linux/arch/powerpc/platforms/powernv/pci-ioda.c

1851 lines
49 KiB
C
Raw Normal View History

/*
* Support PCI/PCIe on PowerNV platforms
*
* Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#undef DEBUG
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/crash_dump.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/irq.h>
#include <linux/io.h>
#include <linux/msi.h>
#include <linux/memblock.h>
#include <asm/sections.h>
#include <asm/io.h>
#include <asm/prom.h>
#include <asm/pci-bridge.h>
#include <asm/machdep.h>
#include <asm/msi_bitmap.h>
#include <asm/ppc-pci.h>
#include <asm/opal.h>
#include <asm/iommu.h>
#include <asm/tce.h>
#include <asm/xics.h>
#include <asm/debug.h>
#include <asm/firmware.h>
#include "powernv.h"
#include "pci.h"
#define define_pe_printk_level(func, kern_level) \
static void func(const struct pnv_ioda_pe *pe, const char *fmt, ...) \
{ \
struct va_format vaf; \
va_list args; \
char pfix[32]; \
\
va_start(args, fmt); \
\
vaf.fmt = fmt; \
vaf.va = &args; \
\
if (pe->pdev) \
strlcpy(pfix, dev_name(&pe->pdev->dev), \
sizeof(pfix)); \
else \
sprintf(pfix, "%04x:%02x ", \
pci_domain_nr(pe->pbus), \
pe->pbus->number); \
printk(kern_level "pci %s: [PE# %.3d] %pV", \
pfix, pe->pe_number, &vaf); \
\
va_end(args); \
} \
define_pe_printk_level(pe_err, KERN_ERR);
define_pe_printk_level(pe_warn, KERN_WARNING);
define_pe_printk_level(pe_info, KERN_INFO);
/*
* stdcix is only supposed to be used in hypervisor real mode as per
* the architecture spec
*/
static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr)
{
__asm__ __volatile__("stdcix %0,0,%1"
: : "r" (val), "r" (paddr) : "memory");
}
static inline bool pnv_pci_is_mem_pref_64(unsigned long flags)
{
return ((flags & (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH)) ==
(IORESOURCE_MEM_64 | IORESOURCE_PREFETCH));
}
static int pnv_ioda_alloc_pe(struct pnv_phb *phb)
{
unsigned long pe;
do {
pe = find_next_zero_bit(phb->ioda.pe_alloc,
phb->ioda.total_pe, 0);
if (pe >= phb->ioda.total_pe)
return IODA_INVALID_PE;
} while(test_and_set_bit(pe, phb->ioda.pe_alloc));
phb->ioda.pe_array[pe].phb = phb;
phb->ioda.pe_array[pe].pe_number = pe;
return pe;
}
static void pnv_ioda_free_pe(struct pnv_phb *phb, int pe)
{
WARN_ON(phb->ioda.pe_array[pe].pdev);
memset(&phb->ioda.pe_array[pe], 0, sizeof(struct pnv_ioda_pe));
clear_bit(pe, phb->ioda.pe_alloc);
}
/* The default M64 BAR is shared by all PEs */
static int pnv_ioda2_init_m64(struct pnv_phb *phb)
{
const char *desc;
struct resource *r;
s64 rc;
/* Configure the default M64 BAR */
rc = opal_pci_set_phb_mem_window(phb->opal_id,
OPAL_M64_WINDOW_TYPE,
phb->ioda.m64_bar_idx,
phb->ioda.m64_base,
0, /* unused */
phb->ioda.m64_size);
if (rc != OPAL_SUCCESS) {
desc = "configuring";
goto fail;
}
/* Enable the default M64 BAR */
rc = opal_pci_phb_mmio_enable(phb->opal_id,
OPAL_M64_WINDOW_TYPE,
phb->ioda.m64_bar_idx,
OPAL_ENABLE_M64_SPLIT);
if (rc != OPAL_SUCCESS) {
desc = "enabling";
goto fail;
}
/* Mark the M64 BAR assigned */
set_bit(phb->ioda.m64_bar_idx, &phb->ioda.m64_bar_alloc);
/*
* Strip off the segment used by the reserved PE, which is
* expected to be 0 or last one of PE capabicity.
*/
r = &phb->hose->mem_resources[1];
if (phb->ioda.reserved_pe == 0)
r->start += phb->ioda.m64_segsize;
else if (phb->ioda.reserved_pe == (phb->ioda.total_pe - 1))
r->end -= phb->ioda.m64_segsize;
else
pr_warn(" Cannot strip M64 segment for reserved PE#%d\n",
phb->ioda.reserved_pe);
return 0;
fail:
pr_warn(" Failure %lld %s M64 BAR#%d\n",
rc, desc, phb->ioda.m64_bar_idx);
opal_pci_phb_mmio_enable(phb->opal_id,
OPAL_M64_WINDOW_TYPE,
phb->ioda.m64_bar_idx,
OPAL_DISABLE_M64);
return -EIO;
}
static void pnv_ioda2_alloc_m64_pe(struct pnv_phb *phb)
{
resource_size_t sgsz = phb->ioda.m64_segsize;
struct pci_dev *pdev;
struct resource *r;
int base, step, i;
/*
* Root bus always has full M64 range and root port has
* M64 range used in reality. So we're checking root port
* instead of root bus.
*/
list_for_each_entry(pdev, &phb->hose->bus->devices, bus_list) {
for (i = PCI_BRIDGE_RESOURCES;
i <= PCI_BRIDGE_RESOURCE_END; i++) {
r = &pdev->resource[i];
if (!r->parent ||
!pnv_pci_is_mem_pref_64(r->flags))
continue;
base = (r->start - phb->ioda.m64_base) / sgsz;
for (step = 0; step < resource_size(r) / sgsz; step++)
set_bit(base + step, phb->ioda.pe_alloc);
}
}
}
static int pnv_ioda2_pick_m64_pe(struct pnv_phb *phb,
struct pci_bus *bus, int all)
{
resource_size_t segsz = phb->ioda.m64_segsize;
struct pci_dev *pdev;
struct resource *r;
struct pnv_ioda_pe *master_pe, *pe;
unsigned long size, *pe_alloc;
bool found;
int start, i, j;
/* Root bus shouldn't use M64 */
if (pci_is_root_bus(bus))
return IODA_INVALID_PE;
/* We support only one M64 window on each bus */
found = false;
pci_bus_for_each_resource(bus, r, i) {
if (r && r->parent &&
pnv_pci_is_mem_pref_64(r->flags)) {
found = true;
break;
}
}
/* No M64 window found ? */
if (!found)
return IODA_INVALID_PE;
/* Allocate bitmap */
size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
pe_alloc = kzalloc(size, GFP_KERNEL);
if (!pe_alloc) {
pr_warn("%s: Out of memory !\n",
__func__);
return IODA_INVALID_PE;
}
/*
* Figure out reserved PE numbers by the PE
* the its child PEs.
