90STAT_REQUESTQ_COUNT:
return put_user(zcrypt_requestq_count(), (int __user *) arg);
case Z90STAT_PENDINGQ_COUNT:
return put_user(zcrypt_pendingq_count(), (int __user *) arg);
case Z90STAT_TOTALOPEN_COUNT:
return put_user(atomic_read(&zcrypt_open_count),
(int __user *) arg);
case Z90STAT_DOMAIN_INDEX:
return put_user(ap_domain_index, (int __user *) arg);
/*
* Deprecated ioctls. Don't add another device count ioctl,
* you can count them yourself in the user space with the
* output of the Z90STAT_STATUS_MASK ioctl.
*/
case ICAZ90STATUS:
return zcrypt_ica_status(filp, arg);
case Z90STAT_TOTALCOUNT:
return put_user(zcrypt_device_count, (int __user *) arg);
case Z90STAT_PCICACOUNT:
return put_user(zcrypt_count_type(ZCRYPT_PCICA),
(int __user *) arg);
case Z90STAT_PCICCCOUNT:
return put_user(zcrypt_count_type(ZCRYPT_PCICC),
(int __user *) arg);
case Z90STAT_PCIXCCMCL2COUNT:
return put_user(zcrypt_count_type(ZCRYPT_PCIXCC_MCL2),
(int __user *) arg);
case Z90STAT_PCIXCCMCL3COUNT:
return put_user(zcrypt_count_type(ZCRYPT_PCIXCC_MCL3),
(int __user *) arg);
case Z90STAT_PCIXCCCOUNT:
return put_user(zcrypt_count_type(ZCRYPT_PCIXCC_MCL2) +
zcrypt_count_type(ZCRYPT_PCIXCC_MCL3),
(int __user *) arg);
case Z90STAT_CEX2CCOUNT:
return put_user(zcrypt_count_type(ZCRYPT_CEX2C),
(int __user *) arg);
case Z90STAT_CEX2ACOUNT:
return put_user(zcrypt_count_type(ZCRYPT_CEX2A),
(int __user *) arg);
default:
/* unknown ioctl number */
return -ENOIOCTLCMD;
}
}
#ifdef CONFIG_COMPAT
/*
* ioctl32 conversion routines
*/
struct compat_ica_rsa_modexpo {
compat_uptr_t inputdata;
unsigned int inputdatalength;
compat_uptr_t outputdata;
unsigned int outputdatalength;
compat_uptr_t b_key;
compat_uptr_t n_modulus;
};
static long trans_modexpo32(struct file *filp, unsigned int cmd,
unsigned long arg)
{
struct compat_ica_rsa_modexpo __user *umex32 = compat_ptr(arg);
struct compat_ica_rsa_modexpo mex32;
struct ica_rsa_modexpo mex64;
long rc;
if (copy_from_user(&mex32, umex32, sizeof(mex32)))
return -EFAULT;
mex64.inputdata = compat_ptr(mex32.inputdata);
mex64.inputdatalength = mex32.inputdatalength;
mex64.outputdata = compat_ptr(mex32.outputdata);
mex64.outputdatalength = mex32.outputdatalength;
mex64.b_key = compat_ptr(mex32.b_key);
mex64.n_modulus = compat_ptr(mex32.n_modulus);
do {
rc = zcrypt_rsa_modexpo(&mex64);
} while (rc == -EAGAIN);
/* on failure: retry once again after a requested rescan */
if ((rc == -ENODEV) && (zcrypt_process_rescan()))
do {
rc = zcrypt_rsa_modexpo(&mex64);
} while (rc == -EAGAIN);
if (rc)
return rc;
return put_user(mex64.outputdatalength,
&umex32->outputdatalength);
}
struct compat_ica_rsa_modexpo_crt {
compat_uptr_t inputdata;
unsigned int inputdatalength;
compat_uptr_t outputdata;
unsigned int outputdatalength;
compat_uptr_t bp_key;
compat_uptr_t bq_key;
compat_uptr_t np_prime;
compat_uptr_t nq_prime;
compat_uptr_t u_mult_inv;
};
static long trans_modexpo_crt32(struct file *filp, unsigned int cmd,
unsigned long arg)
{
struct compat_ica_rsa_modexpo_crt __user *ucrt32 = compat_ptr(arg);
struct compat_ica_rsa_modexpo_crt crt32;
struct ica_rsa_modexpo_crt crt64;
long rc;
if (copy_from_user(&crt32, ucrt32, sizeof(crt32)))
return -EFAULT;
crt64.inputdata = compat_ptr(crt32.inputdata);
