[SCSI] target: Add LIO target core v4.0.0-rc6
LIO target is a full featured in-kernel target framework with the
following feature set:
High-performance, non-blocking, multithreaded architecture with SIMD
support.
Advanced SCSI feature set:
* Persistent Reservations (PRs)
* Asymmetric Logical Unit Assignment (ALUA)
* Protocol and intra-nexus multiplexing, load-balancing and failover (MC/S)
* Full Error Recovery (ERL=0,1,2)
* Active/active task migration and session continuation (ERL=2)
* Thin LUN provisioning (UNMAP and WRITE_SAMExx)
Multiprotocol target plugins
Storage media independence:
* Virtualization of all storage media; transparent mapping of IO to LUNs
* No hard limits on number of LUNs per Target; maximum LUN size ~750 TB
* Backstores: SATA, SAS, SCSI, BluRay, DVD, FLASH, USB, ramdisk, etc.
Standards compliance:
* Full compliance with IETF (RFC 3720)
* Full implementation of SPC-4 PRs and ALUA
Significant code cleanups done by Christoph Hellwig.
[jejb: fix up for new block bdev exclusive interface. Minor fixes from
Randy Dunlap and Dan Carpenter.]
Signed-off-by: Nicholas A. Bellinger <nab@linux-iscsi.org>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-12-17 19:11:26 +00:00
|
|
|
/*******************************************************************************
|
|
|
|
* Filename: target_core_transport.c
|
|
|
|
*
|
|
|
|
* This file contains the Generic Target Engine Core.
|
|
|
|
*
|
|
|
|
* Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
|
|
|
|
* Copyright (c) 2005, 2006, 2007 SBE, Inc.
|
|
|
|
* Copyright (c) 2007-2010 Rising Tide Systems
|
|
|
|
* Copyright (c) 2008-2010 Linux-iSCSI.org
|
|
|
|
*
|
|
|
|
* Nicholas A. Bellinger <nab@kernel.org>
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License as published by
|
|
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
|
|
* (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program; if not, write to the Free Software
|
|
|
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
|
|
*
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
#include <linux/version.h>
|
|
|
|
#include <linux/net.h>
|
|
|
|
#include <linux/delay.h>
|
|
|
|
#include <linux/string.h>
|
|
|
|
#include <linux/timer.h>
|
|
|
|
#include <linux/slab.h>
|
|
|
|
#include <linux/blkdev.h>
|
|
|
|
#include <linux/spinlock.h>
|
|
|
|
#include <linux/kthread.h>
|
|
|
|
#include <linux/in.h>
|
|
|
|
#include <linux/cdrom.h>
|
|
|
|
#include <asm/unaligned.h>
|
|
|
|
#include <net/sock.h>
|
|
|
|
#include <net/tcp.h>
|
|
|
|
#include <scsi/scsi.h>
|
|
|
|
#include <scsi/scsi_cmnd.h>
|
2011-05-20 03:19:14 +00:00
|
|
|
#include <scsi/scsi_tcq.h>
|
[SCSI] target: Add LIO target core v4.0.0-rc6
LIO target is a full featured in-kernel target framework with the
following feature set:
High-performance, non-blocking, multithreaded architecture with SIMD
support.
Advanced SCSI feature set:
* Persistent Reservations (PRs)
* Asymmetric Logical Unit Assignment (ALUA)
* Protocol and intra-nexus multiplexing, load-balancing and failover (MC/S)
* Full Error Recovery (ERL=0,1,2)
* Active/active task migration and session continuation (ERL=2)
* Thin LUN provisioning (UNMAP and WRITE_SAMExx)
Multiprotocol target plugins
Storage media independence:
* Virtualization of all storage media; transparent mapping of IO to LUNs
* No hard limits on number of LUNs per Target; maximum LUN size ~750 TB
* Backstores: SATA, SAS, SCSI, BluRay, DVD, FLASH, USB, ramdisk, etc.
Standards compliance:
* Full compliance with IETF (RFC 3720)
* Full implementation of SPC-4 PRs and ALUA
Significant code cleanups done by Christoph Hellwig.
[jejb: fix up for new block bdev exclusive interface. Minor fixes from
Randy Dunlap and Dan Carpenter.]
Signed-off-by: Nicholas A. Bellinger <nab@linux-iscsi.org>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-12-17 19:11:26 +00:00
|
|
|
|
|
|
|
#include <target/target_core_base.h>
|
|
|
|
#include <target/target_core_device.h>
|
|
|
|
#include <target/target_core_tmr.h>
|
|
|
|
#include <target/target_core_tpg.h>
|
|
|
|
#include <target/target_core_transport.h>
|
|
|
|
#include <target/target_core_fabric_ops.h>
|
|
|
|
#include <target/target_core_configfs.h>
|
|
|
|
|
|
|
|
#include "target_core_alua.h"
|
|
|
|
#include "target_core_hba.h"
|
|
|
|
#include "target_core_pr.h"
|
|
|
|
#include "target_core_scdb.h"
|
|
|
|
#include "target_core_ua.h"
|
|
|
|
|
|
|
|
/* #define DEBUG_CDB_HANDLER */
|
|
|
|
#ifdef DEBUG_CDB_HANDLER
|
|
|
|
#define DEBUG_CDB_H(x...) printk(KERN_INFO x)
|
|
|
|
#else
|
|
|
|
#define DEBUG_CDB_H(x...)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* #define DEBUG_CMD_MAP */
|
|
|
|
#ifdef DEBUG_CMD_MAP
|
|
|
|
#define DEBUG_CMD_M(x...) printk(KERN_INFO x)
|
|
|
|
#else
|
|
|
|
#define DEBUG_CMD_M(x...)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* #define DEBUG_MEM_ALLOC */
|
|
|
|
#ifdef DEBUG_MEM_ALLOC
|
|
|
|
#define DEBUG_MEM(x...) printk(KERN_INFO x)
|
|
|
|
#else
|
|
|
|
#define DEBUG_MEM(x...)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* #define DEBUG_MEM2_ALLOC */
|
|
|
|
#ifdef DEBUG_MEM2_ALLOC
|
|
|
|
#define DEBUG_MEM2(x...) printk(KERN_INFO x)
|
|
|
|
#else
|
|
|
|
#define DEBUG_MEM2(x...)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* #define DEBUG_SG_CALC */
|
|
|
|
#ifdef DEBUG_SG_CALC
|
|
|
|
#define DEBUG_SC(x...) printk(KERN_INFO x)
|
|
|
|
#else
|
|
|
|
#define DEBUG_SC(x...)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* #define DEBUG_SE_OBJ */
|
|
|
|
#ifdef DEBUG_SE_OBJ
|
|
|
|
#define DEBUG_SO(x...) printk(KERN_INFO x)
|
|
|
|
#else
|
|
|
|
#define DEBUG_SO(x...)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* #define DEBUG_CMD_VOL */
|
|
|
|
#ifdef DEBUG_CMD_VOL
|
|
|
|
#define DEBUG_VOL(x...) printk(KERN_INFO x)
|
|
|
|
#else
|
|
|
|
#define DEBUG_VOL(x...)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* #define DEBUG_CMD_STOP */
|
|
|
|
#ifdef DEBUG_CMD_STOP
|
|
|
|
#define DEBUG_CS(x...) printk(KERN_INFO x)
|
|
|
|
#else
|
|
|
|
#define DEBUG_CS(x...)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* #define DEBUG_PASSTHROUGH */
|
|
|
|
#ifdef DEBUG_PASSTHROUGH
|
|
|
|
#define DEBUG_PT(x...) printk(KERN_INFO x)
|
|
|
|
#else
|
|
|
|
#define DEBUG_PT(x...)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* #define DEBUG_TASK_STOP */
|
|
|
|
#ifdef DEBUG_TASK_STOP
|
|
|
|
#define DEBUG_TS(x...) printk(KERN_INFO x)
|
|
|
|
#else
|
|
|
|
#define DEBUG_TS(x...)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* #define DEBUG_TRANSPORT_STOP */
|
|
|
|
#ifdef DEBUG_TRANSPORT_STOP
|
|
|
|
#define DEBUG_TRANSPORT_S(x...) printk(KERN_INFO x)
|
|
|
|
#else
|
|
|
|
#define DEBUG_TRANSPORT_S(x...)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* #define DEBUG_TASK_FAILURE */
|
|
|
|
#ifdef DEBUG_TASK_FAILURE
|
|
|
|
#define DEBUG_TF(x...) printk(KERN_INFO x)
|
|
|
|
#else
|
|
|
|
#define DEBUG_TF(x...)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* #define DEBUG_DEV_OFFLINE */
|
|
|
|
#ifdef DEBUG_DEV_OFFLINE
|
|
|
|
#define DEBUG_DO(x...) printk(KERN_INFO x)
|
|
|
|
#else
|
|
|
|
#define DEBUG_DO(x...)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* #define DEBUG_TASK_STATE */
|
|
|
|
#ifdef DEBUG_TASK_STATE
|
|
|
|
#define DEBUG_TSTATE(x...) printk(KERN_INFO x)
|
|
|
|
#else
|
|
|
|
#define DEBUG_TSTATE(x...)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* #define DEBUG_STATUS_THR */
|
|
|
|
#ifdef DEBUG_STATUS_THR
|
|
|
|
#define DEBUG_ST(x...) printk(KERN_INFO x)
|
|
|
|
#else
|
|
|
|
#define DEBUG_ST(x...)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* #define DEBUG_TASK_TIMEOUT */
|
|
|
|
#ifdef DEBUG_TASK_TIMEOUT
|
|
|
|
#define DEBUG_TT(x...) printk(KERN_INFO x)
|
|
|
|
#else
|
|
|
|
#define DEBUG_TT(x...)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* #define DEBUG_GENERIC_REQUEST_FAILURE */
|
|
|
|
#ifdef DEBUG_GENERIC_REQUEST_FAILURE
|
|
|
|
#define DEBUG_GRF(x...) printk(KERN_INFO x)
|
|
|
|
#else
|
|
|
|
#define DEBUG_GRF(x...)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* #define DEBUG_SAM_TASK_ATTRS */
|
|
|
|
#ifdef DEBUG_SAM_TASK_ATTRS
|
|
|
|
#define DEBUG_STA(x...) printk(KERN_INFO x)
|
|
|
|
#else
|
|
|
|
#define DEBUG_STA(x...)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
struct se_global *se_global;
|
|
|
|
|
|
|
|
static struct kmem_cache *se_cmd_cache;
|
|
|
|
static struct kmem_cache *se_sess_cache;
|
|
|
|
struct kmem_cache *se_tmr_req_cache;
|
|
|
|
struct kmem_cache *se_ua_cache;
|
|
|
|
struct kmem_cache *se_mem_cache;
|
|
|
|
struct kmem_cache *t10_pr_reg_cache;
|
|
|
|
struct kmem_cache *t10_alua_lu_gp_cache;
|
|
|
|
struct kmem_cache *t10_alua_lu_gp_mem_cache;
|
|
|
|
struct kmem_cache *t10_alua_tg_pt_gp_cache;
|
|
|
|
struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
|
|
|
|
|
|
|
|
/* Used for transport_dev_get_map_*() */
|
|
|
|
typedef int (*map_func_t)(struct se_task *, u32);
|
|
|
|
|
|
|
|
static int transport_generic_write_pending(struct se_cmd *);
|
|
|
|
static int transport_processing_thread(void *);
|
|
|
|
static int __transport_execute_tasks(struct se_device *dev);
|
|
|
|
static void transport_complete_task_attr(struct se_cmd *cmd);
|
|
|
|
static void transport_direct_request_timeout(struct se_cmd *cmd);
|
|
|
|
static void transport_free_dev_tasks(struct se_cmd *cmd);
|
|
|
|
static u32 transport_generic_get_cdb_count(struct se_cmd *cmd,
|
|
|
|
unsigned long long starting_lba, u32 sectors,
|
|
|
|
enum dma_data_direction data_direction,
|
|
|
|
struct list_head *mem_list, int set_counts);
|
|
|
|
static int transport_generic_get_mem(struct se_cmd *cmd, u32 length,
|
|
|
|
u32 dma_size);
|
|
|
|
static int transport_generic_remove(struct se_cmd *cmd,
|
|
|
|
int release_to_pool, int session_reinstatement);
|
|
|
|
static int transport_get_sectors(struct se_cmd *cmd);
|
|
|
|
static struct list_head *transport_init_se_mem_list(void);
|
|
|
|
static int transport_map_sg_to_mem(struct se_cmd *cmd,
|
|
|
|
struct list_head *se_mem_list, void *in_mem,
|
|
|
|
u32 *se_mem_cnt);
|
|
|
|
static void transport_memcpy_se_mem_read_contig(struct se_cmd *cmd,
|
|
|
|
unsigned char *dst, struct list_head *se_mem_list);
|
|
|
|
static void transport_release_fe_cmd(struct se_cmd *cmd);
|
|
|
|
static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
|
|
|
|
struct se_queue_obj *qobj);
|
|
|
|
static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
|
|
|
|
static void transport_stop_all_task_timers(struct se_cmd *cmd);
|
|
|
|
|
|
|
|
int init_se_global(void)
|
|
|
|
{
|
|
|
|
struct se_global *global;
|
|
|
|
|
|
|
|
global = kzalloc(sizeof(struct se_global), GFP_KERNEL);
|
|
|
|
if (!(global)) {
|
|
|
|
printk(KERN_ERR "Unable to allocate memory for struct se_global\n");
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
INIT_LIST_HEAD(&global->g_lu_gps_list);
|
|
|
|
INIT_LIST_HEAD(&global->g_se_tpg_list);
|
|
|
|
INIT_LIST_HEAD(&global->g_hba_list);
|
|
|
|
INIT_LIST_HEAD(&global->g_se_dev_list);
|
|
|
|
spin_lock_init(&global->g_device_lock);
|
|
|
|
spin_lock_init(&global->hba_lock);
|
|
|
|
spin_lock_init(&global->se_tpg_lock);
|
|
|
|
spin_lock_init(&global->lu_gps_lock);
|
|
|
|
spin_lock_init(&global->plugin_class_lock);
|
|
|
|
|
|
|
|
se_cmd_cache = kmem_cache_create("se_cmd_cache",
|
|
|
|
sizeof(struct se_cmd), __alignof__(struct se_cmd), 0, NULL);
|
|
|
|
if (!(se_cmd_cache)) {
|
|
|
|
printk(KERN_ERR "kmem_cache_create for struct se_cmd failed\n");
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
|
|
|
|
sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
|
|
|
|
0, NULL);
|
|
|
|
if (!(se_tmr_req_cache)) {
|
|
|
|
printk(KERN_ERR "kmem_cache_create() for struct se_tmr_req"
|
|
|
|
" failed\n");
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
se_sess_cache = kmem_cache_create("se_sess_cache",
|
|
|
|
sizeof(struct se_session), __alignof__(struct se_session),
|
|
|
|
0, NULL);
|
|
|
|
if (!(se_sess_cache)) {
|
|
|
|
printk(KERN_ERR "kmem_cache_create() for struct se_session"
|
|
|
|
" failed\n");
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
se_ua_cache = kmem_cache_create("se_ua_cache",
|
|
|
|
sizeof(struct se_ua), __alignof__(struct se_ua),
|
|
|
|
0, NULL);
|
|
|
|
if (!(se_ua_cache)) {
|
|
|
|
printk(KERN_ERR "kmem_cache_create() for struct se_ua failed\n");
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
se_mem_cache = kmem_cache_create("se_mem_cache",
|
|
|
|
sizeof(struct se_mem), __alignof__(struct se_mem), 0, NULL);
|
|
|
|
if (!(se_mem_cache)) {
|
|
|
|
printk(KERN_ERR "kmem_cache_create() for struct se_mem failed\n");
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
|
|
|
|
sizeof(struct t10_pr_registration),
|
|
|
|
__alignof__(struct t10_pr_registration), 0, NULL);
|
|
|
|
if (!(t10_pr_reg_cache)) {
|
|
|
|
printk(KERN_ERR "kmem_cache_create() for struct t10_pr_registration"
|
|
|
|
" failed\n");
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
|
|
|
|
sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
|
|
|
|
0, NULL);
|
|
|
|
if (!(t10_alua_lu_gp_cache)) {
|
|
|
|
printk(KERN_ERR "kmem_cache_create() for t10_alua_lu_gp_cache"
|
|
|
|
" failed\n");
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
|
|
|
|
sizeof(struct t10_alua_lu_gp_member),
|
|
|
|
__alignof__(struct t10_alua_lu_gp_member), 0, NULL);
|
|
|
|
if (!(t10_alua_lu_gp_mem_cache)) {
|
|
|
|
printk(KERN_ERR "kmem_cache_create() for t10_alua_lu_gp_mem_"
|
|
|
|
"cache failed\n");
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
|
|
|
|
sizeof(struct t10_alua_tg_pt_gp),
|
|
|
|
__alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
|
|
|
|
if (!(t10_alua_tg_pt_gp_cache)) {
|
|
|
|
printk(KERN_ERR "kmem_cache_create() for t10_alua_tg_pt_gp_"
|
|
|
|
"cache failed\n");
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
|
|
|
|
"t10_alua_tg_pt_gp_mem_cache",
|
|
|
|
sizeof(struct t10_alua_tg_pt_gp_member),
|
|
|
|
__alignof__(struct t10_alua_tg_pt_gp_member),
|
|
|
|
0, NULL);
|
|
|
|
if (!(t10_alua_tg_pt_gp_mem_cache)) {
|
|
|
|
printk(KERN_ERR "kmem_cache_create() for t10_alua_tg_pt_gp_"
|
|
|
|
"mem_t failed\n");
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
se_global = global;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
out:
|
|
|
|
if (se_cmd_cache)
|
|
|
|
kmem_cache_destroy(se_cmd_cache);
|
|
|
|
if (se_tmr_req_cache)
|
|
|
|
kmem_cache_destroy(se_tmr_req_cache);
|
|
|
|
if (se_sess_cache)
|
|
|
|
kmem_cache_destroy(se_sess_cache);
|
|
|
|
if (se_ua_cache)
|
|
|
|
kmem_cache_destroy(se_ua_cache);
|
|
|
|
if (se_mem_cache)
|
|
|
|
kmem_cache_destroy(se_mem_cache);
|
|
|
|
if (t10_pr_reg_cache)
|
|
|
|
kmem_cache_destroy(t10_pr_reg_cache);
|
|
|
|
if (t10_alua_lu_gp_cache)
|
|
|
|
kmem_cache_destroy(t10_alua_lu_gp_cache);
|
|
|
|
if (t10_alua_lu_gp_mem_cache)
|
|
|
|
kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
|
|
|
|
if (t10_alua_tg_pt_gp_cache)
|
|
|
|
kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
|
|
|
|
if (t10_alua_tg_pt_gp_mem_cache)
|
|
|
|
kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
|
|
|
|
kfree(global);
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
void release_se_global(void)
|
|
|
|
{
|
|
|
|
struct se_global *global;
|
|
|
|
|
|
|
|
global = se_global;
|
|
|
|
if (!(global))
|
|
|
|
return;
|
|
|
|
|
|
|
|
kmem_cache_destroy(se_cmd_cache);
|
|
|
|
kmem_cache_destroy(se_tmr_req_cache);
|
|
|
|
kmem_cache_destroy(se_sess_cache);
|
|
|
|
kmem_cache_destroy(se_ua_cache);
|
|
|
|
kmem_cache_destroy(se_mem_cache);
|
|
|
|
kmem_cache_destroy(t10_pr_reg_cache);
|
|
|
|
kmem_cache_destroy(t10_alua_lu_gp_cache);
|
|
|
|
kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
|
|
|
|
kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
|
|
|
|
kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
|
|
|
|
kfree(global);
|
|
|
|
|
|
|
|
se_global = NULL;
|
|
|
|
}
|
|
|
|
|
2011-02-09 23:35:03 +00:00
|
|
|
/* SCSI statistics table index */
|
|
|
|
static struct scsi_index_table scsi_index_table;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Initialize the index table for allocating unique row indexes to various mib
|
|
|
|
* tables.
|
|
|
|
*/
|
|
|
|
void init_scsi_index_table(void)
|
|
|
|
{
|
|
|
|
memset(&scsi_index_table, 0, sizeof(struct scsi_index_table));
|
|
|
|
spin_lock_init(&scsi_index_table.lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Allocate a new row index for the entry type specified
|
|
|
|
*/
|
|
|
|
u32 scsi_get_new_index(scsi_index_t type)
|
|
|
|
{
|
|
|
|
u32 new_index;
|
|
|
|
|
|
|
|
if ((type < 0) || (type >= SCSI_INDEX_TYPE_MAX)) {
|
|
|
|
printk(KERN_ERR "Invalid index type %d\n", type);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
spin_lock(&scsi_index_table.lock);
|
|
|
|
new_index = ++scsi_index_table.scsi_mib_index[type];
|
|
|
|
if (new_index == 0)
|
|
|
|
new_index = ++scsi_index_table.scsi_mib_index[type];
|
|
|
|
spin_unlock(&scsi_index_table.lock);
|
|
|
|
|
|
|
|
return new_index;
|
|
|
|
}
|
|
|
|
|
[SCSI] target: Add LIO target core v4.0.0-rc6
LIO target is a full featured in-kernel target framework with the
following feature set:
High-performance, non-blocking, multithreaded architecture with SIMD
support.
Advanced SCSI feature set:
* Persistent Reservations (PRs)
* Asymmetric Logical Unit Assignment (ALUA)
* Protocol and intra-nexus multiplexing, load-balancing and failover (MC/S)
* Full Error Recovery (ERL=0,1,2)
* Active/active task migration and session continuation (ERL=2)
* Thin LUN provisioning (UNMAP and WRITE_SAMExx)
Multiprotocol target plugins
Storage media independence:
* Virtualization of all storage media; transparent mapping of IO to LUNs
* No hard limits on number of LUNs per Target; maximum LUN size ~750 TB
* Backstores: SATA, SAS, SCSI, BluRay, DVD, FLASH, USB, ramdisk, etc.