*/
start = (r->start - phb->ioda.m64_base) / segsz;
for (i = 0; i < resource_size(r) / segsz; i++)
set_bit(start + i, pe_alloc);
if (all)
goto done;
/*
* If the PE doesn't cover all subordinate buses,
* we need subtract from reserved PEs for children.
*/
list_for_each_entry(pdev, &bus->devices, bus_list) {
if (!pdev->subordinate)
continue;
pci_bus_for_each_resource(pdev->subordinate, r, i) {
if (!r || !r->parent ||
!pnv_pci_is_mem_pref_64(r->flags))
continue;
start = (r->start - phb->ioda.m64_base) / segsz;
for (j = 0; j < resource_size(r) / segsz ; j++)
clear_bit(start + j, pe_alloc);
}
}
/*
* the current bus might not own M64 window and that's all
* contributed by its child buses. For the case, we needn't
* pick M64 dependent PE#.
*/
if (bitmap_empty(pe_alloc, phb->ioda.total_pe)) {
kfree(pe_alloc);
return IODA_INVALID_PE;
}
/*
* Figure out the master PE and put all slave PEs to master
* PE's list to form compound PE.
*/
done:
master_pe = NULL;
i = -1;
while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe, i + 1)) <
phb->ioda.total_pe) {
pe = &phb->ioda.pe_array[i];
pe->phb = phb;
pe->pe_number = i;
if (!master_pe) {
pe->flags |= PNV_IODA_PE_MASTER;
INIT_LIST_HEAD(&pe->slaves);
master_pe = pe;
} else {
pe->flags |= PNV_IODA_PE_SLAVE;
pe->master = master_pe;
list_add_tail(&pe->list, &master_pe->slaves);
}
}
kfree(pe_alloc);
return master_pe->pe_number;
}
static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
{
struct pci_controller *hose = phb->hose;
struct device_node *dn = hose->dn;
struct resource *res;
const u32 *r;
u64 pci_addr;
if (!firmware_has_feature(FW_FEATURE_OPALv3)) {
pr_info(" Firmware too old to support M64 window\n");
return;
}
r = of_get_property(dn, "ibm,opal-m64-window", NULL);
if (!r) {
pr_info(" No <ibm,opal-m64-window> on %s\n",
dn->full_name);
return;
}
/* FIXME: Support M64 for P7IOC */
if (phb->type != PNV_PHB_IODA2) {
pr_info(" Not support M64 window\n");
return;
}
res = &hose->mem_resources[1];
res->start = of_translate_address(dn, r + 2);
res->end = res->start + of_read_number(r + 4, 2) - 1;
res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
pci_addr = of_read_number(r, 2);
hose->mem_offset[1] = res->start - pci_addr;
phb->ioda.m64_size = resource_size(res);
phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe;
phb->ioda.m64_base = pci_addr;
/* Use last M64 BAR to cover M64 window */
phb->ioda.m64_bar_idx = 15;
phb->init_m64 = pnv_ioda2_init_m64;
phb->alloc_m64_pe = pnv_ioda2_alloc_m64_pe;
phb->pick_m64_pe = pnv_ioda2_pick_m64_pe;
}
static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
{
struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
struct pnv_ioda_pe *slave;
s64 rc;
/* Fetch master PE */
if (pe->flags & PNV_IODA_PE_SLAVE) {
pe = pe->master;
WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
pe_no = pe->pe_number;
}
/* Freeze master PE */
rc = opal_pci_eeh_freeze_set(phb->opal_id,
pe_no,
OPAL_EEH_ACTION_SET_FREEZE_ALL);
if (rc != OPAL_SUCCESS) {
pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
__func__, rc, phb->hose->global_number, pe_no);
return;
}
/* Freeze slave PEs */
if (!(pe->flags & PNV_IODA_PE_MASTER))
return;
list_for_each_entry(slave, &pe->slaves, list) {
rc = opal_pci_eeh_freeze_set(phb->opal_id,
slave->pe_number,
OPAL_EEH_ACTION_SET_FREEZE_ALL);
if (rc != OPAL_SUCCESS)
pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
__func__, rc, phb->hose->global_number,
slave->pe_number);
}
}
static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
{
struct pnv_ioda_pe *pe, *slave;
s64 rc;
/* Find master PE */
pe = &phb->ioda.pe_array[pe_no];
if (pe->flags & PNV_IODA_PE_SLAVE) {
pe = pe->master;
WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
pe_no = pe->pe_number;
}
/* Clear frozen state for master PE */
rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
if (rc != OPAL_SUCCESS) {
pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
__func__, rc, opt, phb->hose->global_number, pe_no);
return -EIO;
}
if (!(pe->flags & PNV_IODA_PE_MASTER))
return 0;
/* Clear frozen state for slave PEs */
list_for_each_entry(slave, &pe->slaves, list) {
rc = opal_pci_eeh_freeze_clear(phb->opal_id,
slave->pe_number,
opt);
if (rc != OPAL_SUCCESS) {
pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
__func__, rc, opt, phb->hose->global_number,
slave->pe_number);
return -EIO;
}
}
return 0;
}
static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
{
struct pnv_ioda_pe *slave, *pe;
u8 fstate, state;
__be16 pcierr;
s64 rc;
/* Sanity check on PE number */
if (pe_no < 0 || pe_no >= phb->ioda.total_pe)
return OPAL_EEH_STOPPED_PERM_UNAVAIL;
/*
* Fetch the master PE and the PE instance might be
* not initialized yet.
*/
pe = &phb->ioda.pe_array[pe_no];
if (pe->flags & PNV_IODA_PE_SLAVE) {
pe = pe->master;
WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
pe_no = pe->pe_number;
}
/* Check the master PE */
rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
&state, &pcierr, NULL);
if (rc != OPAL_SUCCESS) {
pr_warn("%s: Failure %lld getting "
"PHB#%x-PE#%x state\n",
__func__, rc,
phb->hose->global_number, pe_no);
return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
}
/* Check the slave PE */
if (!(pe->flags & PNV_IODA_PE_MASTER))
return state;
list_for_each_entry(slave, &pe->slaves, list) {
rc = opal_pci_eeh_freeze_status(phb->opal_id,
slave->pe_number,
&fstate,
&pcierr,
NULL);
if (rc != OPAL_SUCCESS) {
pr_warn("%s: Failure %lld getting "
"PHB#%x-PE#%x state\n",
__func__, rc,
phb->hose->global_number, slave->pe_number);
return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
}
/*
* Override the result based on the ascending
* priority.
