linux/drivers/infiniband/hw/qib/qib_diag.c

908 lines
23 KiB
C
Raw Normal View History

/*
* Copyright (c) 2010 QLogic Corporation. All rights reserved.
* Copyright (c) 2006, 2007, 2008, 2009 QLogic Corporation. All rights reserved.
* Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
/*
* This file contains support for diagnostic functions. It is accessed by
* opening the qib_diag device, normally minor number 129. Diagnostic use
* of the QLogic_IB chip may render the chip or board unusable until the
* driver is unloaded, or in some cases, until the system is rebooted.
*
* Accesses to the chip through this interface are not similar to going
* through the /sys/bus/pci resource mmap interface.
*/
#include <linux/io.h>
#include <linux/pci.h>
#include <linux/poll.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/uaccess.h>
#include "qib.h"
#include "qib_common.h"
/*
* Each client that opens the diag device must read then write
* offset 0, to prevent lossage from random cat or od. diag_state
* sequences this "handshake".
*/
enum diag_state { UNUSED = 0, OPENED, INIT, READY };
/* State for an individual client. PID so children cannot abuse handshake */
static struct qib_diag_client {
struct qib_diag_client *next;
struct qib_devdata *dd;
pid_t pid;
enum diag_state state;
} *client_pool;
/*
* Get a client struct. Recycled if possible, else kmalloc.
* Must be called with qib_mutex held
*/
static struct qib_diag_client *get_client(struct qib_devdata *dd)
{
struct qib_diag_client *dc;
dc = client_pool;
if (dc)
/* got from pool remove it and use */
client_pool = dc->next;
else
/* None in pool, alloc and init */
dc = kmalloc(sizeof *dc, GFP_KERNEL);
if (dc) {
dc->next = NULL;
dc->dd = dd;
dc->pid = current->pid;
dc->state = OPENED;
}
return dc;
}
/*
* Return to pool. Must be called with qib_mutex held
*/
static void return_client(struct qib_diag_client *dc)
{
struct qib_devdata *dd = dc->dd;
struct qib_diag_client *tdc, *rdc;
rdc = NULL;
if (dc == dd->diag_client) {
dd->diag_client = dc->next;
rdc = dc;
} else {
tdc = dc->dd->diag_client;
while (tdc) {
if (dc == tdc->next) {
tdc->next = dc->next;
rdc = dc;
break;
}
tdc = tdc->next;
}
}
if (rdc) {
rdc->state = UNUSED;
rdc->dd = NULL;
rdc->pid = 0;
rdc->next = client_pool;
client_pool = rdc;
}
}
static int qib_diag_open(struct inode *in, struct file *fp);
static int qib_diag_release(struct inode *in, struct file *fp);
static ssize_t qib_diag_read(struct file *fp, char __user *data,
size_t count, loff_t *off);
static ssize_t qib_diag_write(struct file *fp, const char __user *data,
size_t count, loff_t *off);
static const struct file_operations diag_file_ops = {
.owner = THIS_MODULE,
.write = qib_diag_write,
.read = qib_diag_read,
.open = qib_diag_open,
llseek: automatically add .llseek fop All file_operations should get a .llseek operation so we can make nonseekable_open the default for future file operations without a .llseek pointer. The three cases that we can automatically detect are no_llseek, seq_lseek and default_llseek. For cases where we can we can automatically prove that the file offset is always ignored, we use noop_llseek, which maintains the current behavior of not returning an error from a seek. New drivers should normally not use noop_llseek but instead use no_llseek and call nonseekable_open at open time. Existing drivers can be converted to do the same when the maintainer knows for certain that no user code relies on calling seek on the device file. The generated code is often incorrectly indented and right now contains comments that clarify for each added line why a specific variant was chosen. In the version that gets submitted upstream, the comments will be gone and I will manually fix the indentation, because there does not seem to be a way to do that using coccinelle. Some amount of new code is currently sitting in linux-next that should get the same modifications, which I will do at the end of the merge window. Many thanks to Julia Lawall for helping me learn to write a semantic patch that does all this. ===== begin semantic patch ===== // This adds an llseek= method to all file operations, // as a preparation for making no_llseek the default. // // The rules are // - use no_llseek explicitly if we do nonseekable_open // - use seq_lseek for sequential files // - use default_llseek if we know we access f_pos // - use noop_llseek if we know we don't access f_pos, // but we still want to allow users to call lseek // @ open1 exists @ identifier nested_open; @@ nested_open(...) { <+... nonseekable_open(...) ...