Standards compliance:
* Full compliance with IETF (RFC 3720)
* Full implementation of SPC-4 PRs and ALUA
Significant code cleanups done by Christoph Hellwig.
[jejb: fix up for new block bdev exclusive interface. Minor fixes from
Randy Dunlap and Dan Carpenter.]
Signed-off-by: Nicholas A. Bellinger <nab@linux-iscsi.org>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-12-17 19:11:26 +00:00
|
|
|
void transport_init_queue_obj(struct se_queue_obj *qobj)
|
|
|
|
{
|
|
|
|
atomic_set(&qobj->queue_cnt, 0);
|
|
|
|
INIT_LIST_HEAD(&qobj->qobj_list);
|
|
|
|
init_waitqueue_head(&qobj->thread_wq);
|
|
|
|
spin_lock_init(&qobj->cmd_queue_lock);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(transport_init_queue_obj);
|
|
|
|
|
|
|
|
static int transport_subsystem_reqmods(void)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
ret = request_module("target_core_iblock");
|
|
|
|
if (ret != 0)
|
|
|
|
printk(KERN_ERR "Unable to load target_core_iblock\n");
|
|
|
|
|
|
|
|
ret = request_module("target_core_file");
|
|
|
|
if (ret != 0)
|
|
|
|
printk(KERN_ERR "Unable to load target_core_file\n");
|
|
|
|
|
|
|
|
ret = request_module("target_core_pscsi");
|
|
|
|
if (ret != 0)
|
|
|
|
printk(KERN_ERR "Unable to load target_core_pscsi\n");
|
|
|
|
|
|
|
|
ret = request_module("target_core_stgt");
|
|
|
|
if (ret != 0)
|
|
|
|
printk(KERN_ERR "Unable to load target_core_stgt\n");
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int transport_subsystem_check_init(void)
|
|
|
|
{
|
|
|
|
if (se_global->g_sub_api_initialized)
|
|
|
|
return 0;
|
|
|
|
/*
|
|
|
|
* Request the loading of known TCM subsystem plugins..
|
|
|
|
*/
|
|
|
|
if (transport_subsystem_reqmods() < 0)
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
se_global->g_sub_api_initialized = 1;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct se_session *transport_init_session(void)
|
|
|
|
{
|
|
|
|
struct se_session *se_sess;
|
|
|
|
|
|
|
|
se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
|
|
|
|
if (!(se_sess)) {
|
|
|
|
printk(KERN_ERR "Unable to allocate struct se_session from"
|
|
|
|
" se_sess_cache\n");
|
|
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
}
|
|
|
|
INIT_LIST_HEAD(&se_sess->sess_list);
|
|
|
|
INIT_LIST_HEAD(&se_sess->sess_acl_list);
|
|
|
|
|
|
|
|
return se_sess;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(transport_init_session);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Called with spin_lock_bh(&struct se_portal_group->session_lock called.
|
|
|
|
*/
|
|
|
|
void __transport_register_session(
|
|
|
|
struct se_portal_group *se_tpg,
|
|
|
|
struct se_node_acl *se_nacl,
|
|
|
|
struct se_session *se_sess,
|
|
|
|
void *fabric_sess_ptr)
|
|
|
|
{
|
|
|
|
unsigned char buf[PR_REG_ISID_LEN];
|
|
|
|
|
|
|
|
se_sess->se_tpg = se_tpg;
|
|
|
|
se_sess->fabric_sess_ptr = fabric_sess_ptr;
|
|
|
|
/*
|
|
|
|
* Used by struct se_node_acl's under ConfigFS to locate active se_session-t
|
|
|
|
*
|
|
|
|
* Only set for struct se_session's that will actually be moving I/O.
|
|
|
|
* eg: *NOT* discovery sessions.
|
|
|
|
*/
|
|
|
|
if (se_nacl) {
|
|
|
|
/*
|
|
|
|
* If the fabric module supports an ISID based TransportID,
|
|
|
|
* save this value in binary from the fabric I_T Nexus now.
|
|
|
|
*/
|
|
|
|
if (TPG_TFO(se_tpg)->sess_get_initiator_sid != NULL) {
|
|
|
|
memset(&buf[0], 0, PR_REG_ISID_LEN);
|
|
|
|
TPG_TFO(se_tpg)->sess_get_initiator_sid(se_sess,
|
|
|
|
&buf[0], PR_REG_ISID_LEN);
|
|
|
|
se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
|
|
|
|
}
|
|
|
|
spin_lock_irq(&se_nacl->nacl_sess_lock);
|
|
|
|
/*
|
|
|
|
* The se_nacl->nacl_sess pointer will be set to the
|
|
|
|
* last active I_T Nexus for each struct se_node_acl.
|
|
|
|
*/
|
|
|
|
se_nacl->nacl_sess = se_sess;
|
|
|
|
|
|
|
|
list_add_tail(&se_sess->sess_acl_list,
|
|
|
|
&se_nacl->acl_sess_list);
|
|
|
|
spin_unlock_irq(&se_nacl->nacl_sess_lock);
|
|
|
|
}
|
|
|
|
list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
|
|
|
|
|
|
|
|
printk(KERN_INFO "TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
|
|
|
|
TPG_TFO(se_tpg)->get_fabric_name(), se_sess->fabric_sess_ptr);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(__transport_register_session);
|
|
|
|
|
|
|
|
void transport_register_session(
|
|
|
|
struct se_portal_group *se_tpg,
|
|
|
|
struct se_node_acl *se_nacl,
|
|
|
|
struct se_session *se_sess,
|
|
|
|
void *fabric_sess_ptr)
|
|
|
|
{
|
|
|
|
spin_lock_bh(&se_tpg->session_lock);
|
|
|
|
__transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
|
|
|
|
spin_unlock_bh(&se_tpg->session_lock);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(transport_register_session);
|
|
|
|
|
|
|
|
void transport_deregister_session_configfs(struct se_session *se_sess)
|
|
|
|
{
|
|
|
|
struct se_node_acl *se_nacl;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Used by struct se_node_acl's under ConfigFS to locate active struct se_session
|
|
|
|
*/
|
|
|
|
se_nacl = se_sess->se_node_acl;
|
|
|
|
if ((se_nacl)) {
|
|
|
|
spin_lock_irq(&se_nacl->nacl_sess_lock);
|
|
|
|
list_del(&se_sess->sess_acl_list);
|
|
|
|
/*
|
|
|
|
* If the session list is empty, then clear the pointer.
|
|
|
|
* Otherwise, set the struct se_session pointer from the tail
|
|
|
|
* element of the per struct se_node_acl active session list.
|
|
|
|
*/
|
|
|
|
if (list_empty(&se_nacl->acl_sess_list))
|
|
|
|
se_nacl->nacl_sess = NULL;
|
|
|
|
else {
|
|
|
|
se_nacl->nacl_sess = container_of(
|
|
|
|
se_nacl->acl_sess_list.prev,
|
|
|
|
struct se_session, sess_acl_list);
|
|
|
|
}
|
|
|
|
spin_unlock_irq(&se_nacl->nacl_sess_lock);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(transport_deregister_session_configfs);
|
|
|
|
|
|
|
|
void transport_free_session(struct se_session *se_sess)
|
|
|
|
{
|
|
|
|
kmem_cache_free(se_sess_cache, se_sess);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(transport_free_session);
|
|
|
|
|
|
|
|
void transport_deregister_session(struct se_session *se_sess)
|
|
|
|
{
|
|
|
|
struct se_portal_group *se_tpg = se_sess->se_tpg;
|
|
|
|
struct se_node_acl *se_nacl;
|
|
|
|
|
|
|
|
if (!(se_tpg)) {
|
|
|
|
transport_free_session(se_sess);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
spin_lock_bh(&se_tpg->session_lock);
|
|
|
|
list_del(&se_sess->sess_list);
|
|
|
|
se_sess->se_tpg = NULL;
|
|
|
|
se_sess->fabric_sess_ptr = NULL;
|
|
|
|
spin_unlock_bh(&se_tpg->session_lock);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Determine if we need to do extra work for this initiator node's
|
|
|
|
* struct se_node_acl if it had been previously dynamically generated.
|
|
|
|
*/
|
|
|
|
se_nacl = se_sess->se_node_acl;
|
|
|
|
if ((se_nacl)) {
|
|
|
|
spin_lock_bh(&se_tpg->acl_node_lock);
|
|
|
|
if (se_nacl->dynamic_node_acl) {
|
|
|
|
if (!(TPG_TFO(se_tpg)->tpg_check_demo_mode_cache(
|
|
|
|
se_tpg))) {
|
|
|
|
list_del(&se_nacl->acl_list);
|
|
|
|
se_tpg->num_node_acls--;
|
|
|
|
spin_unlock_bh(&se_tpg->acl_node_lock);
|
|
|
|
|
|
|
|
core_tpg_wait_for_nacl_pr_ref(se_nacl);
|
|
|
|
core_free_device_list_for_node(se_nacl, se_tpg);
|
|
|
|
TPG_TFO(se_tpg)->tpg_release_fabric_acl(se_tpg,
|
|
|
|
se_nacl);
|
|
|
|
spin_lock_bh(&se_tpg->acl_node_lock);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
spin_unlock_bh(&se_tpg->acl_node_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
transport_free_session(se_sess);
|
|
|
|
|
|
|
|
printk(KERN_INFO "TARGET_CORE[%s]: Deregistered fabric_sess\n",
|
|
|
|
TPG_TFO(se_tpg)->get_fabric_name());
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(transport_deregister_session);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Called with T_TASK(cmd)->t_state_lock held.
|
|
|
|
*/
|
|
|
|
static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
|
|
|
|
{
|
|
|
|
struct se_device *dev;
|
|
|
|
struct se_task *task;
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
if (!T_TASK(cmd))
|
|
|
|
return;
|
|
|
|
|
|
|
|
list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) {
|
|
|
|
dev = task->se_dev;
|
|
|
|
if (!(dev))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (atomic_read(&task->task_active))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (!(atomic_read(&task->task_state_active)))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&dev->execute_task_lock, flags);
|
|
|
|
list_del(&task->t_state_list);
|
|
|
|
DEBUG_TSTATE("Removed ITT: 0x%08x dev: %p task[%p]\n",
|
|
|
|
CMD_TFO(cmd)->tfo_get_task_tag(cmd), dev, task);
|
|
|
|
spin_unlock_irqrestore(&dev->execute_task_lock, flags);
|
|
|
|
|
|
|
|
atomic_set(&task->task_state_active, 0);
|
|
|
|
atomic_dec(&T_TASK(cmd)->t_task_cdbs_ex_left);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* transport_cmd_check_stop():
|
|
|
|
*
|
|
|
|
* 'transport_off = 1' determines if t_transport_active should be cleared.
|
|
|
|
* 'transport_off = 2' determines if task_dev_state should be removed.
|
|
|
|
*
|
|
|
|
* A non-zero u8 t_state sets cmd->t_state.
|
|
|
|
* Returns 1 when command is stopped, else 0.
|
|
|
|
*/
|
|
|
|
static int transport_cmd_check_stop(
|
|
|
|
struct se_cmd *cmd,
|
|
|
|
int transport_off,
|
|
|
|
u8 t_state)
|
|
|
|
{
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
/*
|
|
|
|
* Determine if IOCTL context caller in requesting the stopping of this
|
|
|
|
* command for LUN shutdown purposes.
|
|
|
|
*/
|
|
|
|
if (atomic_read(&T_TASK(cmd)->transport_lun_stop)) {
|
|
|
|
DEBUG_CS("%s:%d atomic_read(&T_TASK(cmd)->transport_lun_stop)"
|
|
|
|
" == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
|
|
|
|
CMD_TFO(cmd)->get_task_tag(cmd));
|
|
|
|
|
|
|
|
cmd->deferred_t_state = cmd->t_state;
|
|
|
|
cmd->t_state = TRANSPORT_DEFERRED_CMD;
|
|
|
|
atomic_set(&T_TASK(cmd)->t_transport_active, 0);
|
|
|
|
if (transport_off == 2)
|
|
|
|
transport_all_task_dev_remove_state(cmd);
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
|
|
|
|
complete(&T_TASK(cmd)->transport_lun_stop_comp);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Determine if frontend context caller is requesting the stopping of
|
|
|
|
* this command for frontend excpections.
|
|
|
|
*/
|
|
|
|
if (atomic_read(&T_TASK(cmd)->t_transport_stop)) {
|
|
|
|
DEBUG_CS("%s:%d atomic_read(&T_TASK(cmd)->t_transport_stop) =="
|
|
|
|
" TRUE for ITT: 0x%08x\n", __func__, __LINE__,
|
|
|
|
CMD_TFO(cmd)->get_task_tag(cmd));
|
|
|
|
|
|
|
|
cmd->deferred_t_state = cmd->t_state;
|
|
|
|
cmd->t_state = TRANSPORT_DEFERRED_CMD;
|
|
|
|
if (transport_off == 2)
|
|
|
|
transport_all_task_dev_remove_state(cmd);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Clear struct se_cmd->se_lun before the transport_off == 2 handoff
|
|
|
|
* to FE.
|
|
|
|
*/
|
|
|
|
if (transport_off == 2)
|
|
|
|
cmd->se_lun = NULL;
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
|
|
|
|
complete(&T_TASK(cmd)->t_transport_stop_comp);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
if (transport_off) {
|
|
|
|
atomic_set(&T_TASK(cmd)->t_transport_active, 0);
|
|
|
|
if (transport_off == 2) {
|
|
|
|
transport_all_task_dev_remove_state(cmd);
|
|
|
|
/*
|
|
|
|
* Clear struct se_cmd->se_lun before the transport_off == 2
|
|
|
|
* handoff to fabric module.
|
|
|
|
*/
|
|
|
|
cmd->se_lun = NULL;
|
|
|
|
/*
|
|
|
|
* Some fabric modules like tcm_loop can release
|
2011-03-31 01:57:33 +00:00
|
|
|
* their internally allocated I/O reference now and
|
[SCSI] target: Add LIO target core v4.0.0-rc6
LIO target is a full featured in-kernel target framework with the
following feature set:
High-performance, non-blocking, multithreaded architecture with SIMD
support.
Advanced SCSI feature set:
* Persistent Reservations (PRs)
* Asymmetric Logical Unit Assignment (ALUA)
* Protocol and intra-nexus multiplexing, load-balancing and failover (MC/S)
* Full Error Recovery (ERL=0,1,2)
* Active/active task migration and session continuation (ERL=2)
* Thin LUN provisioning (UNMAP and WRITE_SAMExx)
Multiprotocol target plugins
Storage media independence:
* Virtualization of all storage media; transparent mapping of IO to LUNs
* No hard limits on number of LUNs per Target; maximum LUN size ~750 TB
* Backstores: SATA, SAS, SCSI, BluRay, DVD, FLASH, USB, ramdisk, etc.
Standards compliance:
* Full compliance with IETF (RFC 3720)
* Full implementation of SPC-4 PRs and ALUA
Significant code cleanups done by Christoph Hellwig.
[jejb: fix up for new block bdev exclusive interface. Minor fixes from
Randy Dunlap and Dan Carpenter.]
Signed-off-by: Nicholas A. Bellinger <nab@linux-iscsi.org>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-12-17 19:11:26 +00:00
|
|
|
* struct se_cmd now.
|
|
|
|
*/
|
|
|
|
if (CMD_TFO(cmd)->check_stop_free != NULL) {
|
|
|
|
spin_unlock_irqrestore(
|
|
|
|
&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
|
|
|
|
CMD_TFO(cmd)->check_stop_free(cmd);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
} else if (t_state)
|
|
|
|
cmd->t_state = t_state;
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
|
|
|
|
{
|
|
|
|
return transport_cmd_check_stop(cmd, 2, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void transport_lun_remove_cmd(struct se_cmd *cmd)
|
|
|
|
{
|
|
|
|
struct se_lun *lun = SE_LUN(cmd);
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
if (!lun)
|
|
|
|
return;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
if (!(atomic_read(&T_TASK(cmd)->transport_dev_active))) {
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
goto check_lun;
|
|
|
|
}
|
|
|
|
atomic_set(&T_TASK(cmd)->transport_dev_active, 0);
|
|
|
|
transport_all_task_dev_remove_state(cmd);
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
|
|
|
|
|
|
|
|
check_lun:
|
|
|
|
spin_lock_irqsave(&lun->lun_cmd_lock, flags);
|
|
|
|
if (atomic_read(&T_TASK(cmd)->transport_lun_active)) {
|
|
|
|
list_del(&cmd->se_lun_list);
|
|
|
|
atomic_set(&T_TASK(cmd)->transport_lun_active, 0);
|
|
|
|
#if 0
|
|
|
|
printk(KERN_INFO "Removed ITT: 0x%08x from LUN LIST[%d]\n"
|
|
|
|
CMD_TFO(cmd)->get_task_tag(cmd), lun->unpacked_lun);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
|
|
|
|
{
|
|
|
|
transport_remove_cmd_from_queue(cmd, SE_DEV(cmd)->dev_queue_obj);
|
|
|
|
transport_lun_remove_cmd(cmd);
|
|
|
|
|
|
|
|
if (transport_cmd_check_stop_to_fabric(cmd))
|
|
|
|
return;
|
|
|
|
if (remove)
|
|
|
|
transport_generic_remove(cmd, 0, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
void transport_cmd_finish_abort_tmr(struct se_cmd *cmd)
|
|
|
|
{
|
|
|
|
transport_remove_cmd_from_queue(cmd, SE_DEV(cmd)->dev_queue_obj);
|
|
|
|
|
|
|
|
if (transport_cmd_check_stop_to_fabric(cmd))
|
|
|
|
return;
|
|
|
|
|
|
|
|
transport_generic_remove(cmd, 0, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int transport_add_cmd_to_queue(
|
|
|
|
struct se_cmd *cmd,
|
|
|
|
int t_state)
|
|
|
|
{
|
|
|
|
struct se_device *dev = cmd->se_dev;
|
|
|
|
struct se_queue_obj *qobj = dev->dev_queue_obj;
|
|
|
|
struct se_queue_req *qr;
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
qr = kzalloc(sizeof(struct se_queue_req), GFP_ATOMIC);
|
|
|
|
if (!(qr)) {
|
|
|
|
printk(KERN_ERR "Unable to allocate memory for"
|
|
|
|
" struct se_queue_req\n");
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
INIT_LIST_HEAD(&qr->qr_list);
|
|
|
|
|
|
|
|
qr->cmd = (void *)cmd;
|
|
|
|
qr->state = t_state;
|
|
|
|
|
|
|
|
if (t_state) {
|
|
|
|
spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
cmd->t_state = t_state;
|
|
|
|
atomic_set(&T_TASK(cmd)->t_transport_active, 1);
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
|
|
|
|
list_add_tail(&qr->qr_list, &qobj->qobj_list);
|
|
|
|
atomic_inc(&T_TASK(cmd)->t_transport_queue_active);
|
|
|
|
spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
|
|
|
|
|
|
|
|
atomic_inc(&qobj->queue_cnt);
|
|
|
|
wake_up_interruptible(&qobj->thread_wq);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Called with struct se_queue_obj->cmd_queue_lock held.
|
|
|
|
*/
|
|
|
|
static struct se_queue_req *
|
|
|
|
__transport_get_qr_from_queue(struct se_queue_obj *qobj)
|
|
|
|
{
|
|
|
|
struct se_cmd *cmd;
|
|
|
|
struct se_queue_req *qr = NULL;
|
|
|
|
|
|
|
|
if (list_empty(&qobj->qobj_list))
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
list_for_each_entry(qr, &qobj->qobj_list, qr_list)
|
|
|
|
break;
|
|
|
|
|
|
|
|
if (qr->cmd) {
|
|
|
|
cmd = (struct se_cmd *)qr->cmd;
|
|
|
|
atomic_dec(&T_TASK(cmd)->t_transport_queue_active);
|
|
|
|
}
|
|
|
|
list_del(&qr->qr_list);
|
|
|
|
atomic_dec(&qobj->queue_cnt);
|
|
|
|
|
|
|
|
return qr;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct se_queue_req *
|
|
|
|
transport_get_qr_from_queue(struct se_queue_obj *qobj)
|
|
|
|
{
|
|
|
|
struct se_cmd *cmd;
|
|
|
|
struct se_queue_req *qr;
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
|
|
|
|
if (list_empty(&qobj->qobj_list)) {
|
|
|
|
spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
list_for_each_entry(qr, &qobj->qobj_list, qr_list)
|
|
|
|
break;
|
|
|
|
|
|
|
|
if (qr->cmd) {
|
|
|
|
cmd = (struct se_cmd *)qr->cmd;
|
|
|
|
atomic_dec(&T_TASK(cmd)->t_transport_queue_active);
|
|
|
|
}
|
|
|
|
list_del(&qr->qr_list);
|
|
|
|
atomic_dec(&qobj->queue_cnt);
|
|
|
|
spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
|
|
|
|
|
|
|
|
return qr;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
|
|
|
|
struct se_queue_obj *qobj)
|
|
|
|
{
|
|
|
|
struct se_cmd *q_cmd;
|
|
|
|
struct se_queue_req *qr = NULL, *qr_p = NULL;
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
|
|
|
|
if (!(atomic_read(&T_TASK(cmd)->t_transport_queue_active))) {
|
|
|
|
spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
list_for_each_entry_safe(qr, qr_p, &qobj->qobj_list, qr_list) {
|
|
|
|
q_cmd = (struct se_cmd *)qr->cmd;
|
|
|
|
if (q_cmd != cmd)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
atomic_dec(&T_TASK(q_cmd)->t_transport_queue_active);
|
|
|
|
atomic_dec(&qobj->queue_cnt);
|
|
|
|
list_del(&qr->qr_list);
|
|
|
|
kfree(qr);
|
|
|
|
}
|
|
|
|
spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
|
|
|
|
|
|
|
|
if (atomic_read(&T_TASK(cmd)->t_transport_queue_active)) {
|
|
|
|
printk(KERN_ERR "ITT: 0x%08x t_transport_queue_active: %d\n",
|
|
|
|
CMD_TFO(cmd)->get_task_tag(cmd),
|
|
|
|
atomic_read(&T_TASK(cmd)->t_transport_queue_active));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Completion function used by TCM subsystem plugins (such as FILEIO)
|
|
|
|
* for queueing up response from struct se_subsystem_api->do_task()
|
|
|
|
*/
|
|
|
|
void transport_complete_sync_cache(struct se_cmd *cmd, int good)
|
|
|
|
{
|
|
|
|
struct se_task *task = list_entry(T_TASK(cmd)->t_task_list.next,
|
|
|
|
struct se_task, t_list);
|
|
|
|
|
|
|
|
if (good) {
|
|
|
|
cmd->scsi_status = SAM_STAT_GOOD;
|
|
|
|
task->task_scsi_status = GOOD;
|
|
|
|
} else {
|
|
|
|
task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
|
|
|
|
task->task_error_status = PYX_TRANSPORT_ILLEGAL_REQUEST;
|
|
|
|
TASK_CMD(task)->transport_error_status =
|
|
|
|
PYX_TRANSPORT_ILLEGAL_REQUEST;
|
|
|
|
}
|
|
|
|
|
|
|
|
transport_complete_task(task, good);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(transport_complete_sync_cache);
|
|
|
|
|
|
|
|
/* transport_complete_task():
|
|
|
|
*
|
|
|
|
* Called from interrupt and non interrupt context depending
|
|
|
|
* on the transport plugin.