crt64.inputdatalength = crt32.inputdatalength;
crt64.outputdata= compat_ptr(crt32.outputdata);
crt64.outputdatalength = crt32.outputdatalength;
crt64.bp_key = compat_ptr(crt32.bp_key);
crt64.bq_key = compat_ptr(crt32.bq_key);
crt64.np_prime = compat_ptr(crt32.np_prime);
crt64.nq_prime = compat_ptr(crt32.nq_prime);
crt64.u_mult_inv = compat_ptr(crt32.u_mult_inv);
do {
rc = zcrypt_rsa_crt(&crt64);
} while (rc == -EAGAIN);
/* on failure: retry once again after a requested rescan */
if ((rc == -ENODEV) && (zcrypt_process_rescan()))
do {
rc = zcrypt_rsa_crt(&crt64);
} while (rc == -EAGAIN);
if (rc)
return rc;
return put_user(crt64.outputdatalength,
&ucrt32->outputdatalength);
}
struct compat_ica_xcRB {
unsigned short agent_ID;
unsigned int user_defined;
unsigned short request_ID;
unsigned int request_control_blk_length;
unsigned char padding1[16 - sizeof (compat_uptr_t)];
compat_uptr_t request_control_blk_addr;
unsigned int request_data_length;
char padding2[16 - sizeof (compat_uptr_t)];
compat_uptr_t request_data_address;
unsigned int reply_control_blk_length;
char padding3[16 - sizeof (compat_uptr_t)];
compat_uptr_t reply_control_blk_addr;
unsigned int reply_data_length;
char padding4[16 - sizeof (compat_uptr_t)];
compat_uptr_t reply_data_addr;
unsigned short priority_window;
unsigned int status;
} __attribute__((packed));
static long trans_xcRB32(struct file *filp, unsigned int cmd,
unsigned long arg)
{
struct compat_ica_xcRB __user *uxcRB32 = compat_ptr(arg);
struct compat_ica_xcRB xcRB32;
struct ica_xcRB xcRB64;
long rc;
if (copy_from_user(&xcRB32, uxcRB32, sizeof(xcRB32)))
return -EFAULT;
xcRB64.agent_ID = xcRB32.agent_ID;
xcRB64.user_defined = xcRB32.user_defined;
xcRB64.request_ID = xcRB32.request_ID;
xcRB64.request_control_blk_length =
xcRB32.request_control_blk_length;
xcRB64.request_control_blk_addr =
compat_ptr(xcRB32.request_control_blk_addr);
xcRB64.request_data_length =
xcRB32.request_data_length;
xcRB64.request_data_address =
compat_ptr(xcRB32.request_data_address);
xcRB64.reply_control_blk_length =
xcRB32.reply_control_blk_length;
xcRB64.reply_control_blk_addr =
compat_ptr(xcRB32.reply_control_blk_addr);
xcRB64.reply_data_length = xcRB32.reply_data_length;
xcRB64.reply_data_addr =
compat_ptr(xcRB32.reply_data_addr);
xcRB64.priority_window = xcRB32.priority_window;
xcRB64.status = xcRB32.status;
do {
rc = zcrypt_send_cprb(&xcRB64);
} while (rc == -EAGAIN);
/* on failure: retry once again after a requested rescan */
if ((rc == -ENODEV) && (zcrypt_process_rescan()))
do {
rc = zcrypt_send_cprb(&xcRB64);
} while (rc == -EAGAIN);
xcRB32.reply_control_blk_length = xcRB64.reply_control_blk_length;
xcRB32.reply_data_length = xcRB64.reply_data_length;
xcRB32.status = xcRB64.status;
if (copy_to_user(uxcRB32, &xcRB32, sizeof(xcRB32)))
return -EFAULT;
return rc;
}
static long zcrypt_compat_ioctl(struct file *filp, unsigned int cmd,
unsigned long arg)
{
if (cmd == ICARSAMODEXPO)
return trans_modexpo32(filp, cmd, arg);
if (cmd == ICARSACRT)
return trans_modexpo_crt32(filp, cmd, arg);
if (cmd == ZSECSENDCPRB)
return trans_xcRB32(filp, cmd, arg);
return zcrypt_unlocked_ioctl(filp, cmd, arg);
}
#endif
/*
* Misc device file operations.