*/
if (fstate > state)
state = fstate;
}
return state;
}
/* Currently those 2 are only used when MSIs are enabled, this will change
* but in the meantime, we need to protect them to avoid warnings
*/
#ifdef CONFIG_PCI_MSI
static struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
{
struct pci_controller *hose = pci_bus_to_host(dev->bus);
struct pnv_phb *phb = hose->private_data;
struct pci_dn *pdn = pci_get_pdn(dev);
if (!pdn)
return NULL;
if (pdn->pe_number == IODA_INVALID_PE)
return NULL;
return &phb->ioda.pe_array[pdn->pe_number];
}
#endif /* CONFIG_PCI_MSI */
static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
{
struct pci_dev *parent;
uint8_t bcomp, dcomp, fcomp;
long rc, rid_end, rid;
/* Bus validation ? */
if (pe->pbus) {
int count;
dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
parent = pe->pbus->self;
if (pe->flags & PNV_IODA_PE_BUS_ALL)
count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
else
count = 1;
switch(count) {
case 1: bcomp = OpalPciBusAll; break;
case 2: bcomp = OpalPciBus7Bits; break;
case 4: bcomp = OpalPciBus6Bits; break;
case 8: bcomp = OpalPciBus5Bits; break;
case 16: bcomp = OpalPciBus4Bits; break;
case 32: bcomp = OpalPciBus3Bits; break;
default:
pr_err("%s: Number of subordinate busses %d"
" unsupported\n",
pci_name(pe->pbus->self), count);
/* Do an exact match only */
bcomp = OpalPciBusAll;
}
rid_end = pe->rid + (count << 8);
} else {
parent = pe->pdev->bus->self;
bcomp = OpalPciBusAll;
dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
rid_end = pe->rid + 1;
}
/*
* Associate PE in PELT. We need add the PE into the
* corresponding PELT-V as well. Otherwise, the error
* originated from the PE might contribute to other
* PEs.
*/
rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
bcomp, dcomp, fcomp, OPAL_MAP_PE);
if (rc) {
pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
return -ENXIO;
}
rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
pe->pe_number, OPAL_ADD_PE_TO_DOMAIN);
if (rc)
pe_warn(pe, "OPAL error %d adding self to PELTV\n", rc);
opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
/* Add to all parents PELT-V */
while (parent) {
struct pci_dn *pdn = pci_get_pdn(parent);
if (pdn && pdn->pe_number != IODA_INVALID_PE) {
rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
pe->pe_number, OPAL_ADD_PE_TO_DOMAIN);
/* XXX What to do in case of error ? */
}
parent = parent->bus->self;
}
/* Setup reverse map */
for (rid = pe->rid; rid < rid_end; rid++)
phb->ioda.pe_rmap[rid] = pe->pe_number;
/* Setup one MVTs on IODA1 */
if (phb->type == PNV_PHB_IODA1) {
pe->mve_number = pe->pe_number;
rc = opal_pci_set_mve(phb->opal_id, pe->mve_number,
pe->pe_number);
if (rc) {
pe_err(pe, "OPAL error %ld setting up MVE %d\n",
rc, pe->mve_number);
pe->mve_number = -1;
} else {
rc = opal_pci_set_mve_enable(phb->opal_id,
pe->mve_number, OPAL_ENABLE_MVE);
if (rc) {
pe_err(pe, "OPAL error %ld enabling MVE %d\n",
rc, pe->mve_number);
pe->mve_number = -1;
}
}
} else if (phb->type == PNV_PHB_IODA2)
pe->mve_number = 0;
return 0;
}
static void pnv_ioda_link_pe_by_weight(struct pnv_phb *phb,
struct pnv_ioda_pe *pe)
{
struct pnv_ioda_pe *lpe;
list_for_each_entry(lpe, &phb->ioda.pe_dma_list, dma_link) {
if (lpe->dma_weight < pe->dma_weight) {
list_add_tail(&pe->dma_link, &lpe->dma_link);
return;
}
}
list_add_tail(&pe->dma_link, &phb->ioda.pe_dma_list);
}
static unsigned int pnv_ioda_dma_weight(struct pci_dev *dev)
{
/* This is quite simplistic. The "base" weight of a device
* is 10. 0 means no DMA is to be accounted for it.
*/
/* If it's a bridge, no DMA */
if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
return 0;
/* Reduce the weight of slow USB controllers */
if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
dev->class == PCI_CLASS_SERIAL_USB_EHCI)
return 3;
/* Increase the weight of RAID (includes Obsidian) */
if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
return 15;
/* Default */
return 10;
}
#if 0
static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
{
struct pci_controller *hose = pci_bus_to_host(dev->bus);
struct pnv_phb *phb = hose->private_data;
struct pci_dn *pdn = pci_get_pdn(dev);
struct pnv_ioda_pe *pe;
int pe_num;
if (!pdn) {
pr_err("%s: Device tree node not associated properly\n",
pci_name(dev));
return NULL;
}
if (pdn->pe_number != IODA_INVALID_PE)
return NULL;
/* PE#0 has been pre-set */
if (dev->bus->number == 0)
pe_num = 0;
else
pe_num = pnv_ioda_alloc_pe(phb);
if (pe_num == IODA_INVALID_PE) {
pr_warning("%s: Not enough PE# available, disabling device\n",
pci_name(dev));
return NULL;
}
/* NOTE: We get only one ref to the pci_dev for the pdn, not for the
* pointer in the PE data structure, both should be destroyed at the
* same time. However, this needs to be looked at more closely again
* once we actually start removing things (Hotplug, SR-IOV, ...)