+> } @ open exists@ identifier open_f; identifier i, f; identifier open1.nested_open; @@ int open_f(struct inode *i, struct file *f) { <+... ( nonseekable_open(...) | nested_open(...) ) ...+> } @ read disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ read_no_fpos disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { ... when != off } @ write @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ write_no_fpos @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { ... when != off } @ fops0 @ identifier fops; @@ struct file_operations fops = { ... }; @ has_llseek depends on fops0 @ identifier fops0.fops; identifier llseek_f; @@ struct file_operations fops = { ... .llseek = llseek_f, ... }; @ has_read depends on fops0 @ identifier fops0.fops; identifier read_f; @@ struct file_operations fops = { ... .read = read_f, ... }; @ has_write depends on fops0 @ identifier fops0.fops; identifier write_f; @@ struct file_operations fops = { ... .write = write_f, ... }; @ has_open depends on fops0 @ identifier fops0.fops; identifier open_f; @@ struct file_operations fops = { ... .open = open_f, ... }; // use no_llseek if we call nonseekable_open //////////////////////////////////////////// @ nonseekable1 depends on !has_llseek && has_open @ identifier fops0.fops; identifier nso ~= "nonseekable_open"; @@ struct file_operations fops = { ... .open = nso, ... +.llseek = no_llseek, /* nonseekable */ }; @ nonseekable2 depends on !has_llseek @ identifier fops0.fops; identifier open.open_f; @@ struct file_operations fops = { ... .open = open_f, ... +.llseek = no_llseek, /* open uses nonseekable */ }; // use seq_lseek for sequential files ///////////////////////////////////// @ seq depends on !has_llseek @ identifier fops0.fops; identifier sr ~= "seq_read"; @@ struct file_operations fops = { ... .read = sr, ... +.llseek = seq_lseek, /* we have seq_read */ }; // use default_llseek if there is a readdir /////////////////////////////////////////// @ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier readdir_e; @@ // any other fop is used that changes pos struct file_operations fops = { ... .readdir = readdir_e, ... +.llseek = default_llseek, /* readdir is present */ }; // use default_llseek if at least one of read/write touches f_pos ///////////////////////////////////////////////////////////////// @ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read.read_f; @@ // read fops use offset struct file_operations fops = { ... .read = read_f, ... +.llseek = default_llseek, /* read accesses f_pos */ }; @ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, ... + .llseek = default_llseek, /* write accesses f_pos */ }; // Use noop_llseek if neither read nor write accesses f_pos /////////////////////////////////////////////////////////// @ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; identifier write_no_fpos.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, .read = read_f, ... +.llseek = noop_llseek, /* read and write both use no f_pos */ }; @ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write_no_fpos.write_f; @@ struct file_operations fops = { ... .write = write_f, ... +.llseek = noop_llseek, /* write uses no f_pos */ }; @ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; @@ struct file_operations fops = { ... .read = read_f, ... +.llseek = noop_llseek, /* read uses no f_pos */ }; @ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; @@ struct file_operations fops = { ... +.llseek = noop_llseek, /* no read or write fn */ }; ===== End semantic patch ===== Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Julia Lawall <julia@diku.dk> Cc: Christoph Hellwig <hch@infradead.org>
2010-08-15 16:52:59 +00:00
.release = qib_diag_release,
.llseek = default_llseek,
};
static atomic_t diagpkt_count = ATOMIC_INIT(0);
static struct cdev *diagpkt_cdev;
static struct device *diagpkt_device;
static ssize_t qib_diagpkt_write(struct file *fp, const char __user *data,
size_t count, loff_t *off);
static const struct file_operations diagpkt_file_ops = {
.owner = THIS_MODULE,
.write = qib_diagpkt_write,