*/
static const struct file_operations zcrypt_fops = {
.owner = THIS_MODULE,
.read = zcrypt_read,
.write = zcrypt_write,
.unlocked_ioctl = zcrypt_unlocked_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = zcrypt_compat_ioctl,
#endif
.open = zcrypt_open,
llseek: automatically add .llseek fop All file_operations should get a .llseek operation so we can make nonseekable_open the default for future file operations without a .llseek pointer. The three cases that we can automatically detect are no_llseek, seq_lseek and default_llseek. For cases where we can we can automatically prove that the file offset is always ignored, we use noop_llseek, which maintains the current behavior of not returning an error from a seek. New drivers should normally not use noop_llseek but instead use no_llseek and call nonseekable_open at open time. Existing drivers can be converted to do the same when the maintainer knows for certain that no user code relies on calling seek on the device file. The generated code is often incorrectly indented and right now contains comments that clarify for each added line why a specific variant was chosen. In the version that gets submitted upstream, the comments will be gone and I will manually fix the indentation, because there does not seem to be a way to do that using coccinelle. Some amount of new code is currently sitting in linux-next that should get the same modifications, which I will do at the end of the merge window. Many thanks to Julia Lawall for helping me learn to write a semantic patch that does all this. ===== begin semantic patch ===== // This adds an llseek= method to all file operations, // as a preparation for making no_llseek the default. // // The rules are // - use no_llseek explicitly if we do nonseekable_open // - use seq_lseek for sequential files // - use default_llseek if we know we access f_pos // - use noop_llseek if we know we don't access f_pos, // but we still want to allow users to call lseek // @ open1 exists @ identifier nested_open; @@ nested_open(...) { <+... nonseekable_open(...) ...+> } @ open exists@ identifier open_f; identifier i, f; identifier open1.nested_open; @@ int open_f(struct inode *i, struct file *f) { <+... ( nonseekable_open(...) | nested_open(...) ) ...+> } @ read disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ read_no_fpos disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { ... when != off } @ write @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ write_no_fpos @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { ... when != off } @ fops0 @ identifier fops; @@ struct file_operations fops = { ... }; @ has_llseek depends on fops0 @ identifier fops0.fops; identifier llseek_f; @@ struct file_operations fops = { ... .llseek = llseek_f, ... }; @ has_read depends on fops0 @ identifier fops0.fops; identifier read_f; @@ struct file_operations fops = { ... .read = read_f, ... }; @ has_write depends on fops0 @ identifier fops0.fops; identifier write_f; @@ struct file_operations fops = { ... .write = write_f, ... }; @ has_open depends on fops0 @ identifier fops0.fops; identifier open_f; @@ struct file_operations fops = { ... .open = open_f, ... }; // use no_llseek if we call nonseekable_open //////////////////////////////////////////// @ nonseekable1 depends on !has_llseek && has_open @ identifier fops0.fops; identifier nso ~= "nonseekable_open"; @@ struct file_operations fops = { ... .open = nso, ... +.llseek = no_llseek, /* nonseekable */ }; @ nonseekable2 depends on !has_llseek @ identifier fops0.fops; identifier open.open_f; @@ struct file_operations fops = { ... .open = open_f, ... +.llseek = no_llseek, /* open uses nonseekable */ }; // use seq_lseek for sequential files ///////////////////////////////////// @ seq depends on !has_llseek @ identifier fops0.fops; identifier sr ~= "seq_read"; @@ struct file_operations fops = { ... .read = sr, ... +.llseek = seq_lseek, /* we have seq_read */ }; // use default_llseek if there is a readdir /////////////////////////////////////////// @ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier readdir_e; @@ // any other fop is used that changes pos struct file_operations fops = { ... .readdir = readdir_e, ... +.llseek = default_llseek, /* readdir is present */ }; // use default_llseek if at least one of read/write touches f_pos ///////////////////////////////////////////////////////////////// @ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read.read_f; @@ // read fops use offset struct file_operations fops = { ... .read = read_f, ... +.llseek = default_llseek, /* read accesses f_pos */ }; @ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, ... + .llseek = default_llseek, /* write accesses f_pos */ }; // Use noop_llseek if neither read nor write accesses f_pos /////////////////////////////////////////////////////////// @ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; identifier write_no_fpos.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, .read = read_f, ... +.llseek = noop_llseek, /* read and write both use no f_pos */ }; @ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write_no_fpos.write_f; @@ struct file_operations fops = { ... .write = write_f, ... +.llseek = noop_llseek, /* write uses no f_pos */ }; @ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; @@ struct file_operations fops = { ... .read = read_f, ... +.llseek = noop_llseek, /* read uses no f_pos */ }; @ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; @@ struct file_operations fops = { ... +.llseek = noop_llseek, /* no read or write fn */ }; ===== End semantic patch ===== Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Julia Lawall <julia@diku.dk> Cc: Christoph Hellwig <hch@infradead.org>
2010-08-15 16:52:59 +00:00
.release = zcrypt_release,
.llseek = no_llseek,
};
/*
* Misc device.
*/
static struct miscdevice zcrypt_misc_device = {
.minor = MISC_DYNAMIC_MINOR,
.name = "z90crypt",
.fops = &zcrypt_fops,
};
/*
* Deprecated /proc entry support.
*/
static struct proc_dir_entry *zcrypt_entry;
static void sprintcl(struct seq_file *m, unsigned char *addr, unsigned int len)
{
int i;
for (i = 0; i < len; i++)
seq_printf(m, "%01x", (unsigned int) addr[i]);
seq_putc(m, ' ');
}
static void sprintrw(struct seq_file *m, unsigned char *addr, unsigned int len)
{
int inl, c, cx;
seq_printf(m, " ");
inl = 0;
for (c = 0; c < (len / 16); c++) {
sprintcl(m, addr+inl, 16);
inl += 16;
}
cx = len%16;
if (cx) {
sprintcl(m, addr+inl, cx);
inl += cx;
}
seq_putc(m, '\n');
}
static void sprinthx(unsigned char *title, struct seq_file *m,
unsigned char *addr, unsigned int len)
{
int inl, r, rx;
seq_printf(m, "\n%s\n", title);
inl = 0;
for (r = 0; r < (len / 64); r++) {
sprintrw(m, addr+inl, 64);
inl += 64;
}
rx = len % 64;
if (rx) {
sprintrw(m, addr+inl, rx);
inl += rx;
}
seq_putc(m, '\n');
}
static void sprinthx4(unsigned char *title, struct seq_file *m,
unsigned int *array, unsigned int len)
{
int r;
seq_printf(m, "\n%s\n", title);
for (r = 0; r < len; r++) {
if ((r % 8) == 0)
seq_printf(m, " ");
seq_printf(m, "%08X ", array[r]);
if ((r % 8) == 7)
seq_putc(m, '\n');
}
seq_putc(m, '\n');
}
static int zcrypt_proc_show(struct seq_file *m, void *v)
{
char workarea[sizeof(int) * AP_DEVICES];
seq_printf(m, "\nzcrypt version: %d.%d.%d\n",