*
* At some point we want to remove the PDN completely anyways
*/
pe = &phb->ioda.pe_array[pe_num];
pci_dev_get(dev);
pdn->pcidev = dev;
pdn->pe_number = pe_num;
pe->pdev = dev;
pe->pbus = NULL;
pe->tce32_seg = -1;
pe->mve_number = -1;
pe->rid = dev->bus->number << 8 | pdn->devfn;
pe_info(pe, "Associated device to PE\n");
if (pnv_ioda_configure_pe(phb, pe)) {
/* XXX What do we do here ? */
if (pe_num)
pnv_ioda_free_pe(phb, pe_num);
pdn->pe_number = IODA_INVALID_PE;
pe->pdev = NULL;
pci_dev_put(dev);
return NULL;
}
/* Assign a DMA weight to the device */
pe->dma_weight = pnv_ioda_dma_weight(dev);
if (pe->dma_weight != 0) {
phb->ioda.dma_weight += pe->dma_weight;
phb->ioda.dma_pe_count++;
}
/* Link the PE */
pnv_ioda_link_pe_by_weight(phb, pe);
return pe;
}
#endif /* Useful for SRIOV case */
static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
{
struct pci_dev *dev;
list_for_each_entry(dev, &bus->devices, bus_list) {
struct pci_dn *pdn = pci_get_pdn(dev);
if (pdn == NULL) {
pr_warn("%s: No device node associated with device !\n",
pci_name(dev));
continue;
}
pdn->pcidev = dev;
pdn->pe_number = pe->pe_number;
pe->dma_weight += pnv_ioda_dma_weight(dev);
if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
pnv_ioda_setup_same_PE(dev->subordinate, pe);
}
}
/*
* There're 2 types of PCI bus sensitive PEs: One that is compromised of
* single PCI bus. Another one that contains the primary PCI bus and its
* subordinate PCI devices and buses. The second type of PE is normally
* orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
*/
static void pnv_ioda_setup_bus_PE(struct pci_bus *bus, int all)
{
struct pci_controller *hose = pci_bus_to_host(bus);
struct pnv_phb *phb = hose->private_data;
struct pnv_ioda_pe *pe;
int pe_num = IODA_INVALID_PE;
/* Check if PE is determined by M64 */
if (phb->pick_m64_pe)
pe_num = phb->pick_m64_pe(phb, bus, all);
/* The PE number isn't pinned by M64 */
if (pe_num == IODA_INVALID_PE)
pe_num = pnv_ioda_alloc_pe(phb);
if (pe_num == IODA_INVALID_PE) {
pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
__func__, pci_domain_nr(bus), bus->number);
return;
}
pe = &phb->ioda.pe_array[pe_num];
pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
pe->pbus = bus;
pe->pdev = NULL;
pe->tce32_seg = -1;
pe->mve_number = -1;
pe->rid = bus->busn_res.start << 8;
pe->dma_weight = 0;
if (all)
pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
bus->busn_res.start, bus->busn_res.end, pe_num);
else
pe_info(pe, "Secondary bus %d associated with PE#%d\n",
bus->busn_res.start, pe_num);
if (pnv_ioda_configure_pe(phb, pe)) {
/* XXX What do we do here ? */
if (pe_num)
pnv_ioda_free_pe(phb, pe_num);
pe->pbus = NULL;
return;
}
/* Associate it with all child devices */
pnv_ioda_setup_same_PE(bus, pe);
/* Put PE to the list */
list_add_tail(&pe->list, &phb->ioda.pe_list);
/* Account for one DMA PE if at least one DMA capable device exist
* below the bridge
*/
if (pe->dma_weight != 0) {
phb->ioda.dma_weight += pe->dma_weight;
phb->ioda.dma_pe_count++;
}
/* Link the PE */
pnv_ioda_link_pe_by_weight(phb, pe);
}
static void pnv_ioda_setup_PEs(struct pci_bus *bus)
{
struct pci_dev *dev;
pnv_ioda_setup_bus_PE(bus, 0);
list_for_each_entry(dev, &bus->devices, bus_list) {
if (dev->subordinate) {
if (pci_pcie_type(dev) == PCI_EXP_TYPE_PCI_BRIDGE)
pnv_ioda_setup_bus_PE(dev->subordinate, 1);
else
pnv_ioda_setup_PEs(dev->subordinate);
}
}
}
/*
* Configure PEs so that the downstream PCI buses and devices
* could have their associated PE#. Unfortunately, we didn't
* figure out the way to identify the PLX bridge yet. So we
* simply put the PCI bus and the subordinate behind the root
* port to PE# here. The game rule here is expected to be changed
* as soon as we can detected PLX bridge correctly.
*/
static void pnv_pci_ioda_setup_PEs(void)
{
struct pci_controller *hose, *tmp;
struct pnv_phb *phb;
list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
phb = hose->private_data;
/* M64 layout might affect PE allocation */
if (phb->alloc_m64_pe)
phb->alloc_m64_pe(phb);
pnv_ioda_setup_PEs(hose->bus);
}
}
static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
{
struct pci_dn *pdn = pci_get_pdn(pdev);
struct pnv_ioda_pe *pe;
/*
* The function can be called while the PE#
* hasn't been assigned. Do nothing for the
* case.
*/
if (!pdn || pdn->pe_number == IODA_INVALID_PE)
return;
pe = &phb->ioda.pe_array[pdn->pe_number];
WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
powerpc/powernv: Fix IOMMU group lost When we take full hotplug to recover from EEH errors, PCI buses could be involved. For the case, the child devices of involved PCI buses can't be attached to IOMMU group properly, which is caused by commit 3f28c5a ("powerpc/powernv: Reduce multi-hit of iommu_add_device()"). When adding the PCI devices of the newly created PCI buses to the system, the IOMMU group is expected to be added in (C). (A) fails to bind the IOMMU group because bus->is_added is false. (B) fails because the device doesn't have binding IOMMU table yet. bus->is_added is set to true at end of (C) and pdev->is_added is set to true at (D). pcibios_add_pci_devices() pci_scan_bridge() pci_scan_child_bus() pci_scan_slot() pci_scan_single_device() pci_scan_device() pci_device_add() pcibios_add_device() A: Ignore device_add() B: Ignore pcibios_fixup_bus() pcibios_setup_bus_devices() pcibios_setup_device() C: Hit pcibios_finish_adding_to_bus() pci_bus_add_devices() pci_bus_add_device() D: Add device If the parent PCI bus isn't involved in hotplug, the IOMMU group is expected to be bound in (B). (A) should fail as the sysfs entries aren't populated. The patch fixes the issue by reverting commit 3f28c5a and remove WARN_ON() in iommu_add_device() to allow calling the function even the specified device already has associated IOMMU group. Cc: <stable@vger.kernel.org> # 3.16+ Reported-by: Thadeu Lima de Souza Cascardo <cascardo@linux.vnet.ibm.com> Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com> Acked-by: Wei Yang <weiyang@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2014-08-06 07:10:16 +00:00
set_iommu_table_base_and_group(&pdev->dev, &pe->tce32_table);
}
static int pnv_pci_ioda_dma_set_mask(struct pnv_phb *phb,
struct pci_dev *pdev, u64 dma_mask)
{
struct pci_dn *pdn = pci_get_pdn(pdev);
struct pnv_ioda_pe *pe;
uint64_t top;
bool bypass = false;
if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
return -ENODEV;;
pe = &phb->ioda.pe_array[pdn->pe_number];
if (pe->tce_bypass_enabled) {
top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
bypass = (dma_mask >= top);
}
if (bypass) {
dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
set_dma_ops(&pdev->dev, &dma_direct_ops);
set_dma_offset(&pdev->dev, pe->tce_bypass_base);
} else {
dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
set_dma_ops(&pdev->dev, &dma_iommu_ops);
set_iommu_table_base(&pdev->dev, &pe->tce32_table);
}
*pdev->dev.dma_mask = dma_mask;
return 0;
}
static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
struct pci_bus *bus,
bool add_to_iommu_group)
{
struct pci_dev *dev;
list_for_each_entry(dev, &bus->devices, bus_list) {
if (add_to_iommu_group)
set_iommu_table_base_and_group(&dev->dev,
&pe->tce32_table);
else
set_iommu_table_base(&dev->dev, &pe->tce32_table);
if (dev->subordinate)
pnv_ioda_setup_bus_dma(pe, dev->subordinate,
add_to_iommu_group);