llseek: automatically add .llseek fop All file_operations should get a .llseek operation so we can make nonseekable_open the default for future file operations without a .llseek pointer. The three cases that we can automatically detect are no_llseek, seq_lseek and default_llseek. For cases where we can we can automatically prove that the file offset is always ignored, we use noop_llseek, which maintains the current behavior of not returning an error from a seek. New drivers should normally not use noop_llseek but instead use no_llseek and call nonseekable_open at open time. Existing drivers can be converted to do the same when the maintainer knows for certain that no user code relies on calling seek on the device file. The generated code is often incorrectly indented and right now contains comments that clarify for each added line why a specific variant was chosen. In the version that gets submitted upstream, the comments will be gone and I will manually fix the indentation, because there does not seem to be a way to do that using coccinelle. Some amount of new code is currently sitting in linux-next that should get the same modifications, which I will do at the end of the merge window. Many thanks to Julia Lawall for helping me learn to write a semantic patch that does all this. ===== begin semantic patch ===== // This adds an llseek= method to all file operations, // as a preparation for making no_llseek the default. // // The rules are // - use no_llseek explicitly if we do nonseekable_open // - use seq_lseek for sequential files // - use default_llseek if we know we access f_pos // - use noop_llseek if we know we don't access f_pos, // but we still want to allow users to call lseek // @ open1 exists @ identifier nested_open; @@ nested_open(...) { <+... nonseekable_open(...) ...+> } @ open exists@ identifier open_f; identifier i, f; identifier open1.nested_open; @@ int open_f(struct inode *i, struct file *f) { <+... ( nonseekable_open(...) | nested_open(...) ) ...+> } @ read disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ read_no_fpos disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { ... when != off } @ write @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ write_no_fpos @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { ... when != off } @ fops0 @ identifier fops; @@ struct file_operations fops = { ... }; @ has_llseek depends on fops0 @ identifier fops0.fops; identifier llseek_f; @@ struct file_operations fops = { ... .llseek = llseek_f, ... }; @ has_read depends on fops0 @ identifier fops0.fops; identifier read_f; @@ struct file_operations fops = { ... .read = read_f, ... }; @ has_write depends on fops0 @ identifier fops0.fops; identifier write_f; @@ struct file_operations fops = { ... .write = write_f, ... }; @ has_open depends on fops0 @ identifier fops0.fops; identifier open_f; @@ struct file_operations fops = { ... .open = open_f, ... }; // use no_llseek if we call nonseekable_open //////////////////////////////////////////// @ nonseekable1 depends on !has_llseek && has_open @ identifier fops0.fops; identifier nso ~= "nonseekable_open"; @@ struct file_operations fops = { ... .open = nso, ... +.llseek = no_llseek, /* nonseekable */ }; @ nonseekable2 depends on !has_llseek @ identifier fops0.fops; identifier open.open_f; @@ struct file_operations fops = { ... .open = open_f, ... +.llseek = no_llseek, /* open uses nonseekable */ }; // use seq_lseek for sequential files ///////////////////////////////////// @ seq depends on !has_llseek @ identifier fops0.fops; identifier sr ~= "seq_read"; @@ struct file_operations fops = { ... .read = sr, ... +.llseek = seq_lseek, /* we have seq_read */ }; // use default_llseek if there is a readdir /////////////////////////////////////////// @ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier readdir_e; @@ // any other fop is used that changes pos struct file_operations fops = { ... .readdir = readdir_e, ... +.llseek = default_llseek, /* readdir is present */ }; // use default_llseek if at least one of read/write touches f_pos ///////////////////////////////////////////////////////////////// @ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read.read_f; @@ // read fops use offset struct file_operations fops = { ... .read = read_f, ... +.llseek = default_llseek, /* read accesses f_pos */ }; @ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, ... + .llseek = default_llseek, /* write accesses f_pos */ }; // Use noop_llseek if neither read nor write accesses f_pos /////////////////////////////////////////////////////////// @ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; identifier write_no_fpos.