linux/drivers/net/ethernet/cortina/gemini.c

2652 lines
68 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/* Ethernet device driver for Cortina Systems Gemini SoC
* Also known as the StorLink SL3512 and SL3516 (SL351x) or Lepus
* Net Engine and Gigabit Ethernet MAC (GMAC)
* This hardware contains a TCP Offload Engine (TOE) but currently the
* driver does not make use of it.
*
* Authors:
* Linus Walleij <linus.walleij@linaro.org>
* Tobias Waldvogel <tobias.waldvogel@gmail.com> (OpenWRT)
* Michał Mirosław <mirq-linux@rere.qmqm.pl>
* Paulius Zaleckas <paulius.zaleckas@gmail.com>
* Giuseppe De Robertis <Giuseppe.DeRobertis@ba.infn.it>
* Gary Chen & Ch Hsu Storlink Semiconductor
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/dma-mapping.h>
#include <linux/cache.h>
#include <linux/interrupt.h>
#include <linux/reset.h>
#include <linux/clk.h>
#include <linux/of.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include <linux/of_platform.h>
#include <linux/etherdevice.h>
#include <linux/if_vlan.h>
#include <linux/skbuff.h>
#include <linux/phy.h>
#include <linux/crc32.h>
#include <linux/ethtool.h>
#include <linux/tcp.h>
#include <linux/u64_stats_sync.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include "gemini.h"
#define DRV_NAME "gmac-gemini"
#define DRV_VERSION "1.0"
#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
static int debug = -1;
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
#define HSIZE_8 0x00
#define HSIZE_16 0x01
#define HSIZE_32 0x02
#define HBURST_SINGLE 0x00
#define HBURST_INCR 0x01
#define HBURST_INCR4 0x02
#define HBURST_INCR8 0x03
#define HPROT_DATA_CACHE BIT(0)
#define HPROT_PRIVILIGED BIT(1)
#define HPROT_BUFFERABLE BIT(2)
#define HPROT_CACHABLE BIT(3)
#define DEFAULT_RX_COALESCE_NSECS 0
#define DEFAULT_GMAC_RXQ_ORDER 9
#define DEFAULT_GMAC_TXQ_ORDER 8
#define DEFAULT_RX_BUF_ORDER 11
#define DEFAULT_NAPI_WEIGHT 64
#define TX_MAX_FRAGS 16
#define TX_QUEUE_NUM 1 /* max: 6 */
#define RX_MAX_ALLOC_ORDER 2
#define GMAC0_IRQ0_2 (GMAC0_TXDERR_INT_BIT | GMAC0_TXPERR_INT_BIT | \
GMAC0_RXDERR_INT_BIT | GMAC0_RXPERR_INT_BIT)
#define GMAC0_IRQ0_TXQ0_INTS (GMAC0_SWTQ00_EOF_INT_BIT | \
GMAC0_SWTQ00_FIN_INT_BIT)
#define GMAC0_IRQ4_8 (GMAC0_MIB_INT_BIT | GMAC0_RX_OVERRUN_INT_BIT)
#define GMAC_OFFLOAD_FEATURES (NETIF_F_SG | NETIF_F_IP_CSUM | \
NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM | \
NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6)
/**
* struct gmac_queue_page - page buffer per-page info
*/
struct gmac_queue_page {
struct page *page;
dma_addr_t mapping;
};
struct gmac_txq {
struct gmac_txdesc *ring;
struct sk_buff **skb;
unsigned int cptr;
unsigned int noirq_packets;
};
struct gemini_ethernet;
struct gemini_ethernet_port {
u8 id; /* 0 or 1 */
struct gemini_ethernet *geth;
struct net_device *netdev;
struct device *dev;
void __iomem *dma_base;
void __iomem *gmac_base;
struct clk *pclk;
struct reset_control *reset;
int irq;
__le32 mac_addr[3];
void __iomem *rxq_rwptr;
struct gmac_rxdesc *rxq_ring;
unsigned int rxq_order;
struct napi_struct napi;
struct hrtimer rx_coalesce_timer;
unsigned int rx_coalesce_nsecs;
unsigned int freeq_refill;
struct gmac_txq txq[TX_QUEUE_NUM];
unsigned int txq_order;
unsigned int irq_every_tx_packets;
dma_addr_t rxq_dma_base;
dma_addr_t txq_dma_base;
unsigned int msg_enable;
spinlock_t config_lock; /* Locks config register */
struct u64_stats_sync tx_stats_syncp;
struct u64_stats_sync rx_stats_syncp;
struct u64_stats_sync ir_stats_syncp;
struct rtnl_link_stats64 stats;
u64 hw_stats[RX_STATS_NUM];
u64 rx_stats[RX_STATUS_NUM];
u64 rx_csum_stats[RX_CHKSUM_NUM];
u64 rx_napi_exits;
u64 tx_frag_stats[TX_MAX_FRAGS];
u64 tx_frags_linearized;
u64 tx_hw_csummed;
};
struct gemini_ethernet {
struct device *dev;
void __iomem *base;
struct gemini_ethernet_port *port0;
struct gemini_ethernet_port *port1;
bool initialized;
spinlock_t irq_lock; /* Locks IRQ-related registers */
unsigned int freeq_order;
unsigned int freeq_frag_order;
struct gmac_rxdesc *freeq_ring;
dma_addr_t freeq_dma_base;
struct gmac_queue_page *freeq_pages;
unsigned int num_freeq_pages;
spinlock_t freeq_lock; /* Locks queue from reentrance */
};
#define GMAC_STATS_NUM ( \
RX_STATS_NUM + RX_STATUS_NUM + RX_CHKSUM_NUM + 1 + \
TX_MAX_FRAGS + 2)
static const char gmac_stats_strings[GMAC_STATS_NUM][ETH_GSTRING_LEN] = {
"GMAC_IN_DISCARDS",
"GMAC_IN_ERRORS",
"GMAC_IN_MCAST",
"GMAC_IN_BCAST",
"GMAC_IN_MAC1",
"GMAC_IN_MAC2",
"RX_STATUS_GOOD_FRAME",
"RX_STATUS_TOO_LONG_GOOD_CRC",
"RX_STATUS_RUNT_FRAME",
"RX_STATUS_SFD_NOT_FOUND",
"RX_STATUS_CRC_ERROR",
"RX_STATUS_TOO_LONG_BAD_CRC",
"RX_STATUS_ALIGNMENT_ERROR",
"RX_STATUS_TOO_LONG_BAD_ALIGN",
"RX_STATUS_RX_ERR",
"RX_STATUS_DA_FILTERED",
"RX_STATUS_BUFFER_FULL",
"RX_STATUS_11",
"RX_STATUS_12",
"RX_STATUS_13",
"RX_STATUS_14",
"RX_STATUS_15",
"RX_CHKSUM_IP_UDP_TCP_OK",
"RX_CHKSUM_IP_OK_ONLY",
"RX_CHKSUM_NONE",
"RX_CHKSUM_3",
"RX_CHKSUM_IP_ERR_UNKNOWN",
"RX_CHKSUM_IP_ERR",
"RX_CHKSUM_TCP_UDP_ERR",
"RX_CHKSUM_7",
"RX_NAPI_EXITS",
"TX_FRAGS[1]",
"TX_FRAGS[2]",
"TX_FRAGS[3]",
"TX_FRAGS[4]",
"TX_FRAGS[5]",
"TX_FRAGS[6]",
"TX_FRAGS[7]",
"TX_FRAGS[8]",
"TX_FRAGS[9]",
"TX_FRAGS[10]",
"TX_FRAGS[11]",
"TX_FRAGS[12]",
"TX_FRAGS[13]",
"TX_FRAGS[14]",
"TX_FRAGS[15]",
"TX_FRAGS[16+]",
"TX_FRAGS_LINEARIZED",
"TX_HW_CSUMMED",
};
static void gmac_dump_dma_state(struct net_device *netdev);
static void gmac_update_config0_reg(struct net_device *netdev,
u32 val, u32 vmask)
{
struct gemini_ethernet_port *port = netdev_priv(netdev);
unsigned long flags;
u32 reg;
spin_lock_irqsave(&port->config_lock, flags);
reg = readl(port->gmac_base + GMAC_CONFIG0);
reg = (reg & ~vmask) | val;
writel(reg, port->gmac_base + GMAC_CONFIG0);
spin_unlock_irqrestore(&port->config_lock, flags);
}
static void gmac_enable_tx_rx(struct net_device *netdev)
{
struct gemini_ethernet_port *port = netdev_priv(netdev);
unsigned long flags;
u32 reg;
spin_lock_irqsave(&port->config_lock, flags);
reg = readl(port->gmac_base + GMAC_CONFIG0);
reg &= ~CONFIG0_TX_RX_DISABLE;
writel(reg, port->gmac_base + GMAC_CONFIG0);
spin_unlock_irqrestore(&port->config_lock, flags);
}
static void gmac_disable_tx_rx(struct net_device *netdev)
{
struct gemini_ethernet_port *port = netdev_priv(netdev);
unsigned long flags;
u32 val;
spin_lock_irqsave(&port->config_lock, flags);
val = readl(port->gmac_base + GMAC_CONFIG0);
val |= CONFIG0_TX_RX_DISABLE;
writel(val, port->gmac_base + GMAC_CONFIG0);
spin_unlock_irqrestore(&port->config_lock, flags);
mdelay(10); /* let GMAC consume packet */
}
static void gmac_set_flow_control(struct net_device *netdev, bool tx, bool rx)
{
struct gemini_ethernet_port *port = netdev_priv(netdev);
unsigned long flags;
u32 val;
spin_lock_irqsave(&port->config_lock, flags);
val = readl(port->gmac_base + GMAC_CONFIG0);
val &= ~CONFIG0_FLOW_CTL;
if (tx)
val |= CONFIG0_FLOW_TX;
if (rx)
val |= CONFIG0_FLOW_RX;
writel(val, port->gmac_base + GMAC_CONFIG0);
spin_unlock_irqrestore(&port->config_lock, flags);
}
static void gmac_speed_set(struct net_device *netdev)
{
struct gemini_ethernet_port *port = netdev_priv(netdev);
struct phy_device *phydev = netdev->phydev;
union gmac_status status, old_status;
int pause_tx = 0;
int pause_rx = 0;
status.bits32 = readl(port->gmac_base + GMAC_STATUS);
old_status.bits32 = status.bits32;
status.bits.link = phydev->link;
status.bits.duplex = phydev->duplex;
switch (phydev->speed) {
case 1000:
status.bits.speed = GMAC_SPEED_1000;
if (phydev->interface == PHY_INTERFACE_MODE_RGMII)
status.bits.mii_rmii = GMAC_PHY_RGMII_1000;
netdev_dbg(netdev, "connect %s to RGMII @ 1Gbit\n",
phydev_name(phydev));
break;
case 100:
status.bits.speed = GMAC_SPEED_100;
if (phydev->interface == PHY_INTERFACE_MODE_RGMII)
status.bits.mii_rmii = GMAC_PHY_RGMII_100_10;
netdev_dbg(netdev, "connect %s to RGMII @ 100 Mbit\n",
phydev_name(phydev));
break;
case 10:
status.bits.speed = GMAC_SPEED_10;
if (phydev->interface == PHY_INTERFACE_MODE_RGMII)
status.bits.mii_rmii = GMAC_PHY_RGMII_100_10;
netdev_dbg(netdev, "connect %s to RGMII @ 10 Mbit\n",
phydev_name(phydev));
break;
default:
netdev_warn(netdev, "Unsupported PHY speed (%d) on %s\n",
phydev->speed, phydev_name(phydev));
}
if (phydev->duplex == DUPLEX_FULL) {
u16 lcladv = phy_read(phydev, MII_ADVERTISE);
u16 rmtadv = phy_read(phydev, MII_LPA);
u8 cap = mii_resolve_flowctrl_fdx(lcladv, rmtadv);
if (cap & FLOW_CTRL_RX)
pause_rx = 1;
if (cap & FLOW_CTRL_TX)
pause_tx = 1;
}
gmac_set_flow_control(netdev, pause_tx, pause_rx);
if (old_status.bits32 == status.bits32)
return;
if (netif_msg_link(port)) {
phy_print_status(phydev);
netdev_info(netdev, "link flow control: %s\n",
phydev->pause
? (phydev->asym_pause ? "tx" : "both")
: (phydev->asym_pause ? "rx" : "none")
);
}
gmac_disable_tx_rx(netdev);
writel(status.bits32, port->gmac_base + GMAC_STATUS);
gmac_enable_tx_rx(netdev);
}
static int gmac_setup_phy(struct net_device *netdev)
{
struct gemini_ethernet_port *port = netdev_priv(netdev);
union gmac_status status = { .bits32 = 0 };
struct device *dev = port->dev;
struct phy_device *phy;
phy = of_phy_get_and_connect(netdev,
dev->of_node,
gmac_speed_set);
if (!phy)
return -ENODEV;
netdev->phydev = phy;
phy_set_max_speed(phy, SPEED_1000);
phy->supported |= SUPPORTED_Asym_Pause | SUPPORTED_Pause;
phy->advertising = phy->supported;
/* set PHY interface type */
switch (phy->interface) {
case PHY_INTERFACE_MODE_MII:
netdev_dbg(netdev,
"MII: set GMAC0 to GMII mode, GMAC1 disabled\n");
status.bits.mii_rmii = GMAC_PHY_MII;
break;
case PHY_INTERFACE_MODE_GMII:
netdev_dbg(netdev,
"GMII: set GMAC0 to GMII mode, GMAC1 disabled\n");
status.bits.mii_rmii = GMAC_PHY_GMII;
break;
case PHY_INTERFACE_MODE_RGMII:
netdev_dbg(netdev,
"RGMII: set GMAC0 and GMAC1 to MII/RGMII mode\n");
status.bits.mii_rmii = GMAC_PHY_RGMII_100_10;
break;
default:
netdev_err(netdev, "Unsupported MII interface\n");
phy_disconnect(phy);
netdev->phydev = NULL;
return -EINVAL;
}
writel(status.bits32, port->gmac_base + GMAC_STATUS);
if (netif_msg_link(port))
phy_attached_info(phy);
return 0;
}
/* The maximum frame length is not logically enumerated in the
* hardware, so we do a table lookup to find the applicable max
* frame length.