}
}
static void pnv_pci_ioda1_tce_invalidate(struct pnv_ioda_pe *pe,
struct iommu_table *tbl,
__be64 *startp, __be64 *endp, bool rm)
{
__be64 __iomem *invalidate = rm ?
(__be64 __iomem *)pe->tce_inval_reg_phys :
(__be64 __iomem *)tbl->it_index;
unsigned long start, end, inc;
const unsigned shift = tbl->it_page_shift;
start = __pa(startp);
end = __pa(endp);
/* BML uses this case for p6/p7/galaxy2: Shift addr and put in node */
if (tbl->it_busno) {
start <<= shift;
end <<= shift;
inc = 128ull << shift;
start |= tbl->it_busno;
end |= tbl->it_busno;
} else if (tbl->it_type & TCE_PCI_SWINV_PAIR) {
/* p7ioc-style invalidation, 2 TCEs per write */
start |= (1ull << 63);
end |= (1ull << 63);
inc = 16;
} else {
/* Default (older HW) */
inc = 128;
}
end |= inc - 1; /* round up end to be different than start */
mb(); /* Ensure above stores are visible */
while (start <= end) {
if (rm)
__raw_rm_writeq(cpu_to_be64(start), invalidate);
else
__raw_writeq(cpu_to_be64(start), invalidate);
start += inc;
}
/*
* The iommu layer will do another mb() for us on build()
* and we don't care on free()
*/
}
static void pnv_pci_ioda2_tce_invalidate(struct pnv_ioda_pe *pe,
struct iommu_table *tbl,
__be64 *startp, __be64 *endp, bool rm)
{
unsigned long start, end, inc;
__be64 __iomem *invalidate = rm ?
(__be64 __iomem *)pe->tce_inval_reg_phys :
(__be64 __iomem *)tbl->it_index;
const unsigned shift = tbl->it_page_shift;
/* We'll invalidate DMA address in PE scope */
start = 0x2ull << 60;
start |= (pe->pe_number & 0xFF);
end = start;
/* Figure out the start, end and step */
inc = tbl->it_offset + (((u64)startp - tbl->it_base) / sizeof(u64));
start |= (inc << shift);
inc = tbl->it_offset + (((u64)endp - tbl->it_base) / sizeof(u64));
end |= (inc << shift);
inc = (0x1ull << shift);
mb();
while (start <= end) {
if (rm)
__raw_rm_writeq(cpu_to_be64(start), invalidate);
else
__raw_writeq(cpu_to_be64(start), invalidate);
start += inc;
}
}
void pnv_pci_ioda_tce_invalidate(struct iommu_table *tbl,
__be64 *startp, __be64 *endp, bool rm)
{
struct pnv_ioda_pe *pe = container_of(tbl, struct pnv_ioda_pe,
tce32_table);
struct pnv_phb *phb = pe->phb;
if (phb->type == PNV_PHB_IODA1)
pnv_pci_ioda1_tce_invalidate(pe, tbl, startp, endp, rm);
else
pnv_pci_ioda2_tce_invalidate(pe, tbl, startp, endp, rm);
}
static void pnv_pci_ioda_setup_dma_pe(struct pnv_phb *phb,
struct pnv_ioda_pe *pe, unsigned int base,
unsigned int segs)
{
struct page *tce_mem = NULL;
const __be64 *swinvp;
struct iommu_table *tbl;
unsigned int i;
int64_t rc;
void *addr;
/* 256M DMA window, 4K TCE pages, 8 bytes TCE */
#define TCE32_TABLE_SIZE ((0x10000000 / 0x1000) * 8)
/* XXX FIXME: Handle 64-bit only DMA devices */
/* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
/* XXX FIXME: Allocate multi-level tables on PHB3 */
/* We shouldn't already have a 32-bit DMA associated */
if (WARN_ON(pe->tce32_seg >= 0))
return;
/* Grab a 32-bit TCE table */
pe->tce32_seg = base;
pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
(base << 28), ((base + segs) << 28) - 1);
/* XXX Currently, we allocate one big contiguous table for the
* TCEs. We only really need one chunk per 256M of TCE space
* (ie per segment) but that's an optimization for later, it
* requires some added smarts with our get/put_tce implementation
*/
tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
get_order(TCE32_TABLE_SIZE * segs));
if (!tce_mem) {
pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
goto fail;
}
addr = page_address(tce_mem);
memset(addr, 0, TCE32_TABLE_SIZE * segs);
/* Configure HW */
for (i = 0; i < segs; i++) {
rc = opal_pci_map_pe_dma_window(phb->opal_id,
pe->pe_number,
base + i, 1,
__pa(addr) + TCE32_TABLE_SIZE * i,
TCE32_TABLE_SIZE, 0x1000);
if (rc) {
pe_err(pe, " Failed to configure 32-bit TCE table,"
" err %ld\n", rc);
goto fail;
}
}
/* Setup linux iommu table */
tbl = &pe->tce32_table;
pnv_pci_setup_iommu_table(tbl, addr, TCE32_TABLE_SIZE * segs,
base << 28, IOMMU_PAGE_SHIFT_4K);
/* OPAL variant of P7IOC SW invalidated TCEs */
swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
if (swinvp) {
/* We need a couple more fields -- an address and a data
* to or. Since the bus is only printed out on table free
* errors, and on the first pass the data will be a relative
* bus number, print that out instead.
*/
pe->tce_inval_reg_phys = be64_to_cpup(swinvp);
tbl->it_index = (unsigned long)ioremap(pe->tce_inval_reg_phys,
8);
tbl->it_type |= (TCE_PCI_SWINV_CREATE |
TCE_PCI_SWINV_FREE |
TCE_PCI_SWINV_PAIR);
}
iommu_init_table(tbl, phb->hose->node);
iommu_register_group(tbl, phb->hose->global_number, pe->pe_number);
if (pe->pdev)
set_iommu_table_base_and_group(&pe->pdev->dev, tbl);
else
pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
return;
fail:
/* XXX Failure: Try to fallback to 64-bit only ? */
if (pe->tce32_seg >= 0)
pe->tce32_seg = -1;
if (tce_mem)
__free_pages(tce_mem, get_order(TCE32_TABLE_SIZE * segs));
}
static void pnv_pci_ioda2_set_bypass(struct iommu_table *tbl, bool enable)
{
struct pnv_ioda_pe *pe = container_of(tbl, struct pnv_ioda_pe,
tce32_table);
uint16_t window_id = (pe->pe_number << 1 ) + 1;
int64_t rc;
pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
if (enable) {
phys_addr_t top = memblock_end_of_DRAM();
top = roundup_pow_of_two(top);
rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
pe->pe_number,
window_id,
pe->tce_bypass_base,
top);
} else {
rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
pe->pe_number,
window_id,
pe->tce_bypass_base,
0);
/*
* EEH needs the mapping between IOMMU table and group
* of those VFIO/KVM pass-through devices. We can postpone
* resetting DMA ops until the DMA mask is configured in
* host side.