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, .read = read_f, ... +.llseek = noop_llseek, /* read and write both use no f_pos */ }; @ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write_no_fpos.write_f; @@ struct file_operations fops = { ... .write = write_f, ... +.llseek = noop_llseek, /* write uses no f_pos */ }; @ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; @@ struct file_operations fops = { ... .read = read_f, ... +.llseek = noop_llseek, /* read uses no f_pos */ }; @ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; @@ struct file_operations fops = { ... +.llseek = noop_llseek, /* no read or write fn */ }; ===== End semantic patch ===== Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Julia Lawall <julia@diku.dk> Cc: Christoph Hellwig <hch@infradead.org>
2010-08-15 16:52:59 +00:00
.llseek = noop_llseek,
};
int qib_diag_add(struct qib_devdata *dd)
{
char name[16];
int ret = 0;
if (atomic_inc_return(&diagpkt_count) == 1) {
ret = qib_cdev_init(QIB_DIAGPKT_MINOR, "ipath_diagpkt",
&diagpkt_file_ops, &diagpkt_cdev,
&diagpkt_device);
if (ret)
goto done;
}
snprintf(name, sizeof(name), "ipath_diag%d", dd->unit);
ret = qib_cdev_init(QIB_DIAG_MINOR_BASE + dd->unit, name,
&diag_file_ops, &dd->diag_cdev,
&dd->diag_device);
done:
return ret;
}
static void qib_unregister_observers(struct qib_devdata *dd);
void qib_diag_remove(struct qib_devdata *dd)
{
struct qib_diag_client *dc;
if (atomic_dec_and_test(&diagpkt_count))
qib_cdev_cleanup(&diagpkt_cdev, &diagpkt_device);
qib_cdev_cleanup(&dd->diag_cdev, &dd->diag_device);
/*
* Return all diag_clients of this device. There should be none,
* as we are "guaranteed" that no clients are still open
*/
while (dd->diag_client)
return_client(dd->diag_client);
/* Now clean up all unused client structs */
while (client_pool) {
dc = client_pool;
client_pool = dc->next;
kfree(dc);
}
/* Clean up observer list */
qib_unregister_observers(dd);
}
/* qib_remap_ioaddr32 - remap an offset into chip address space to __iomem *
*
* @dd: the qlogic_ib device
* @offs: the offset in chip-space
* @cntp: Pointer to max (byte) count for transfer starting at offset
* This returns a u32 __iomem * so it can be used for both 64 and 32-bit
* mapping. It is needed because with the use of PAT for control of
* write-combining, the logically contiguous address-space of the chip
* may be split into virtually non-contiguous spaces, with different
* attributes, which are them mapped to contiguous physical space
* based from the first BAR.
*
* The code below makes the same assumptions as were made in
* init_chip_wc_pat() (qib_init.c), copied here:
* Assumes chip address space looks like:
* - kregs + sregs + cregs + uregs (in any order)
* - piobufs (2K and 4K bufs in either order)
* or:
* - kregs + sregs + cregs (in any order)
* - piobufs (2K and 4K bufs in either order)
* - uregs
*
* If cntp is non-NULL, returns how many bytes from offset can be accessed
* Returns 0 if the offset is not mapped.
*/
static u32 __iomem *qib_remap_ioaddr32(struct qib_devdata *dd, u32 offset,
u32 *cntp)
{
u32 kreglen;
u32 snd_bottom, snd_lim = 0;
u32 __iomem *krb32 = (u32 __iomem *)dd->kregbase;
u32 __iomem *map = NULL;
u32 cnt = 0;
u32 tot4k, offs4k;
/* First, simplest case, offset is within the first map. */
kreglen = (dd->kregend - dd->kregbase) * sizeof(u64);
if (offset < kreglen) {
map = krb32 + (offset / sizeof(u32));
cnt = kreglen - offset;
goto mapped;
}
/*
* Next check for user regs, the next most common case,
* and a cheap check because if they are not in the first map
* they are last in chip.
*/
if (dd->userbase) {
/* If user regs mapped, they are after send, so set limit. */
u32 ulim = (dd->cfgctxts * dd->ureg_align) + dd->uregbase;
if (!dd->piovl15base)
snd_lim = dd->uregbase;
krb32 = (u32 __iomem *)dd->userbase;
if (offset >= dd->uregbase && offset < ulim) {
map = krb32 + (offset - dd->uregbase) / sizeof(u32);
cnt = ulim - offset;
goto mapped;
}
}
/*
* Lastly, check for offset within Send Buffers.
* This is gnarly because struct devdata is deliberately vague
* about things like 7322 VL15 buffers, and we are not in
* chip-specific code here, so should not make many assumptions.
* The one we _do_ make is that the only chip that has more sndbufs
* than we admit is the 7322, and it has userregs above that, so
* we know the snd_lim.
*/
/* Assume 2K buffers are first. */
snd_bottom = dd->pio2k_bufbase;
if (snd_lim == 0) {
u32 tot2k = dd->piobcnt2k * ALIGN(dd->piosize2k, dd->palign);
snd_lim = snd_bottom + tot2k;
}
/* If 4k buffers exist, account for them by bumping
* appropriate limit.