|
|
|
|
*/
|
|
|
|
void transport_complete_task(struct se_task *task, int success)
|
|
|
|
{
|
|
|
|
struct se_cmd *cmd = TASK_CMD(task);
|
|
|
|
struct se_device *dev = task->se_dev;
|
|
|
|
int t_state;
|
|
|
|
unsigned long flags;
|
|
|
|
#if 0
|
|
|
|
printk(KERN_INFO "task: %p CDB: 0x%02x obj_ptr: %p\n", task,
|
|
|
|
T_TASK(cmd)->t_task_cdb[0], dev);
|
|
|
|
#endif
|
|
|
|
if (dev) {
|
|
|
|
spin_lock_irqsave(&SE_HBA(dev)->hba_queue_lock, flags);
|
|
|
|
atomic_inc(&dev->depth_left);
|
|
|
|
atomic_inc(&SE_HBA(dev)->left_queue_depth);
|
|
|
|
spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
atomic_set(&task->task_active, 0);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* See if any sense data exists, if so set the TASK_SENSE flag.
|
|
|
|
* Also check for any other post completion work that needs to be
|
|
|
|
* done by the plugins.
|
|
|
|
*/
|
|
|
|
if (dev && dev->transport->transport_complete) {
|
|
|
|
if (dev->transport->transport_complete(task) != 0) {
|
|
|
|
cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
|
|
|
|
task->task_sense = 1;
|
|
|
|
success = 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* See if we are waiting for outstanding struct se_task
|
|
|
|
* to complete for an exception condition
|
|
|
|
*/
|
|
|
|
if (atomic_read(&task->task_stop)) {
|
|
|
|
/*
|
|
|
|
* Decrement T_TASK(cmd)->t_se_count if this task had
|
|
|
|
* previously thrown its timeout exception handler.
|
|
|
|
*/
|
|
|
|
if (atomic_read(&task->task_timeout)) {
|
|
|
|
atomic_dec(&T_TASK(cmd)->t_se_count);
|
|
|
|
atomic_set(&task->task_timeout, 0);
|
|
|
|
}
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
|
|
|
|
complete(&task->task_stop_comp);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* If the task's timeout handler has fired, use the t_task_cdbs_timeout
|
|
|
|
* left counter to determine when the struct se_cmd is ready to be queued to
|
|
|
|
* the processing thread.
|
|
|
|
*/
|
|
|
|
if (atomic_read(&task->task_timeout)) {
|
|
|
|
if (!(atomic_dec_and_test(
|
|
|
|
&T_TASK(cmd)->t_task_cdbs_timeout_left))) {
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
|
|
|
|
flags);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
t_state = TRANSPORT_COMPLETE_TIMEOUT;
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
|
|
|
|
transport_add_cmd_to_queue(cmd, t_state);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
atomic_dec(&T_TASK(cmd)->t_task_cdbs_timeout_left);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Decrement the outstanding t_task_cdbs_left count. The last
|
|
|
|
* struct se_task from struct se_cmd will complete itself into the
|
|
|
|
* device queue depending upon int success.
|
|
|
|
*/
|
|
|
|
if (!(atomic_dec_and_test(&T_TASK(cmd)->t_task_cdbs_left))) {
|
|
|
|
if (!success)
|
|
|
|
T_TASK(cmd)->t_tasks_failed = 1;
|
|
|
|
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!success || T_TASK(cmd)->t_tasks_failed) {
|
|
|
|
t_state = TRANSPORT_COMPLETE_FAILURE;
|
|
|
|
if (!task->task_error_status) {
|
|
|
|
task->task_error_status =
|
|
|
|
PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
|
|
|
|
cmd->transport_error_status =
|
|
|
|
PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
atomic_set(&T_TASK(cmd)->t_transport_complete, 1);
|
|
|
|
t_state = TRANSPORT_COMPLETE_OK;
|
|
|
|
}
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
|
|
|
|
transport_add_cmd_to_queue(cmd, t_state);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(transport_complete_task);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Called by transport_add_tasks_from_cmd() once a struct se_cmd's
|
|
|
|
* struct se_task list are ready to be added to the active execution list
|
|
|
|
* struct se_device
|
|
|
|
|
|
|
|
* Called with se_dev_t->execute_task_lock called.
|
|
|
|
*/
|
|
|
|
static inline int transport_add_task_check_sam_attr(
|
|
|
|
struct se_task *task,
|
|
|
|
struct se_task *task_prev,
|
|
|
|
struct se_device *dev)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* No SAM Task attribute emulation enabled, add to tail of
|
|
|
|
* execution queue
|
|
|
|
*/
|
|
|
|
if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
|
|
|
|
list_add_tail(&task->t_execute_list, &dev->execute_task_list);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* HEAD_OF_QUEUE attribute for received CDB, which means
|
|
|
|
* the first task that is associated with a struct se_cmd goes to
|
|
|
|
* head of the struct se_device->execute_task_list, and task_prev
|
|
|
|
* after that for each subsequent task
|
|
|
|
*/
|
2011-05-20 03:19:14 +00:00
|
|
|
if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
|
[SCSI] target: Add LIO target core v4.0.0-rc6
LIO target is a full featured in-kernel target framework with the
following feature set:
High-performance, non-blocking, multithreaded architecture with SIMD
support.
Advanced SCSI feature set:
* Persistent Reservations (PRs)
* Asymmetric Logical Unit Assignment (ALUA)
* Protocol and intra-nexus multiplexing, load-balancing and failover (MC/S)
* Full Error Recovery (ERL=0,1,2)
* Active/active task migration and session continuation (ERL=2)
* Thin LUN provisioning (UNMAP and WRITE_SAMExx)
Multiprotocol target plugins
Storage media independence:
* Virtualization of all storage media; transparent mapping of IO to LUNs
* No hard limits on number of LUNs per Target; maximum LUN size ~750 TB
* Backstores: SATA, SAS, SCSI, BluRay, DVD, FLASH, USB, ramdisk, etc.
Standards compliance:
* Full compliance with IETF (RFC 3720)
* Full implementation of SPC-4 PRs and ALUA
Significant code cleanups done by Christoph Hellwig.
[jejb: fix up for new block bdev exclusive interface. Minor fixes from
Randy Dunlap and Dan Carpenter.]
Signed-off-by: Nicholas A. Bellinger <nab@linux-iscsi.org>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-12-17 19:11:26 +00:00
|
|
|
list_add(&task->t_execute_list,
|
|
|
|
(task_prev != NULL) ?
|
|
|
|
&task_prev->t_execute_list :
|
|
|
|
&dev->execute_task_list);
|
|
|
|
|
|
|
|
DEBUG_STA("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
|
|
|
|
" in execution queue\n",
|
|
|
|
T_TASK(task->task_se_cmd)->t_task_cdb[0]);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
|
|
|
|
* transitioned from Dermant -> Active state, and are added to the end
|
|
|
|
* of the struct se_device->execute_task_list
|
|
|
|
*/
|
|
|
|
list_add_tail(&task->t_execute_list, &dev->execute_task_list);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* __transport_add_task_to_execute_queue():
|
|
|
|
*
|
|
|
|
* Called with se_dev_t->execute_task_lock called.
|
|
|
|
*/
|
|
|
|
static void __transport_add_task_to_execute_queue(
|
|
|
|
struct se_task *task,
|
|
|
|
struct se_task *task_prev,
|
|
|
|
struct se_device *dev)
|
|
|
|
{
|
|
|
|
int head_of_queue;
|
|
|
|
|
|
|
|
head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
|
|
|
|
atomic_inc(&dev->execute_tasks);
|
|
|
|
|
|
|
|
if (atomic_read(&task->task_state_active))
|
|
|
|
return;
|
|
|
|
/*
|
|
|
|
* Determine if this task needs to go to HEAD_OF_QUEUE for the
|
|
|
|
* state list as well. Running with SAM Task Attribute emulation
|
|
|
|
* will always return head_of_queue == 0 here
|
|
|
|
*/
|
|
|
|
if (head_of_queue)
|
|
|
|
list_add(&task->t_state_list, (task_prev) ?
|
|
|
|
&task_prev->t_state_list :
|
|
|
|
&dev->state_task_list);
|
|
|
|
else
|
|
|
|
list_add_tail(&task->t_state_list, &dev->state_task_list);
|
|
|
|
|
|
|
|
atomic_set(&task->task_state_active, 1);
|
|
|
|
|
|
|
|
DEBUG_TSTATE("Added ITT: 0x%08x task[%p] to dev: %p\n",
|
|
|
|
CMD_TFO(task->task_se_cmd)->get_task_tag(task->task_se_cmd),
|
|
|
|
task, dev);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
|
|
|
|
{
|
|
|
|
struct se_device *dev;
|
|
|
|
struct se_task *task;
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) {
|
|
|
|
dev = task->se_dev;
|
|
|
|
|
|
|
|
if (atomic_read(&task->task_state_active))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
spin_lock(&dev->execute_task_lock);
|
|
|
|
list_add_tail(&task->t_state_list, &dev->state_task_list);
|
|
|
|
atomic_set(&task->task_state_active, 1);
|
|
|
|
|
|
|
|
DEBUG_TSTATE("Added ITT: 0x%08x task[%p] to dev: %p\n",
|
|
|
|
CMD_TFO(task->task_se_cmd)->get_task_tag(
|
|
|
|
task->task_se_cmd), task, dev);
|
|
|
|
|
|
|
|
spin_unlock(&dev->execute_task_lock);
|
|
|
|
}
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
|
|
|
|
{
|
|
|
|
struct se_device *dev = SE_DEV(cmd);
|
|
|
|
struct se_task *task, *task_prev = NULL;
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&dev->execute_task_lock, flags);
|
|
|
|
list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) {
|
|
|
|
if (atomic_read(&task->task_execute_queue))
|
|
|
|
continue;
|
|
|
|
/*
|
|
|
|
* __transport_add_task_to_execute_queue() handles the
|
|
|
|
* SAM Task Attribute emulation if enabled
|
|
|
|
*/
|
|
|
|
__transport_add_task_to_execute_queue(task, task_prev, dev);
|
|
|
|
atomic_set(&task->task_execute_queue, 1);
|
|
|
|
task_prev = task;
|
|
|
|
}
|
|
|
|
spin_unlock_irqrestore(&dev->execute_task_lock, flags);
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* transport_get_task_from_execute_queue():
|
|
|
|
*
|
|
|
|
* Called with dev->execute_task_lock held.
|
|
|
|
*/
|
|
|
|
static struct se_task *
|
|
|
|
transport_get_task_from_execute_queue(struct se_device *dev)
|
|
|
|
{
|
|
|
|
struct se_task *task;
|
|
|
|
|
|
|
|
if (list_empty(&dev->execute_task_list))
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
list_for_each_entry(task, &dev->execute_task_list, t_execute_list)
|
|
|
|
break;
|
|
|
|
|
|
|
|
list_del(&task->t_execute_list);
|
2011-05-20 03:19:12 +00:00
|
|
|
atomic_set(&task->task_execute_queue, 0);
|
[SCSI] target: Add LIO target core v4.0.0-rc6
LIO target is a full featured in-kernel target framework with the
following feature set:
High-performance, non-blocking, multithreaded architecture with SIMD
support.
Advanced SCSI feature set:
* Persistent Reservations (PRs)
* Asymmetric Logical Unit Assignment (ALUA)
* Protocol and intra-nexus multiplexing, load-balancing and failover (MC/S)
* Full Error Recovery (ERL=0,1,2)
* Active/active task migration and session continuation (ERL=2)
* Thin LUN provisioning (UNMAP and WRITE_SAMExx)
Multiprotocol target plugins
Storage media independence:
* Virtualization of all storage media; transparent mapping of IO to LUNs
* No hard limits on number of LUNs per Target; maximum LUN size ~750 TB
* Backstores: SATA, SAS, SCSI, BluRay, DVD, FLASH, USB, ramdisk, etc.
Standards compliance:
* Full compliance with IETF (RFC 3720)
* Full implementation of SPC-4 PRs and ALUA
Significant code cleanups done by Christoph Hellwig.
[jejb: fix up for new block bdev exclusive interface. Minor fixes from
Randy Dunlap and Dan Carpenter.]
Signed-off-by: Nicholas A. Bellinger <nab@linux-iscsi.org>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-12-17 19:11:26 +00:00
|
|
|
atomic_dec(&dev->execute_tasks);
|
|
|
|
|
|
|
|
return task;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* transport_remove_task_from_execute_queue():
|
|
|
|
*
|
|
|
|
*
|
|
|
|
*/
|
2011-02-25 00:58:20 +00:00
|
|
|
void transport_remove_task_from_execute_queue(
|
[SCSI] target: Add LIO target core v4.0.0-rc6
LIO target is a full featured in-kernel target framework with the
following feature set:
High-performance, non-blocking, multithreaded architecture with SIMD
support.
Advanced SCSI feature set:
* Persistent Reservations (PRs)
* Asymmetric Logical Unit Assignment (ALUA)
* Protocol and intra-nexus multiplexing, load-balancing and failover (MC/S)
* Full Error Recovery (ERL=0,1,2)
* Active/active task migration and session continuation (ERL=2)
* Thin LUN provisioning (UNMAP and WRITE_SAMExx)
Multiprotocol target plugins
Storage media independence:
* Virtualization of all storage media; transparent mapping of IO to LUNs
* No hard limits on number of LUNs per Target; maximum LUN size ~750 TB
* Backstores: SATA, SAS, SCSI, BluRay, DVD, FLASH, USB, ramdisk, etc.
Standards compliance:
* Full compliance with IETF (RFC 3720)
* Full implementation of SPC-4 PRs and ALUA
Significant code cleanups done by Christoph Hellwig.
[jejb: fix up for new block bdev exclusive interface. Minor fixes from
Randy Dunlap and Dan Carpenter.]
Signed-off-by: Nicholas A. Bellinger <nab@linux-iscsi.org>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-12-17 19:11:26 +00:00
|
|
|
struct se_task *task,
|
|
|
|
struct se_device *dev)
|
|
|
|
{
|
|
|
|
unsigned long flags;
|
|
|
|
|
2011-05-20 03:19:12 +00:00
|
|
|
if (atomic_read(&task->task_execute_queue) == 0) {
|
|
|
|
dump_stack();
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
[SCSI] target: Add LIO target core v4.0.0-rc6
LIO target is a full featured in-kernel target framework with the
following feature set:
High-performance, non-blocking, multithreaded architecture with SIMD
support.
Advanced SCSI feature set:
* Persistent Reservations (PRs)
* Asymmetric Logical Unit Assignment (ALUA)
* Protocol and intra-nexus multiplexing, load-balancing and failover (MC/S)
* Full Error Recovery (ERL=0,1,2)
* Active/active task migration and session continuation (ERL=2)
* Thin LUN provisioning (UNMAP and WRITE_SAMExx)
Multiprotocol target plugins
Storage media independence:
* Virtualization of all storage media; transparent mapping of IO to LUNs
* No hard limits on number of LUNs per Target; maximum LUN size ~750 TB
* Backstores: SATA, SAS, SCSI, BluRay, DVD, FLASH, USB, ramdisk, etc.
Standards compliance:
* Full compliance with IETF (RFC 3720)
* Full implementation of SPC-4 PRs and ALUA
Significant code cleanups done by Christoph Hellwig.
[jejb: fix up for new block bdev exclusive interface. Minor fixes from
Randy Dunlap and Dan Carpenter.]
Signed-off-by: Nicholas A. Bellinger <nab@linux-iscsi.org>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-12-17 19:11:26 +00:00
|
|
|
spin_lock_irqsave(&dev->execute_task_lock, flags);
|
|
|
|
list_del(&task->t_execute_list);
|
2011-05-20 03:19:12 +00:00
|
|
|
atomic_set(&task->task_execute_queue, 0);
|
[SCSI] target: Add LIO target core v4.0.0-rc6
LIO target is a full featured in-kernel target framework with the
following feature set:
High-performance, non-blocking, multithreaded architecture with SIMD
support.
Advanced SCSI feature set:
* Persistent Reservations (PRs)
* Asymmetric Logical Unit Assignment (ALUA)
* Protocol and intra-nexus multiplexing, load-balancing and failover (MC/S)
* Full Error Recovery (ERL=0,1,2)
* Active/active task migration and session continuation (ERL=2)
* Thin LUN provisioning (UNMAP and WRITE_SAMExx)
Multiprotocol target plugins
Storage media independence:
* Virtualization of all storage media; transparent mapping of IO to LUNs
* No hard limits on number of LUNs per Target; maximum LUN size ~750 TB
* Backstores: SATA, SAS, SCSI, BluRay, DVD, FLASH, USB, ramdisk, etc.
Standards compliance:
* Full compliance with IETF (RFC 3720)
* Full implementation of SPC-4 PRs and ALUA
Significant code cleanups done by Christoph Hellwig.
[jejb: fix up for new block bdev exclusive interface. Minor fixes from
Randy Dunlap and Dan Carpenter.]
Signed-off-by: Nicholas A. Bellinger <nab@linux-iscsi.org>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-12-17 19:11:26 +00:00
|
|
|
atomic_dec(&dev->execute_tasks);
|
|
|
|
spin_unlock_irqrestore(&dev->execute_task_lock, flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
|
|
|
|
{
|
|
|
|
switch (cmd->data_direction) {
|
|
|
|
case DMA_NONE:
|
|
|
|
return "NONE";
|
|
|
|
case DMA_FROM_DEVICE:
|
|
|
|
return "READ";
|
|
|
|
case DMA_TO_DEVICE:
|
|
|
|
return "WRITE";
|
|
|
|
case DMA_BIDIRECTIONAL:
|
|
|
|
return "BIDI";
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
return "UNKNOWN";
|
|
|
|
}
|
|
|
|
|
|
|
|
void transport_dump_dev_state(
|
|
|
|
struct se_device *dev,
|
|
|
|
char *b,
|
|
|
|
int *bl)
|
|
|
|
{
|
|
|
|
*bl += sprintf(b + *bl, "Status: ");
|
|
|
|
switch (dev->dev_status) {
|
|
|
|
case TRANSPORT_DEVICE_ACTIVATED:
|
|
|
|
*bl += sprintf(b + *bl, "ACTIVATED");
|
|
|
|
break;
|
|
|
|
case TRANSPORT_DEVICE_DEACTIVATED:
|
|
|
|
*bl += sprintf(b + *bl, "DEACTIVATED");
|
|
|
|
break;
|
|
|
|
case TRANSPORT_DEVICE_SHUTDOWN:
|
|
|
|
*bl += sprintf(b + *bl, "SHUTDOWN");
|
|
|
|
break;
|
|
|
|
case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
|
|
|
|
case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
|
|
|
|
*bl += sprintf(b + *bl, "OFFLINE");
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
*bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
*bl += sprintf(b + *bl, " Execute/Left/Max Queue Depth: %d/%d/%d",
|
|
|
|
atomic_read(&dev->execute_tasks), atomic_read(&dev->depth_left),
|
|
|
|
dev->queue_depth);
|
|
|
|
*bl += sprintf(b + *bl, " SectorSize: %u MaxSectors: %u\n",
|
|
|
|
DEV_ATTRIB(dev)->block_size, DEV_ATTRIB(dev)->max_sectors);
|
|
|
|
*bl += sprintf(b + *bl, " ");
|
|
|
|
}
|
|
|
|
|
|
|
|
/* transport_release_all_cmds():
|
|
|
|
*
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
static void transport_release_all_cmds(struct se_device *dev)
|
|
|
|
{
|
|
|
|
struct se_cmd *cmd = NULL;
|
|
|
|
struct se_queue_req *qr = NULL, *qr_p = NULL;
|
|
|
|
int bug_out = 0, t_state;
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&dev->dev_queue_obj->cmd_queue_lock, flags);
|
|
|
|
list_for_each_entry_safe(qr, qr_p, &dev->dev_queue_obj->qobj_list,
|
|
|
|
qr_list) {
|
|
|
|
|
|
|
|
cmd = (struct se_cmd *)qr->cmd;
|
|
|
|
t_state = qr->state;
|
|
|
|
list_del(&qr->qr_list);
|
|
|
|
kfree(qr);
|
|
|
|
spin_unlock_irqrestore(&dev->dev_queue_obj->cmd_queue_lock,
|
|
|
|
flags);
|
|
|
|
|
|
|
|
printk(KERN_ERR "Releasing ITT: 0x%08x, i_state: %u,"
|
|
|
|
" t_state: %u directly\n",
|
|
|
|
CMD_TFO(cmd)->get_task_tag(cmd),
|
|
|
|
CMD_TFO(cmd)->get_cmd_state(cmd), t_state);
|
|
|
|
|
|
|
|
transport_release_fe_cmd(cmd);
|
|
|
|
bug_out = 1;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&dev->dev_queue_obj->cmd_queue_lock, flags);
|
|
|
|
}
|
|
|
|
spin_unlock_irqrestore(&dev->dev_queue_obj->cmd_queue_lock, flags);
|
|
|
|
#if 0
|
|
|
|
if (bug_out)
|
|
|
|
BUG();
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
void transport_dump_vpd_proto_id(
|
|
|
|
struct t10_vpd *vpd,
|
|
|
|
unsigned char *p_buf,
|
|
|
|
int p_buf_len)
|
|
|
|
{
|
|
|
|
unsigned char buf[VPD_TMP_BUF_SIZE];
|
|
|
|
int len;
|
|
|
|
|
|
|
|
memset(buf, 0, VPD_TMP_BUF_SIZE);
|
|
|
|
len = sprintf(buf, "T10 VPD Protocol Identifier: ");
|
|
|
|
|
|
|
|
switch (vpd->protocol_identifier) {
|
|
|
|
case 0x00:
|
|
|
|
sprintf(buf+len, "Fibre Channel\n");
|
|
|
|
break;
|
|
|
|
case 0x10:
|
|
|
|
sprintf(buf+len, "Parallel SCSI\n");
|
|
|
|
break;
|
|
|
|
case 0x20:
|
|
|
|
sprintf(buf+len, "SSA\n");
|
|
|
|
break;
|
|
|
|
case 0x30:
|
|
|
|
sprintf(buf+len, "IEEE 1394\n");
|
|
|
|
break;
|
|
|
|
case 0x40:
|
|
|
|
sprintf(buf+len, "SCSI Remote Direct Memory Access"
|
|
|
|
" Protocol\n");
|
|
|
|
break;
|
|
|
|
case 0x50:
|
|
|
|
sprintf(buf+len, "Internet SCSI (iSCSI)\n");
|
|
|
|
break;
|
|
|
|
case 0x60:
|
|
|
|
sprintf(buf+len, "SAS Serial SCSI Protocol\n");
|
|
|
|
break;
|
|
|
|
case 0x70:
|
|
|
|
sprintf(buf+len, "Automation/Drive Interface Transport"
|
|
|
|
" Protocol\n");
|
|
|
|
break;
|
|
|
|
case 0x80:
|
|
|
|
sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
sprintf(buf+len, "Unknown 0x%02x\n",
|
|
|
|
vpd->protocol_identifier);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (p_buf)
|
|
|
|
strncpy(p_buf, buf, p_buf_len);
|
|
|
|
else
|
|
|
|
printk(KERN_INFO "%s", buf);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* Check if the Protocol Identifier Valid (PIV) bit is set..