*/
if (pe->pdev)
set_iommu_table_base(&pe->pdev->dev, tbl);
else
pnv_ioda_setup_bus_dma(pe, pe->pbus, false);
}
if (rc)
pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
else
pe->tce_bypass_enabled = enable;
}
static void pnv_pci_ioda2_setup_bypass_pe(struct pnv_phb *phb,
struct pnv_ioda_pe *pe)
{
/* TVE #1 is selected by PCI address bit 59 */
pe->tce_bypass_base = 1ull << 59;
/* Install set_bypass callback for VFIO */
pe->tce32_table.set_bypass = pnv_pci_ioda2_set_bypass;
/* Enable bypass by default */
pnv_pci_ioda2_set_bypass(&pe->tce32_table, true);
}
static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
struct pnv_ioda_pe *pe)
{
struct page *tce_mem = NULL;
void *addr;
const __be64 *swinvp;
struct iommu_table *tbl;
unsigned int tce_table_size, end;
int64_t rc;
/* We shouldn't already have a 32-bit DMA associated */
if (WARN_ON(pe->tce32_seg >= 0))
return;
/* The PE will reserve all possible 32-bits space */
pe->tce32_seg = 0;
end = (1 << ilog2(phb->ioda.m32_pci_base));
tce_table_size = (end / 0x1000) * 8;
pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
end);
/* Allocate TCE table */
tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
get_order(tce_table_size));
if (!tce_mem) {
pe_err(pe, "Failed to allocate a 32-bit TCE memory\n");
goto fail;
}
addr = page_address(tce_mem);
memset(addr, 0, tce_table_size);
/*
* Map TCE table through TVT. The TVE index is the PE number
* shifted by 1 bit for 32-bits DMA space.
*/
rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
pe->pe_number << 1, 1, __pa(addr),
tce_table_size, 0x1000);
if (rc) {
pe_err(pe, "Failed to configure 32-bit TCE table,"
" err %ld\n", rc);
goto fail;
}
/* Setup linux iommu table */
tbl = &pe->tce32_table;
pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, 0,
IOMMU_PAGE_SHIFT_4K);
/* OPAL variant of PHB3 invalidated TCEs */
swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
if (swinvp) {
/* We need a couple more fields -- an address and a data
* to or. Since the bus is only printed out on table free
* errors, and on the first pass the data will be a relative
* bus number, print that out instead.
*/
pe->tce_inval_reg_phys = be64_to_cpup(swinvp);
tbl->it_index = (unsigned long)ioremap(pe->tce_inval_reg_phys,
8);
tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
}
iommu_init_table(tbl, phb->hose->node);
iommu_register_group(tbl, phb->hose->global_number, pe->pe_number);
if (pe->pdev)
set_iommu_table_base_and_group(&pe->pdev->dev, tbl);
else
pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
/* Also create a bypass window */
pnv_pci_ioda2_setup_bypass_pe(phb, pe);
return;
fail:
if (pe->tce32_seg >= 0)
pe->tce32_seg = -1;
if (tce_mem)
__free_pages(tce_mem, get_order(tce_table_size));
}
static void pnv_ioda_setup_dma(struct pnv_phb *phb)
{
struct pci_controller *hose = phb->hose;
unsigned int residual, remaining, segs, tw, base;
struct pnv_ioda_pe *pe;
/* If we have more PE# than segments available, hand out one
* per PE until we run out and let the rest fail. If not,
* then we assign at least one segment per PE, plus more based
* on the amount of devices under that PE
*/
if (phb->ioda.dma_pe_count > phb->ioda.tce32_count)
residual = 0;
else
residual = phb->ioda.tce32_count -
phb->ioda.dma_pe_count;
pr_info("PCI: Domain %04x has %ld available 32-bit DMA segments\n",
hose->global_number, phb->ioda.tce32_count);
pr_info("PCI: %d PE# for a total weight of %d\n",
phb->ioda.dma_pe_count, phb->ioda.dma_weight);
/* Walk our PE list and configure their DMA segments, hand them
* out one base segment plus any residual segments based on
* weight
*/
remaining = phb->ioda.tce32_count;
tw = phb->ioda.dma_weight;
base = 0;
list_for_each_entry(pe, &phb->ioda.pe_dma_list, dma_link) {
if (!pe->dma_weight)
continue;
if (!remaining) {
pe_warn(pe, "No DMA32 resources available\n");
continue;
}
segs = 1;
if (residual) {
segs += ((pe->dma_weight * residual) + (tw / 2)) / tw;
if (segs > remaining)
segs = remaining;
}
/*
* For IODA2 compliant PHB3, we needn't care about the weight.
* The all available 32-bits DMA space will be assigned to
* the specific PE.
*/
if (phb->type == PNV_PHB_IODA1) {
pe_info(pe, "DMA weight %d, assigned %d DMA32 segments\n",
pe->dma_weight, segs);
pnv_pci_ioda_setup_dma_pe(phb, pe, base, segs);
} else {
pe_info(pe, "Assign DMA32 space\n");
segs = 0;
pnv_pci_ioda2_setup_dma_pe(phb, pe);
}
remaining -= segs;
base += segs;
}
}
#ifdef CONFIG_PCI_MSI
static void pnv_ioda2_msi_eoi(struct irq_data *d)
{
unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
struct irq_chip *chip = irq_data_get_irq_chip(d);
struct pnv_phb *phb = container_of(chip, struct pnv_phb,
ioda.irq_chip);
int64_t rc;
rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
WARN_ON_ONCE(rc);
icp_native_eoi(d);
}
static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
unsigned int hwirq, unsigned int virq,
unsigned int is_64, struct msi_msg *msg)
{
struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
struct pci_dn *pdn = pci_get_pdn(dev);
struct irq_data *idata;
struct irq_chip *ichip;
unsigned int xive_num = hwirq - phb->msi_base;
__be32 data;
int rc;
/* No PE assigned ? bail out ... no MSI for you ! */
if (pe == NULL)
return -ENXIO;
/* Check if we have an MVE */
if (pe->mve_number < 0)
return -ENXIO;
/* Force 32-bit MSI on some broken devices */
if (pdn && pdn->force_32bit_msi)
is_64 = 0;
/* Assign XIVE to PE */
rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
if (rc) {
pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
pci_name(dev), rc, xive_num);
return -EIO;
}
if (is_64) {
__be64 addr64;
rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
&addr64, &data);
if (rc) {
pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
pci_name(dev), rc);
return -EIO;
}
msg->address_hi = be64_to_cpu(addr64) >> 32;
msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
} else {
__be32 addr32;
rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
&addr32, &data);
if (rc) {
pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
pci_name(dev), rc);
return -EIO;
}
msg->address_hi = 0;
msg->address_lo = be32_to_cpu(addr32);
}
msg->data = be32_to_cpu(data);
/*
* Change the IRQ chip for the MSI interrupts on PHB3.
* The corresponding IRQ chip should be populated for
* the first time.