*/
tot4k = dd->piobcnt4k * dd->align4k;
offs4k = dd->piobufbase >> 32;
if (dd->piobcnt4k) {
if (snd_bottom > offs4k)
snd_bottom = offs4k;
else {
/* 4k above 2k. Bump snd_lim, if needed*/
if (!dd->userbase || dd->piovl15base)
snd_lim = offs4k + tot4k;
}
}
/*
* Judgement call: can we ignore the space between SendBuffs and
* UserRegs, where we would like to see vl15 buffs, but not more?
*/
if (offset >= snd_bottom && offset < snd_lim) {
offset -= snd_bottom;
map = (u32 __iomem *)dd->piobase + (offset / sizeof(u32));
cnt = snd_lim - offset;
}
if (!map && offs4k && dd->piovl15base) {
snd_lim = offs4k + tot4k + 2 * dd->align4k;
if (offset >= (offs4k + tot4k) && offset < snd_lim) {
map = (u32 __iomem *)dd->piovl15base +
((offset - (offs4k + tot4k)) / sizeof(u32));
cnt = snd_lim - offset;
}
}
mapped:
if (cntp)
*cntp = cnt;
return map;
}
/*
* qib_read_umem64 - read a 64-bit quantity from the chip into user space
* @dd: the qlogic_ib device
* @uaddr: the location to store the data in user memory
* @regoffs: the offset from BAR0 (_NOT_ full pointer, anymore)
* @count: number of bytes to copy (multiple of 32 bits)
*
* This function also localizes all chip memory accesses.
* The copy should be written such that we read full cacheline packets
* from the chip. This is usually used for a single qword
*
* NOTE: This assumes the chip address is 64-bit aligned.
*/
static int qib_read_umem64(struct qib_devdata *dd, void __user *uaddr,
u32 regoffs, size_t count)
{
const u64 __iomem *reg_addr;
const u64 __iomem *reg_end;
u32 limit;
int ret;
reg_addr = (const u64 __iomem *)qib_remap_ioaddr32(dd, regoffs, &limit);
if (reg_addr == NULL || limit == 0 || !(dd->flags & QIB_PRESENT)) {
ret = -EINVAL;
goto bail;
}
if (count >= limit)
count = limit;
reg_end = reg_addr + (count / sizeof(u64));
/* not very efficient, but it works for now */
while (reg_addr < reg_end) {
u64 data = readq(reg_addr);
if (copy_to_user(uaddr, &data, sizeof(u64))) {
ret = -EFAULT;
goto bail;
}
reg_addr++;
uaddr += sizeof(u64);
}
ret = 0;
bail:
return ret;
}
/*
* qib_write_umem64 - write a 64-bit quantity to the chip from user space
* @dd: the qlogic_ib device
* @regoffs: the offset from BAR0 (_NOT_ full pointer, anymore)
* @uaddr: the source of the data in user memory
* @count: the number of bytes to copy (multiple of 32 bits)
*
* This is usually used for a single qword
* NOTE: This assumes the chip address is 64-bit aligned.
*/
static int qib_write_umem64(struct qib_devdata *dd, u32 regoffs,
const void __user *uaddr, size_t count)
{
u64 __iomem *reg_addr;
const u64 __iomem *reg_end;
u32 limit;
int ret;
reg_addr = (u64 __iomem *)qib_remap_ioaddr32(dd, regoffs, &limit);
if (reg_addr == NULL || limit == 0 || !(dd->flags & QIB_PRESENT)) {
ret = -EINVAL;
goto bail;
}
if (count >= limit)
count = limit;
reg_end = reg_addr + (count / sizeof(u64));
/* not very efficient, but it works for now */
while (reg_addr < reg_end) {
u64 data;
if (copy_from_user(&data, uaddr, sizeof(data))) {
ret = -EFAULT;
goto bail;
}
writeq(data, reg_addr);
reg_addr++;
uaddr += sizeof(u64);
}
ret = 0;
bail:
return ret;
}
/*
* qib_read_umem32 - read a 32-bit quantity from the chip into user space
* @dd: the qlogic_ib device
* @uaddr: the location to store the data in user memory
* @regoffs: the offset from BAR0 (_NOT_ full pointer, anymore)
* @count: number of bytes to copy
*
* read 32 bit values, not 64 bit; for memories that only
* support 32 bit reads; usually a single dword.