*/
struct gmac_max_framelen {
unsigned int max_l3_len;
u8 val;
};
static const struct gmac_max_framelen gmac_maxlens[] = {
{
.max_l3_len = 1518,
.val = CONFIG0_MAXLEN_1518,
},
{
.max_l3_len = 1522,
.val = CONFIG0_MAXLEN_1522,
},
{
.max_l3_len = 1536,
.val = CONFIG0_MAXLEN_1536,
},
{
.max_l3_len = 1542,
.val = CONFIG0_MAXLEN_1542,
},
{
.max_l3_len = 9212,
.val = CONFIG0_MAXLEN_9k,
},
{
.max_l3_len = 10236,
.val = CONFIG0_MAXLEN_10k,
},
};
static int gmac_pick_rx_max_len(unsigned int max_l3_len)
{
const struct gmac_max_framelen *maxlen;
int maxtot;
int i;
maxtot = max_l3_len + ETH_HLEN + VLAN_HLEN;
for (i = 0; i < ARRAY_SIZE(gmac_maxlens); i++) {
maxlen = &gmac_maxlens[i];
if (maxtot <= maxlen->max_l3_len)
return maxlen->val;
}
return -1;
}
static int gmac_init(struct net_device *netdev)
{
struct gemini_ethernet_port *port = netdev_priv(netdev);
union gmac_config0 config0 = { .bits = {
.dis_tx = 1,
.dis_rx = 1,
.ipv4_rx_chksum = 1,
.ipv6_rx_chksum = 1,
.rx_err_detect = 1,
.rgmm_edge = 1,
.port0_chk_hwq = 1,
.port1_chk_hwq = 1,
.port0_chk_toeq = 1,
.port1_chk_toeq = 1,
.port0_chk_classq = 1,
.port1_chk_classq = 1,
} };
union gmac_ahb_weight ahb_weight = { .bits = {
.rx_weight = 1,
.tx_weight = 1,
.hash_weight = 1,
.pre_req = 0x1f,
.tq_dv_threshold = 0,
} };
union gmac_tx_wcr0 hw_weigh = { .bits = {
.hw_tq3 = 1,
.hw_tq2 = 1,
.hw_tq1 = 1,
.hw_tq0 = 1,
} };
union gmac_tx_wcr1 sw_weigh = { .bits = {
.sw_tq5 = 1,
.sw_tq4 = 1,
.sw_tq3 = 1,
.sw_tq2 = 1,
.sw_tq1 = 1,
.sw_tq0 = 1,
} };
union gmac_config1 config1 = { .bits = {
.set_threshold = 16,
.rel_threshold = 24,
} };
union gmac_config2 config2 = { .bits = {
.set_threshold = 16,
.rel_threshold = 32,
} };
union gmac_config3 config3 = { .bits = {
.set_threshold = 0,
.rel_threshold = 0,
} };
union gmac_config0 tmp;
u32 val;
config0.bits.max_len = gmac_pick_rx_max_len(netdev->mtu);
tmp.bits32 = readl(port->gmac_base + GMAC_CONFIG0);
config0.bits.reserved = tmp.bits.reserved;
writel(config0.bits32, port->gmac_base + GMAC_CONFIG0);
writel(config1.bits32, port->gmac_base + GMAC_CONFIG1);
writel(config2.bits32, port->gmac_base + GMAC_CONFIG2);
writel(config3.bits32, port->gmac_base + GMAC_CONFIG3);
val = readl(port->dma_base + GMAC_AHB_WEIGHT_REG);
writel(ahb_weight.bits32, port->dma_base + GMAC_AHB_WEIGHT_REG);
writel(hw_weigh.bits32,
port->dma_base + GMAC_TX_WEIGHTING_CTRL_0_REG);
writel(sw_weigh.bits32,
port->dma_base + GMAC_TX_WEIGHTING_CTRL_1_REG);
port->rxq_order = DEFAULT_GMAC_RXQ_ORDER;
port->txq_order = DEFAULT_GMAC_TXQ_ORDER;
port->rx_coalesce_nsecs = DEFAULT_RX_COALESCE_NSECS;
/* Mark every quarter of the queue a packet for interrupt
* in order to be able to wake up the queue if it was stopped
*/
port->irq_every_tx_packets = 1 << (port->txq_order - 2);
return 0;
}
static void gmac_uninit(struct net_device *netdev)
{
if (netdev->phydev)
phy_disconnect(netdev->phydev);
}
static int gmac_setup_txqs(struct net_device *netdev)
{
struct gemini_ethernet_port *port = netdev_priv(netdev);
unsigned int n_txq = netdev->num_tx_queues;
struct gemini_ethernet *geth = port->geth;
size_t entries = 1 << port->txq_order;
struct gmac_txq *txq = port->txq;
struct gmac_txdesc *desc_ring;
size_t len = n_txq * entries;
struct sk_buff **skb_tab;
void __iomem *rwptr_reg;
unsigned int r;
int i;
rwptr_reg = port->dma_base + GMAC_SW_TX_QUEUE0_PTR_REG;
skb_tab = kcalloc(len, sizeof(*skb_tab), GFP_KERNEL);
if (!skb_tab)
return -ENOMEM;
desc_ring = dma_alloc_coherent(geth->dev, len * sizeof(*desc_ring),
&port->txq_dma_base, GFP_KERNEL);
if (!desc_ring) {
kfree(skb_tab);
return -ENOMEM;
}
if (port->txq_dma_base & ~DMA_Q_BASE_MASK) {
dev_warn(geth->dev, "TX queue base is not aligned\n");
kfree(skb_tab);
return -ENOMEM;
}
writel(port->txq_dma_base | port->txq_order,
port->dma_base + GMAC_SW_TX_QUEUE_BASE_REG);
for (i = 0; i < n_txq; i++) {
txq->ring = desc_ring;
txq->skb = skb_tab;
txq->noirq_packets = 0;
r = readw(rwptr_reg);
rwptr_reg += 2;
writew(r, rwptr_reg);
rwptr_reg += 2;
txq->cptr = r;
txq++;
desc_ring += entries;
skb_tab += entries;
}
return 0;
}
static void gmac_clean_txq(struct net_device *netdev, struct gmac_txq *txq,
unsigned int r)
{
struct gemini_ethernet_port *port = netdev_priv(netdev);
unsigned int m = (1 << port->txq_order) - 1;
struct gemini_ethernet *geth = port->geth;
unsigned int c = txq->cptr;
union gmac_txdesc_0 word0;
union gmac_txdesc_1 word1;
unsigned int hwchksum = 0;
unsigned long bytes = 0;
struct gmac_txdesc *txd;
unsigned short nfrags;
unsigned int errs = 0;
unsigned int pkts = 0;
unsigned int word3;
dma_addr_t mapping;
if (c == r)
return;
while (c != r) {
txd = txq->ring + c;
word0 = txd->word0;
word1 = txd->word1;
mapping = txd->word2.buf_adr;
word3 = txd->word3.bits32;
dma_unmap_single(geth->dev, mapping,
word0.bits.buffer_size, DMA_TO_DEVICE);
if (word3 & EOF_BIT)
dev_kfree_skb(txq->skb[c]);
c++;
c &= m;
if (!(word3 & SOF_BIT))
continue;
if (!word0.bits.status_tx_ok) {
errs++;
continue;
}
pkts++;
bytes += txd->word1.bits.byte_count;
if (word1.bits32 & TSS_CHECKUM_ENABLE)
hwchksum++;
nfrags = word0.bits.desc_count - 1;
if (nfrags) {
if (nfrags >= TX_MAX_FRAGS)
nfrags = TX_MAX_FRAGS - 1;
u64_stats_update_begin(&port->tx_stats_syncp);
port->tx_frag_stats[nfrags]++;
u64_stats_update_end(&port->ir_stats_syncp);
}
}
u64_stats_update_begin(&port->ir_stats_syncp);
port->stats.tx_errors += errs;
port->stats.tx_packets += pkts;
port->stats.tx_bytes += bytes;
port->tx_hw_csummed += hwchksum;
u64_stats_update_end(&port->ir_stats_syncp);
txq->cptr = c;
}
static void gmac_cleanup_txqs(struct net_device *netdev)
{
struct gemini_ethernet_port *port = netdev_priv(netdev);
unsigned int n_txq = netdev->num_tx_queues;
struct gemini_ethernet *geth = port->geth;
void __iomem *rwptr_reg;
unsigned int r, i;
rwptr_reg = port->dma_base + GMAC_SW_TX_QUEUE0_PTR_REG;
for (i = 0; i < n_txq; i++) {
r = readw(rwptr_reg);
rwptr_reg += 2;
writew(r, rwptr_reg);
rwptr_reg += 2;
gmac_clean_txq(netdev, port->txq + i, r);
}
writel(0, port->dma_base + GMAC_SW_TX_QUEUE_BASE_REG);
kfree(port->txq->skb);
dma_free_coherent(geth->dev,
n_txq * sizeof(*port->txq->ring) << port->txq_order,
port->txq->ring, port->txq_dma_base);
}
static int gmac_setup_rxq(struct net_device *netdev)
{
struct gemini_ethernet_port *port = netdev_priv(netdev);
struct gemini_ethernet *geth = port->geth;
struct nontoe_qhdr __iomem *qhdr;
qhdr = geth->base + TOE_DEFAULT_Q_HDR_BASE(netdev->dev_id);
port->rxq_rwptr = &qhdr->word1;
/* Remap a slew of memory to use for the RX queue */
port->rxq_ring = dma_alloc_coherent(geth->dev,
sizeof(*port->rxq_ring) << port->rxq_order,
&port->rxq_dma_base, GFP_KERNEL);
if (!port->rxq_ring)
return -ENOMEM;
if (port->rxq_dma_base & ~NONTOE_QHDR0_BASE_MASK) {
dev_warn(geth->dev, "RX queue base is not aligned\n");
return -ENOMEM;
}
writel(port->rxq_dma_base | port->rxq_order, &qhdr->word0);
writel(0, port->rxq_rwptr);
return 0;
}
static struct gmac_queue_page *
gmac_get_queue_page(struct gemini_ethernet *geth,
struct gemini_ethernet_port *port,
dma_addr_t addr)
{
struct gmac_queue_page *gpage;
dma_addr_t mapping;
int i;
/* Only look for even pages */
mapping = addr & PAGE_MASK;
if (!geth->freeq_pages) {
dev_err(geth->dev, "try to get page with no page list\n");
return NULL;
}
/* Look up a ring buffer page from virtual mapping */
for (i = 0; i < geth->num_freeq_pages; i++) {
gpage = &geth->freeq_pages[i];
if (gpage->mapping == mapping)
return gpage;
}
return NULL;
}
static void gmac_cleanup_rxq(struct net_device *netdev)
{
struct gemini_ethernet_port *port = netdev_priv(netdev);
struct gemini_ethernet *geth = port->geth;
struct gmac_rxdesc *rxd = port->rxq_ring;
static struct gmac_queue_page *gpage;
struct nontoe_qhdr __iomem *qhdr;
void __iomem *dma_reg;
void __iomem *ptr_reg;
dma_addr_t mapping;
union dma_rwptr rw;
unsigned int r, w;
qhdr = geth->base +
TOE_DEFAULT_Q_HDR_BASE(netdev->dev_id);
dma_reg = &qhdr->word0;
ptr_reg = &qhdr->word1;
rw.bits32 = readl(ptr_reg);
r = rw.bits.rptr;
w = rw.bits.wptr;
writew(r, ptr_reg + 2);
writel(0, dma_reg);
/* Loop from read pointer to write pointer of the RX queue
* and free up all pages by the queue.