*/
if (phb->type == PNV_PHB_IODA2) {
if (!phb->ioda.irq_chip_init) {
idata = irq_get_irq_data(virq);
ichip = irq_data_get_irq_chip(idata);
phb->ioda.irq_chip_init = 1;
phb->ioda.irq_chip = *ichip;
phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
}
irq_set_chip(virq, &phb->ioda.irq_chip);
}
pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
" address=%x_%08x data=%x PE# %d\n",
pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
msg->address_hi, msg->address_lo, data, pe->pe_number);
return 0;
}
static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
{
unsigned int count;
const __be32 *prop = of_get_property(phb->hose->dn,
"ibm,opal-msi-ranges", NULL);
if (!prop) {
/* BML Fallback */
prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
}
if (!prop)
return;
phb->msi_base = be32_to_cpup(prop);
count = be32_to_cpup(prop + 1);
if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
phb->hose->global_number);
return;
}
phb->msi_setup = pnv_pci_ioda_msi_setup;
phb->msi32_support = 1;
pr_info(" Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
count, phb->msi_base);
}
#else
static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
#endif /* CONFIG_PCI_MSI */
/*
* This function is supposed to be called on basis of PE from top
* to bottom style. So the the I/O or MMIO segment assigned to
* parent PE could be overrided by its child PEs if necessary.
*/
static void pnv_ioda_setup_pe_seg(struct pci_controller *hose,
struct pnv_ioda_pe *pe)
{
struct pnv_phb *phb = hose->private_data;
struct pci_bus_region region;
struct resource *res;
int i, index;
int rc;
/*
* NOTE: We only care PCI bus based PE for now. For PCI
* device based PE, for example SRIOV sensitive VF should
* be figured out later.
*/
BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
pci_bus_for_each_resource(pe->pbus, res, i) {
if (!res || !res->flags ||
res->start > res->end)
continue;
if (res->flags & IORESOURCE_IO) {
region.start = res->start - phb->ioda.io_pci_base;
region.end = res->end - phb->ioda.io_pci_base;
index = region.start / phb->ioda.io_segsize;
while (index < phb->ioda.total_pe &&
region.start <= region.end) {
phb->ioda.io_segmap[index] = pe->pe_number;
rc = opal_pci_map_pe_mmio_window(phb->opal_id,
pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
if (rc != OPAL_SUCCESS) {
pr_err("%s: OPAL error %d when mapping IO "
"segment #%d to PE#%d\n",
__func__, rc, index, pe->pe_number);
break;
}
region.start += phb->ioda.io_segsize;
index++;
}
} else if (res->flags & IORESOURCE_MEM) {
region.start = res->start -
hose->mem_offset[0] -
phb->ioda.m32_pci_base;
region.end = res->end -
hose->mem_offset[0] -
phb->ioda.m32_pci_base;
index = region.start / phb->ioda.m32_segsize;
while (index < phb->ioda.total_pe &&
region.start <= region.end) {
phb->ioda.m32_segmap[index] = pe->pe_number;
rc = opal_pci_map_pe_mmio_window(phb->opal_id,
pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
if (rc != OPAL_SUCCESS) {
pr_err("%s: OPAL error %d when mapping M32 "
"segment#%d to PE#%d",
__func__, rc, index, pe->pe_number);
break;
}
region.start += phb->ioda.m32_segsize;
index++;
}
}
}
}
static void pnv_pci_ioda_setup_seg(void)
{
struct pci_controller *tmp, *hose;
struct pnv_phb *phb;
struct pnv_ioda_pe *pe;
list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
phb = hose->private_data;
list_for_each_entry(pe, &phb->ioda.pe_list, list) {
pnv_ioda_setup_pe_seg(hose, pe);
}
}
}
static void pnv_pci_ioda_setup_DMA(void)
{
struct pci_controller *hose, *tmp;
struct pnv_phb *phb;
list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
pnv_ioda_setup_dma(hose->private_data);
/* Mark the PHB initialization done */
phb = hose->private_data;
phb->initialized = 1;
}
}
static void pnv_pci_ioda_create_dbgfs(void)
{
#ifdef CONFIG_DEBUG_FS
struct pci_controller *hose, *tmp;
struct pnv_phb *phb;
char name[16];
list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
phb = hose->private_data;
sprintf(name, "PCI%04x", hose->global_number);
phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
if (!phb->dbgfs)
pr_warning("%s: Error on creating debugfs on PHB#%x\n",
__func__, hose->global_number);
}
#endif /* CONFIG_DEBUG_FS */
}
static void pnv_pci_ioda_fixup(void)
{
pnv_pci_ioda_setup_PEs();
pnv_pci_ioda_setup_seg();
pnv_pci_ioda_setup_DMA();
pnv_pci_ioda_create_dbgfs();
#ifdef CONFIG_EEH
eeh_init();
eeh_addr_cache_build();
#endif
}
/*
* Returns the alignment for I/O or memory windows for P2P
* bridges. That actually depends on how PEs are segmented.
* For now, we return I/O or M32 segment size for PE sensitive
* P2P bridges. Otherwise, the default values (4KiB for I/O,
* 1MiB for memory) will be returned.
*
* The current PCI bus might be put into one PE, which was
* create against the parent PCI bridge. For that case, we
* needn't enlarge the alignment so that we can save some
* resources.
*/
static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
unsigned long type)
{
struct pci_dev *bridge;
struct pci_controller *hose = pci_bus_to_host(bus);
struct pnv_phb *phb = hose->private_data;
int num_pci_bridges = 0;
bridge = bus->self;
while (bridge) {
if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
num_pci_bridges++;
if (num_pci_bridges >= 2)
return 1;
}
bridge = bridge->bus->self;
}
/* We fail back to M32 if M64 isn't supported */
if (phb->ioda.m64_segsize &&
pnv_pci_is_mem_pref_64(type))
return phb->ioda.m64_segsize;
if (type & IORESOURCE_MEM)
return phb->ioda.m32_segsize;
return phb->ioda.io_segsize;
}
/* Prevent enabling devices for which we couldn't properly
* assign a PE
*/
static int pnv_pci_enable_device_hook(struct pci_dev *dev)
{
struct pci_controller *hose = pci_bus_to_host(dev->bus);
struct pnv_phb *phb = hose->private_data;
struct pci_dn *pdn;
/* The function is probably called while the PEs have
* not be created yet. For example, resource reassignment
* during PCI probe period. We just skip the check if
* PEs isn't ready.