*/
static int qib_read_umem32(struct qib_devdata *dd, void __user *uaddr,
u32 regoffs, size_t count)
{
const u32 __iomem *reg_addr;
const u32 __iomem *reg_end;
u32 limit;
int ret;
reg_addr = qib_remap_ioaddr32(dd, regoffs, &limit);
if (reg_addr == NULL || limit == 0 || !(dd->flags & QIB_PRESENT)) {
ret = -EINVAL;
goto bail;
}
if (count >= limit)
count = limit;
reg_end = reg_addr + (count / sizeof(u32));
/* not very efficient, but it works for now */
while (reg_addr < reg_end) {
u32 data = readl(reg_addr);
if (copy_to_user(uaddr, &data, sizeof(data))) {
ret = -EFAULT;
goto bail;
}
reg_addr++;
uaddr += sizeof(u32);
}
ret = 0;
bail:
return ret;
}
/*
* qib_write_umem32 - write a 32-bit quantity to the chip from user space
* @dd: the qlogic_ib device
* @regoffs: the offset from BAR0 (_NOT_ full pointer, anymore)
* @uaddr: the source of the data in user memory
* @count: number of bytes to copy
*
* write 32 bit values, not 64 bit; for memories that only
* support 32 bit write; usually a single dword.
*/
static int qib_write_umem32(struct qib_devdata *dd, u32 regoffs,
const void __user *uaddr, size_t count)
{
u32 __iomem *reg_addr;
const u32 __iomem *reg_end;
u32 limit;
int ret;
reg_addr = qib_remap_ioaddr32(dd, regoffs, &limit);
if (reg_addr == NULL || limit == 0 || !(dd->flags & QIB_PRESENT)) {
ret = -EINVAL;
goto bail;
}
if (count >= limit)
count = limit;
reg_end = reg_addr + (count / sizeof(u32));
while (reg_addr < reg_end) {
u32 data;
if (copy_from_user(&data, uaddr, sizeof(data))) {
ret = -EFAULT;
goto bail;
}
writel(data, reg_addr);
reg_addr++;
uaddr += sizeof(u32);
}
ret = 0;
bail:
return ret;
}
static int qib_diag_open(struct inode *in, struct file *fp)
{
int unit = iminor(in) - QIB_DIAG_MINOR_BASE;
struct qib_devdata *dd;
struct qib_diag_client *dc;
int ret;
mutex_lock(&qib_mutex);
dd = qib_lookup(unit);
if (dd == NULL || !(dd->flags & QIB_PRESENT) ||
!dd->kregbase) {
ret = -ENODEV;
goto bail;
}
dc = get_client(dd);
if (!dc) {
ret = -ENOMEM;
goto bail;
}
dc->next = dd->diag_client;
dd->diag_client = dc;
fp->private_data = dc;
ret = 0;
bail:
mutex_unlock(&qib_mutex);
return ret;
}
/**
* qib_diagpkt_write - write an IB packet
* @fp: the diag data device file pointer
* @data: qib_diag_pkt structure saying where to get the packet
* @count: size of data to write
* @off: unused by this code
*/
static ssize_t qib_diagpkt_write(struct file *fp,
const char __user *data,
size_t count, loff_t *off)
{
u32 __iomem *piobuf;
u32 plen, clen, pbufn;
struct qib_diag_xpkt dp;
u32 *tmpbuf = NULL;
struct qib_devdata *dd;
struct qib_pportdata *ppd;
ssize_t ret = 0;
if (count != sizeof(dp)) {
ret = -EINVAL;
goto bail;
}
if (copy_from_user(&dp, data, sizeof(dp))) {
ret = -EFAULT;
goto bail;
}
dd = qib_lookup(dp.unit);
if (!dd || !(dd->flags & QIB_PRESENT) || !dd->kregbase) {
ret = -ENODEV;
goto bail;
}
if (!(dd->flags & QIB_INITTED)) {
/* no hardware, freeze, etc. */
ret = -ENODEV;
goto bail;
}
if (dp.version != _DIAG_XPKT_VERS) {
qib_dev_err(dd, "Invalid version %u for diagpkt_write\n",
dp.version);
ret = -EINVAL;
goto bail;
}
/* send count must be an exact number of dwords */
if (dp.len & 3) {
ret = -EINVAL;
goto bail;
}
if (!dp.port || dp.port > dd->num_pports) {
ret = -EINVAL;
goto bail;
}
ppd = &dd->pport[dp.port - 1];
/* need total length before first word written */
/* +1 word is for the qword padding */
plen = sizeof(u32) + dp.len;
clen = dp.len >> 2;
if ((plen + 4) > ppd->ibmaxlen) {
ret = -EINVAL;
goto bail; /* before writing pbc */
}
tmpbuf = vmalloc(plen);
if (!tmpbuf) {
qib_devinfo(dd->pcidev, "Unable to allocate tmp buffer, "
"failing\n");
ret = -ENOMEM;
goto bail;
}
if (copy_from_user(tmpbuf,
(const void __user *) (unsigned long) dp.data,
dp.len)) {
ret = -EFAULT;
goto bail;
}
plen >>= 2; /* in dwords */
if (dp.pbc_wd == 0)
dp.pbc_wd = plen;
piobuf = dd->f_getsendbuf(ppd, dp.pbc_wd, &pbufn);
if (!piobuf) {
ret = -EBUSY;
goto bail;
}
/* disarm it just to be extra sure */
dd->f_sendctrl(dd->pport, QIB_SENDCTRL_DISARM_BUF(pbufn));
/* disable header check on pbufn for this packet */
dd->f_txchk_change(dd, pbufn, 1, TXCHK_CHG_TYPE_DIS1, NULL);
writeq(dp.pbc_wd, piobuf);
/*
* Copy all but the trigger word, then flush, so it's written
* to chip before trigger word, then write trigger word, then
* flush again, so packet is sent.