*/
while (r != w) {
mapping = rxd[r].word2.buf_adr;
r++;
r &= ((1 << port->rxq_order) - 1);
if (!mapping)
continue;
/* Freeq pointers are one page off */
gpage = gmac_get_queue_page(geth, port, mapping + PAGE_SIZE);
if (!gpage) {
dev_err(geth->dev, "could not find page\n");
continue;
}
/* Release the RX queue reference to the page */
put_page(gpage->page);
}
dma_free_coherent(geth->dev, sizeof(*port->rxq_ring) << port->rxq_order,
port->rxq_ring, port->rxq_dma_base);
}
static struct page *geth_freeq_alloc_map_page(struct gemini_ethernet *geth,
int pn)
{
struct gmac_rxdesc *freeq_entry;
struct gmac_queue_page *gpage;
unsigned int fpp_order;
unsigned int frag_len;
dma_addr_t mapping;
struct page *page;
int i;
/* First allocate and DMA map a single page */
page = alloc_page(GFP_ATOMIC);
if (!page)
return NULL;
mapping = dma_map_single(geth->dev, page_address(page),
PAGE_SIZE, DMA_FROM_DEVICE);
if (dma_mapping_error(geth->dev, mapping)) {
put_page(page);
return NULL;
}
/* The assign the page mapping (physical address) to the buffer address
* in the hardware queue. PAGE_SHIFT on ARM is 12 (1 page is 4096 bytes,
* 4k), and the default RX frag order is 11 (fragments are up 20 2048
* bytes, 2k) so fpp_order (fragments per page order) is default 1. Thus
* each page normally needs two entries in the queue.
*/
frag_len = 1 << geth->freeq_frag_order; /* Usually 2048 */
fpp_order = PAGE_SHIFT - geth->freeq_frag_order;
freeq_entry = geth->freeq_ring + (pn << fpp_order);
dev_dbg(geth->dev, "allocate page %d fragment length %d fragments per page %d, freeq entry %p\n",
pn, frag_len, (1 << fpp_order), freeq_entry);
for (i = (1 << fpp_order); i > 0; i--) {
freeq_entry->word2.buf_adr = mapping;
freeq_entry++;
mapping += frag_len;
}
/* If the freeq entry already has a page mapped, then unmap it. */
gpage = &geth->freeq_pages[pn];
if (gpage->page) {
mapping = geth->freeq_ring[pn << fpp_order].word2.buf_adr;
dma_unmap_single(geth->dev, mapping, frag_len, DMA_FROM_DEVICE);
/* This should be the last reference to the page so it gets
* released
*/
put_page(gpage->page);
}
/* Then put our new mapping into the page table */
dev_dbg(geth->dev, "page %d, DMA addr: %08x, page %p\n",
pn, (unsigned int)mapping, page);
gpage->mapping = mapping;
gpage->page = page;
return page;
}
/**
* geth_fill_freeq() - Fill the freeq with empty fragments to use
* @geth: the ethernet adapter
* @refill: whether to reset the queue by filling in all freeq entries or
* just refill it, usually the interrupt to refill the queue happens when
* the queue is half empty.
*/
static unsigned int geth_fill_freeq(struct gemini_ethernet *geth, bool refill)
{
unsigned int fpp_order = PAGE_SHIFT - geth->freeq_frag_order;
unsigned int count = 0;
unsigned int pn, epn;
unsigned long flags;
union dma_rwptr rw;
unsigned int m_pn;
/* Mask for page */
m_pn = (1 << (geth->freeq_order - fpp_order)) - 1;
spin_lock_irqsave(&geth->freeq_lock, flags);
rw.bits32 = readl(geth->base + GLOBAL_SWFQ_RWPTR_REG);
pn = (refill ? rw.bits.wptr : rw.bits.rptr) >> fpp_order;
epn = (rw.bits.rptr >> fpp_order) - 1;
epn &= m_pn;
/* Loop over the freeq ring buffer entries */
while (pn != epn) {
struct gmac_queue_page *gpage;
struct page *page;
gpage = &geth->freeq_pages[pn];
page = gpage->page;
dev_dbg(geth->dev, "fill entry %d page ref count %d add %d refs\n",
pn, page_ref_count(page), 1 << fpp_order);
if (page_ref_count(page) > 1) {
unsigned int fl = (pn - epn) & m_pn;
if (fl > 64 >> fpp_order)
break;
page = geth_freeq_alloc_map_page(geth, pn);
if (!page)
break;
}
/* Add one reference per fragment in the page */
page_ref_add(page, 1 << fpp_order);
count += 1 << fpp_order;
pn++;
pn &= m_pn;
}
writew(pn << fpp_order, geth->base + GLOBAL_SWFQ_RWPTR_REG + 2);
spin_unlock_irqrestore(&geth->freeq_lock, flags);
return count;
}
static int geth_setup_freeq(struct gemini_ethernet *geth)
{
unsigned int fpp_order = PAGE_SHIFT - geth->freeq_frag_order;
unsigned int frag_len = 1 << geth->freeq_frag_order;
unsigned int len = 1 << geth->freeq_order;
unsigned int pages = len >> fpp_order;
union queue_threshold qt;
union dma_skb_size skbsz;
unsigned int filled;
unsigned int pn;
geth->freeq_ring = dma_alloc_coherent(geth->dev,
sizeof(*geth->freeq_ring) << geth->freeq_order,
&geth->freeq_dma_base, GFP_KERNEL);
if (!geth->freeq_ring)
return -ENOMEM;
if (geth->freeq_dma_base & ~DMA_Q_BASE_MASK) {
dev_warn(geth->dev, "queue ring base is not aligned\n");
goto err_freeq;
}
/* Allocate a mapping to page look-up index */
treewide: kzalloc() -> kcalloc() The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 21:03:40 +00:00
geth->freeq_pages = kcalloc(pages, sizeof(*geth->freeq_pages),
GFP_KERNEL);
if (!geth->freeq_pages)
goto err_freeq;
geth->num_freeq_pages = pages;
dev_info(geth->dev, "allocate %d pages for queue\n", pages);
for (pn = 0; pn < pages; pn++)
if (!geth_freeq_alloc_map_page(geth, pn))
goto err_freeq_alloc;
filled = geth_fill_freeq(geth, false);
if (!filled)
goto err_freeq_alloc;
qt.bits32 = readl(geth->base + GLOBAL_QUEUE_THRESHOLD_REG);
qt.bits.swfq_empty = 32;
writel(qt.bits32, geth->base + GLOBAL_QUEUE_THRESHOLD_REG);
skbsz.bits.sw_skb_size = 1 << geth->freeq_frag_order;
writel(skbsz.bits32, geth->base + GLOBAL_DMA_SKB_SIZE_REG);
writel(geth->freeq_dma_base | geth->freeq_order,
geth->base + GLOBAL_SW_FREEQ_BASE_SIZE_REG);
return 0;
err_freeq_alloc:
while (pn > 0) {
struct gmac_queue_page *gpage;
dma_addr_t mapping;
--pn;
mapping = geth->freeq_ring[pn << fpp_order].word2.buf_adr;
dma_unmap_single(geth->dev, mapping, frag_len, DMA_FROM_DEVICE);
gpage = &geth->freeq_pages[pn];
put_page(gpage->page);
}
kfree(geth->freeq_pages);
err_freeq:
dma_free_coherent(geth->dev,
sizeof(*geth->freeq_ring) << geth->freeq_order,
geth->freeq_ring, geth->freeq_dma_base);
geth->freeq_ring = NULL;
return -ENOMEM;
}
/**
* geth_cleanup_freeq() - cleanup the DMA mappings and free the queue
* @geth: the Gemini global ethernet state
*/
static void geth_cleanup_freeq(struct gemini_ethernet *geth)
{
unsigned int fpp_order = PAGE_SHIFT - geth->freeq_frag_order;
unsigned int frag_len = 1 << geth->freeq_frag_order;
unsigned int len = 1 << geth->freeq_order;
unsigned int pages = len >> fpp_order;
unsigned int pn;
writew(readw(geth->base + GLOBAL_SWFQ_RWPTR_REG),
geth->base + GLOBAL_SWFQ_RWPTR_REG + 2);
writel(0, geth->base + GLOBAL_SW_FREEQ_BASE_SIZE_REG);
for (pn = 0; pn < pages; pn++) {
struct gmac_queue_page *gpage;
dma_addr_t mapping;
mapping = geth->freeq_ring[pn << fpp_order].word2.buf_adr;
dma_unmap_single(geth->dev, mapping, frag_len, DMA_FROM_DEVICE);
gpage = &geth->freeq_pages[pn];
while (page_ref_count(gpage->page) > 0)
put_page(gpage->page);
}
kfree(geth->freeq_pages);
dma_free_coherent(geth->dev,
sizeof(*geth->freeq_ring) << geth->freeq_order,
geth->freeq_ring, geth->freeq_dma_base);
}
/**
* geth_resize_freeq() - resize the software queue depth
* @port: the port requesting the change
*
* This gets called at least once during probe() so the device queue gets
* "resized" from the hardware defaults. Since both ports/net devices share
* the same hardware queue, some synchronization between the ports is
* needed.