|
|
|
|
*
|
|
|
|
* from spc3r23.pdf section 7.5.1
|
|
|
|
*/
|
|
|
|
if (page_83[1] & 0x80) {
|
|
|
|
vpd->protocol_identifier = (page_83[0] & 0xf0);
|
|
|
|
vpd->protocol_identifier_set = 1;
|
|
|
|
transport_dump_vpd_proto_id(vpd, NULL, 0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(transport_set_vpd_proto_id);
|
|
|
|
|
|
|
|
int transport_dump_vpd_assoc(
|
|
|
|
struct t10_vpd *vpd,
|
|
|
|
unsigned char *p_buf,
|
|
|
|
int p_buf_len)
|
|
|
|
{
|
|
|
|
unsigned char buf[VPD_TMP_BUF_SIZE];
|
|
|
|
int ret = 0, len;
|
|
|
|
|
|
|
|
memset(buf, 0, VPD_TMP_BUF_SIZE);
|
|
|
|
len = sprintf(buf, "T10 VPD Identifier Association: ");
|
|
|
|
|
|
|
|
switch (vpd->association) {
|
|
|
|
case 0x00:
|
|
|
|
sprintf(buf+len, "addressed logical unit\n");
|
|
|
|
break;
|
|
|
|
case 0x10:
|
|
|
|
sprintf(buf+len, "target port\n");
|
|
|
|
break;
|
|
|
|
case 0x20:
|
|
|
|
sprintf(buf+len, "SCSI target device\n");
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
|
|
|
|
ret = -1;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (p_buf)
|
|
|
|
strncpy(p_buf, buf, p_buf_len);
|
|
|
|
else
|
|
|
|
printk("%s", buf);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* The VPD identification association..
|
|
|
|
*
|
|
|
|
* from spc3r23.pdf Section 7.6.3.1 Table 297
|
|
|
|
*/
|
|
|
|
vpd->association = (page_83[1] & 0x30);
|
|
|
|
return transport_dump_vpd_assoc(vpd, NULL, 0);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(transport_set_vpd_assoc);
|
|
|
|
|
|
|
|
int transport_dump_vpd_ident_type(
|
|
|
|
struct t10_vpd *vpd,
|
|
|
|
unsigned char *p_buf,
|
|
|
|
int p_buf_len)
|
|
|
|
{
|
|
|
|
unsigned char buf[VPD_TMP_BUF_SIZE];
|
|
|
|
int ret = 0, len;
|
|
|
|
|
|
|
|
memset(buf, 0, VPD_TMP_BUF_SIZE);
|
|
|
|
len = sprintf(buf, "T10 VPD Identifier Type: ");
|
|
|
|
|
|
|
|
switch (vpd->device_identifier_type) {
|
|
|
|
case 0x00:
|
|
|
|
sprintf(buf+len, "Vendor specific\n");
|
|
|
|
break;
|
|
|
|
case 0x01:
|
|
|
|
sprintf(buf+len, "T10 Vendor ID based\n");
|
|
|
|
break;
|
|
|
|
case 0x02:
|
|
|
|
sprintf(buf+len, "EUI-64 based\n");
|
|
|
|
break;
|
|
|
|
case 0x03:
|
|
|
|
sprintf(buf+len, "NAA\n");
|
|
|
|
break;
|
|
|
|
case 0x04:
|
|
|
|
sprintf(buf+len, "Relative target port identifier\n");
|
|
|
|
break;
|
|
|
|
case 0x08:
|
|
|
|
sprintf(buf+len, "SCSI name string\n");
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
sprintf(buf+len, "Unsupported: 0x%02x\n",
|
|
|
|
vpd->device_identifier_type);
|
|
|
|
ret = -1;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (p_buf)
|
|
|
|
strncpy(p_buf, buf, p_buf_len);
|
|
|
|
else
|
|
|
|
printk("%s", buf);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* The VPD identifier type..
|
|
|
|
*
|
|
|
|
* from spc3r23.pdf Section 7.6.3.1 Table 298
|
|
|
|
*/
|
|
|
|
vpd->device_identifier_type = (page_83[1] & 0x0f);
|
|
|
|
return transport_dump_vpd_ident_type(vpd, NULL, 0);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(transport_set_vpd_ident_type);
|
|
|
|
|
|
|
|
int transport_dump_vpd_ident(
|
|
|
|
struct t10_vpd *vpd,
|
|
|
|
unsigned char *p_buf,
|
|
|
|
int p_buf_len)
|
|
|
|
{
|
|
|
|
unsigned char buf[VPD_TMP_BUF_SIZE];
|
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
memset(buf, 0, VPD_TMP_BUF_SIZE);
|
|
|
|
|
|
|
|
switch (vpd->device_identifier_code_set) {
|
|
|
|
case 0x01: /* Binary */
|
|
|
|
sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
|
|
|
|
&vpd->device_identifier[0]);
|
|
|
|
break;
|
|
|
|
case 0x02: /* ASCII */
|
|
|
|
sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
|
|
|
|
&vpd->device_identifier[0]);
|
|
|
|
break;
|
|
|
|
case 0x03: /* UTF-8 */
|
|
|
|
sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
|
|
|
|
&vpd->device_identifier[0]);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
|
|
|
|
" 0x%02x", vpd->device_identifier_code_set);
|
|
|
|
ret = -1;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (p_buf)
|
|
|
|
strncpy(p_buf, buf, p_buf_len);
|
|
|
|
else
|
|
|
|
printk("%s", buf);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
|
|
|
|
{
|
|
|
|
static const char hex_str[] = "0123456789abcdef";
|
|
|
|
int j = 0, i = 4; /* offset to start of the identifer */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The VPD Code Set (encoding)
|
|
|
|
*
|
|
|
|
* from spc3r23.pdf Section 7.6.3.1 Table 296
|
|
|
|
*/
|
|
|
|
vpd->device_identifier_code_set = (page_83[0] & 0x0f);
|
|
|
|
switch (vpd->device_identifier_code_set) {
|
|
|
|
case 0x01: /* Binary */
|
|
|
|
vpd->device_identifier[j++] =
|
|
|
|
hex_str[vpd->device_identifier_type];
|
|
|
|
while (i < (4 + page_83[3])) {
|
|
|
|
vpd->device_identifier[j++] =
|
|
|
|
hex_str[(page_83[i] & 0xf0) >> 4];
|
|
|
|
vpd->device_identifier[j++] =
|
|
|
|
hex_str[page_83[i] & 0x0f];
|
|
|
|
i++;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 0x02: /* ASCII */
|
|
|
|
case 0x03: /* UTF-8 */
|
|
|
|
while (i < (4 + page_83[3]))
|
|
|
|
vpd->device_identifier[j++] = page_83[i++];
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
return transport_dump_vpd_ident(vpd, NULL, 0);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(transport_set_vpd_ident);
|
|
|
|
|
|
|
|
static void core_setup_task_attr_emulation(struct se_device *dev)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* If this device is from Target_Core_Mod/pSCSI, disable the
|
|
|
|
* SAM Task Attribute emulation.
|
|
|
|
*
|
|
|
|
* This is currently not available in upsream Linux/SCSI Target
|
|
|
|
* mode code, and is assumed to be disabled while using TCM/pSCSI.
|
|
|
|
*/
|
|
|
|
if (TRANSPORT(dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
|
|
|
|
dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
|
|
|
|
DEBUG_STA("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
|
|
|
|
" device\n", TRANSPORT(dev)->name,
|
|
|
|
TRANSPORT(dev)->get_device_rev(dev));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void scsi_dump_inquiry(struct se_device *dev)
|
|
|
|
{
|
|
|
|
struct t10_wwn *wwn = DEV_T10_WWN(dev);
|
|
|
|
int i, device_type;
|
|
|
|
/*
|
|
|
|
* Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
|
|
|
|
*/
|
|
|
|
printk(" Vendor: ");
|
|
|
|
for (i = 0; i < 8; i++)
|
|
|
|
if (wwn->vendor[i] >= 0x20)
|
|
|
|
printk("%c", wwn->vendor[i]);
|
|
|
|
else
|
|
|
|
printk(" ");
|
|
|
|
|
|
|
|
printk(" Model: ");
|
|
|
|
for (i = 0; i < 16; i++)
|
|
|
|
if (wwn->model[i] >= 0x20)
|
|
|
|
printk("%c", wwn->model[i]);
|
|
|
|
else
|
|
|
|
printk(" ");
|
|
|
|
|
|
|
|
printk(" Revision: ");
|
|
|
|
for (i = 0; i < 4; i++)
|
|
|
|
if (wwn->revision[i] >= 0x20)
|
|
|
|
printk("%c", wwn->revision[i]);
|
|
|
|
else
|
|
|
|
printk(" ");
|
|
|
|
|
|
|
|
printk("\n");
|
|
|
|
|
|
|
|
device_type = TRANSPORT(dev)->get_device_type(dev);
|
|
|
|
printk(" Type: %s ", scsi_device_type(device_type));
|
|
|
|
printk(" ANSI SCSI revision: %02x\n",
|
|
|
|
TRANSPORT(dev)->get_device_rev(dev));
|
|
|
|
}
|
|
|
|
|
|
|
|
struct se_device *transport_add_device_to_core_hba(
|
|
|
|
struct se_hba *hba,
|
|
|
|
struct se_subsystem_api *transport,
|
|
|
|
struct se_subsystem_dev *se_dev,
|
|
|
|
u32 device_flags,
|
|
|
|
void *transport_dev,
|
|
|
|
struct se_dev_limits *dev_limits,
|
|
|
|
const char *inquiry_prod,
|
|
|
|
const char *inquiry_rev)
|
|
|
|
{
|
2011-03-14 11:06:06 +00:00
|
|
|
int force_pt;
|
[SCSI] target: Add LIO target core v4.0.0-rc6
LIO target is a full featured in-kernel target framework with the
following feature set:
High-performance, non-blocking, multithreaded architecture with SIMD
support.
Advanced SCSI feature set:
* Persistent Reservations (PRs)
* Asymmetric Logical Unit Assignment (ALUA)
* Protocol and intra-nexus multiplexing, load-balancing and failover (MC/S)
* Full Error Recovery (ERL=0,1,2)
* Active/active task migration and session continuation (ERL=2)
* Thin LUN provisioning (UNMAP and WRITE_SAMExx)
Multiprotocol target plugins
Storage media independence:
* Virtualization of all storage media; transparent mapping of IO to LUNs
* No hard limits on number of LUNs per Target; maximum LUN size ~750 TB
* Backstores: SATA, SAS, SCSI, BluRay, DVD, FLASH, USB, ramdisk, etc.
Standards compliance:
* Full compliance with IETF (RFC 3720)
* Full implementation of SPC-4 PRs and ALUA
Significant code cleanups done by Christoph Hellwig.
[jejb: fix up for new block bdev exclusive interface. Minor fixes from
Randy Dunlap and Dan Carpenter.]
Signed-off-by: Nicholas A. Bellinger <nab@linux-iscsi.org>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-12-17 19:11:26 +00:00
|
|
|
struct se_device *dev;
|
|
|
|
|
|
|
|
dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
|
|
|
|
if (!(dev)) {
|
|
|
|
printk(KERN_ERR "Unable to allocate memory for se_dev_t\n");
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
dev->dev_queue_obj = kzalloc(sizeof(struct se_queue_obj), GFP_KERNEL);
|
|
|
|
if (!(dev->dev_queue_obj)) {
|
|
|
|
printk(KERN_ERR "Unable to allocate memory for"
|
|
|
|
" dev->dev_queue_obj\n");
|
|
|
|
kfree(dev);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
transport_init_queue_obj(dev->dev_queue_obj);
|
|
|
|
|
|
|
|
dev->dev_status_queue_obj = kzalloc(sizeof(struct se_queue_obj),
|
|
|
|
GFP_KERNEL);
|
|
|
|
if (!(dev->dev_status_queue_obj)) {
|
|
|
|
printk(KERN_ERR "Unable to allocate memory for"
|
|
|
|
" dev->dev_status_queue_obj\n");
|
|
|
|
kfree(dev->dev_queue_obj);
|
|
|
|
kfree(dev);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
transport_init_queue_obj(dev->dev_status_queue_obj);
|
|
|
|
|
|
|
|
dev->dev_flags = device_flags;
|
|
|
|
dev->dev_status |= TRANSPORT_DEVICE_DEACTIVATED;
|
|
|
|
dev->dev_ptr = (void *) transport_dev;
|
|
|
|
dev->se_hba = hba;
|
|
|
|
dev->se_sub_dev = se_dev;
|
|
|
|
dev->transport = transport;
|
|
|
|
atomic_set(&dev->active_cmds, 0);
|
|
|
|
INIT_LIST_HEAD(&dev->dev_list);
|
|
|
|
INIT_LIST_HEAD(&dev->dev_sep_list);
|
|
|
|
INIT_LIST_HEAD(&dev->dev_tmr_list);
|
|
|
|
INIT_LIST_HEAD(&dev->execute_task_list);
|
|
|
|
INIT_LIST_HEAD(&dev->delayed_cmd_list);
|
|
|
|
INIT_LIST_HEAD(&dev->ordered_cmd_list);
|
|
|
|
INIT_LIST_HEAD(&dev->state_task_list);
|
|
|
|
spin_lock_init(&dev->execute_task_lock);
|
|
|
|
spin_lock_init(&dev->delayed_cmd_lock);
|
|
|
|
spin_lock_init(&dev->ordered_cmd_lock);
|
|
|
|
spin_lock_init(&dev->state_task_lock);
|
|
|
|
spin_lock_init(&dev->dev_alua_lock);
|
|
|
|
spin_lock_init(&dev->dev_reservation_lock);
|
|
|
|
spin_lock_init(&dev->dev_status_lock);
|
|
|
|
spin_lock_init(&dev->dev_status_thr_lock);
|
|
|
|
spin_lock_init(&dev->se_port_lock);
|
|
|
|
spin_lock_init(&dev->se_tmr_lock);
|
|
|
|
|
|
|
|
dev->queue_depth = dev_limits->queue_depth;
|
|
|
|
atomic_set(&dev->depth_left, dev->queue_depth);
|
|
|
|
atomic_set(&dev->dev_ordered_id, 0);
|
|
|
|
|
|
|
|
se_dev_set_default_attribs(dev, dev_limits);
|
|
|
|
|
|
|
|
dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
|
|
|
|
dev->creation_time = get_jiffies_64();
|
|
|
|
spin_lock_init(&dev->stats_lock);
|
|
|
|
|
|
|
|
spin_lock(&hba->device_lock);
|
|
|
|
list_add_tail(&dev->dev_list, &hba->hba_dev_list);
|
|
|
|
hba->dev_count++;
|
|
|
|
spin_unlock(&hba->device_lock);
|
|
|
|
/*
|
|
|
|
* Setup the SAM Task Attribute emulation for struct se_device
|
|
|
|
*/
|
|
|
|
core_setup_task_attr_emulation(dev);
|
|
|
|
/*
|
|
|
|
* Force PR and ALUA passthrough emulation with internal object use.
|
|
|
|
*/
|
|
|
|
force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
|
|
|
|
/*
|
|
|
|
* Setup the Reservations infrastructure for struct se_device
|
|
|
|
*/
|
|
|
|
core_setup_reservations(dev, force_pt);
|
|
|
|
/*
|
|
|
|
* Setup the Asymmetric Logical Unit Assignment for struct se_device
|
|
|
|
*/
|
|
|
|
if (core_setup_alua(dev, force_pt) < 0)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Startup the struct se_device processing thread
|
|
|
|
*/
|
|
|
|
dev->process_thread = kthread_run(transport_processing_thread, dev,
|
|
|
|
"LIO_%s", TRANSPORT(dev)->name);
|
|
|
|
if (IS_ERR(dev->process_thread)) {
|
|
|
|
printk(KERN_ERR "Unable to create kthread: LIO_%s\n",
|
|
|
|
TRANSPORT(dev)->name);
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Preload the initial INQUIRY const values if we are doing
|
|
|
|
* anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
|
|
|
|
* passthrough because this is being provided by the backend LLD.
|
|
|
|
* This is required so that transport_get_inquiry() copies these
|
|
|
|
* originals once back into DEV_T10_WWN(dev) for the virtual device
|
|
|
|
* setup.
|
|
|
|
*/
|
|
|
|
if (TRANSPORT(dev)->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
|
|
|
|
if (!(inquiry_prod) || !(inquiry_prod)) {
|
|
|
|
printk(KERN_ERR "All non TCM/pSCSI plugins require"
|
|
|
|
" INQUIRY consts\n");
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
strncpy(&DEV_T10_WWN(dev)->vendor[0], "LIO-ORG", 8);
|
|
|
|
strncpy(&DEV_T10_WWN(dev)->model[0], inquiry_prod, 16);
|
|
|
|
strncpy(&DEV_T10_WWN(dev)->revision[0], inquiry_rev, 4);
|
|
|
|
}
|
|
|
|
scsi_dump_inquiry(dev);
|
|
|
|
|
2011-03-14 11:06:06 +00:00
|
|
|
return dev;
|
[SCSI] target: Add LIO target core v4.0.0-rc6
LIO target is a full featured in-kernel target framework with the
following feature set:
High-performance, non-blocking, multithreaded architecture with SIMD
support.
Advanced SCSI feature set:
* Persistent Reservations (PRs)
* Asymmetric Logical Unit Assignment (ALUA)
* Protocol and intra-nexus multiplexing, load-balancing and failover (MC/S)
* Full Error Recovery (ERL=0,1,2)
* Active/active task migration and session continuation (ERL=2)
* Thin LUN provisioning (UNMAP and WRITE_SAMExx)
Multiprotocol target plugins
Storage media independence:
* Virtualization of all storage media; transparent mapping of IO to LUNs
* No hard limits on number of LUNs per Target; maximum LUN size ~750 TB
* Backstores: SATA, SAS, SCSI, BluRay, DVD, FLASH, USB, ramdisk, etc.
Standards compliance:
* Full compliance with IETF (RFC 3720)
* Full implementation of SPC-4 PRs and ALUA
Significant code cleanups done by Christoph Hellwig.
[jejb: fix up for new block bdev exclusive interface. Minor fixes from
Randy Dunlap and Dan Carpenter.]