*/
if (dd->flags & QIB_PIO_FLUSH_WC) {
qib_flush_wc();
qib_pio_copy(piobuf + 2, tmpbuf, clen - 1);
qib_flush_wc();
__raw_writel(tmpbuf[clen - 1], piobuf + clen + 1);
} else
qib_pio_copy(piobuf + 2, tmpbuf, clen);
if (dd->flags & QIB_USE_SPCL_TRIG) {
u32 spcl_off = (pbufn >= dd->piobcnt2k) ? 2047 : 1023;
qib_flush_wc();
__raw_writel(0xaebecede, piobuf + spcl_off);
}
/*
* Ensure buffer is written to the chip, then re-enable
* header checks (if supported by chip). The txchk
* code will ensure seen by chip before returning.
*/
qib_flush_wc();
qib_sendbuf_done(dd, pbufn);
dd->f_txchk_change(dd, pbufn, 1, TXCHK_CHG_TYPE_ENAB1, NULL);
ret = sizeof(dp);
bail:
vfree(tmpbuf);
return ret;
}
static int qib_diag_release(struct inode *in, struct file *fp)
{
mutex_lock(&qib_mutex);
return_client(fp->private_data);
fp->private_data = NULL;
mutex_unlock(&qib_mutex);
return 0;
}
/*
* Chip-specific code calls to register its interest in
* a specific range.
*/
struct diag_observer_list_elt {
struct diag_observer_list_elt *next;
const struct diag_observer *op;
};
int qib_register_observer(struct qib_devdata *dd,
const struct diag_observer *op)
{
struct diag_observer_list_elt *olp;
int ret = -EINVAL;
if (!dd || !op)
goto bail;
ret = -ENOMEM;
olp = vmalloc(sizeof *olp);
if (!olp) {
printk(KERN_ERR QIB_DRV_NAME ": vmalloc for observer failed\n");
goto bail;
}
if (olp) {
unsigned long flags;
spin_lock_irqsave(&dd->qib_diag_trans_lock, flags);
olp->op = op;
olp->next = dd->diag_observer_list;
dd->diag_observer_list = olp;
spin_unlock_irqrestore(&dd->qib_diag_trans_lock, flags);
ret = 0;
}
bail:
return ret;
}
/* Remove all registered observers when device is closed */
static void qib_unregister_observers(struct qib_devdata *dd)
{
struct diag_observer_list_elt *olp;
unsigned long flags;
spin_lock_irqsave(&dd->qib_diag_trans_lock, flags);
olp = dd->diag_observer_list;
while (olp) {
/* Pop one observer, let go of lock */
dd->diag_observer_list = olp->next;
spin_unlock_irqrestore(&dd->qib_diag_trans_lock, flags);
vfree(olp);
/* try again. */
spin_lock_irqsave(&dd->qib_diag_trans_lock, flags);
olp = dd->diag_observer_list;
}
spin_unlock_irqrestore(&dd->qib_diag_trans_lock, flags);
}
/*
* Find the observer, if any, for the specified address. Initial implementation
* is simple stack of observers. This must be called with diag transaction
* lock held.