*/
static int geth_resize_freeq(struct gemini_ethernet_port *port)
{
struct gemini_ethernet *geth = port->geth;
struct net_device *netdev = port->netdev;
struct gemini_ethernet_port *other_port;
struct net_device *other_netdev;
unsigned int new_size = 0;
unsigned int new_order;
unsigned long flags;
u32 en;
int ret;
if (netdev->dev_id == 0)
other_netdev = geth->port1->netdev;
else
other_netdev = geth->port0->netdev;
if (other_netdev && netif_running(other_netdev))
return -EBUSY;
new_size = 1 << (port->rxq_order + 1);
netdev_dbg(netdev, "port %d size: %d order %d\n",
netdev->dev_id,
new_size,
port->rxq_order);
if (other_netdev) {
other_port = netdev_priv(other_netdev);
new_size += 1 << (other_port->rxq_order + 1);
netdev_dbg(other_netdev, "port %d size: %d order %d\n",
other_netdev->dev_id,
(1 << (other_port->rxq_order + 1)),
other_port->rxq_order);
}
new_order = min(15, ilog2(new_size - 1) + 1);
dev_dbg(geth->dev, "set shared queue to size %d order %d\n",
new_size, new_order);
if (geth->freeq_order == new_order)
return 0;
spin_lock_irqsave(&geth->irq_lock, flags);
/* Disable the software queue IRQs */
en = readl(geth->base + GLOBAL_INTERRUPT_ENABLE_4_REG);
en &= ~SWFQ_EMPTY_INT_BIT;
writel(en, geth->base + GLOBAL_INTERRUPT_ENABLE_4_REG);
spin_unlock_irqrestore(&geth->irq_lock, flags);
/* Drop the old queue */
if (geth->freeq_ring)
geth_cleanup_freeq(geth);
/* Allocate a new queue with the desired order */
geth->freeq_order = new_order;
ret = geth_setup_freeq(geth);
/* Restart the interrupts - NOTE if this is the first resize
* after probe(), this is where the interrupts get turned on
* in the first place.
*/
spin_lock_irqsave(&geth->irq_lock, flags);
en |= SWFQ_EMPTY_INT_BIT;
writel(en, geth->base + GLOBAL_INTERRUPT_ENABLE_4_REG);
spin_unlock_irqrestore(&geth->irq_lock, flags);
return ret;
}
static void gmac_tx_irq_enable(struct net_device *netdev,
unsigned int txq, int en)
{
struct gemini_ethernet_port *port = netdev_priv(netdev);
struct gemini_ethernet *geth = port->geth;
u32 val, mask;
netdev_dbg(netdev, "%s device %d\n", __func__, netdev->dev_id);
mask = GMAC0_IRQ0_TXQ0_INTS << (6 * netdev->dev_id + txq);
if (en)
writel(mask, geth->base + GLOBAL_INTERRUPT_STATUS_0_REG);
val = readl(geth->base + GLOBAL_INTERRUPT_ENABLE_0_REG);
val = en ? val | mask : val & ~mask;
writel(val, geth->base + GLOBAL_INTERRUPT_ENABLE_0_REG);
}
static void gmac_tx_irq(struct net_device *netdev, unsigned int txq_num)
{
struct netdev_queue *ntxq = netdev_get_tx_queue(netdev, txq_num);
gmac_tx_irq_enable(netdev, txq_num, 0);
netif_tx_wake_queue(ntxq);
}
static int gmac_map_tx_bufs(struct net_device *netdev, struct sk_buff *skb,
struct gmac_txq *txq, unsigned short *desc)
{
struct gemini_ethernet_port *port = netdev_priv(netdev);
struct skb_shared_info *skb_si = skb_shinfo(skb);
unsigned short m = (1 << port->txq_order) - 1;
short frag, last_frag = skb_si->nr_frags - 1;
struct gemini_ethernet *geth = port->geth;
unsigned int word1, word3, buflen;
unsigned short w = *desc;
struct gmac_txdesc *txd;
skb_frag_t *skb_frag;
dma_addr_t mapping;
unsigned short mtu;
void *buffer;
mtu = ETH_HLEN;
mtu += netdev->mtu;
if (skb->protocol == htons(ETH_P_8021Q))
mtu += VLAN_HLEN;
word1 = skb->len;
word3 = SOF_BIT;
if (word1 > mtu) {
word1 |= TSS_MTU_ENABLE_BIT;
word3 |= mtu;
}
if (skb->ip_summed != CHECKSUM_NONE) {
int tcp = 0;
if (skb->protocol == htons(ETH_P_IP)) {
word1 |= TSS_IP_CHKSUM_BIT;
tcp = ip_hdr(skb)->protocol == IPPROTO_TCP;
} else { /* IPv6 */
word1 |= TSS_IPV6_ENABLE_BIT;
tcp = ipv6_hdr(skb)->nexthdr == IPPROTO_TCP;
}
word1 |= tcp ? TSS_TCP_CHKSUM_BIT : TSS_UDP_CHKSUM_BIT;
}
frag = -1;
while (frag <= last_frag) {
if (frag == -1) {
buffer = skb->data;
buflen = skb_headlen(skb);
} else {
skb_frag = skb_si->frags + frag;
buffer = page_address(skb_frag_page(skb_frag)) +
skb_frag->page_offset;
buflen = skb_frag->size;
}
if (frag == last_frag) {
word3 |= EOF_BIT;
txq->skb[w] = skb;
}
mapping = dma_map_single(geth->dev, buffer, buflen,
DMA_TO_DEVICE);
if (dma_mapping_error(geth->dev, mapping))
goto map_error;
txd = txq->ring + w;
txd->word0.bits32 = buflen;
txd->word1.bits32 = word1;
txd->word2.buf_adr = mapping;
txd->word3.bits32 = word3;
word3 &= MTU_SIZE_BIT_MASK;
w++;
w &= m;
frag++;
}
*desc = w;
return 0;
map_error:
while (w != *desc) {
w--;
w &= m;
dma_unmap_page(geth->dev, txq->ring[w].word2.buf_adr,
txq->ring[w].word0.bits.buffer_size,
DMA_TO_DEVICE);
}
return -ENOMEM;
}
static int gmac_start_xmit(struct sk_buff *skb, struct net_device *netdev)
{
struct gemini_ethernet_port *port = netdev_priv(netdev);
unsigned short m = (1 << port->txq_order) - 1;
struct netdev_queue *ntxq;
unsigned short r, w, d;
void __iomem *ptr_reg;
struct gmac_txq *txq;
int txq_num, nfrags;
union dma_rwptr rw;
SKB_FRAG_ASSERT(skb);
if (skb->len >= 0x10000)
goto out_drop_free;
txq_num = skb_get_queue_mapping(skb);
ptr_reg = port->dma_base + GMAC_SW_TX_QUEUE_PTR_REG(txq_num);
txq = &port->txq[txq_num];
ntxq = netdev_get_tx_queue(netdev, txq_num);
nfrags = skb_shinfo(skb)->nr_frags;
rw.bits32 = readl(ptr_reg);
r = rw.bits.rptr;
w = rw.bits.wptr;
d = txq->cptr - w - 1;
d &= m;
if (d < nfrags + 2) {
gmac_clean_txq(netdev, txq, r);
d = txq->cptr - w - 1;
d &= m;
if (d < nfrags + 2) {
netif_tx_stop_queue(ntxq);
d = txq->cptr + nfrags + 16;
d &= m;
txq->ring[d].word3.bits.eofie = 1;
gmac_tx_irq_enable(netdev, txq_num, 1);
u64_stats_update_begin(&port->tx_stats_syncp);
netdev->stats.tx_fifo_errors++;
u64_stats_update_end(&port->tx_stats_syncp);
return NETDEV_TX_BUSY;
}
}
if (gmac_map_tx_bufs(netdev, skb, txq, &w)) {
if (skb_linearize(skb))
goto out_drop;
u64_stats_update_begin(&port->tx_stats_syncp);
port->tx_frags_linearized++;
u64_stats_update_end(&port->tx_stats_syncp);
if (gmac_map_tx_bufs(netdev, skb, txq, &w))
goto out_drop_free;
}
writew(w, ptr_reg + 2);
gmac_clean_txq(netdev, txq, r);
return NETDEV_TX_OK;
out_drop_free:
dev_kfree_skb(skb);
out_drop:
u64_stats_update_begin(&port->tx_stats_syncp);
port->stats.tx_dropped++;
u64_stats_update_end(&port->tx_stats_syncp);
return NETDEV_TX_OK;
}
static void gmac_tx_timeout(struct net_device *netdev)
{
netdev_err(netdev, "Tx timeout\n");
gmac_dump_dma_state(netdev);
}
static void gmac_enable_irq(struct net_device *netdev, int enable)
{
struct gemini_ethernet_port *port = netdev_priv(netdev);
struct gemini_ethernet *geth = port->geth;
unsigned long flags;
u32 val, mask;
netdev_dbg(netdev, "%s device %d %s\n", __func__,
netdev->dev_id, enable ? "enable" : "disable");
spin_lock_irqsave(&geth->irq_lock, flags);
mask = GMAC0_IRQ0_2 << (netdev->dev_id * 2);
val = readl(geth->base + GLOBAL_INTERRUPT_ENABLE_0_REG);
val = enable ? (val | mask) : (val & ~mask);
writel(val, geth->base + GLOBAL_INTERRUPT_ENABLE_0_REG);
mask = DEFAULT_Q0_INT_BIT << netdev->dev_id;
val = readl(geth->base + GLOBAL_INTERRUPT_ENABLE_1_REG);
val = enable ? (val | mask) : (val & ~mask);
writel(val, geth->base + GLOBAL_INTERRUPT_ENABLE_1_REG);
mask = GMAC0_IRQ4_8 << (netdev->dev_id * 8);
val = readl(geth->base + GLOBAL_INTERRUPT_ENABLE_4_REG);
val = enable ? (val | mask) : (val & ~mask);
writel(val, geth->base + GLOBAL_INTERRUPT_ENABLE_4_REG);
spin_unlock_irqrestore(&geth->irq_lock, flags);
}
static void gmac_enable_rx_irq(struct net_device *netdev, int enable)
{
struct gemini_ethernet_port *port = netdev_priv(netdev);
struct gemini_ethernet *geth = port->geth;
unsigned long flags;
u32 val, mask;
netdev_dbg(netdev, "%s device %d %s\n", __func__, netdev->dev_id,
enable ? "enable" : "disable");
spin_lock_irqsave(&geth->irq_lock, flags);
mask = DEFAULT_Q0_INT_BIT << netdev->dev_id;
val = readl(geth->base + GLOBAL_INTERRUPT_ENABLE_1_REG);
val = enable ? (val | mask) : (val & ~mask);
writel(val, geth->base + GLOBAL_INTERRUPT_ENABLE_1_REG);
spin_unlock_irqrestore(&geth->irq_lock, flags);
}
static struct sk_buff *gmac_skb_if_good_frame(struct gemini_ethernet_port *port,
union gmac_rxdesc_0 word0,
unsigned int frame_len)
{