ZCRYPT_VERSION, ZCRYPT_RELEASE, ZCRYPT_VARIANT);
seq_printf(m, "Cryptographic domain: %d\n", ap_domain_index);
seq_printf(m, "Total device count: %d\n", zcrypt_device_count);
seq_printf(m, "PCICA count: %d\n", zcrypt_count_type(ZCRYPT_PCICA));
seq_printf(m, "PCICC count: %d\n", zcrypt_count_type(ZCRYPT_PCICC));
seq_printf(m, "PCIXCC MCL2 count: %d\n",
zcrypt_count_type(ZCRYPT_PCIXCC_MCL2));
seq_printf(m, "PCIXCC MCL3 count: %d\n",
zcrypt_count_type(ZCRYPT_PCIXCC_MCL3));
seq_printf(m, "CEX2C count: %d\n", zcrypt_count_type(ZCRYPT_CEX2C));
seq_printf(m, "CEX2A count: %d\n", zcrypt_count_type(ZCRYPT_CEX2A));
seq_printf(m, "CEX3C count: %d\n", zcrypt_count_type(ZCRYPT_CEX3C));
seq_printf(m, "CEX3A count: %d\n", zcrypt_count_type(ZCRYPT_CEX3A));
seq_printf(m, "requestq count: %d\n", zcrypt_requestq_count());
seq_printf(m, "pendingq count: %d\n", zcrypt_pendingq_count());
seq_printf(m, "Total open handles: %d\n\n",
atomic_read(&zcrypt_open_count));
zcrypt_status_mask(workarea);
sprinthx("Online devices: 1=PCICA 2=PCICC 3=PCIXCC(MCL2) "
"4=PCIXCC(MCL3) 5=CEX2C 6=CEX2A 7=CEX3C 8=CEX3A",
m, workarea, AP_DEVICES);
zcrypt_qdepth_mask(workarea);
sprinthx("Waiting work element counts", m, workarea, AP_DEVICES);
zcrypt_perdev_reqcnt((int *) workarea);
sprinthx4("Per-device successfully completed request counts",
m, (unsigned int *) workarea, AP_DEVICES);
return 0;
}
static int zcrypt_proc_open(struct inode *inode, struct file *file)
{
return single_open(file, zcrypt_proc_show, NULL);
}
static void zcrypt_disable_card(int index)
{
struct zcrypt_device *zdev;
spin_lock_bh(&zcrypt_device_lock);
list_for_each_entry(zdev, &zcrypt_device_list, list)
if (AP_QID_DEVICE(zdev->ap_dev->qid) == index) {
zdev->online = 0;
ap_flush_queue(zdev->ap_dev);
break;
}
spin_unlock_bh(&zcrypt_device_lock);
}
static void zcrypt_enable_card(int index)
{
struct zcrypt_device *zdev;
spin_lock_bh(&zcrypt_device_lock);
list_for_each_entry(zdev, &zcrypt_device_list, list)
if (AP_QID_DEVICE(zdev->ap_dev->qid) == index) {
zdev->online = 1;
break;
}
spin_unlock_bh(&zcrypt_device_lock);
}
static ssize_t zcrypt_proc_write(struct file *file, const char __user *buffer,
size_t count, loff_t *pos)
{
unsigned char *lbuf, *ptr;
size_t local_count;
int j;
if (count <= 0)
return 0;
#define LBUFSIZE 1200UL
lbuf = kmalloc(LBUFSIZE, GFP_KERNEL);
if (!lbuf)
return 0;
local_count = min(LBUFSIZE - 1, count);
if (copy_from_user(lbuf, buffer, local_count) != 0) {
kfree(lbuf);
return -EFAULT;
}
lbuf[local_count] = '\0';
ptr = strstr(lbuf, "Online devices");
if (!ptr)
goto out;
ptr = strstr(ptr, "\n");
if (!ptr)
goto out;
ptr++;
if (strstr(ptr, "Waiting work element counts") == NULL)
goto out;
for (j = 0; j < 64 && *ptr; ptr++) {
/*
* '0' for no device, '1' for PCICA, '2' for PCICC,
* '3' for PCIXCC_MCL2, '4' for PCIXCC_MCL3,
* '5' for CEX2C and '6' for CEX2A'
* '7' for CEX3C and '8' for CEX3A
*/
if (*ptr >= '0' && *ptr <= '8')
j++;
else if (*ptr == 'd' || *ptr == 'D')
zcrypt_disable_card(j++);
else if (*ptr == 'e' || *ptr == 'E')
zcrypt_enable_card(j++);
else if (*ptr != ' ' && *ptr != '\t')
break;
}
out:
kfree(lbuf);
return count;
}
static const struct file_operations zcrypt_proc_fops = {
.owner = THIS_MODULE,
.open = zcrypt_proc_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
.write = zcrypt_proc_write,
};
static int zcrypt_rng_device_count;
static u32 *zcrypt_rng_buffer;
static int zcrypt_rng_buffer_index;
static DEFINE_MUTEX(zcrypt_rng_mutex);
static int zcrypt_rng_data_read(struct hwrng *rng, u32 *data)
{
int rc;
/*
* We don't need locking here because the RNG API guarantees serialized
* read method calls.