*/
if (!phb->initialized)
return 0;
pdn = pci_get_pdn(dev);
if (!pdn || pdn->pe_number == IODA_INVALID_PE)
return -EINVAL;
return 0;
}
static u32 pnv_ioda_bdfn_to_pe(struct pnv_phb *phb, struct pci_bus *bus,
u32 devfn)
{
return phb->ioda.pe_rmap[(bus->number << 8) | devfn];
}
static void pnv_pci_ioda_shutdown(struct pnv_phb *phb)
{
opal_pci_reset(phb->opal_id, OPAL_PCI_IODA_TABLE_RESET,
OPAL_ASSERT_RESET);
}
static void __init pnv_pci_init_ioda_phb(struct device_node *np,
u64 hub_id, int ioda_type)
{
struct pci_controller *hose;
struct pnv_phb *phb;
unsigned long size, m32map_off, pemap_off, iomap_off = 0;
const __be64 *prop64;
const __be32 *prop32;
int len;
u64 phb_id;
void *aux;
long rc;
pr_info("Initializing IODA%d OPAL PHB %s\n", ioda_type, np->full_name);
prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
if (!prop64) {
pr_err(" Missing \"ibm,opal-phbid\" property !\n");
return;
}
phb_id = be64_to_cpup(prop64);
pr_debug(" PHB-ID : 0x%016llx\n", phb_id);
phb = alloc_bootmem(sizeof(struct pnv_phb));
if (!phb) {
pr_err(" Out of memory !\n");
return;
}
/* Allocate PCI controller */
memset(phb, 0, sizeof(struct pnv_phb));
phb->hose = hose = pcibios_alloc_controller(np);
if (!phb->hose) {
pr_err(" Can't allocate PCI controller for %s\n",
np->full_name);
free_bootmem((unsigned long)phb, sizeof(struct pnv_phb));
return;
}
spin_lock_init(&phb->lock);
prop32 = of_get_property(np, "bus-range", &len);
if (prop32 && len == 8) {
hose->first_busno = be32_to_cpu(prop32[0]);
hose->last_busno = be32_to_cpu(prop32[1]);
} else {
pr_warn(" Broken <bus-range> on %s\n", np->full_name);
hose->first_busno = 0;
hose->last_busno = 0xff;
}
hose->private_data = phb;
phb->hub_id = hub_id;
phb->opal_id = phb_id;
phb->type = ioda_type;
/* Detect specific models for error handling */
if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
phb->model = PNV_PHB_MODEL_P7IOC;
else if (of_device_is_compatible(np, "ibm,power8-pciex"))
phb->model = PNV_PHB_MODEL_PHB3;
else
phb->model = PNV_PHB_MODEL_UNKNOWN;
/* Parse 32-bit and IO ranges (if any) */
pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
/* Get registers */
phb->regs = of_iomap(np, 0);
if (phb->regs == NULL)
pr_err(" Failed to map registers !\n");
/* Initialize more IODA stuff */
phb->ioda.total_pe = 1;
prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
if (prop32)
phb->ioda.total_pe = be32_to_cpup(prop32);
prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
if (prop32)
phb->ioda.reserved_pe = be32_to_cpup(prop32);
/* Parse 64-bit MMIO range */
pnv_ioda_parse_m64_window(phb);
phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
/* FW Has already off top 64k of M32 space (MSI space) */
phb->ioda.m32_size += 0x10000;
phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe;
phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
phb->ioda.io_size = hose->pci_io_size;
phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe;
phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
/* Allocate aux data & arrays. We don't have IO ports on PHB3 */
size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
m32map_off = size;
size += phb->ioda.total_pe * sizeof(phb->ioda.m32_segmap[0]);
if (phb->type == PNV_PHB_IODA1) {
iomap_off = size;
size += phb->ioda.total_pe * sizeof(phb->ioda.io_segmap[0]);
}
pemap_off = size;
size += phb->ioda.total_pe * sizeof(struct pnv_ioda_pe);
aux = alloc_bootmem(size);
memset(aux, 0, size);
phb->ioda.pe_alloc = aux;
phb->ioda.m32_segmap = aux + m32map_off;
if (phb->type == PNV_PHB_IODA1)
phb->ioda.io_segmap = aux + iomap_off;
phb->ioda.pe_array = aux + pemap_off;
set_bit(phb->ioda.reserved_pe, phb->ioda.pe_alloc);
INIT_LIST_HEAD(&phb->ioda.pe_dma_list);
INIT_LIST_HEAD(&phb->ioda.pe_list);
/* Calculate how many 32-bit TCE segments we have */
phb->ioda.tce32_count = phb->ioda.m32_pci_base >> 28;
#if 0 /* We should really do that ... */
rc = opal_pci_set_phb_mem_window(opal->phb_id,
window_type,
window_num,
starting_real_address,
starting_pci_address,
segment_size);
#endif
pr_info(" %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
phb->ioda.total_pe, phb->ioda.reserved_pe,
phb->ioda.m32_size, phb->ioda.m32_segsize);
if (phb->ioda.m64_size)
pr_info(" M64: 0x%lx [segment=0x%lx]\n",
phb->ioda.m64_size, phb->ioda.m64_segsize);
if (phb->ioda.io_size)
pr_info(" IO: 0x%x [segment=0x%x]\n",
phb->ioda.io_size, phb->ioda.io_segsize);
phb->hose->ops = &pnv_pci_ops;
phb->get_pe_state = pnv_ioda_get_pe_state;
phb->freeze_pe = pnv_ioda_freeze_pe;
phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
#ifdef CONFIG_EEH
phb->eeh_ops = &ioda_eeh_ops;
#endif
/* Setup RID -> PE mapping function */
phb->bdfn_to_pe = pnv_ioda_bdfn_to_pe;
/* Setup TCEs */
phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
phb->dma_set_mask = pnv_pci_ioda_dma_set_mask;
/* Setup shutdown function for kexec */
phb->shutdown = pnv_pci_ioda_shutdown;
/* Setup MSI support */
pnv_pci_init_ioda_msis(phb);
/*
* We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
* to let the PCI core do resource assignment. It's supposed
* that the PCI core will do correct I/O and MMIO alignment
* for the P2P bridge bars so that each PCI bus (excluding
* the child P2P bridges) can form individual PE.
*/
ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
ppc_md.pcibios_enable_device_hook = pnv_pci_enable_device_hook;
ppc_md.pcibios_window_alignment = pnv_pci_window_alignment;
ppc_md.pcibios_reset_secondary_bus = pnv_pci_reset_secondary_bus;
pci_add_flags(PCI_REASSIGN_ALL_RSRC);
/* Reset IODA tables to a clean state */
rc = opal_pci_reset(phb_id, OPAL_PCI_IODA_TABLE_RESET, OPAL_ASSERT_RESET);
if (rc)
pr_warning(" OPAL Error %ld performing IODA table reset !\n", rc);
/* If we're running in kdump kerenl, the previous kerenl never
* shutdown PCI devices correctly. We already got IODA table
* cleaned out. So we have to issue PHB reset to stop all PCI
* transactions from previous kerenl.
*/
if (is_kdump_kernel()) {
pr_info(" Issue PHB reset ...\n");
ioda_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
ioda_eeh_phb_reset(hose, OPAL_DEASSERT_RESET);
}
/* Configure M64 window */
if (phb->init_m64 && phb->init_m64(phb))
hose->mem_resources[1].flags = 0;
}
void __init pnv_pci_init_ioda2_phb(struct device_node *np)
{
pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
}
void __init pnv_pci_init_ioda_hub(struct device_node *np)
{
struct device_node *phbn;
const __be64 *prop64;
u64 hub_id;
pr_info("Probing IODA IO-Hub %s\n", np->full_name);
prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
if (!prop64) {
pr_err(" Missing \"ibm,opal-hubid\" property !\n");
return;
}
hub_id = be64_to_cpup(prop64);
pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
/* Count child PHBs */
for_each_child_of_node(np, phbn) {
/* Look for IODA1 PHBs */
if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
}
}