unsigned int rx_csum = word0.bits.chksum_status;
unsigned int rx_status = word0.bits.status;
struct sk_buff *skb = NULL;
port->rx_stats[rx_status]++;
port->rx_csum_stats[rx_csum]++;
if (word0.bits.derr || word0.bits.perr ||
rx_status || frame_len < ETH_ZLEN ||
rx_csum >= RX_CHKSUM_IP_ERR_UNKNOWN) {
port->stats.rx_errors++;
if (frame_len < ETH_ZLEN || RX_ERROR_LENGTH(rx_status))
port->stats.rx_length_errors++;
if (RX_ERROR_OVER(rx_status))
port->stats.rx_over_errors++;
if (RX_ERROR_CRC(rx_status))
port->stats.rx_crc_errors++;
if (RX_ERROR_FRAME(rx_status))
port->stats.rx_frame_errors++;
return NULL;
}
skb = napi_get_frags(&port->napi);
if (!skb)
goto update_exit;
if (rx_csum == RX_CHKSUM_IP_UDP_TCP_OK)
skb->ip_summed = CHECKSUM_UNNECESSARY;
update_exit:
port->stats.rx_bytes += frame_len;
port->stats.rx_packets++;
return skb;
}
static unsigned int gmac_rx(struct net_device *netdev, unsigned int budget)
{
struct gemini_ethernet_port *port = netdev_priv(netdev);
unsigned short m = (1 << port->rxq_order) - 1;
struct gemini_ethernet *geth = port->geth;
void __iomem *ptr_reg = port->rxq_rwptr;
unsigned int frame_len, frag_len;
struct gmac_rxdesc *rx = NULL;
struct gmac_queue_page *gpage;
static struct sk_buff *skb;
union gmac_rxdesc_0 word0;
union gmac_rxdesc_1 word1;
union gmac_rxdesc_3 word3;
struct page *page = NULL;
unsigned int page_offs;
unsigned short r, w;
union dma_rwptr rw;
dma_addr_t mapping;
int frag_nr = 0;
rw.bits32 = readl(ptr_reg);
/* Reset interrupt as all packages until here are taken into account */
writel(DEFAULT_Q0_INT_BIT << netdev->dev_id,
geth->base + GLOBAL_INTERRUPT_STATUS_1_REG);
r = rw.bits.rptr;
w = rw.bits.wptr;
while (budget && w != r) {
rx = port->rxq_ring + r;
word0 = rx->word0;
word1 = rx->word1;
mapping = rx->word2.buf_adr;
word3 = rx->word3;
r++;
r &= m;
frag_len = word0.bits.buffer_size;
frame_len = word1.bits.byte_count;
page_offs = mapping & ~PAGE_MASK;
if (!mapping) {
netdev_err(netdev,
"rxq[%u]: HW BUG: zero DMA desc\n", r);
goto err_drop;
}
/* Freeq pointers are one page off */
gpage = gmac_get_queue_page(geth, port, mapping + PAGE_SIZE);
if (!gpage) {
dev_err(geth->dev, "could not find mapping\n");
continue;
}
page = gpage->page;
if (word3.bits32 & SOF_BIT) {
if (skb) {
napi_free_frags(&port->napi);
port->stats.rx_dropped++;
}
skb = gmac_skb_if_good_frame(port, word0, frame_len);
if (!skb)
goto err_drop;
page_offs += NET_IP_ALIGN;
frag_len -= NET_IP_ALIGN;
frag_nr = 0;
} else if (!skb) {
put_page(page);
continue;
}
if (word3.bits32 & EOF_BIT)
frag_len = frame_len - skb->len;
/* append page frag to skb */
if (frag_nr == MAX_SKB_FRAGS)
goto err_drop;
if (frag_len == 0)
netdev_err(netdev, "Received fragment with len = 0\n");
skb_fill_page_desc(skb, frag_nr, page, page_offs, frag_len);
skb->len += frag_len;
skb->data_len += frag_len;
skb->truesize += frag_len;
frag_nr++;
if (word3.bits32 & EOF_BIT) {
napi_gro_frags(&port->napi);
skb = NULL;
--budget;
}
continue;
err_drop:
if (skb) {
napi_free_frags(&port->napi);
skb = NULL;
}
if (mapping)
put_page(page);
port->stats.rx_dropped++;
}
writew(r, ptr_reg);
return budget;
}
static int gmac_napi_poll(struct napi_struct *napi, int budget)
{
struct gemini_ethernet_port *port = netdev_priv(napi->dev);
struct gemini_ethernet *geth = port->geth;
unsigned int freeq_threshold;
unsigned int received;
freeq_threshold = 1 << (geth->freeq_order - 1);
u64_stats_update_begin(&port->rx_stats_syncp);
received = gmac_rx(napi->dev, budget);
if (received < budget) {
napi_gro_flush(napi, false);
napi_complete_done(napi, received);
gmac_enable_rx_irq(napi->dev, 1);
++port->rx_napi_exits;
}
port->freeq_refill += (budget - received);
if (port->freeq_refill > freeq_threshold) {
port->freeq_refill -= freeq_threshold;
geth_fill_freeq(geth, true);
}
u64_stats_update_end(&port->rx_stats_syncp);
return received;
}
static void gmac_dump_dma_state(struct net_device *netdev)
{
struct gemini_ethernet_port *port = netdev_priv(netdev);
struct gemini_ethernet *geth = port->geth;
void __iomem *ptr_reg;
u32 reg[5];
/* Interrupt status */
reg[0] = readl(geth->base + GLOBAL_INTERRUPT_STATUS_0_REG);
reg[1] = readl(geth->base + GLOBAL_INTERRUPT_STATUS_1_REG);
reg[2] = readl(geth->base + GLOBAL_INTERRUPT_STATUS_2_REG);
reg[3] = readl(geth->base + GLOBAL_INTERRUPT_STATUS_3_REG);
reg[4] = readl(geth->base + GLOBAL_INTERRUPT_STATUS_4_REG);
netdev_err(netdev, "IRQ status: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
reg[0], reg[1], reg[2], reg[3], reg[4]);
/* Interrupt enable */
reg[0] = readl(geth->base + GLOBAL_INTERRUPT_ENABLE_0_REG);
reg[1] = readl(geth->base + GLOBAL_INTERRUPT_ENABLE_1_REG);
reg[2] = readl(geth->base + GLOBAL_INTERRUPT_ENABLE_2_REG);
reg[3] = readl(geth->base + GLOBAL_INTERRUPT_ENABLE_3_REG);
reg[4] = readl(geth->base + GLOBAL_INTERRUPT_ENABLE_4_REG);
netdev_err(netdev, "IRQ enable: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
reg[0], reg[1], reg[2], reg[3], reg[4]);
/* RX DMA status */
reg[0] = readl(port->dma_base + GMAC_DMA_RX_FIRST_DESC_REG);
reg[1] = readl(port->dma_base + GMAC_DMA_RX_CURR_DESC_REG);
reg[2] = GET_RPTR(port->rxq_rwptr);
reg[3] = GET_WPTR(port->rxq_rwptr);
netdev_err(netdev, "RX DMA regs: 0x%08x 0x%08x, ptr: %u %u\n",
reg[0], reg[1], reg[2], reg[3]);
reg[0] = readl(port->dma_base + GMAC_DMA_RX_DESC_WORD0_REG);
reg[1] = readl(port->dma_base + GMAC_DMA_RX_DESC_WORD1_REG);
reg[2] = readl(port->dma_base + GMAC_DMA_RX_DESC_WORD2_REG);
reg[3] = readl(port->dma_base + GMAC_DMA_RX_DESC_WORD3_REG);
netdev_err(netdev, "RX DMA descriptor: 0x%08x 0x%08x 0x%08x 0x%08x\n",
reg[0], reg[1], reg[2], reg[3]);
/* TX DMA status */
ptr_reg = port->dma_base + GMAC_SW_TX_QUEUE0_PTR_REG;
reg[0] = readl(port->dma_base + GMAC_DMA_TX_FIRST_DESC_REG);
reg[1] = readl(port->dma_base + GMAC_DMA_TX_CURR_DESC_REG);
reg[2] = GET_RPTR(ptr_reg);
reg[3] = GET_WPTR(ptr_reg);
netdev_err(netdev, "TX DMA regs: 0x%08x 0x%08x, ptr: %u %u\n",
reg[0], reg[1], reg[2], reg[3]);
reg[0] = readl(port->dma_base + GMAC_DMA_TX_DESC_WORD0_REG);
reg[1] = readl(port->dma_base + GMAC_DMA_TX_DESC_WORD1_REG);
reg[2] = readl(port->dma_base + GMAC_DMA_TX_DESC_WORD2_REG);
reg[3] = readl(port->dma_base + GMAC_DMA_TX_DESC_WORD3_REG);
netdev_err(netdev, "TX DMA descriptor: 0x%08x 0x%08x 0x%08x 0x%08x\n",
reg[0], reg[1], reg[2], reg[3]);
/* FREE queues status */
ptr_reg = geth->base + GLOBAL_SWFQ_RWPTR_REG;
reg[0] = GET_RPTR(ptr_reg);
reg[1] = GET_WPTR(ptr_reg);
ptr_reg = geth->base + GLOBAL_HWFQ_RWPTR_REG;
reg[2] = GET_RPTR(ptr_reg);
reg[3] = GET_WPTR(ptr_reg);
netdev_err(netdev, "FQ SW ptr: %u %u, HW ptr: %u %u\n",
reg[0], reg[1], reg[2], reg[3]);
}
static void gmac_update_hw_stats(struct net_device *netdev)
{
struct gemini_ethernet_port *port = netdev_priv(netdev);
unsigned int rx_discards, rx_mcast, rx_bcast;
struct gemini_ethernet *geth = port->geth;
unsigned long flags;
spin_lock_irqsave(&geth->irq_lock, flags);
u64_stats_update_begin(&port->ir_stats_syncp);
rx_discards = readl(port->gmac_base + GMAC_IN_DISCARDS);
port->hw_stats[0] += rx_discards;
port->hw_stats[1] += readl(port->gmac_base + GMAC_IN_ERRORS);
rx_mcast = readl(port->gmac_base + GMAC_IN_MCAST);
port->hw_stats[2] += rx_mcast;
rx_bcast = readl(port->gmac_base + GMAC_IN_BCAST);
port->hw_stats[3] += rx_bcast;
port->hw_stats[4] += readl(port->gmac_base + GMAC_IN_MAC1);
port->hw_stats[5] += readl(port->gmac_base + GMAC_IN_MAC2);
port->stats.rx_missed_errors += rx_discards;
port->stats.multicast += rx_mcast;
port->stats.multicast += rx_bcast;
writel(GMAC0_MIB_INT_BIT << (netdev->dev_id * 8),
geth->base + GLOBAL_INTERRUPT_STATUS_4_REG);
u64_stats_update_end(&port->ir_stats_syncp);
spin_unlock_irqrestore(&geth->irq_lock, flags);
}
/**
* gmac_get_intr_flags() - get interrupt status flags for a port from
* @netdev: the net device for the port to get flags from
* @i: the interrupt status register 0..4
*/
static u32 gmac_get_intr_flags(struct net_device *netdev, int i)
{