Signed-off-by: Nicholas A. Bellinger <nab@linux-iscsi.org>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-12-17 19:11:26 +00:00
|
|
|
out:
|
|
|
|
kthread_stop(dev->process_thread);
|
|
|
|
|
|
|
|
spin_lock(&hba->device_lock);
|
|
|
|
list_del(&dev->dev_list);
|
|
|
|
hba->dev_count--;
|
|
|
|
spin_unlock(&hba->device_lock);
|
|
|
|
|
|
|
|
se_release_vpd_for_dev(dev);
|
|
|
|
|
|
|
|
kfree(dev->dev_status_queue_obj);
|
|
|
|
kfree(dev->dev_queue_obj);
|
|
|
|
kfree(dev);
|
|
|
|
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(transport_add_device_to_core_hba);
|
|
|
|
|
|
|
|
/* transport_generic_prepare_cdb():
|
|
|
|
*
|
|
|
|
* Since the Initiator sees iSCSI devices as LUNs, the SCSI CDB will
|
|
|
|
* contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
|
|
|
|
* The point of this is since we are mapping iSCSI LUNs to
|
|
|
|
* SCSI Target IDs having a non-zero LUN in the CDB will throw the
|
|
|
|
* devices and HBAs for a loop.
|
|
|
|
*/
|
|
|
|
static inline void transport_generic_prepare_cdb(
|
|
|
|
unsigned char *cdb)
|
|
|
|
{
|
|
|
|
switch (cdb[0]) {
|
|
|
|
case READ_10: /* SBC - RDProtect */
|
|
|
|
case READ_12: /* SBC - RDProtect */
|
|
|
|
case READ_16: /* SBC - RDProtect */
|
|
|
|
case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
|
|
|
|
case VERIFY: /* SBC - VRProtect */
|
|
|
|
case VERIFY_16: /* SBC - VRProtect */
|
|
|
|
case WRITE_VERIFY: /* SBC - VRProtect */
|
|
|
|
case WRITE_VERIFY_12: /* SBC - VRProtect */
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
cdb[1] &= 0x1f; /* clear logical unit number */
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct se_task *
|
|
|
|
transport_generic_get_task(struct se_cmd *cmd,
|
|
|
|
enum dma_data_direction data_direction)
|
|
|
|
{
|
|
|
|
struct se_task *task;
|
|
|
|
struct se_device *dev = SE_DEV(cmd);
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
task = dev->transport->alloc_task(cmd);
|
|
|
|
if (!task) {
|
|
|
|
printk(KERN_ERR "Unable to allocate struct se_task\n");
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
INIT_LIST_HEAD(&task->t_list);
|
|
|
|
INIT_LIST_HEAD(&task->t_execute_list);
|
|
|
|
INIT_LIST_HEAD(&task->t_state_list);
|
|
|
|
init_completion(&task->task_stop_comp);
|
|
|
|
task->task_no = T_TASK(cmd)->t_tasks_no++;
|
|
|
|
task->task_se_cmd = cmd;
|
|
|
|
task->se_dev = dev;
|
|
|
|
task->task_data_direction = data_direction;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
list_add_tail(&task->t_list, &T_TASK(cmd)->t_task_list);
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
|
|
|
|
return task;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
|
|
|
|
|
|
|
|
void transport_device_setup_cmd(struct se_cmd *cmd)
|
|
|
|
{
|
|
|
|
cmd->se_dev = SE_LUN(cmd)->lun_se_dev;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(transport_device_setup_cmd);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Used by fabric modules containing a local struct se_cmd within their
|
|
|
|
* fabric dependent per I/O descriptor.
|
|
|
|
*/
|
|
|
|
void transport_init_se_cmd(
|
|
|
|
struct se_cmd *cmd,
|
|
|
|
struct target_core_fabric_ops *tfo,
|
|
|
|
struct se_session *se_sess,
|
|
|
|
u32 data_length,
|
|
|
|
int data_direction,
|
|
|
|
int task_attr,
|
|
|
|
unsigned char *sense_buffer)
|
|
|
|
{
|
|
|
|
INIT_LIST_HEAD(&cmd->se_lun_list);
|
|
|
|
INIT_LIST_HEAD(&cmd->se_delayed_list);
|
|
|
|
INIT_LIST_HEAD(&cmd->se_ordered_list);
|
|
|
|
/*
|
|
|
|
* Setup t_task pointer to t_task_backstore
|
|
|
|
*/
|
|
|
|
cmd->t_task = &cmd->t_task_backstore;
|
|
|
|
|
|
|
|
INIT_LIST_HEAD(&T_TASK(cmd)->t_task_list);
|
|
|
|
init_completion(&T_TASK(cmd)->transport_lun_fe_stop_comp);
|
|
|
|
init_completion(&T_TASK(cmd)->transport_lun_stop_comp);
|
|
|
|
init_completion(&T_TASK(cmd)->t_transport_stop_comp);
|
|
|
|
spin_lock_init(&T_TASK(cmd)->t_state_lock);
|
|
|
|
atomic_set(&T_TASK(cmd)->transport_dev_active, 1);
|
|
|
|
|
|
|
|
cmd->se_tfo = tfo;
|
|
|
|
cmd->se_sess = se_sess;
|
|
|
|
cmd->data_length = data_length;
|
|
|
|
cmd->data_direction = data_direction;
|
|
|
|
cmd->sam_task_attr = task_attr;
|
|
|
|
cmd->sense_buffer = sense_buffer;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(transport_init_se_cmd);
|
|
|
|
|
|
|
|
static int transport_check_alloc_task_attr(struct se_cmd *cmd)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* Check if SAM Task Attribute emulation is enabled for this
|
|
|
|
* struct se_device storage object
|
|
|
|
*/
|
|
|
|
if (SE_DEV(cmd)->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
|
|
|
|
return 0;
|
|
|
|
|
2011-05-20 03:19:14 +00:00
|
|
|
if (cmd->sam_task_attr == MSG_ACA_TAG) {
|
[SCSI] target: Add LIO target core v4.0.0-rc6
LIO target is a full featured in-kernel target framework with the
following feature set:
High-performance, non-blocking, multithreaded architecture with SIMD
support.
Advanced SCSI feature set:
* Persistent Reservations (PRs)
* Asymmetric Logical Unit Assignment (ALUA)
* Protocol and intra-nexus multiplexing, load-balancing and failover (MC/S)
* Full Error Recovery (ERL=0,1,2)
* Active/active task migration and session continuation (ERL=2)
* Thin LUN provisioning (UNMAP and WRITE_SAMExx)
Multiprotocol target plugins
Storage media independence:
* Virtualization of all storage media; transparent mapping of IO to LUNs
* No hard limits on number of LUNs per Target; maximum LUN size ~750 TB
* Backstores: SATA, SAS, SCSI, BluRay, DVD, FLASH, USB, ramdisk, etc.
Standards compliance:
* Full compliance with IETF (RFC 3720)
* Full implementation of SPC-4 PRs and ALUA
Significant code cleanups done by Christoph Hellwig.
[jejb: fix up for new block bdev exclusive interface. Minor fixes from
Randy Dunlap and Dan Carpenter.]
Signed-off-by: Nicholas A. Bellinger <nab@linux-iscsi.org>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-12-17 19:11:26 +00:00
|
|
|
DEBUG_STA("SAM Task Attribute ACA"
|
|
|
|
" emulation is not supported\n");
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Used to determine when ORDERED commands should go from
|
|
|
|
* Dormant to Active status.
|
|
|
|
*/
|
|
|
|
cmd->se_ordered_id = atomic_inc_return(&SE_DEV(cmd)->dev_ordered_id);
|
|
|
|
smp_mb__after_atomic_inc();
|
|
|
|
DEBUG_STA("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
|
|
|
|
cmd->se_ordered_id, cmd->sam_task_attr,
|
|
|
|
TRANSPORT(cmd->se_dev)->name);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
void transport_free_se_cmd(
|
|
|
|
struct se_cmd *se_cmd)
|
|
|
|
{
|
|
|
|
if (se_cmd->se_tmr_req)
|
|
|
|
core_tmr_release_req(se_cmd->se_tmr_req);
|
|
|
|
/*
|
|
|
|
* Check and free any extended CDB buffer that was allocated
|
|
|
|
*/
|
|
|
|
if (T_TASK(se_cmd)->t_task_cdb != T_TASK(se_cmd)->__t_task_cdb)
|
|
|
|
kfree(T_TASK(se_cmd)->t_task_cdb);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(transport_free_se_cmd);
|
|
|
|
|
|
|
|
static void transport_generic_wait_for_tasks(struct se_cmd *, int, int);
|
|
|
|
|
|
|
|
/* transport_generic_allocate_tasks():
|
|
|
|
*
|
|
|
|
* Called from fabric RX Thread.
|
|
|
|
*/
|
|
|
|
int transport_generic_allocate_tasks(
|
|
|
|
struct se_cmd *cmd,
|
|
|
|
unsigned char *cdb)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
transport_generic_prepare_cdb(cdb);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This is needed for early exceptions.
|
|
|
|
*/
|
|
|
|
cmd->transport_wait_for_tasks = &transport_generic_wait_for_tasks;
|
|
|
|
|
|
|
|
transport_device_setup_cmd(cmd);
|
|
|
|
/*
|
|
|
|
* Ensure that the received CDB is less than the max (252 + 8) bytes
|
|
|
|
* for VARIABLE_LENGTH_CMD
|
|
|
|
*/
|
|
|
|
if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
|
|
|
|
printk(KERN_ERR "Received SCSI CDB with command_size: %d that"
|
|
|
|
" exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
|
|
|
|
scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
|
|
|
|
* allocate the additional extended CDB buffer now.. Otherwise
|
|
|
|
* setup the pointer from __t_task_cdb to t_task_cdb.
|
|
|
|
*/
|
|
|
|
if (scsi_command_size(cdb) > sizeof(T_TASK(cmd)->__t_task_cdb)) {
|
|
|
|
T_TASK(cmd)->t_task_cdb = kzalloc(scsi_command_size(cdb),
|
|
|
|
GFP_KERNEL);
|
|
|
|
if (!(T_TASK(cmd)->t_task_cdb)) {
|
|
|
|
printk(KERN_ERR "Unable to allocate T_TASK(cmd)->t_task_cdb"
|
|
|
|
" %u > sizeof(T_TASK(cmd)->__t_task_cdb): %lu ops\n",
|
|
|
|
scsi_command_size(cdb),
|
|
|
|
(unsigned long)sizeof(T_TASK(cmd)->__t_task_cdb));
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
} else
|
|
|
|
T_TASK(cmd)->t_task_cdb = &T_TASK(cmd)->__t_task_cdb[0];
|
|
|
|
/*
|
|
|
|
* Copy the original CDB into T_TASK(cmd).
|
|
|
|
*/
|
|
|
|
memcpy(T_TASK(cmd)->t_task_cdb, cdb, scsi_command_size(cdb));
|
|
|
|
/*
|
|
|
|
* Setup the received CDB based on SCSI defined opcodes and
|
|
|
|
* perform unit attention, persistent reservations and ALUA
|
|
|
|
* checks for virtual device backends. The T_TASK(cmd)->t_task_cdb
|
|
|
|
* pointer is expected to be setup before we reach this point.
|
|
|
|
*/
|
|
|
|
ret = transport_generic_cmd_sequencer(cmd, cdb);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
/*
|
|
|
|
* Check for SAM Task Attribute Emulation
|
|
|
|
*/
|
|
|
|
if (transport_check_alloc_task_attr(cmd) < 0) {
|
|
|
|
cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
|
|
|
|
cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
|
|
|
|
return -2;
|
|
|
|
}
|
|
|
|
spin_lock(&cmd->se_lun->lun_sep_lock);
|
|
|
|
if (cmd->se_lun->lun_sep)
|
|
|
|
cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
|
|
|
|
spin_unlock(&cmd->se_lun->lun_sep_lock);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(transport_generic_allocate_tasks);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Used by fabric module frontends not defining a TFO->new_cmd_map()
|
|
|
|
* to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD statis
|
|
|
|
*/
|
|
|
|
int transport_generic_handle_cdb(
|
|
|
|
struct se_cmd *cmd)
|
|
|
|
{
|
|
|
|
if (!SE_LUN(cmd)) {
|
|
|
|
dump_stack();
|
|
|
|
printk(KERN_ERR "SE_LUN(cmd) is NULL\n");
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(transport_generic_handle_cdb);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Used by fabric module frontends defining a TFO->new_cmd_map() caller
|
|
|
|
* to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
|
|
|
|
* complete setup in TCM process context w/ TFO->new_cmd_map().
|
|
|
|
*/
|
|
|
|
int transport_generic_handle_cdb_map(
|
|
|
|
struct se_cmd *cmd)
|
|
|
|
{
|
|
|
|
if (!SE_LUN(cmd)) {
|
|
|
|
dump_stack();
|
|
|
|
printk(KERN_ERR "SE_LUN(cmd) is NULL\n");
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(transport_generic_handle_cdb_map);
|
|
|
|
|
|
|
|
/* transport_generic_handle_data():
|
|
|
|
*
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
int transport_generic_handle_data(
|
|
|
|
struct se_cmd *cmd)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* For the software fabric case, then we assume the nexus is being
|
|
|
|
* failed/shutdown when signals are pending from the kthread context
|
|
|
|
* caller, so we return a failure. For the HW target mode case running
|
|
|
|
* in interrupt code, the signal_pending() check is skipped.
|
|
|
|
*/
|
|
|
|
if (!in_interrupt() && signal_pending(current))
|
|
|
|
return -1;
|
|
|
|
/*
|
|
|
|
* If the received CDB has aleady been ABORTED by the generic
|
|
|
|
* target engine, we now call transport_check_aborted_status()
|
|
|
|
* to queue any delated TASK_ABORTED status for the received CDB to the
|
2011-03-31 01:57:33 +00:00
|
|
|
* fabric module as we are expecting no further incoming DATA OUT
|
[SCSI] target: Add LIO target core v4.0.0-rc6
LIO target is a full featured in-kernel target framework with the
following feature set:
High-performance, non-blocking, multithreaded architecture with SIMD
support.
Advanced SCSI feature set:
* Persistent Reservations (PRs)
* Asymmetric Logical Unit Assignment (ALUA)
* Protocol and intra-nexus multiplexing, load-balancing and failover (MC/S)
* Full Error Recovery (ERL=0,1,2)
* Active/active task migration and session continuation (ERL=2)
* Thin LUN provisioning (UNMAP and WRITE_SAMExx)
Multiprotocol target plugins
Storage media independence:
* Virtualization of all storage media; transparent mapping of IO to LUNs
* No hard limits on number of LUNs per Target; maximum LUN size ~750 TB
* Backstores: SATA, SAS, SCSI, BluRay, DVD, FLASH, USB, ramdisk, etc.
Standards compliance:
* Full compliance with IETF (RFC 3720)
* Full implementation of SPC-4 PRs and ALUA
Significant code cleanups done by Christoph Hellwig.
[jejb: fix up for new block bdev exclusive interface. Minor fixes from
Randy Dunlap and Dan Carpenter.]
Signed-off-by: Nicholas A. Bellinger <nab@linux-iscsi.org>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-12-17 19:11:26 +00:00
|
|
|
* sequences at this point.
|
|
|
|
*/
|
|
|
|
if (transport_check_aborted_status(cmd, 1) != 0)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(transport_generic_handle_data);
|
|
|
|
|
|
|
|
/* transport_generic_handle_tmr():
|
|
|
|
*
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
int transport_generic_handle_tmr(
|
|
|
|
struct se_cmd *cmd)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* This is needed for early exceptions.
|
|
|
|
*/
|
|
|
|
cmd->transport_wait_for_tasks = &transport_generic_wait_for_tasks;
|
|
|
|
transport_device_setup_cmd(cmd);
|
|
|
|
|
|
|
|
transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(transport_generic_handle_tmr);
|
|
|
|
|
2011-05-20 03:19:11 +00:00
|
|
|
void transport_generic_free_cmd_intr(
|
|
|
|
struct se_cmd *cmd)
|
|
|
|
{
|
|
|
|
transport_add_cmd_to_queue(cmd, TRANSPORT_FREE_CMD_INTR);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(transport_generic_free_cmd_intr);
|
|
|
|
|
[SCSI] target: Add LIO target core v4.0.0-rc6
LIO target is a full featured in-kernel target framework with the
following feature set:
High-performance, non-blocking, multithreaded architecture with SIMD
support.
Advanced SCSI feature set:
* Persistent Reservations (PRs)
* Asymmetric Logical Unit Assignment (ALUA)
* Protocol and intra-nexus multiplexing, load-balancing and failover (MC/S)
* Full Error Recovery (ERL=0,1,2)
* Active/active task migration and session continuation (ERL=2)
* Thin LUN provisioning (UNMAP and WRITE_SAMExx)
Multiprotocol target plugins
Storage media independence:
* Virtualization of all storage media; transparent mapping of IO to LUNs
* No hard limits on number of LUNs per Target; maximum LUN size ~750 TB
* Backstores: SATA, SAS, SCSI, BluRay, DVD, FLASH, USB, ramdisk, etc.
Standards compliance:
* Full compliance with IETF (RFC 3720)
* Full implementation of SPC-4 PRs and ALUA
Significant code cleanups done by Christoph Hellwig.
[jejb: fix up for new block bdev exclusive interface. Minor fixes from
Randy Dunlap and Dan Carpenter.]
Signed-off-by: Nicholas A. Bellinger <nab@linux-iscsi.org>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-12-17 19:11:26 +00:00
|
|
|
static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
|
|
|
|
{
|
|
|
|
struct se_task *task, *task_tmp;
|
|
|
|
unsigned long flags;
|
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
DEBUG_TS("ITT[0x%08x] - Stopping tasks\n",
|
|
|
|
CMD_TFO(cmd)->get_task_tag(cmd));
|
|
|
|
|
|
|
|
/*
|
|
|
|
* No tasks remain in the execution queue
|
|
|
|
*/
|
|
|
|
spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
list_for_each_entry_safe(task, task_tmp,
|
|
|
|
&T_TASK(cmd)->t_task_list, t_list) {
|
|
|
|
DEBUG_TS("task_no[%d] - Processing task %p\n",
|
|
|
|
task->task_no, task);
|
|
|
|
/*
|
|
|
|
* If the struct se_task has not been sent and is not active,
|
|
|
|
* remove the struct se_task from the execution queue.
|
|
|
|
*/
|
|
|
|
if (!atomic_read(&task->task_sent) &&
|
|
|
|
!atomic_read(&task->task_active)) {
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
|
|
|
|
flags);
|
|
|
|
transport_remove_task_from_execute_queue(task,
|
|
|
|
task->se_dev);
|
|
|
|
|
|
|
|
DEBUG_TS("task_no[%d] - Removed from execute queue\n",
|
|
|
|
task->task_no);
|
|
|
|
spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If the struct se_task is active, sleep until it is returned
|
|
|
|
* from the plugin.
|
|
|
|
*/
|
|
|
|
if (atomic_read(&task->task_active)) {
|
|
|
|
atomic_set(&task->task_stop, 1);
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
|
|
|
|
flags);
|
|
|
|
|
|
|
|
DEBUG_TS("task_no[%d] - Waiting to complete\n",
|
|
|
|
task->task_no);
|
|
|
|
wait_for_completion(&task->task_stop_comp);
|
|
|
|
DEBUG_TS("task_no[%d] - Stopped successfully\n",
|
|
|
|
task->task_no);
|
|
|
|
|
|
|
|
spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
atomic_dec(&T_TASK(cmd)->t_task_cdbs_left);
|
|
|
|
|
|
|
|
atomic_set(&task->task_active, 0);
|
|
|
|
atomic_set(&task->task_stop, 0);
|
|
|
|
} else {
|
|
|
|
DEBUG_TS("task_no[%d] - Did nothing\n", task->task_no);
|
|
|
|
ret++;
|
|
|
|
}
|
|
|
|
|
|
|
|
__transport_stop_task_timer(task, &flags);
|
|
|
|
}
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void transport_failure_reset_queue_depth(struct se_device *dev)
|
|
|
|
{
|
|
|
|
unsigned long flags;
|
|
|
|
|
2011-04-09 02:49:08 +00:00
|
|
|
spin_lock_irqsave(&SE_HBA(dev)->hba_queue_lock, flags);
|
[SCSI] target: Add LIO target core v4.0.0-rc6
LIO target is a full featured in-kernel target framework with the
following feature set:
High-performance, non-blocking, multithreaded architecture with SIMD
support.
Advanced SCSI feature set:
* Persistent Reservations (PRs)
* Asymmetric Logical Unit Assignment (ALUA)
* Protocol and intra-nexus multiplexing, load-balancing and failover (MC/S)
* Full Error Recovery (ERL=0,1,2)
* Active/active task migration and session continuation (ERL=2)
* Thin LUN provisioning (UNMAP and WRITE_SAMExx)
Multiprotocol target plugins
Storage media independence:
* Virtualization of all storage media; transparent mapping of IO to LUNs
* No hard limits on number of LUNs per Target; maximum LUN size ~750 TB
* Backstores: SATA, SAS, SCSI, BluRay, DVD, FLASH, USB, ramdisk, etc.
Standards compliance:
* Full compliance with IETF (RFC 3720)
* Full implementation of SPC-4 PRs and ALUA
Significant code cleanups done by Christoph Hellwig.
[jejb: fix up for new block bdev exclusive interface. Minor fixes from
Randy Dunlap and Dan Carpenter.]