*/
static const struct diag_observer *diag_get_observer(struct qib_devdata *dd,
u32 addr)
{
struct diag_observer_list_elt *olp;
const struct diag_observer *op = NULL;
olp = dd->diag_observer_list;
while (olp) {
op = olp->op;
if (addr >= op->bottom && addr <= op->top)
break;
olp = olp->next;
}
if (!olp)
op = NULL;
return op;
}
static ssize_t qib_diag_read(struct file *fp, char __user *data,
size_t count, loff_t *off)
{
struct qib_diag_client *dc = fp->private_data;
struct qib_devdata *dd = dc->dd;
void __iomem *kreg_base;
ssize_t ret;
if (dc->pid != current->pid) {
ret = -EPERM;
goto bail;
}
kreg_base = dd->kregbase;
if (count == 0)
ret = 0;
else if ((count % 4) || (*off % 4))
/* address or length is not 32-bit aligned, hence invalid */
ret = -EINVAL;
else if (dc->state < READY && (*off || count != 8))
ret = -EINVAL; /* prevent cat /dev/qib_diag* */
else {
unsigned long flags;
u64 data64 = 0;
int use_32;
const struct diag_observer *op;
use_32 = (count % 8) || (*off % 8);
ret = -1;
spin_lock_irqsave(&dd->qib_diag_trans_lock, flags);
/*
* Check for observer on this address range.
* we only support a single 32 or 64-bit read
* via observer, currently.
*/
op = diag_get_observer(dd, *off);
if (op) {
u32 offset = *off;
ret = op->hook(dd, op, offset, &data64, 0, use_32);
}
/*
* We need to release lock before any copy_to_user(),
* whether implicit in qib_read_umem* or explicit below.
*/
spin_unlock_irqrestore(&dd->qib_diag_trans_lock, flags);
if (!op) {
if (use_32)
/*
* Address or length is not 64-bit aligned;
* do 32-bit rd
*/
ret = qib_read_umem32(dd, data, (u32) *off,
count);
else
ret = qib_read_umem64(dd, data, (u32) *off,
count);
} else if (ret == count) {
/* Below finishes case where observer existed */
ret = copy_to_user(data, &data64, use_32 ?
sizeof(u32) : sizeof(u64));
if (ret)
ret = -EFAULT;
}
}
if (ret >= 0) {
*off += count;
ret = count;
if (dc->state == OPENED)
dc->state = INIT;
}
bail:
return ret;
}
static ssize_t qib_diag_write(struct file *fp, const char __user *data,
size_t count, loff_t *off)
{
struct qib_diag_client *dc = fp->private_data;
struct qib_devdata *dd = dc->dd;
void __iomem *kreg_base;
ssize_t ret;
if (dc->pid != current->pid) {
ret = -EPERM;
goto bail;
}
kreg_base = dd->kregbase;
if (count == 0)
ret = 0;
else if ((count % 4) || (*off % 4))
/* address or length is not 32-bit aligned, hence invalid */
ret = -EINVAL;
else if (dc->state < READY &&
((*off || count != 8) || dc->state != INIT))
/* No writes except second-step of init seq */
ret = -EINVAL; /* before any other write allowed */
else {
unsigned long flags;
const struct diag_observer *op = NULL;
int use_32 = (count % 8) || (*off % 8);
/*
* Check for observer on this address range.
* We only support a single 32 or 64-bit write
* via observer, currently. This helps, because
* we would otherwise have to jump through hoops
* to make "diag transaction" meaningful when we
* cannot do a copy_from_user while holding the lock.
*/
if (count == 4 || count == 8) {
u64 data64;
u32 offset = *off;
ret = copy_from_user(&data64, data, count);
if (ret) {
ret = -EFAULT;
goto bail;
}
spin_lock_irqsave(&dd->qib_diag_trans_lock, flags);
op = diag_get_observer(dd, *off);
if (op)
ret = op->hook(dd, op, offset, &data64, ~0Ull,
use_32);
spin_unlock_irqrestore(&dd->qib_diag_trans_lock, flags);
}
if (!op) {
if (use_32)
/*
* Address or length is not 64-bit aligned;
* do 32-bit write
*/
ret = qib_write_umem32(dd, (u32) *off, data,
count);
else
ret = qib_write_umem64(dd, (u32) *off, data,
count);
}
}
if (ret >= 0) {
*off += count;
ret = count;
if (dc->state == INIT)
dc->state = READY; /* all read/write OK now */
}
bail:
return ret;
}