struct gemini_ethernet_port *port = netdev_priv(netdev);
struct gemini_ethernet *geth = port->geth;
void __iomem *irqif_reg, *irqen_reg;
unsigned int offs, val;
/* Calculate the offset using the stride of the status registers */
offs = i * (GLOBAL_INTERRUPT_STATUS_1_REG -
GLOBAL_INTERRUPT_STATUS_0_REG);
irqif_reg = geth->base + GLOBAL_INTERRUPT_STATUS_0_REG + offs;
irqen_reg = geth->base + GLOBAL_INTERRUPT_ENABLE_0_REG + offs;
val = readl(irqif_reg) & readl(irqen_reg);
return val;
}
static enum hrtimer_restart gmac_coalesce_delay_expired(struct hrtimer *timer)
{
struct gemini_ethernet_port *port =
container_of(timer, struct gemini_ethernet_port,
rx_coalesce_timer);
napi_schedule(&port->napi);
return HRTIMER_NORESTART;
}
static irqreturn_t gmac_irq(int irq, void *data)
{
struct gemini_ethernet_port *port;
struct net_device *netdev = data;
struct gemini_ethernet *geth;
u32 val, orr = 0;
port = netdev_priv(netdev);
geth = port->geth;
val = gmac_get_intr_flags(netdev, 0);
orr |= val;
if (val & (GMAC0_IRQ0_2 << (netdev->dev_id * 2))) {
/* Oh, crap */
netdev_err(netdev, "hw failure/sw bug\n");
gmac_dump_dma_state(netdev);
/* don't know how to recover, just reduce losses */
gmac_enable_irq(netdev, 0);
return IRQ_HANDLED;
}
if (val & (GMAC0_IRQ0_TXQ0_INTS << (netdev->dev_id * 6)))
gmac_tx_irq(netdev, 0);
val = gmac_get_intr_flags(netdev, 1);
orr |= val;
if (val & (DEFAULT_Q0_INT_BIT << netdev->dev_id)) {
gmac_enable_rx_irq(netdev, 0);
if (!port->rx_coalesce_nsecs) {
napi_schedule(&port->napi);
} else {
ktime_t ktime;
ktime = ktime_set(0, port->rx_coalesce_nsecs);
hrtimer_start(&port->rx_coalesce_timer, ktime,
HRTIMER_MODE_REL);
}
}
val = gmac_get_intr_flags(netdev, 4);
orr |= val;
if (val & (GMAC0_MIB_INT_BIT << (netdev->dev_id * 8)))
gmac_update_hw_stats(netdev);
if (val & (GMAC0_RX_OVERRUN_INT_BIT << (netdev->dev_id * 8))) {
writel(GMAC0_RXDERR_INT_BIT << (netdev->dev_id * 8),
geth->base + GLOBAL_INTERRUPT_STATUS_4_REG);
spin_lock(&geth->irq_lock);
u64_stats_update_begin(&port->ir_stats_syncp);
++port->stats.rx_fifo_errors;
u64_stats_update_end(&port->ir_stats_syncp);
spin_unlock(&geth->irq_lock);
}
return orr ? IRQ_HANDLED : IRQ_NONE;
}
static void gmac_start_dma(struct gemini_ethernet_port *port)
{
void __iomem *dma_ctrl_reg = port->dma_base + GMAC_DMA_CTRL_REG;
union gmac_dma_ctrl dma_ctrl;
dma_ctrl.bits32 = readl(dma_ctrl_reg);
dma_ctrl.bits.rd_enable = 1;
dma_ctrl.bits.td_enable = 1;
dma_ctrl.bits.loopback = 0;
dma_ctrl.bits.drop_small_ack = 0;
dma_ctrl.bits.rd_insert_bytes = NET_IP_ALIGN;
dma_ctrl.bits.rd_prot = HPROT_DATA_CACHE | HPROT_PRIVILIGED;
dma_ctrl.bits.rd_burst_size = HBURST_INCR8;
dma_ctrl.bits.rd_bus = HSIZE_8;
dma_ctrl.bits.td_prot = HPROT_DATA_CACHE;
dma_ctrl.bits.td_burst_size = HBURST_INCR8;
dma_ctrl.bits.td_bus = HSIZE_8;
writel(dma_ctrl.bits32, dma_ctrl_reg);
}
static void gmac_stop_dma(struct gemini_ethernet_port *port)
{
void __iomem *dma_ctrl_reg = port->dma_base + GMAC_DMA_CTRL_REG;
union gmac_dma_ctrl dma_ctrl;
dma_ctrl.bits32 = readl(dma_ctrl_reg);
dma_ctrl.bits.rd_enable = 0;
dma_ctrl.bits.td_enable = 0;
writel(dma_ctrl.bits32, dma_ctrl_reg);
}
static int gmac_open(struct net_device *netdev)
{
struct gemini_ethernet_port *port = netdev_priv(netdev);
int err;
if (!netdev->phydev) {
err = gmac_setup_phy(netdev);
if (err) {
netif_err(port, ifup, netdev,
"PHY init failed: %d\n", err);
return err;
}
}
err = request_irq(netdev->irq, gmac_irq,
IRQF_SHARED, netdev->name, netdev);
if (err) {
netdev_err(netdev, "no IRQ\n");
return err;
}
netif_carrier_off(netdev);
phy_start(netdev->phydev);
err = geth_resize_freeq(port);
/* It's fine if it's just busy, the other port has set up
* the freeq in that case.
*/
if (err && (err != -EBUSY)) {
netdev_err(netdev, "could not resize freeq\n");
goto err_stop_phy;
}
err = gmac_setup_rxq(netdev);
if (err) {
netdev_err(netdev, "could not setup RXQ\n");
goto err_stop_phy;
}
err = gmac_setup_txqs(netdev);
if (err) {
netdev_err(netdev, "could not setup TXQs\n");
gmac_cleanup_rxq(netdev);
goto err_stop_phy;
}
napi_enable(&port->napi);
gmac_start_dma(port);
gmac_enable_irq(netdev, 1);
gmac_enable_tx_rx(netdev);
netif_tx_start_all_queues(netdev);
hrtimer_init(&port->rx_coalesce_timer, CLOCK_MONOTONIC,
HRTIMER_MODE_REL);
port->rx_coalesce_timer.function = &gmac_coalesce_delay_expired;
netdev_dbg(netdev, "opened\n");
return 0;
err_stop_phy:
phy_stop(netdev->phydev);
free_irq(netdev->irq, netdev);
return err;
}
static int gmac_stop(struct net_device *netdev)
{
struct gemini_ethernet_port *port = netdev_priv(netdev);
hrtimer_cancel(&port->rx_coalesce_timer);
netif_tx_stop_all_queues(netdev);
gmac_disable_tx_rx(netdev);
gmac_stop_dma(port);
napi_disable(&port->napi);
gmac_enable_irq(netdev, 0);
gmac_cleanup_rxq(netdev);
gmac_cleanup_txqs(netdev);
phy_stop(netdev->phydev);
free_irq(netdev->irq, netdev);
gmac_update_hw_stats(netdev);
return 0;
}
static void gmac_set_rx_mode(struct net_device *netdev)
{
struct gemini_ethernet_port *port = netdev_priv(netdev);
union gmac_rx_fltr filter = { .bits = {
.broadcast = 1,
.multicast = 1,
.unicast = 1,
} };
struct netdev_hw_addr *ha;
unsigned int bit_nr;
u32 mc_filter[2];
mc_filter[1] = 0;
mc_filter[0] = 0;
if (netdev->flags & IFF_PROMISC) {
filter.bits.error = 1;
filter.bits.promiscuous = 1;
mc_filter[1] = ~0;
mc_filter[0] = ~0;
} else if (netdev->flags & IFF_ALLMULTI) {
mc_filter[1] = ~0;
mc_filter[0] = ~0;
} else {
netdev_for_each_mc_addr(ha, netdev) {
bit_nr = ~crc32_le(~0, ha->addr, ETH_ALEN) & 0x3f;
mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 0x1f);
}
}
writel(mc_filter[0], port->gmac_base + GMAC_MCAST_FIL0);
writel(mc_filter[1], port->gmac_base + GMAC_MCAST_FIL1);
writel(filter.bits32, port->gmac_base + GMAC_RX_FLTR);
}
static void gmac_write_mac_address(struct net_device *netdev)
{
struct gemini_ethernet_port *port = netdev_priv(netdev);
__le32 addr[3];
memset(addr, 0, sizeof(addr));
memcpy(addr, netdev->dev_addr, ETH_ALEN);
writel(le32_to_cpu(addr[0]), port->gmac_base + GMAC_STA_ADD0);
writel(le32_to_cpu(addr[1]), port->gmac_base + GMAC_STA_ADD1);
writel(le32_to_cpu(addr[2]), port->gmac_base + GMAC_STA_ADD2);
}
static int gmac_set_mac_address(struct net_device *netdev, void *addr)
{
struct sockaddr *sa = addr;
memcpy(netdev->dev_addr, sa->sa_data, ETH_ALEN);
gmac_write_mac_address(netdev);
return 0;
}
static void gmac_clear_hw_stats(struct net_device *netdev)
{
struct gemini_ethernet_port *port = netdev_priv(netdev);
readl(port->gmac_base + GMAC_IN_DISCARDS);
readl(port->gmac_base + GMAC_IN_ERRORS);
readl(port->gmac_base + GMAC_IN_MCAST);
readl(port->gmac_base + GMAC_IN_BCAST);
readl(port->gmac_base + GMAC_IN_MAC1);
readl(port->gmac_base + GMAC_IN_MAC2);
}
static void gmac_get_stats64(struct net_device *netdev,
struct rtnl_link_stats64 *stats)
{
struct gemini_ethernet_port *port = netdev_priv(netdev);
unsigned int start;
gmac_update_hw_stats(netdev);
/* Racing with RX NAPI */
do {
start = u64_stats_fetch_begin(&port->rx_stats_syncp);
stats->rx_packets = port->stats.rx_packets;
stats->rx_bytes = port->stats.rx_bytes;
stats->rx_errors = port->stats.rx_errors;
stats->rx_dropped = port->stats.rx_dropped;
stats->rx_length_errors = port->stats.rx_length_errors;
stats->rx_over_errors = port->stats.rx_over_errors;
stats->rx_crc_errors = port->stats.rx_crc_errors;
stats->rx_frame_errors = port->stats.rx_frame_errors;
} while (u64_stats_fetch_retry(&port->rx_stats_syncp, start));
/* Racing with MIB and TX completion interrupts */
do {
start = u64_stats_fetch_begin(&port->ir_stats_syncp);
stats->tx_errors = port->stats.tx_errors;
stats->tx_packets = port->stats.tx_packets;
stats->tx_bytes = port->stats.tx_bytes;
stats->multicast = port->stats.multicast;
stats->rx_missed_errors = port->stats.rx_missed_errors;
stats->rx_fifo_errors = port->stats.rx_fifo_errors;
} while (u64_stats_fetch_retry(&port->ir_stats_syncp, start));
/* Racing with hard_start_xmit */
do {
start = u64_stats_fetch_begin(&port->tx_stats_syncp);