Signed-off-by: Nicholas A. Bellinger <nab@linux-iscsi.org>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-12-17 19:11:26 +00:00
|
|
|
atomic_inc(&dev->depth_left);
|
|
|
|
atomic_inc(&SE_HBA(dev)->left_queue_depth);
|
|
|
|
spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Handle SAM-esque emulation for generic transport request failures.
|
|
|
|
*/
|
|
|
|
static void transport_generic_request_failure(
|
|
|
|
struct se_cmd *cmd,
|
|
|
|
struct se_device *dev,
|
|
|
|
int complete,
|
|
|
|
int sc)
|
|
|
|
{
|
|
|
|
DEBUG_GRF("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
|
|
|
|
" CDB: 0x%02x\n", cmd, CMD_TFO(cmd)->get_task_tag(cmd),
|
|
|
|
T_TASK(cmd)->t_task_cdb[0]);
|
|
|
|
DEBUG_GRF("-----[ i_state: %d t_state/def_t_state:"
|
|
|
|
" %d/%d transport_error_status: %d\n",
|
|
|
|
CMD_TFO(cmd)->get_cmd_state(cmd),
|
|
|
|
cmd->t_state, cmd->deferred_t_state,
|
|
|
|
cmd->transport_error_status);
|
|
|
|
DEBUG_GRF("-----[ t_task_cdbs: %d t_task_cdbs_left: %d"
|
|
|
|
" t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
|
|
|
|
" t_transport_active: %d t_transport_stop: %d"
|
|
|
|
" t_transport_sent: %d\n", T_TASK(cmd)->t_task_cdbs,
|
|
|
|
atomic_read(&T_TASK(cmd)->t_task_cdbs_left),
|
|
|
|
atomic_read(&T_TASK(cmd)->t_task_cdbs_sent),
|
|
|
|
atomic_read(&T_TASK(cmd)->t_task_cdbs_ex_left),
|
|
|
|
atomic_read(&T_TASK(cmd)->t_transport_active),
|
|
|
|
atomic_read(&T_TASK(cmd)->t_transport_stop),
|
|
|
|
atomic_read(&T_TASK(cmd)->t_transport_sent));
|
|
|
|
|
|
|
|
transport_stop_all_task_timers(cmd);
|
|
|
|
|
|
|
|
if (dev)
|
|
|
|
transport_failure_reset_queue_depth(dev);
|
|
|
|
/*
|
|
|
|
* For SAM Task Attribute emulation for failed struct se_cmd
|
|
|
|
*/
|
|
|
|
if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
|
|
|
|
transport_complete_task_attr(cmd);
|
|
|
|
|
|
|
|
if (complete) {
|
|
|
|
transport_direct_request_timeout(cmd);
|
|
|
|
cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
|
|
|
|
}
|
|
|
|
|
|
|
|
switch (cmd->transport_error_status) {
|
|
|
|
case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE:
|
|
|
|
cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
|
|
|
|
break;
|
|
|
|
case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS:
|
|
|
|
cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY;
|
|
|
|
break;
|
|
|
|
case PYX_TRANSPORT_INVALID_CDB_FIELD:
|
|
|
|
cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
|
|
|
|
break;
|
|
|
|
case PYX_TRANSPORT_INVALID_PARAMETER_LIST:
|
|
|
|
cmd->scsi_sense_reason = TCM_INVALID_PARAMETER_LIST;
|
|
|
|
break;
|
|
|
|
case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES:
|
|
|
|
if (!sc)
|
|
|
|
transport_new_cmd_failure(cmd);
|
|
|
|
/*
|
|
|
|
* Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES,
|
|
|
|
* we force this session to fall back to session
|
|
|
|
* recovery.
|
|
|
|
*/
|
|
|
|
CMD_TFO(cmd)->fall_back_to_erl0(cmd->se_sess);
|
|
|
|
CMD_TFO(cmd)->stop_session(cmd->se_sess, 0, 0);
|
|
|
|
|
|
|
|
goto check_stop;
|
|
|
|
case PYX_TRANSPORT_LU_COMM_FAILURE:
|
|
|
|
case PYX_TRANSPORT_ILLEGAL_REQUEST:
|
|
|
|
cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
|
|
|
|
break;
|
|
|
|
case PYX_TRANSPORT_UNKNOWN_MODE_PAGE:
|
|
|
|
cmd->scsi_sense_reason = TCM_UNKNOWN_MODE_PAGE;
|
|
|
|
break;
|
|
|
|
case PYX_TRANSPORT_WRITE_PROTECTED:
|
|
|
|
cmd->scsi_sense_reason = TCM_WRITE_PROTECTED;
|
|
|
|
break;
|
|
|
|
case PYX_TRANSPORT_RESERVATION_CONFLICT:
|
|
|
|
/*
|
|
|
|
* No SENSE Data payload for this case, set SCSI Status
|
|
|
|
* and queue the response to $FABRIC_MOD.
|
|
|
|
*
|
|
|
|
* Uses linux/include/scsi/scsi.h SAM status codes defs
|
|
|
|
*/
|
|
|
|
cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
|
|
|
|
/*
|
|
|
|
* For UA Interlock Code 11b, a RESERVATION CONFLICT will
|
|
|
|
* establish a UNIT ATTENTION with PREVIOUS RESERVATION
|
|
|
|
* CONFLICT STATUS.
|
|
|
|
*
|
|
|
|
* See spc4r17, section 7.4.6 Control Mode Page, Table 349
|
|
|
|
*/
|
|
|
|
if (SE_SESS(cmd) &&
|
|
|
|
DEV_ATTRIB(cmd->se_dev)->emulate_ua_intlck_ctrl == 2)
|
|
|
|
core_scsi3_ua_allocate(SE_SESS(cmd)->se_node_acl,
|
|
|
|
cmd->orig_fe_lun, 0x2C,
|
|
|
|
ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
|
|
|
|
|
|
|
|
CMD_TFO(cmd)->queue_status(cmd);
|
|
|
|
goto check_stop;
|
|
|
|
case PYX_TRANSPORT_USE_SENSE_REASON:
|
|
|
|
/*
|
|
|
|
* struct se_cmd->scsi_sense_reason already set
|
|
|
|
*/
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
printk(KERN_ERR "Unknown transport error for CDB 0x%02x: %d\n",
|
|
|
|
T_TASK(cmd)->t_task_cdb[0],
|
|
|
|
cmd->transport_error_status);
|
|
|
|
cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!sc)
|
|
|
|
transport_new_cmd_failure(cmd);
|
|
|
|
else
|
|
|
|
transport_send_check_condition_and_sense(cmd,
|
|
|
|
cmd->scsi_sense_reason, 0);
|
|
|
|
check_stop:
|
|
|
|
transport_lun_remove_cmd(cmd);
|
|
|
|
if (!(transport_cmd_check_stop_to_fabric(cmd)))
|
|
|
|
;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void transport_direct_request_timeout(struct se_cmd *cmd)
|
|
|
|
{
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
if (!(atomic_read(&T_TASK(cmd)->t_transport_timeout))) {
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (atomic_read(&T_TASK(cmd)->t_task_cdbs_timeout_left)) {
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
atomic_sub(atomic_read(&T_TASK(cmd)->t_transport_timeout),
|
|
|
|
&T_TASK(cmd)->t_se_count);
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void transport_generic_request_timeout(struct se_cmd *cmd)
|
|
|
|
{
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Reset T_TASK(cmd)->t_se_count to allow transport_generic_remove()
|
|
|
|
* to allow last call to free memory resources.
|
|
|
|
*/
|
|
|
|
spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
if (atomic_read(&T_TASK(cmd)->t_transport_timeout) > 1) {
|
|
|
|
int tmp = (atomic_read(&T_TASK(cmd)->t_transport_timeout) - 1);
|
|
|
|
|
|
|
|
atomic_sub(tmp, &T_TASK(cmd)->t_se_count);
|
|
|
|
}
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
|
|
|
|
transport_generic_remove(cmd, 0, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
transport_generic_allocate_buf(struct se_cmd *cmd, u32 data_length)
|
|
|
|
{
|
|
|
|
unsigned char *buf;
|
|
|
|
|
|
|
|
buf = kzalloc(data_length, GFP_KERNEL);
|
|
|
|
if (!(buf)) {
|
|
|
|
printk(KERN_ERR "Unable to allocate memory for buffer\n");
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
T_TASK(cmd)->t_tasks_se_num = 0;
|
|
|
|
T_TASK(cmd)->t_task_buf = buf;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline u32 transport_lba_21(unsigned char *cdb)
|
|
|
|
{
|
|
|
|
return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline u32 transport_lba_32(unsigned char *cdb)
|
|
|
|
{
|
|
|
|
return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline unsigned long long transport_lba_64(unsigned char *cdb)
|
|
|
|
{
|
|
|
|
unsigned int __v1, __v2;
|
|
|
|
|
|
|
|
__v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
|
|
|
|
__v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
|
|
|
|
|
|
|
|
return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
|
|
|
|
*/
|
|
|
|
static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
|
|
|
|
{
|
|
|
|
unsigned int __v1, __v2;
|
|
|
|
|
|
|
|
__v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
|
|
|
|
__v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
|
|
|
|
|
|
|
|
return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
|
|
|
|
{
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&T_TASK(se_cmd)->t_state_lock, flags);
|
|
|
|
se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
|
|
|
|
spin_unlock_irqrestore(&T_TASK(se_cmd)->t_state_lock, flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Called from interrupt context.
|
|
|
|
*/
|
|
|
|
static void transport_task_timeout_handler(unsigned long data)
|
|
|
|
{
|
|
|
|
struct se_task *task = (struct se_task *)data;
|
|
|
|
struct se_cmd *cmd = TASK_CMD(task);
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
DEBUG_TT("transport task timeout fired! task: %p cmd: %p\n", task, cmd);
|
|
|
|
|
|
|
|
spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
if (task->task_flags & TF_STOP) {
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
task->task_flags &= ~TF_RUNNING;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Determine if transport_complete_task() has already been called.
|
|
|
|
*/
|
|
|
|
if (!(atomic_read(&task->task_active))) {
|
|
|
|
DEBUG_TT("transport task: %p cmd: %p timeout task_active"
|
|
|
|
" == 0\n", task, cmd);
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
atomic_inc(&T_TASK(cmd)->t_se_count);
|
|
|
|
atomic_inc(&T_TASK(cmd)->t_transport_timeout);
|
|
|
|
T_TASK(cmd)->t_tasks_failed = 1;
|
|
|
|
|
|
|
|
atomic_set(&task->task_timeout, 1);
|
|
|
|
task->task_error_status = PYX_TRANSPORT_TASK_TIMEOUT;
|
|
|
|
task->task_scsi_status = 1;
|
|
|
|
|
|
|
|
if (atomic_read(&task->task_stop)) {
|
|
|
|
DEBUG_TT("transport task: %p cmd: %p timeout task_stop"
|
|
|
|
" == 1\n", task, cmd);
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
complete(&task->task_stop_comp);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!(atomic_dec_and_test(&T_TASK(cmd)->t_task_cdbs_left))) {
|
|
|
|
DEBUG_TT("transport task: %p cmd: %p timeout non zero"
|
|
|
|
" t_task_cdbs_left\n", task, cmd);
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
DEBUG_TT("transport task: %p cmd: %p timeout ZERO t_task_cdbs_left\n",
|
|
|
|
task, cmd);
|
|
|
|
|
|
|
|
cmd->t_state = TRANSPORT_COMPLETE_FAILURE;
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
|
|
|
|
transport_add_cmd_to_queue(cmd, TRANSPORT_COMPLETE_FAILURE);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Called with T_TASK(cmd)->t_state_lock held.
|
|
|
|
*/
|
|
|
|
static void transport_start_task_timer(struct se_task *task)
|
|
|
|
{
|
|
|
|
struct se_device *dev = task->se_dev;
|
|
|
|
int timeout;
|
|
|
|
|
|
|
|
if (task->task_flags & TF_RUNNING)
|
|
|
|
return;
|
|
|
|
/*
|
|
|
|
* If the task_timeout is disabled, exit now.
|
|
|
|
*/
|
|
|
|
timeout = DEV_ATTRIB(dev)->task_timeout;
|
|
|
|
if (!(timeout))
|
|
|
|
return;
|
|
|
|
|
|
|
|
init_timer(&task->task_timer);
|
|
|
|
task->task_timer.expires = (get_jiffies_64() + timeout * HZ);
|
|
|
|
task->task_timer.data = (unsigned long) task;
|
|
|
|
task->task_timer.function = transport_task_timeout_handler;
|
|
|
|
|
|
|
|
task->task_flags |= TF_RUNNING;
|
|
|
|
add_timer(&task->task_timer);
|
|
|
|
#if 0
|
|
|
|
printk(KERN_INFO "Starting task timer for cmd: %p task: %p seconds:"
|
|
|
|
" %d\n", task->task_se_cmd, task, timeout);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Called with spin_lock_irq(&T_TASK(cmd)->t_state_lock) held.
|
|
|
|
*/
|
|
|
|
void __transport_stop_task_timer(struct se_task *task, unsigned long *flags)
|
|
|
|
{
|
|
|
|
struct se_cmd *cmd = TASK_CMD(task);
|
|
|
|
|
|
|
|
if (!(task->task_flags & TF_RUNNING))
|
|
|
|
return;
|
|
|
|
|
|
|
|
task->task_flags |= TF_STOP;
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, *flags);
|
|
|
|
|
|
|
|
del_timer_sync(&task->task_timer);
|
|
|
|
|
|
|
|
spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, *flags);
|
|
|
|
task->task_flags &= ~TF_RUNNING;
|
|
|
|
task->task_flags &= ~TF_STOP;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void transport_stop_all_task_timers(struct se_cmd *cmd)
|
|
|
|
{
|
|
|
|
struct se_task *task = NULL, *task_tmp;
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
list_for_each_entry_safe(task, task_tmp,
|
|
|
|
&T_TASK(cmd)->t_task_list, t_list)
|
|
|
|
__transport_stop_task_timer(task, &flags);
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int transport_tcq_window_closed(struct se_device *dev)
|
|
|
|
{
|
|
|
|
if (dev->dev_tcq_window_closed++ <
|
|
|
|
PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD) {
|
|
|
|
msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT);
|
|
|
|
} else
|
|
|
|
msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG);
|
|
|
|
|
|
|
|
wake_up_interruptible(&dev->dev_queue_obj->thread_wq);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Called from Fabric Module context from transport_execute_tasks()
|
|
|
|
*
|
|
|
|
* The return of this function determins if the tasks from struct se_cmd
|
|
|
|
* get added to the execution queue in transport_execute_tasks(),
|
|
|
|
* or are added to the delayed or ordered lists here.
|
|
|
|
*/
|
|
|
|
static inline int transport_execute_task_attr(struct se_cmd *cmd)
|
|
|
|
{
|
|
|
|
if (SE_DEV(cmd)->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
|
|
|
|
return 1;
|
|
|
|
/*
|
2011-03-31 01:57:33 +00:00
|
|
|
* Check for the existence of HEAD_OF_QUEUE, and if true return 1
|
[SCSI] target: Add LIO target core v4.0.0-rc6
LIO target is a full featured in-kernel target framework with the
following feature set:
High-performance, non-blocking, multithreaded architecture with SIMD
support.
Advanced SCSI feature set:
* Persistent Reservations (PRs)
* Asymmetric Logical Unit Assignment (ALUA)
* Protocol and intra-nexus multiplexing, load-balancing and failover (MC/S)
* Full Error Recovery (ERL=0,1,2)
* Active/active task migration and session continuation (ERL=2)
* Thin LUN provisioning (UNMAP and WRITE_SAMExx)
Multiprotocol target plugins
Storage media independence:
* Virtualization of all storage media; transparent mapping of IO to LUNs
* No hard limits on number of LUNs per Target; maximum LUN size ~750 TB
* Backstores: SATA, SAS, SCSI, BluRay, DVD, FLASH, USB, ramdisk, etc.
Standards compliance:
* Full compliance with IETF (RFC 3720)
* Full implementation of SPC-4 PRs and ALUA
Significant code cleanups done by Christoph Hellwig.
[jejb: fix up for new block bdev exclusive interface. Minor fixes from
Randy Dunlap and Dan Carpenter.]
Signed-off-by: Nicholas A. Bellinger <nab@linux-iscsi.org>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-12-17 19:11:26 +00:00
|
|
|
* to allow the passed struct se_cmd list of tasks to the front of the list.
|
|
|
|
*/
|
2011-05-20 03:19:14 +00:00
|
|
|
if (cmd->sam_task_attr == MSG_HEAD_TAG) {
|
[SCSI] target: Add LIO target core v4.0.0-rc6
LIO target is a full featured in-kernel target framework with the
following feature set:
High-performance, non-blocking, multithreaded architecture with SIMD
support.
Advanced SCSI feature set:
* Persistent Reservations (PRs)
* Asymmetric Logical Unit Assignment (ALUA)
* Protocol and intra-nexus multiplexing, load-balancing and failover (MC/S)
* Full Error Recovery (ERL=0,1,2)
* Active/active task migration and session continuation (ERL=2)
* Thin LUN provisioning (UNMAP and WRITE_SAMExx)
Multiprotocol target plugins
Storage media independence:
* Virtualization of all storage media; transparent mapping of IO to LUNs
* No hard limits on number of LUNs per Target; maximum LUN size ~750 TB
* Backstores: SATA, SAS, SCSI, BluRay, DVD, FLASH, USB, ramdisk, etc.
Standards compliance:
* Full compliance with IETF (RFC 3720)
* Full implementation of SPC-4 PRs and ALUA
Significant code cleanups done by Christoph Hellwig.
[jejb: fix up for new block bdev exclusive interface. Minor fixes from
Randy Dunlap and Dan Carpenter.]
Signed-off-by: Nicholas A. Bellinger <nab@linux-iscsi.org>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-12-17 19:11:26 +00:00
|
|
|
atomic_inc(&SE_DEV(cmd)->dev_hoq_count);
|
|
|
|
smp_mb__after_atomic_inc();
|
|
|
|
DEBUG_STA("Added HEAD_OF_QUEUE for CDB:"
|
|
|
|
" 0x%02x, se_ordered_id: %u\n",
|
|
|
|
T_TASK(cmd)->t_task_cdb[0],
|
|
|
|
cmd->se_ordered_id);
|
|
|
|
return 1;
|
2011-05-20 03:19:14 +00:00
|
|
|
} else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
|
[SCSI] target: Add LIO target core v4.0.0-rc6
LIO target is a full featured in-kernel target framework with the
following feature set:
High-performance, non-blocking, multithreaded architecture with SIMD
support.
Advanced SCSI feature set:
* Persistent Reservations (PRs)
* Asymmetric Logical Unit Assignment (ALUA)
* Protocol and intra-nexus multiplexing, load-balancing and failover (MC/S)
* Full Error Recovery (ERL=0,1,2)
* Active/active task migration and session continuation (ERL=2)
* Thin LUN provisioning (UNMAP and WRITE_SAMExx)
Multiprotocol target plugins
Storage media independence:
* Virtualization of all storage media; transparent mapping of IO to LUNs
* No hard limits on number of LUNs per Target; maximum LUN size ~750 TB
* Backstores: SATA, SAS, SCSI, BluRay, DVD, FLASH, USB, ramdisk, etc.
Standards compliance:
* Full compliance with IETF (RFC 3720)
* Full implementation of SPC-4 PRs and ALUA
Significant code cleanups done by Christoph Hellwig.
[jejb: fix up for new block bdev exclusive interface. Minor fixes from
Randy Dunlap and Dan Carpenter.]
Signed-off-by: Nicholas A. Bellinger <nab@linux-iscsi.org>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-12-17 19:11:26 +00:00
|
|
|
spin_lock(&SE_DEV(cmd)->ordered_cmd_lock);
|
|
|
|
list_add_tail(&cmd->se_ordered_list,
|
|
|
|
&SE_DEV(cmd)->ordered_cmd_list);
|
|
|
|
spin_unlock(&SE_DEV(cmd)->ordered_cmd_lock);
|
|
|
|
|
|
|
|
atomic_inc(&SE_DEV(cmd)->dev_ordered_sync);
|
|
|
|
smp_mb__after_atomic_inc();
|
|
|
|
|
|
|
|
DEBUG_STA("Added ORDERED for CDB: 0x%02x to ordered"
|
|
|
|
" list, se_ordered_id: %u\n",
|
|
|
|
T_TASK(cmd)->t_task_cdb[0],
|
|
|
|
cmd->se_ordered_id);
|
|
|
|
/*
|
|
|
|
* Add ORDERED command to tail of execution queue if
|
|
|
|
* no other older commands exist that need to be
|
|
|
|
* completed first.
|
|
|
|
*/
|
|
|
|
if (!(atomic_read(&SE_DEV(cmd)->simple_cmds)))
|
|
|
|
return 1;
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* For SIMPLE and UNTAGGED Task Attribute commands
|
|
|
|
*/
|
|
|
|
atomic_inc(&SE_DEV(cmd)->simple_cmds);
|
|
|
|
smp_mb__after_atomic_inc();
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Otherwise if one or more outstanding ORDERED task attribute exist,
|
|
|
|
* add the dormant task(s) built for the passed struct se_cmd to the
|
|
|
|
* execution queue and become in Active state for this struct se_device.
|
|
|
|
*/
|
|
|
|
if (atomic_read(&SE_DEV(cmd)->dev_ordered_sync) != 0) {
|
|
|
|
/*
|
|
|
|
* Otherwise, add cmd w/ tasks to delayed cmd queue that
|
2011-03-31 01:57:33 +00:00
|
|
|
* will be drained upon completion of HEAD_OF_QUEUE task.
|
[SCSI] target: Add LIO target core v4.0.0-rc6
LIO target is a full featured in-kernel target framework with the
following feature set:
High-performance, non-blocking, multithreaded architecture with SIMD
support.
Advanced SCSI feature set:
* Persistent Reservations (PRs)
* Asymmetric Logical Unit Assignment (ALUA)
* Protocol and intra-nexus multiplexing, load-balancing and failover (MC/S)
* Full Error Recovery (ERL=0,1,2)
* Active/active task migration and session continuation (ERL=2)
* Thin LUN provisioning (UNMAP and WRITE_SAMExx)
Multiprotocol target plugins
Storage media independence:
* Virtualization of all storage media; transparent mapping of IO to LUNs
* No hard limits on number of LUNs per Target; maximum LUN size ~750 TB
* Backstores: SATA, SAS, SCSI, BluRay, DVD, FLASH, USB, ramdisk, etc.
Standards compliance:
* Full compliance with IETF (RFC 3720)
* Full implementation of SPC-4 PRs and ALUA
Significant code cleanups done by Christoph Hellwig.
[jejb: fix up for new block bdev exclusive interface. Minor fixes from
Randy Dunlap and Dan Carpenter.]