*/
if (zcrypt_rng_buffer_index == 0) {
rc = zcrypt_rng((char *) zcrypt_rng_buffer);
/* on failure: retry once again after a requested rescan */
if ((rc == -ENODEV) && (zcrypt_process_rescan()))
rc = zcrypt_rng((char *) zcrypt_rng_buffer);
if (rc < 0)
return -EIO;
zcrypt_rng_buffer_index = rc / sizeof *data;
}
*data = zcrypt_rng_buffer[--zcrypt_rng_buffer_index];
return sizeof *data;
}
static struct hwrng zcrypt_rng_dev = {
.name = "zcrypt",
.data_read = zcrypt_rng_data_read,
};
static int zcrypt_rng_device_add(void)
{
int rc = 0;
mutex_lock(&zcrypt_rng_mutex);
if (zcrypt_rng_device_count == 0) {
zcrypt_rng_buffer = (u32 *) get_zeroed_page(GFP_KERNEL);
if (!zcrypt_rng_buffer) {
rc = -ENOMEM;
goto out;
}
zcrypt_rng_buffer_index = 0;
rc = hwrng_register(&zcrypt_rng_dev);
if (rc)
goto out_free;
zcrypt_rng_device_count = 1;
} else
zcrypt_rng_device_count++;
mutex_unlock(&zcrypt_rng_mutex);
return 0;
out_free:
free_page((unsigned long) zcrypt_rng_buffer);
out:
mutex_unlock(&zcrypt_rng_mutex);
return rc;
}
static void zcrypt_rng_device_remove(void)
{
mutex_lock(&zcrypt_rng_mutex);
zcrypt_rng_device_count--;
if (zcrypt_rng_device_count == 0) {
hwrng_unregister(&zcrypt_rng_dev);
free_page((unsigned long) zcrypt_rng_buffer);
}
mutex_unlock(&zcrypt_rng_mutex);
}
int __init zcrypt_debug_init(void)
{
debugfs_root = debugfs_create_dir("zcrypt", NULL);
zcrypt_dbf_common = debug_register("zcrypt_common", 1, 1, 16);
debug_register_view(zcrypt_dbf_common, &debug_hex_ascii_view);
debug_set_level(zcrypt_dbf_common, DBF_ERR);
zcrypt_dbf_devices = debug_register("zcrypt_devices", 1, 1, 16);
debug_register_view(zcrypt_dbf_devices, &debug_hex_ascii_view);
debug_set_level(zcrypt_dbf_devices, DBF_ERR);
return 0;
}
void zcrypt_debug_exit(void)
{
debugfs_remove(debugfs_root);
if (zcrypt_dbf_common)
debug_unregister(zcrypt_dbf_common);
if (zcrypt_dbf_devices)
debug_unregister(zcrypt_dbf_devices);
}
/**
* zcrypt_api_init(): Module initialization.
*
* The module initialization code.
*/
int __init zcrypt_api_init(void)
{
int rc;
rc = zcrypt_debug_init();
if (rc)
goto out;
atomic_set(&zcrypt_rescan_req, 0);
/* Register the request sprayer. */
rc = misc_register(&zcrypt_misc_device);
if (rc < 0)
goto out;
/* Set up the proc file system */
zcrypt_entry = proc_create("driver/z90crypt", 0644, NULL, &zcrypt_proc_fops);
if (!zcrypt_entry) {
rc = -ENOMEM;
goto out_misc;
}
return 0;
out_misc:
misc_deregister(&zcrypt_misc_device);
out:
return rc;
}
/**
* zcrypt_api_exit(): Module termination.
*
* The module termination code.
*/
void zcrypt_api_exit(void)
{
remove_proc_entry("driver/z90crypt", NULL);
misc_deregister(&zcrypt_misc_device);
zcrypt_debug_exit();
}
module_init(zcrypt_api_init);
module_exit(zcrypt_api_exit);