stats->tx_dropped = port->stats.tx_dropped;
} while (u64_stats_fetch_retry(&port->tx_stats_syncp, start));
stats->rx_dropped += stats->rx_missed_errors;
}
static int gmac_change_mtu(struct net_device *netdev, int new_mtu)
{
int max_len = gmac_pick_rx_max_len(new_mtu);
if (max_len < 0)
return -EINVAL;
gmac_disable_tx_rx(netdev);
netdev->mtu = new_mtu;
gmac_update_config0_reg(netdev, max_len << CONFIG0_MAXLEN_SHIFT,
CONFIG0_MAXLEN_MASK);
netdev_update_features(netdev);
gmac_enable_tx_rx(netdev);
return 0;
}
static netdev_features_t gmac_fix_features(struct net_device *netdev,
netdev_features_t features)
{
if (netdev->mtu + ETH_HLEN + VLAN_HLEN > MTU_SIZE_BIT_MASK)
features &= ~GMAC_OFFLOAD_FEATURES;
return features;
}
static int gmac_set_features(struct net_device *netdev,
netdev_features_t features)
{
struct gemini_ethernet_port *port = netdev_priv(netdev);
int enable = features & NETIF_F_RXCSUM;
unsigned long flags;
u32 reg;
spin_lock_irqsave(&port->config_lock, flags);
reg = readl(port->gmac_base + GMAC_CONFIG0);
reg = enable ? reg | CONFIG0_RX_CHKSUM : reg & ~CONFIG0_RX_CHKSUM;
writel(reg, port->gmac_base + GMAC_CONFIG0);
spin_unlock_irqrestore(&port->config_lock, flags);
return 0;
}
static int gmac_get_sset_count(struct net_device *netdev, int sset)
{
return sset == ETH_SS_STATS ? GMAC_STATS_NUM : 0;
}
static void gmac_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
{
if (stringset != ETH_SS_STATS)
return;
memcpy(data, gmac_stats_strings, sizeof(gmac_stats_strings));
}
static void gmac_get_ethtool_stats(struct net_device *netdev,
struct ethtool_stats *estats, u64 *values)
{
struct gemini_ethernet_port *port = netdev_priv(netdev);
unsigned int start;
u64 *p;
int i;
gmac_update_hw_stats(netdev);
/* Racing with MIB interrupt */
do {
p = values;
start = u64_stats_fetch_begin(&port->ir_stats_syncp);
for (i = 0; i < RX_STATS_NUM; i++)
*p++ = port->hw_stats[i];
} while (u64_stats_fetch_retry(&port->ir_stats_syncp, start));
values = p;
/* Racing with RX NAPI */
do {
p = values;
start = u64_stats_fetch_begin(&port->rx_stats_syncp);
for (i = 0; i < RX_STATUS_NUM; i++)
*p++ = port->rx_stats[i];
for (i = 0; i < RX_CHKSUM_NUM; i++)
*p++ = port->rx_csum_stats[i];
*p++ = port->rx_napi_exits;
} while (u64_stats_fetch_retry(&port->rx_stats_syncp, start));
values = p;
/* Racing with TX start_xmit */
do {
p = values;
start = u64_stats_fetch_begin(&port->tx_stats_syncp);
for (i = 0; i < TX_MAX_FRAGS; i++) {
*values++ = port->tx_frag_stats[i];
port->tx_frag_stats[i] = 0;
}
*values++ = port->tx_frags_linearized;
*values++ = port->tx_hw_csummed;
} while (u64_stats_fetch_retry(&port->tx_stats_syncp, start));
}
static int gmac_get_ksettings(struct net_device *netdev,
struct ethtool_link_ksettings *cmd)
{
if (!netdev->phydev)
return -ENXIO;
phy_ethtool_ksettings_get(netdev->phydev, cmd);
return 0;
}
static int gmac_set_ksettings(struct net_device *netdev,
const struct ethtool_link_ksettings *cmd)
{
if (!netdev->phydev)
return -ENXIO;
return phy_ethtool_ksettings_set(netdev->phydev, cmd);
}
static int gmac_nway_reset(struct net_device *netdev)
{
if (!netdev->phydev)
return -ENXIO;
return phy_start_aneg(netdev->phydev);
}
static void gmac_get_pauseparam(struct net_device *netdev,
struct ethtool_pauseparam *pparam)
{
struct gemini_ethernet_port *port = netdev_priv(netdev);
union gmac_config0 config0;
config0.bits32 = readl(port->gmac_base + GMAC_CONFIG0);
pparam->rx_pause = config0.bits.rx_fc_en;
pparam->tx_pause = config0.bits.tx_fc_en;
pparam->autoneg = true;
}
static void gmac_get_ringparam(struct net_device *netdev,
struct ethtool_ringparam *rp)
{
struct gemini_ethernet_port *port = netdev_priv(netdev);
union gmac_config0 config0;
config0.bits32 = readl(port->gmac_base + GMAC_CONFIG0);
rp->rx_max_pending = 1 << 15;
rp->rx_mini_max_pending = 0;
rp->rx_jumbo_max_pending = 0;
rp->tx_max_pending = 1 << 15;
rp->rx_pending = 1 << port->rxq_order;
rp->rx_mini_pending = 0;
rp->rx_jumbo_pending = 0;
rp->tx_pending = 1 << port->txq_order;
}
static int gmac_set_ringparam(struct net_device *netdev,
struct ethtool_ringparam *rp)
{
struct gemini_ethernet_port *port = netdev_priv(netdev);
int err = 0;
if (netif_running(netdev))
return -EBUSY;
if (rp->rx_pending) {
port->rxq_order = min(15, ilog2(rp->rx_pending - 1) + 1);
err = geth_resize_freeq(port);
}
if (rp->tx_pending) {
port->txq_order = min(15, ilog2(rp->tx_pending - 1) + 1);
port->irq_every_tx_packets = 1 << (port->txq_order - 2);
}
return err;
}
static int gmac_get_coalesce(struct net_device *netdev,
struct ethtool_coalesce *ecmd)
{
struct gemini_ethernet_port *port = netdev_priv(netdev);
ecmd->rx_max_coalesced_frames = 1;
ecmd->tx_max_coalesced_frames = port->irq_every_tx_packets;
ecmd->rx_coalesce_usecs = port->rx_coalesce_nsecs / 1000;
return 0;
}
static int gmac_set_coalesce(struct net_device *netdev,
struct ethtool_coalesce *ecmd)
{
struct gemini_ethernet_port *port = netdev_priv(netdev);
if (ecmd->tx_max_coalesced_frames < 1)
return -EINVAL;
if (ecmd->tx_max_coalesced_frames >= 1 << port->txq_order)
return -EINVAL;
port->irq_every_tx_packets = ecmd->tx_max_coalesced_frames;
port->rx_coalesce_nsecs = ecmd->rx_coalesce_usecs * 1000;
return 0;
}
static u32 gmac_get_msglevel(struct net_device *netdev)
{
struct gemini_ethernet_port *port = netdev_priv(netdev);
return port->msg_enable;
}
static void gmac_set_msglevel(struct net_device *netdev, u32 level)
{
struct gemini_ethernet_port *port = netdev_priv(netdev);
port->msg_enable = level;
}
static void gmac_get_drvinfo(struct net_device *netdev,
struct ethtool_drvinfo *info)
{
strcpy(info->driver, DRV_NAME);
strcpy(info->version, DRV_VERSION);
strcpy(info->bus_info, netdev->dev_id ? "1" : "0");
}
static const struct net_device_ops gmac_351x_ops = {
.ndo_init = gmac_init,
.ndo_uninit = gmac_uninit,
.ndo_open = gmac_open,
.ndo_stop = gmac_stop,
.ndo_start_xmit = gmac_start_xmit,
.ndo_tx_timeout = gmac_tx_timeout,
.ndo_set_rx_mode = gmac_set_rx_mode,
.ndo_set_mac_address = gmac_set_mac_address,
.ndo_get_stats64 = gmac_get_stats64,
.ndo_change_mtu = gmac_change_mtu,
.ndo_fix_features = gmac_fix_features,
.ndo_set_features = gmac_set_features,
};
static const struct ethtool_ops gmac_351x_ethtool_ops = {
.get_sset_count = gmac_get_sset_count,
.get_strings = gmac_get_strings,
.get_ethtool_stats = gmac_get_ethtool_stats,
.get_link = ethtool_op_get_link,
.get_link_ksettings = gmac_get_ksettings,
.set_link_ksettings = gmac_set_ksettings,
.nway_reset = gmac_nway_reset,
.get_pauseparam = gmac_get_pauseparam,
.get_ringparam = gmac_get_ringparam,
.set_ringparam = gmac_set_ringparam,
.get_coalesce = gmac_get_coalesce,
.set_coalesce = gmac_set_coalesce,
.get_msglevel = gmac_get_msglevel,
.set_msglevel = gmac_set_msglevel,
.get_drvinfo = gmac_get_drvinfo,
};
static irqreturn_t gemini_port_irq_thread(int irq, void *data)
{
unsigned long irqmask = SWFQ_EMPTY_INT_BIT;
struct gemini_ethernet_port *port = data;
struct gemini_ethernet *geth;
unsigned long flags;
geth = port->geth;
/* The queue is half empty so refill it */
geth_fill_freeq(geth, true);
spin_lock_irqsave(&geth->irq_lock, flags);
/* ACK queue interrupt */
writel(irqmask, geth->base + GLOBAL_INTERRUPT_STATUS_4_REG);
/* Enable queue interrupt again */
irqmask |= readl(geth->base + GLOBAL_INTERRUPT_ENABLE_4_REG);
writel(irqmask, geth->base + GLOBAL_INTERRUPT_ENABLE_4_REG);
spin_unlock_irqrestore(&geth->irq_lock, flags);
return IRQ_HANDLED;
}
static irqreturn_t gemini_port_irq(int irq, void *data)
{
struct gemini_ethernet_port *port = data;
struct gemini_ethernet *geth;
irqreturn_t ret = IRQ_NONE;
u32 val, en;
geth = port->geth;
spin_lock(&geth->irq_lock);
val = readl(geth->base + GLOBAL_INTERRUPT_STATUS_4_REG);
en = readl(geth->base + GLOBAL_INTERRUPT_ENABLE_4_REG);
if (val & en & SWFQ_EMPTY_INT_BIT) {
/* Disable the queue empty interrupt while we work on
* processing the queue. Also disable overrun interrupts
* as there is not much we can do about it here.