Signed-off-by: Nicholas A. Bellinger <nab@linux-iscsi.org>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-12-17 19:11:26 +00:00
|
|
|
*/
|
|
|
|
spin_lock(&SE_DEV(cmd)->delayed_cmd_lock);
|
|
|
|
cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
|
|
|
|
list_add_tail(&cmd->se_delayed_list,
|
|
|
|
&SE_DEV(cmd)->delayed_cmd_list);
|
|
|
|
spin_unlock(&SE_DEV(cmd)->delayed_cmd_lock);
|
|
|
|
|
|
|
|
DEBUG_STA("Added CDB: 0x%02x Task Attr: 0x%02x to"
|
|
|
|
" delayed CMD list, se_ordered_id: %u\n",
|
|
|
|
T_TASK(cmd)->t_task_cdb[0], cmd->sam_task_attr,
|
|
|
|
cmd->se_ordered_id);
|
|
|
|
/*
|
|
|
|
* Return zero to let transport_execute_tasks() know
|
|
|
|
* not to add the delayed tasks to the execution list.
|
|
|
|
*/
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Otherwise, no ORDERED task attributes exist..
|
|
|
|
*/
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Called from fabric module context in transport_generic_new_cmd() and
|
|
|
|
* transport_generic_process_write()
|
|
|
|
*/
|
|
|
|
static int transport_execute_tasks(struct se_cmd *cmd)
|
|
|
|
{
|
|
|
|
int add_tasks;
|
|
|
|
|
|
|
|
if (!(cmd->se_cmd_flags & SCF_SE_DISABLE_ONLINE_CHECK)) {
|
|
|
|
if (se_dev_check_online(cmd->se_orig_obj_ptr) != 0) {
|
|
|
|
cmd->transport_error_status =
|
|
|
|
PYX_TRANSPORT_LU_COMM_FAILURE;
|
|
|
|
transport_generic_request_failure(cmd, NULL, 0, 1);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Call transport_cmd_check_stop() to see if a fabric exception
|
2011-03-31 01:57:33 +00:00
|
|
|
* has occurred that prevents execution.
|
[SCSI] target: Add LIO target core v4.0.0-rc6
LIO target is a full featured in-kernel target framework with the
following feature set:
High-performance, non-blocking, multithreaded architecture with SIMD
support.
Advanced SCSI feature set:
* Persistent Reservations (PRs)
* Asymmetric Logical Unit Assignment (ALUA)
* Protocol and intra-nexus multiplexing, load-balancing and failover (MC/S)
* Full Error Recovery (ERL=0,1,2)
* Active/active task migration and session continuation (ERL=2)
* Thin LUN provisioning (UNMAP and WRITE_SAMExx)
Multiprotocol target plugins
Storage media independence:
* Virtualization of all storage media; transparent mapping of IO to LUNs
* No hard limits on number of LUNs per Target; maximum LUN size ~750 TB
* Backstores: SATA, SAS, SCSI, BluRay, DVD, FLASH, USB, ramdisk, etc.
Standards compliance:
* Full compliance with IETF (RFC 3720)
* Full implementation of SPC-4 PRs and ALUA
Significant code cleanups done by Christoph Hellwig.
[jejb: fix up for new block bdev exclusive interface. Minor fixes from
Randy Dunlap and Dan Carpenter.]
Signed-off-by: Nicholas A. Bellinger <nab@linux-iscsi.org>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-12-17 19:11:26 +00:00
|
|
|
*/
|
|
|
|
if (!(transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING))) {
|
|
|
|
/*
|
|
|
|
* Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
|
|
|
|
* attribute for the tasks of the received struct se_cmd CDB
|
|
|
|
*/
|
|
|
|
add_tasks = transport_execute_task_attr(cmd);
|
|
|
|
if (add_tasks == 0)
|
|
|
|
goto execute_tasks;
|
|
|
|
/*
|
|
|
|
* This calls transport_add_tasks_from_cmd() to handle
|
|
|
|
* HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
|
|
|
|
* (if enabled) in __transport_add_task_to_execute_queue() and
|
|
|
|
* transport_add_task_check_sam_attr().
|
|
|
|
*/
|
|
|
|
transport_add_tasks_from_cmd(cmd);
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Kick the execution queue for the cmd associated struct se_device
|
|
|
|
* storage object.
|
|
|
|
*/
|
|
|
|
execute_tasks:
|
|
|
|
__transport_execute_tasks(SE_DEV(cmd));
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Called to check struct se_device tcq depth window, and once open pull struct se_task
|
|
|
|
* from struct se_device->execute_task_list and
|
|
|
|
*
|
|
|
|
* Called from transport_processing_thread()
|
|
|
|
*/
|
|
|
|
static int __transport_execute_tasks(struct se_device *dev)
|
|
|
|
{
|
|
|
|
int error;
|
|
|
|
struct se_cmd *cmd = NULL;
|
|
|
|
struct se_task *task;
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Check if there is enough room in the device and HBA queue to send
|
|
|
|
* struct se_transport_task's to the selected transport.
|
|
|
|
*/
|
|
|
|
check_depth:
|
|
|
|
spin_lock_irqsave(&SE_HBA(dev)->hba_queue_lock, flags);
|
|
|
|
if (!(atomic_read(&dev->depth_left)) ||
|
|
|
|
!(atomic_read(&SE_HBA(dev)->left_queue_depth))) {
|
|
|
|
spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags);
|
|
|
|
return transport_tcq_window_closed(dev);
|
|
|
|
}
|
|
|
|
dev->dev_tcq_window_closed = 0;
|
|
|
|
|
|
|
|
spin_lock(&dev->execute_task_lock);
|
|
|
|
task = transport_get_task_from_execute_queue(dev);
|
|
|
|
spin_unlock(&dev->execute_task_lock);
|
|
|
|
|
|
|
|
if (!task) {
|
|
|
|
spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
atomic_dec(&dev->depth_left);
|
|
|
|
atomic_dec(&SE_HBA(dev)->left_queue_depth);
|
|
|
|
spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags);
|
|
|
|
|
|
|
|
cmd = TASK_CMD(task);
|
|
|
|
|
|
|
|
spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
atomic_set(&task->task_active, 1);
|
|
|
|
atomic_set(&task->task_sent, 1);
|
|
|
|
atomic_inc(&T_TASK(cmd)->t_task_cdbs_sent);
|
|
|
|
|
|
|
|
if (atomic_read(&T_TASK(cmd)->t_task_cdbs_sent) ==
|
|
|
|
T_TASK(cmd)->t_task_cdbs)
|
|
|
|
atomic_set(&cmd->transport_sent, 1);
|
|
|
|
|
|
|
|
transport_start_task_timer(task);
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
/*
|
|
|
|
* The struct se_cmd->transport_emulate_cdb() function pointer is used
|
|
|
|
* to grab REPORT_LUNS CDBs before they hit the
|
|
|
|
* struct se_subsystem_api->do_task() caller below.
|
|
|
|
*/
|
|
|
|
if (cmd->transport_emulate_cdb) {
|
|
|
|
error = cmd->transport_emulate_cdb(cmd);
|
|
|
|
if (error != 0) {
|
|
|
|
cmd->transport_error_status = error;
|
|
|
|
atomic_set(&task->task_active, 0);
|
|
|
|
atomic_set(&cmd->transport_sent, 0);
|
|
|
|
transport_stop_tasks_for_cmd(cmd);
|
|
|
|
transport_generic_request_failure(cmd, dev, 0, 1);
|
|
|
|
goto check_depth;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Handle the successful completion for transport_emulate_cdb()
|
|
|
|
* for synchronous operation, following SCF_EMULATE_CDB_ASYNC
|
|
|
|
* Otherwise the caller is expected to complete the task with
|
|
|
|
* proper status.
|
|
|
|
*/
|
|
|
|
if (!(cmd->se_cmd_flags & SCF_EMULATE_CDB_ASYNC)) {
|
|
|
|
cmd->scsi_status = SAM_STAT_GOOD;
|
|
|
|
task->task_scsi_status = GOOD;
|
|
|
|
transport_complete_task(task, 1);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* Currently for all virtual TCM plugins including IBLOCK, FILEIO and
|
|
|
|
* RAMDISK we use the internal transport_emulate_control_cdb() logic
|
|
|
|
* with struct se_subsystem_api callers for the primary SPC-3 TYPE_DISK
|
|
|
|
* LUN emulation code.
|
|
|
|
*
|
|
|
|
* For TCM/pSCSI and all other SCF_SCSI_DATA_SG_IO_CDB I/O tasks we
|
|
|
|
* call ->do_task() directly and let the underlying TCM subsystem plugin
|
|
|
|
* code handle the CDB emulation.
|
|
|
|
*/
|
|
|
|
if ((TRANSPORT(dev)->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) &&
|
|
|
|
(!(TASK_CMD(task)->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
|
|
|
|
error = transport_emulate_control_cdb(task);
|
|
|
|
else
|
|
|
|
error = TRANSPORT(dev)->do_task(task);
|
|
|
|
|
|
|
|
if (error != 0) {
|
|
|
|
cmd->transport_error_status = error;
|
|
|
|
atomic_set(&task->task_active, 0);
|
|
|
|
atomic_set(&cmd->transport_sent, 0);
|
|
|
|
transport_stop_tasks_for_cmd(cmd);
|
|
|
|
transport_generic_request_failure(cmd, dev, 0, 1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
goto check_depth;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
void transport_new_cmd_failure(struct se_cmd *se_cmd)
|
|
|
|
{
|
|
|
|
unsigned long flags;
|
|
|
|
/*
|
|
|
|
* Any unsolicited data will get dumped for failed command inside of
|
|
|
|
* the fabric plugin
|
|
|
|
*/
|
|
|
|
spin_lock_irqsave(&T_TASK(se_cmd)->t_state_lock, flags);
|
|
|
|
se_cmd->se_cmd_flags |= SCF_SE_CMD_FAILED;
|
|
|
|
se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
|
|
|
|
spin_unlock_irqrestore(&T_TASK(se_cmd)->t_state_lock, flags);
|
|
|
|
|
|
|
|
CMD_TFO(se_cmd)->new_cmd_failure(se_cmd);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void transport_nop_wait_for_tasks(struct se_cmd *, int, int);
|
|
|
|
|
|
|
|
static inline u32 transport_get_sectors_6(
|
|
|
|
unsigned char *cdb,
|
|
|
|
struct se_cmd *cmd,
|
|
|
|
int *ret)
|
|
|
|
{
|
|
|
|
struct se_device *dev = SE_LUN(cmd)->lun_se_dev;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Assume TYPE_DISK for non struct se_device objects.
|
|
|
|
* Use 8-bit sector value.
|
|
|
|
*/
|
|
|
|
if (!dev)
|
|
|
|
goto type_disk;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Use 24-bit allocation length for TYPE_TAPE.
|
|
|
|
*/
|
|
|
|
if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE)
|
|
|
|
return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Everything else assume TYPE_DISK Sector CDB location.
|
|
|
|
* Use 8-bit sector value.
|
|
|
|
*/
|
|
|
|
type_disk:
|
|
|
|
return (u32)cdb[4];
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline u32 transport_get_sectors_10(
|
|
|
|
unsigned char *cdb,
|
|
|
|
struct se_cmd *cmd,
|
|
|
|
int *ret)
|
|
|
|
{
|
|
|
|
struct se_device *dev = SE_LUN(cmd)->lun_se_dev;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Assume TYPE_DISK for non struct se_device objects.
|
|
|
|
* Use 16-bit sector value.
|
|
|
|
*/
|
|
|
|
if (!dev)
|
|
|
|
goto type_disk;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* XXX_10 is not defined in SSC, throw an exception
|
|
|
|
*/
|
|
|
|
if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE) {
|
|
|
|
*ret = -1;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Everything else assume TYPE_DISK Sector CDB location.
|
|
|
|
* Use 16-bit sector value.
|
|
|
|
*/
|
|
|
|
type_disk:
|
|
|
|
return (u32)(cdb[7] << 8) + cdb[8];
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline u32 transport_get_sectors_12(
|
|
|
|
unsigned char *cdb,
|
|
|
|
struct se_cmd *cmd,
|
|
|
|
int *ret)
|
|
|
|
{
|
|
|
|
struct se_device *dev = SE_LUN(cmd)->lun_se_dev;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Assume TYPE_DISK for non struct se_device objects.
|
|
|
|
* Use 32-bit sector value.
|
|
|
|
*/
|
|
|
|
if (!dev)
|
|
|
|
goto type_disk;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* XXX_12 is not defined in SSC, throw an exception
|
|
|
|
*/
|
|
|
|
if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE) {
|
|
|
|
*ret = -1;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Everything else assume TYPE_DISK Sector CDB location.
|
|
|
|
* Use 32-bit sector value.
|
|
|
|
*/
|
|
|
|
type_disk:
|
|
|
|
return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline u32 transport_get_sectors_16(
|
|
|
|
unsigned char *cdb,
|
|
|
|
struct se_cmd *cmd,
|
|
|
|
int *ret)
|
|
|
|
{
|
|
|
|
struct se_device *dev = SE_LUN(cmd)->lun_se_dev;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Assume TYPE_DISK for non struct se_device objects.
|
|
|
|
* Use 32-bit sector value.
|
|
|
|
*/
|
|
|
|
if (!dev)
|
|
|
|
goto type_disk;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Use 24-bit allocation length for TYPE_TAPE.
|
|
|
|
*/
|
|
|
|
if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE)
|
|
|
|
return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
|
|
|
|
|
|
|
|
type_disk:
|
|
|
|
return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
|
|
|
|
(cdb[12] << 8) + cdb[13];
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
|
|
|
|
*/
|
|
|
|
static inline u32 transport_get_sectors_32(
|
|
|
|
unsigned char *cdb,
|
|
|
|
struct se_cmd *cmd,
|
|
|
|
int *ret)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* Assume TYPE_DISK for non struct se_device objects.
|
|
|
|
* Use 32-bit sector value.
|
|
|
|
*/
|
|
|
|
return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
|
|
|
|
(cdb[30] << 8) + cdb[31];
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline u32 transport_get_size(
|
|
|
|
u32 sectors,
|
|
|
|
unsigned char *cdb,
|
|
|
|
struct se_cmd *cmd)
|
|
|
|
{
|
|
|
|
struct se_device *dev = SE_DEV(cmd);
|
|
|
|
|
|
|
|
if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE) {
|
|
|
|
if (cdb[1] & 1) { /* sectors */
|
|
|
|
return DEV_ATTRIB(dev)->block_size * sectors;
|
|
|
|
} else /* bytes */
|
|
|
|
return sectors;
|
|
|
|
}
|
|
|
|
#if 0
|
|
|
|
printk(KERN_INFO "Returning block_size: %u, sectors: %u == %u for"
|
|
|
|
" %s object\n", DEV_ATTRIB(dev)->block_size, sectors,
|
|
|
|
DEV_ATTRIB(dev)->block_size * sectors,
|
|
|
|
TRANSPORT(dev)->name);
|
|
|
|
#endif
|
|
|
|
return DEV_ATTRIB(dev)->block_size * sectors;
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned char transport_asciihex_to_binaryhex(unsigned char val[2])
|
|
|
|
{
|
|
|
|
unsigned char result = 0;
|
|
|
|
/*
|
|
|
|
* MSB
|
|
|
|
*/
|
|
|
|
if ((val[0] >= 'a') && (val[0] <= 'f'))
|
|
|
|
result = ((val[0] - 'a' + 10) & 0xf) << 4;
|
|
|
|
else
|
|
|
|
if ((val[0] >= 'A') && (val[0] <= 'F'))
|
|
|
|
result = ((val[0] - 'A' + 10) & 0xf) << 4;
|
|
|
|
else /* digit */
|
|
|
|
result = ((val[0] - '0') & 0xf) << 4;
|
|
|
|
/*
|
|
|
|
* LSB
|
|
|
|
*/
|
|
|
|
if ((val[1] >= 'a') && (val[1] <= 'f'))
|
|
|
|
result |= ((val[1] - 'a' + 10) & 0xf);
|
|
|
|
else
|
|
|
|
if ((val[1] >= 'A') && (val[1] <= 'F'))
|
|
|
|
result |= ((val[1] - 'A' + 10) & 0xf);
|
|
|
|
else /* digit */
|
|
|
|
result |= ((val[1] - '0') & 0xf);
|
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(transport_asciihex_to_binaryhex);
|
|
|
|
|
|
|
|
static void transport_xor_callback(struct se_cmd *cmd)
|
|
|
|
{
|
|
|
|
unsigned char *buf, *addr;
|
|
|
|
struct se_mem *se_mem;
|
|
|
|
unsigned int offset;
|
|
|
|
int i;
|
|
|
|
/*
|
|
|
|
* From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
|
|
|
|
*
|
|
|
|
* 1) read the specified logical block(s);
|
|
|
|
* 2) transfer logical blocks from the data-out buffer;
|
|
|
|
* 3) XOR the logical blocks transferred from the data-out buffer with
|
|
|
|
* the logical blocks read, storing the resulting XOR data in a buffer;
|
|
|
|
* 4) if the DISABLE WRITE bit is set to zero, then write the logical
|
|
|
|
* blocks transferred from the data-out buffer; and
|
|
|
|
* 5) transfer the resulting XOR data to the data-in buffer.
|
|
|
|
*/
|
|
|
|
buf = kmalloc(cmd->data_length, GFP_KERNEL);
|
|
|
|
if (!(buf)) {
|
|
|
|
printk(KERN_ERR "Unable to allocate xor_callback buf\n");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Copy the scatterlist WRITE buffer located at T_TASK(cmd)->t_mem_list
|
|
|
|
* into the locally allocated *buf
|
|
|
|
*/
|
|
|
|
transport_memcpy_se_mem_read_contig(cmd, buf, T_TASK(cmd)->t_mem_list);
|
|
|
|
/*
|
|
|
|
* Now perform the XOR against the BIDI read memory located at
|
|
|
|
* T_TASK(cmd)->t_mem_bidi_list
|
|
|
|
*/
|
|
|
|
|
|
|
|
offset = 0;
|
|
|
|
list_for_each_entry(se_mem, T_TASK(cmd)->t_mem_bidi_list, se_list) {
|
|
|
|
addr = (unsigned char *)kmap_atomic(se_mem->se_page, KM_USER0);
|
|
|
|
if (!(addr))
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
for (i = 0; i < se_mem->se_len; i++)
|
|
|
|
*(addr + se_mem->se_off + i) ^= *(buf + offset + i);
|
|
|
|
|
|
|
|
offset += se_mem->se_len;
|
|
|
|
kunmap_atomic(addr, KM_USER0);
|
|
|
|
}
|
|
|
|
out:
|
|
|
|
kfree(buf);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
|
|
|
|
*/
|
|
|
|
static int transport_get_sense_data(struct se_cmd *cmd)
|
|
|
|
{
|
|
|
|
unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
|
|
|
|
struct se_device *dev;
|
|
|
|
struct se_task *task = NULL, *task_tmp;
|
|
|
|
unsigned long flags;
|
|
|
|
u32 offset = 0;
|
|
|
|
|
|
|
|
if (!SE_LUN(cmd)) {
|
|
|
|
printk(KERN_ERR "SE_LUN(cmd) is NULL\n");
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
list_for_each_entry_safe(task, task_tmp,
|
|
|
|
&T_TASK(cmd)->t_task_list, t_list) {
|
|
|
|
|
|
|
|
if (!task->task_sense)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
dev = task->se_dev;
|
|
|
|
if (!(dev))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (!TRANSPORT(dev)->get_sense_buffer) {
|
|
|
|
printk(KERN_ERR "TRANSPORT(dev)->get_sense_buffer"
|
|
|
|
" is NULL\n");
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
sense_buffer = TRANSPORT(dev)->get_sense_buffer(task);
|
|
|
|
if (!(sense_buffer)) {
|
|
|
|
printk(KERN_ERR "ITT[0x%08x]_TASK[%d]: Unable to locate"
|
|
|
|
" sense buffer for task with sense\n",
|
|
|
|
CMD_TFO(cmd)->get_task_tag(cmd), task->task_no);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
|
|
|
|
offset = CMD_TFO(cmd)->set_fabric_sense_len(cmd,
|
|
|
|
TRANSPORT_SENSE_BUFFER);
|
|
|
|
|
|
|
|
memcpy((void *)&buffer[offset], (void *)sense_buffer,
|
|
|
|
TRANSPORT_SENSE_BUFFER);
|
|
|
|
cmd->scsi_status = task->task_scsi_status;
|
|
|
|
/* Automatically padded */
|
|
|
|
cmd->scsi_sense_length =
|
|
|
|
(TRANSPORT_SENSE_BUFFER + offset);
|
|
|
|
|
|
|
|
printk(KERN_INFO "HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
|
|
|
|
" and sense\n",
|
|
|
|
dev->se_hba->hba_id, TRANSPORT(dev)->name,
|
|
|
|
cmd->scsi_status);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int transport_allocate_resources(struct se_cmd *cmd)
|
|
|
|
{
|
|
|
|
u32 length = cmd->data_length;
|
|
|
|
|
|
|
|
if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
|
|
|
|
(cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB))
|
|
|
|
return transport_generic_get_mem(cmd, length, PAGE_SIZE);
|
|
|
|
else if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_NONSG_IO_CDB)
|
|
|
|
return transport_generic_allocate_buf(cmd, length);
|
|
|
|
else
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
transport_handle_reservation_conflict(struct se_cmd *cmd)
|
|
|
|
{
|
|
|
|
cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
|
|
|
|
cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
|
|
|
|
cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
|
|
|
|
cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
|
|
|
|
/*
|
|
|
|
* For UA Interlock Code 11b, a RESERVATION CONFLICT will
|
|
|
|
* establish a UNIT ATTENTION with PREVIOUS RESERVATION
|
|
|
|
* CONFLICT STATUS.
|
|
|
|
*
|
|
|
|
* See spc4r17, section 7.4.6 Control Mode Page, Table 349
|
|
|
|
*/
|
|
|
|
if (SE_SESS(cmd) &&
|
|
|
|
DEV_ATTRIB(cmd->se_dev)->emulate_ua_intlck_ctrl == 2)
|
|
|
|
core_scsi3_ua_allocate(SE_SESS(cmd)->se_node_acl,
|
|
|
|
cmd->orig_fe_lun, 0x2C,
|
|
|
|
ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
|
|
|
|
return -2;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* transport_generic_cmd_sequencer():
|
|
|
|
*
|
|
|
|
* Generic Command Sequencer that should work for most DAS transport
|
|
|
|
* drivers.
|
|
|
|
*
|
|
|
|
* Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
|
|
|
|
* RX Thread.
|
|
|
|
*
|
|
|
|
* FIXME: Need to support other SCSI OPCODES where as well.
|
|
|
|
*/
|
|
|
|
static int transport_generic_cmd_sequencer(
|
|
|
|
struct se_cmd *cmd,
|
|
|
|
unsigned char *cdb)
|
|
|
|
{
|
|
|
|
struct se_device *dev = SE_DEV(cmd);
|
|
|
|
struct se_subsystem_dev *su_dev = dev->se_sub_dev;
|
|
|
|
int ret = 0, sector_ret = 0, passthrough;
|
|
|
|
u32 sectors = 0, size = 0, pr_reg_type = 0;
|
|
|
|
u16 service_action;
|
|
|
|
u8 alua_ascq = 0;
|
|
|
|
/*
|
|
|
|
* Check for an existing UNIT ATTENTION condition
|
|
|
|
*/
|
|
|
|
if (core_scsi3_ua_check(cmd, cdb) < 0) {
|
|
|
|
cmd->transport_wait_for_tasks =
|
|
|
|
&transport_nop_wait_for_tasks;
|
|
|
|
cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
|
|
|
|
cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
|
|
|
|
return -2;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Check status of Asymmetric Logical Unit Assignment port
|
|
|
|
*/
|
|
|
|
ret = T10_ALUA(su_dev)->alua_state_check(cmd, cdb, &alua_ascq);
|
|
|
|
if (ret != 0) {
|
|
|
|
cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
|
|
|
|
/*
|
2011-03-31 01:57:33 +00:00
|
|
|
* Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
|
[SCSI] target: Add LIO target core v4.0.0-rc6
LIO target is a full featured in-kernel target framework with the
following feature set:
High-performance, non-blocking, multithreaded architecture with SIMD
support.