*/
en &= ~(SWFQ_EMPTY_INT_BIT | GMAC0_RX_OVERRUN_INT_BIT
| GMAC1_RX_OVERRUN_INT_BIT);
writel(en, geth->base + GLOBAL_INTERRUPT_ENABLE_4_REG);
ret = IRQ_WAKE_THREAD;
}
spin_unlock(&geth->irq_lock);
return ret;
}
static void gemini_port_remove(struct gemini_ethernet_port *port)
{
if (port->netdev)
unregister_netdev(port->netdev);
clk_disable_unprepare(port->pclk);
geth_cleanup_freeq(port->geth);
}
static void gemini_ethernet_init(struct gemini_ethernet *geth)
{
/* Only do this once both ports are online */
if (geth->initialized)
return;
if (geth->port0 && geth->port1)
geth->initialized = true;
else
return;
writel(0, geth->base + GLOBAL_INTERRUPT_ENABLE_0_REG);
writel(0, geth->base + GLOBAL_INTERRUPT_ENABLE_1_REG);
writel(0, geth->base + GLOBAL_INTERRUPT_ENABLE_2_REG);
writel(0, geth->base + GLOBAL_INTERRUPT_ENABLE_3_REG);
writel(0, geth->base + GLOBAL_INTERRUPT_ENABLE_4_REG);
/* Interrupt config:
*
* GMAC0 intr bits ------> int0 ----> eth0
* GMAC1 intr bits ------> int1 ----> eth1
* TOE intr -------------> int1 ----> eth1
* Classification Intr --> int0 ----> eth0
* Default Q0 -----------> int0 ----> eth0
* Default Q1 -----------> int1 ----> eth1
* FreeQ intr -----------> int1 ----> eth1
*/
writel(0xCCFC0FC0, geth->base + GLOBAL_INTERRUPT_SELECT_0_REG);
writel(0x00F00002, geth->base + GLOBAL_INTERRUPT_SELECT_1_REG);
writel(0xFFFFFFFF, geth->base + GLOBAL_INTERRUPT_SELECT_2_REG);
writel(0xFFFFFFFF, geth->base + GLOBAL_INTERRUPT_SELECT_3_REG);
writel(0xFF000003, geth->base + GLOBAL_INTERRUPT_SELECT_4_REG);
/* edge-triggered interrupts packed to level-triggered one... */
writel(~0, geth->base + GLOBAL_INTERRUPT_STATUS_0_REG);
writel(~0, geth->base + GLOBAL_INTERRUPT_STATUS_1_REG);
writel(~0, geth->base + GLOBAL_INTERRUPT_STATUS_2_REG);
writel(~0, geth->base + GLOBAL_INTERRUPT_STATUS_3_REG);
writel(~0, geth->base + GLOBAL_INTERRUPT_STATUS_4_REG);
/* Set up queue */
writel(0, geth->base + GLOBAL_SW_FREEQ_BASE_SIZE_REG);
writel(0, geth->base + GLOBAL_HW_FREEQ_BASE_SIZE_REG);
writel(0, geth->base + GLOBAL_SWFQ_RWPTR_REG);
writel(0, geth->base + GLOBAL_HWFQ_RWPTR_REG);
geth->freeq_frag_order = DEFAULT_RX_BUF_ORDER;
/* This makes the queue resize on probe() so that we
* set up and enable the queue IRQ. FIXME: fragile.
*/
geth->freeq_order = 1;
}
static void gemini_port_save_mac_addr(struct gemini_ethernet_port *port)
{
port->mac_addr[0] =
cpu_to_le32(readl(port->gmac_base + GMAC_STA_ADD0));
port->mac_addr[1] =
cpu_to_le32(readl(port->gmac_base + GMAC_STA_ADD1));
port->mac_addr[2] =
cpu_to_le32(readl(port->gmac_base + GMAC_STA_ADD2));
}
static int gemini_ethernet_port_probe(struct platform_device *pdev)
{
char *port_names[2] = { "ethernet0", "ethernet1" };
struct gemini_ethernet_port *port;
struct device *dev = &pdev->dev;
struct gemini_ethernet *geth;
struct net_device *netdev;
struct resource *gmacres;
struct resource *dmares;
struct device *parent;
unsigned int id;
int irq;
int ret;
parent = dev->parent;
geth = dev_get_drvdata(parent);
if (!strcmp(dev_name(dev), "60008000.ethernet-port"))
id = 0;
else if (!strcmp(dev_name(dev), "6000c000.ethernet-port"))
id = 1;
else
return -ENODEV;
dev_info(dev, "probe %s ID %d\n", dev_name(dev), id);
netdev = alloc_etherdev_mq(sizeof(*port), TX_QUEUE_NUM);
if (!netdev) {
dev_err(dev, "Can't allocate ethernet device #%d\n", id);
return -ENOMEM;
}
port = netdev_priv(netdev);
SET_NETDEV_DEV(netdev, dev);
port->netdev = netdev;
port->id = id;
port->geth = geth;
port->dev = dev;
port->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
/* DMA memory */
dmares = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!dmares) {
dev_err(dev, "no DMA resource\n");
return -ENODEV;
}
port->dma_base = devm_ioremap_resource(dev, dmares);
if (IS_ERR(port->dma_base))
return PTR_ERR(port->dma_base);
/* GMAC config memory */
gmacres = platform_get_resource(pdev, IORESOURCE_MEM, 1);
if (!gmacres) {
dev_err(dev, "no GMAC resource\n");
return -ENODEV;
}
port->gmac_base = devm_ioremap_resource(dev, gmacres);
if (IS_ERR(port->gmac_base))
return PTR_ERR(port->gmac_base);
/* Interrupt */
irq = platform_get_irq(pdev, 0);
if (irq <= 0) {
dev_err(dev, "no IRQ\n");
return irq ? irq : -ENODEV;
}
port->irq = irq;
/* Clock the port */
port->pclk = devm_clk_get(dev, "PCLK");
if (IS_ERR(port->pclk)) {
dev_err(dev, "no PCLK\n");
return PTR_ERR(port->pclk);
}
ret = clk_prepare_enable(port->pclk);
if (ret)
return ret;
/* Maybe there is a nice ethernet address we should use */
gemini_port_save_mac_addr(port);
/* Reset the port */
port->reset = devm_reset_control_get_exclusive(dev, NULL);
if (IS_ERR(port->reset)) {
dev_err(dev, "no reset\n");
return PTR_ERR(port->reset);
}
reset_control_reset(port->reset);
usleep_range(100, 500);
/* Assign pointer in the main state container */
if (!id)
geth->port0 = port;
else
geth->port1 = port;
/* This will just be done once both ports are up and reset */
gemini_ethernet_init(geth);
platform_set_drvdata(pdev, port);
/* Set up and register the netdev */
netdev->dev_id = port->id;
netdev->irq = irq;
netdev->netdev_ops = &gmac_351x_ops;
netdev->ethtool_ops = &gmac_351x_ethtool_ops;
spin_lock_init(&port->config_lock);
gmac_clear_hw_stats(netdev);
netdev->hw_features = GMAC_OFFLOAD_FEATURES;
netdev->features |= GMAC_OFFLOAD_FEATURES | NETIF_F_GRO;
/* We can handle jumbo frames up to 10236 bytes so, let's accept
* payloads of 10236 bytes minus VLAN and ethernet header
*/
netdev->min_mtu = ETH_MIN_MTU;
netdev->max_mtu = 10236 - VLAN_ETH_HLEN;
port->freeq_refill = 0;
netif_napi_add(netdev, &port->napi, gmac_napi_poll,
DEFAULT_NAPI_WEIGHT);
if (is_valid_ether_addr((void *)port->mac_addr)) {
memcpy(netdev->dev_addr, port->mac_addr, ETH_ALEN);
} else {
dev_dbg(dev, "ethernet address 0x%08x%08x%08x invalid\n",
port->mac_addr[0], port->mac_addr[1],
port->mac_addr[2]);
dev_info(dev, "using a random ethernet address\n");
eth_random_addr(netdev->dev_addr);
}
gmac_write_mac_address(netdev);
ret = devm_request_threaded_irq(port->dev,
port->irq,
gemini_port_irq,
gemini_port_irq_thread,
IRQF_SHARED,
port_names[port->id],
port);
if (ret)
return ret;
ret = register_netdev(netdev);
if (!ret) {
netdev_info(netdev,
"irq %d, DMA @ 0x%pap, GMAC @ 0x%pap\n",
port->irq, &dmares->start,
&gmacres->start);
ret = gmac_setup_phy(netdev);
if (ret)
netdev_info(netdev,
"PHY init failed, deferring to ifup time\n");
return 0;
}
port->netdev = NULL;
free_netdev(netdev);
return ret;
}
static int gemini_ethernet_port_remove(struct platform_device *pdev)
{
struct gemini_ethernet_port *port = platform_get_drvdata(pdev);
gemini_port_remove(port);
return 0;
}
static const struct of_device_id gemini_ethernet_port_of_match[] = {
{
.compatible = "cortina,gemini-ethernet-port",
},
{},
};
MODULE_DEVICE_TABLE(of, gemini_ethernet_port_of_match);
static struct platform_driver gemini_ethernet_port_driver = {
.driver = {
.name = "gemini-ethernet-port",
.of_match_table = of_match_ptr(gemini_ethernet_port_of_match),
},
.probe = gemini_ethernet_port_probe,
.remove = gemini_ethernet_port_remove,
};
static int gemini_ethernet_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct gemini_ethernet *geth;
unsigned int retry = 5;
struct resource *res;
u32 val;
/* Global registers */
geth = devm_kzalloc(dev, sizeof(*geth), GFP_KERNEL);
if (!geth)
return -ENOMEM;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res)
return -ENODEV;
geth->base = devm_ioremap_resource(dev, res);
if (IS_ERR(geth->base))
return PTR_ERR(geth->base);
geth->dev = dev;
/* Wait for ports to stabilize */
do {
udelay(2);
val = readl(geth->base + GLOBAL_TOE_VERSION_REG);
barrier();
} while (!val && --retry);
if (!retry) {
dev_err(dev, "failed to reset ethernet\n");
return -EIO;
}
dev_info(dev, "Ethernet device ID: 0x%03x, revision 0x%01x\n",
(val >> 4) & 0xFFFU, val & 0xFU);
spin_lock_init(&geth->irq_lock);
spin_lock_init(&geth->freeq_lock);
/* The children will use this */
platform_set_drvdata(pdev, geth);
/* Spawn child devices for the two ports */
return devm_of_platform_populate(dev);
}
static int gemini_ethernet_remove(struct platform_device *pdev)
{
struct gemini_ethernet *geth = platform_get_drvdata(pdev);
geth_cleanup_freeq(geth);
geth->initialized = false;
return 0;
}
static const struct of_device_id gemini_ethernet_of_match[] = {
{
.compatible = "cortina,gemini-ethernet",
},
{},
};
MODULE_DEVICE_TABLE(of, gemini_ethernet_of_match);
static struct platform_driver gemini_ethernet_driver = {
.driver = {
.name = DRV_NAME,
.of_match_table = of_match_ptr(gemini_ethernet_of_match),
},
.probe = gemini_ethernet_probe,
.remove = gemini_ethernet_remove,
};
static int __init gemini_ethernet_module_init(void)
{
int ret;
ret = platform_driver_register(&gemini_ethernet_port_driver);
if (ret)
return ret;
ret = platform_driver_register(&gemini_ethernet_driver);
if (ret) {
platform_driver_unregister(&gemini_ethernet_port_driver);
return ret;
}
return 0;
}
module_init(gemini_ethernet_module_init);
static void __exit gemini_ethernet_module_exit(void)
{
platform_driver_unregister(&gemini_ethernet_driver);
platform_driver_unregister(&gemini_ethernet_port_driver);
}
module_exit(gemini_ethernet_module_exit);
MODULE_AUTHOR("Linus Walleij <linus.walleij@linaro.org>");
MODULE_DESCRIPTION("StorLink SL351x (Gemini) ethernet driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:" DRV_NAME);