Advanced SCSI feature set:
* Persistent Reservations (PRs)
* Asymmetric Logical Unit Assignment (ALUA)
* Protocol and intra-nexus multiplexing, load-balancing and failover (MC/S)
* Full Error Recovery (ERL=0,1,2)
* Active/active task migration and session continuation (ERL=2)
* Thin LUN provisioning (UNMAP and WRITE_SAMExx)
Multiprotocol target plugins
Storage media independence:
* Virtualization of all storage media; transparent mapping of IO to LUNs
* No hard limits on number of LUNs per Target; maximum LUN size ~750 TB
* Backstores: SATA, SAS, SCSI, BluRay, DVD, FLASH, USB, ramdisk, etc.
Standards compliance:
* Full compliance with IETF (RFC 3720)
* Full implementation of SPC-4 PRs and ALUA
Significant code cleanups done by Christoph Hellwig.
[jejb: fix up for new block bdev exclusive interface. Minor fixes from
Randy Dunlap and Dan Carpenter.]
Signed-off-by: Nicholas A. Bellinger <nab@linux-iscsi.org>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-12-17 19:11:26 +00:00
|
|
|
* The ALUA additional sense code qualifier (ASCQ) is determined
|
|
|
|
* by the ALUA primary or secondary access state..
|
|
|
|
*/
|
|
|
|
if (ret > 0) {
|
|
|
|
#if 0
|
|
|
|
printk(KERN_INFO "[%s]: ALUA TG Port not available,"
|
|
|
|
" SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
|
|
|
|
CMD_TFO(cmd)->get_fabric_name(), alua_ascq);
|
|
|
|
#endif
|
|
|
|
transport_set_sense_codes(cmd, 0x04, alua_ascq);
|
|
|
|
cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
|
|
|
|
cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
|
|
|
|
return -2;
|
|
|
|
}
|
|
|
|
goto out_invalid_cdb_field;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Check status for SPC-3 Persistent Reservations
|
|
|
|
*/
|
|
|
|
if (T10_PR_OPS(su_dev)->t10_reservation_check(cmd, &pr_reg_type) != 0) {
|
|
|
|
if (T10_PR_OPS(su_dev)->t10_seq_non_holder(
|
|
|
|
cmd, cdb, pr_reg_type) != 0)
|
|
|
|
return transport_handle_reservation_conflict(cmd);
|
|
|
|
/*
|
|
|
|
* This means the CDB is allowed for the SCSI Initiator port
|
|
|
|
* when said port is *NOT* holding the legacy SPC-2 or
|
|
|
|
* SPC-3 Persistent Reservation.
|
|
|
|
*/
|
|
|
|
}
|
|
|
|
|
|
|
|
switch (cdb[0]) {
|
|
|
|
case READ_6:
|
|
|
|
sectors = transport_get_sectors_6(cdb, cmd, §or_ret);
|
|
|
|
if (sector_ret)
|
|
|
|
goto out_unsupported_cdb;
|
|
|
|
size = transport_get_size(sectors, cdb, cmd);
|
|
|
|
cmd->transport_split_cdb = &split_cdb_XX_6;
|
|
|
|
T_TASK(cmd)->t_task_lba = transport_lba_21(cdb);
|
|
|
|
cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
|
|
|
|
break;
|
|
|
|
case READ_10:
|
|
|
|
sectors = transport_get_sectors_10(cdb, cmd, §or_ret);
|
|
|
|
if (sector_ret)
|
|
|
|
goto out_unsupported_cdb;
|
|
|
|
size = transport_get_size(sectors, cdb, cmd);
|
|
|
|
cmd->transport_split_cdb = &split_cdb_XX_10;
|
|
|
|
T_TASK(cmd)->t_task_lba = transport_lba_32(cdb);
|
|
|
|
cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
|
|
|
|
break;
|
|
|
|
case READ_12:
|
|
|
|
sectors = transport_get_sectors_12(cdb, cmd, §or_ret);
|
|
|
|
if (sector_ret)
|
|
|
|
goto out_unsupported_cdb;
|
|
|
|
size = transport_get_size(sectors, cdb, cmd);
|
|
|
|
cmd->transport_split_cdb = &split_cdb_XX_12;
|
|
|
|
T_TASK(cmd)->t_task_lba = transport_lba_32(cdb);
|
|
|
|
cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
|
|
|
|
break;
|
|
|
|
case READ_16:
|
|
|
|
sectors = transport_get_sectors_16(cdb, cmd, §or_ret);
|
|
|
|
if (sector_ret)
|
|
|
|
goto out_unsupported_cdb;
|
|
|
|
size = transport_get_size(sectors, cdb, cmd);
|
|
|
|
cmd->transport_split_cdb = &split_cdb_XX_16;
|
|
|
|
T_TASK(cmd)->t_task_lba = transport_lba_64(cdb);
|
|
|
|
cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
|
|
|
|
break;
|
|
|
|
case WRITE_6:
|
|
|
|
sectors = transport_get_sectors_6(cdb, cmd, §or_ret);
|
|
|
|
if (sector_ret)
|
|
|
|
goto out_unsupported_cdb;
|
|
|
|
size = transport_get_size(sectors, cdb, cmd);
|
|
|
|
cmd->transport_split_cdb = &split_cdb_XX_6;
|
|
|
|
T_TASK(cmd)->t_task_lba = transport_lba_21(cdb);
|
|
|
|
cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
|
|
|
|
break;
|
|
|
|
case WRITE_10:
|
|
|
|
sectors = transport_get_sectors_10(cdb, cmd, §or_ret);
|
|
|
|
if (sector_ret)
|
|
|
|
goto out_unsupported_cdb;
|
|
|
|
size = transport_get_size(sectors, cdb, cmd);
|
|
|
|
cmd->transport_split_cdb = &split_cdb_XX_10;
|
|
|
|
T_TASK(cmd)->t_task_lba = transport_lba_32(cdb);
|
|
|
|
T_TASK(cmd)->t_tasks_fua = (cdb[1] & 0x8);
|
|
|
|
cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
|
|
|
|
break;
|
|
|
|
case WRITE_12:
|
|
|
|
sectors = transport_get_sectors_12(cdb, cmd, §or_ret);
|
|
|
|
if (sector_ret)
|
|
|
|
goto out_unsupported_cdb;
|
|
|
|
size = transport_get_size(sectors, cdb, cmd);
|
|
|
|
cmd->transport_split_cdb = &split_cdb_XX_12;
|
|
|
|
T_TASK(cmd)->t_task_lba = transport_lba_32(cdb);
|
|
|
|
T_TASK(cmd)->t_tasks_fua = (cdb[1] & 0x8);
|
|
|
|
cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
|
|
|
|
break;
|
|
|
|
case WRITE_16:
|
|
|
|
sectors = transport_get_sectors_16(cdb, cmd, §or_ret);
|
|
|
|
if (sector_ret)
|
|
|
|
goto out_unsupported_cdb;
|
|
|
|
size = transport_get_size(sectors, cdb, cmd);
|
|
|
|
cmd->transport_split_cdb = &split_cdb_XX_16;
|
|
|
|
T_TASK(cmd)->t_task_lba = transport_lba_64(cdb);
|
|
|
|
T_TASK(cmd)->t_tasks_fua = (cdb[1] & 0x8);
|
|
|
|
cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
|
|
|
|
break;
|
|
|
|
case XDWRITEREAD_10:
|
|
|
|
if ((cmd->data_direction != DMA_TO_DEVICE) ||
|
|
|
|
!(T_TASK(cmd)->t_tasks_bidi))
|
|
|
|
goto out_invalid_cdb_field;
|
|
|
|
sectors = transport_get_sectors_10(cdb, cmd, §or_ret);
|
|
|
|
if (sector_ret)
|
|
|
|
goto out_unsupported_cdb;
|
|
|
|
size = transport_get_size(sectors, cdb, cmd);
|
|
|
|
cmd->transport_split_cdb = &split_cdb_XX_10;
|
|
|
|
T_TASK(cmd)->t_task_lba = transport_lba_32(cdb);
|
|
|
|
cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
|
|
|
|
passthrough = (TRANSPORT(dev)->transport_type ==
|
|
|
|
TRANSPORT_PLUGIN_PHBA_PDEV);
|
|
|
|
/*
|
|
|
|
* Skip the remaining assignments for TCM/PSCSI passthrough
|
|
|
|
*/
|
|
|
|
if (passthrough)
|
|
|
|
break;
|
|
|
|
/*
|
|
|
|
* Setup BIDI XOR callback to be run during transport_generic_complete_ok()
|
|
|
|
*/
|
|
|
|
cmd->transport_complete_callback = &transport_xor_callback;
|
|
|
|
T_TASK(cmd)->t_tasks_fua = (cdb[1] & 0x8);
|
|
|
|
break;
|
|
|
|
case VARIABLE_LENGTH_CMD:
|
|
|
|
service_action = get_unaligned_be16(&cdb[8]);
|
|
|
|
/*
|
|
|
|
* Determine if this is TCM/PSCSI device and we should disable
|
|
|
|
* internal emulation for this CDB.
|
|
|
|
*/
|
|
|
|
passthrough = (TRANSPORT(dev)->transport_type ==
|
|
|
|
TRANSPORT_PLUGIN_PHBA_PDEV);
|
|
|
|
|
|
|
|
switch (service_action) {
|
|
|
|
case XDWRITEREAD_32:
|
|
|
|
sectors = transport_get_sectors_32(cdb, cmd, §or_ret);
|
|
|
|
if (sector_ret)
|
|
|
|
goto out_unsupported_cdb;
|
|
|
|
size = transport_get_size(sectors, cdb, cmd);
|
|
|
|
/*
|
|
|
|
* Use WRITE_32 and READ_32 opcodes for the emulated
|
|
|
|
* XDWRITE_READ_32 logic.
|
|
|
|
*/
|
|
|
|
cmd->transport_split_cdb = &split_cdb_XX_32;
|
|
|
|
T_TASK(cmd)->t_task_lba = transport_lba_64_ext(cdb);
|
|
|
|
cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Skip the remaining assignments for TCM/PSCSI passthrough
|
|
|
|
*/
|
|
|
|
if (passthrough)
|
|
|
|
break;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Setup BIDI XOR callback to be run during
|
|
|
|
* transport_generic_complete_ok()
|
|
|
|
*/
|
|
|
|
cmd->transport_complete_callback = &transport_xor_callback;
|
|
|
|
T_TASK(cmd)->t_tasks_fua = (cdb[10] & 0x8);
|
|
|
|
break;
|
|
|
|
case WRITE_SAME_32:
|
|
|
|
sectors = transport_get_sectors_32(cdb, cmd, §or_ret);
|
|
|
|
if (sector_ret)
|
|
|
|
goto out_unsupported_cdb;
|
|
|
|
size = transport_get_size(sectors, cdb, cmd);
|
|
|
|
T_TASK(cmd)->t_task_lba = get_unaligned_be64(&cdb[12]);
|
|
|
|
cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Skip the remaining assignments for TCM/PSCSI passthrough
|
|
|
|
*/
|
|
|
|
if (passthrough)
|
|
|
|
break;
|
|
|
|
|
|
|
|
if ((cdb[10] & 0x04) || (cdb[10] & 0x02)) {
|
|
|
|
printk(KERN_ERR "WRITE_SAME PBDATA and LBDATA"
|
|
|
|
" bits not supported for Block Discard"
|
|
|
|
" Emulation\n");
|
|
|
|
goto out_invalid_cdb_field;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Currently for the emulated case we only accept
|
|
|
|
* tpws with the UNMAP=1 bit set.
|
|
|
|
*/
|
|
|
|
if (!(cdb[10] & 0x08)) {
|
|
|
|
printk(KERN_ERR "WRITE_SAME w/o UNMAP bit not"
|
|
|
|
" supported for Block Discard Emulation\n");
|
|
|
|
goto out_invalid_cdb_field;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
printk(KERN_ERR "VARIABLE_LENGTH_CMD service action"
|
|
|
|
" 0x%04x not supported\n", service_action);
|
|
|
|
goto out_unsupported_cdb;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 0xa3:
|
|
|
|
if (TRANSPORT(dev)->get_device_type(dev) != TYPE_ROM) {
|
|
|
|
/* MAINTENANCE_IN from SCC-2 */
|
|
|
|
/*
|
|
|
|
* Check for emulated MI_REPORT_TARGET_PGS.
|
|
|
|
*/
|
|
|
|
if (cdb[1] == MI_REPORT_TARGET_PGS) {
|
|
|
|
cmd->transport_emulate_cdb =
|
|
|
|
(T10_ALUA(su_dev)->alua_type ==
|
|
|
|
SPC3_ALUA_EMULATED) ?
|
|
|
|
&core_emulate_report_target_port_groups :
|
|
|
|
NULL;
|
|
|
|
}
|
|
|
|
size = (cdb[6] << 24) | (cdb[7] << 16) |
|
|
|
|
(cdb[8] << 8) | cdb[9];
|
|
|
|
} else {
|
|
|
|
/* GPCMD_SEND_KEY from multi media commands */
|
|
|
|
size = (cdb[8] << 8) + cdb[9];
|
|
|
|
}
|
|
|
|
cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
|
|
|
|
break;
|
|
|
|
case MODE_SELECT:
|
|
|
|
size = cdb[4];
|
|
|
|
cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
|
|
|
|
break;
|
|
|
|
case MODE_SELECT_10:
|
|
|
|
size = (cdb[7] << 8) + cdb[8];
|
|
|
|
cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
|
|
|
|
break;
|
|
|
|
case MODE_SENSE:
|
|
|
|
size = cdb[4];
|
|
|
|
cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
|
|
|
|
break;
|
|
|
|
case MODE_SENSE_10:
|
|
|
|
case GPCMD_READ_BUFFER_CAPACITY:
|
|
|
|
case GPCMD_SEND_OPC:
|
|
|
|
case LOG_SELECT:
|
|
|
|
case LOG_SENSE:
|
|
|
|
size = (cdb[7] << 8) + cdb[8];
|
|
|
|
cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
|
|
|
|
break;
|
|
|
|
case READ_BLOCK_LIMITS:
|
|
|
|
size = READ_BLOCK_LEN;
|
|
|
|
cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
|
|
|
|
break;
|
|
|
|
case GPCMD_GET_CONFIGURATION:
|
|
|
|
case GPCMD_READ_FORMAT_CAPACITIES:
|
|
|
|
case GPCMD_READ_DISC_INFO:
|
|
|
|
case GPCMD_READ_TRACK_RZONE_INFO:
|
|
|
|
size = (cdb[7] << 8) + cdb[8];
|
|
|
|
cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
|
|
|
|
break;
|
|
|
|
case PERSISTENT_RESERVE_IN:
|
|
|
|
case PERSISTENT_RESERVE_OUT:
|
|
|
|
cmd->transport_emulate_cdb =
|
|
|
|
(T10_RES(su_dev)->res_type ==
|
|
|
|
SPC3_PERSISTENT_RESERVATIONS) ?
|
|
|
|
&core_scsi3_emulate_pr : NULL;
|
|
|
|
size = (cdb[7] << 8) + cdb[8];
|
|
|
|
cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
|
|
|
|
break;
|
|
|
|
case GPCMD_MECHANISM_STATUS:
|
|
|
|
case GPCMD_READ_DVD_STRUCTURE:
|
|
|
|
size = (cdb[8] << 8) + cdb[9];
|
|
|
|
cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
|
|
|
|
break;
|
|
|
|
case READ_POSITION:
|
|
|
|
size = READ_POSITION_LEN;
|
|
|
|
cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
|
|
|
|
break;
|
|
|
|
case 0xa4:
|
|
|
|
if (TRANSPORT(dev)->get_device_type(dev) != TYPE_ROM) {
|
|
|
|
/* MAINTENANCE_OUT from SCC-2
|
|
|
|
*
|
|
|
|
* Check for emulated MO_SET_TARGET_PGS.
|
|
|
|
*/
|
|
|
|
if (cdb[1] == MO_SET_TARGET_PGS) {
|
|
|
|
cmd->transport_emulate_cdb =
|
|
|
|
(T10_ALUA(su_dev)->alua_type ==
|
|
|
|
SPC3_ALUA_EMULATED) ?
|
|
|
|
&core_emulate_set_target_port_groups :
|
|
|
|
NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
size = (cdb[6] << 24) | (cdb[7] << 16) |
|
|
|
|
(cdb[8] << 8) | cdb[9];
|
|
|
|
} else {
|
|
|
|
/* GPCMD_REPORT_KEY from multi media commands */
|
|
|
|
size = (cdb[8] << 8) + cdb[9];
|
|
|
|
}
|
|
|
|
cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
|
|
|
|
break;
|
|
|
|
case INQUIRY:
|
|
|
|
size = (cdb[3] << 8) + cdb[4];
|
|
|
|
/*
|
|
|
|
* Do implict HEAD_OF_QUEUE processing for INQUIRY.
|
|
|
|
* See spc4r17 section 5.3
|
|
|
|
*/
|
|
|
|
if (SE_DEV(cmd)->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
|
2011-05-20 03:19:14 +00:00
|
|
|
cmd->sam_task_attr = MSG_HEAD_TAG;
|
[SCSI] target: Add LIO target core v4.0.0-rc6
LIO target is a full featured in-kernel target framework with the
following feature set:
High-performance, non-blocking, multithreaded architecture with SIMD
support.
Advanced SCSI feature set:
* Persistent Reservations (PRs)
* Asymmetric Logical Unit Assignment (ALUA)
* Protocol and intra-nexus multiplexing, load-balancing and failover (MC/S)
* Full Error Recovery (ERL=0,1,2)
* Active/active task migration and session continuation (ERL=2)
* Thin LUN provisioning (UNMAP and WRITE_SAMExx)
Multiprotocol target plugins
Storage media independence:
* Virtualization of all storage media; transparent mapping of IO to LUNs
* No hard limits on number of LUNs per Target; maximum LUN size ~750 TB
* Backstores: SATA, SAS, SCSI, BluRay, DVD, FLASH, USB, ramdisk, etc.
Standards compliance:
* Full compliance with IETF (RFC 3720)
* Full implementation of SPC-4 PRs and ALUA
Significant code cleanups done by Christoph Hellwig.
[jejb: fix up for new block bdev exclusive interface. Minor fixes from
Randy Dunlap and Dan Carpenter.]
Signed-off-by: Nicholas A. Bellinger <nab@linux-iscsi.org>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-12-17 19:11:26 +00:00
|
|
|
cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
|
|
|
|
break;
|
|
|
|
case READ_BUFFER:
|
|
|
|
size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
|
|
|
|
cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
|
|
|
|
break;
|
|
|
|
case READ_CAPACITY:
|
|
|
|
size = READ_CAP_LEN;
|
|
|
|
cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
|
|
|
|
break;
|
|
|
|
case READ_MEDIA_SERIAL_NUMBER:
|
|
|
|
case SECURITY_PROTOCOL_IN:
|
|
|
|
case SECURITY_PROTOCOL_OUT:
|
|
|
|
size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
|
|
|
|
cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
|
|
|
|
break;
|
|
|
|
case SERVICE_ACTION_IN:
|
|
|
|
case ACCESS_CONTROL_IN:
|
|
|
|
case ACCESS_CONTROL_OUT:
|
|
|
|
case EXTENDED_COPY:
|
|
|
|
case READ_ATTRIBUTE:
|
|
|
|
case RECEIVE_COPY_RESULTS:
|
|
|
|
case WRITE_ATTRIBUTE:
|
|
|
|
size = (cdb[10] << 24) | (cdb[11] << 16) |
|
|
|
|
(cdb[12] << 8) | cdb[13];
|
|
|
|
cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
|
|
|
|
break;
|
|
|
|
case RECEIVE_DIAGNOSTIC:
|
|
|
|
case SEND_DIAGNOSTIC:
|
|
|
|
size = (cdb[3] << 8) | cdb[4];
|
|
|
|
cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
|
|
|
|
break;
|
|
|
|
/* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
|
|
|
|
#if 0
|
|
|
|
case GPCMD_READ_CD:
|
|
|
|
sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
|
|
|
|
size = (2336 * sectors);
|
|
|
|
cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
|
|
|
|
break;
|
|
|
|
#endif
|
|
|
|
case READ_TOC:
|
|
|
|
size = cdb[8];
|
|
|
|
cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
|
|
|
|
break;
|
|
|
|
case REQUEST_SENSE:
|
|
|
|
size = cdb[4];
|
|
|
|
cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
|
|
|
|
break;
|
|
|
|
case READ_ELEMENT_STATUS:
|
|
|
|
size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
|
|
|
|
cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
|
|
|
|
break;
|
|
|
|
case WRITE_BUFFER:
|
|
|
|
size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
|
|
|
|
cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
|
|
|
|
break;
|
|
|
|
case RESERVE:
|
|
|
|
case RESERVE_10:
|
|
|
|
/*
|
|
|
|
* The SPC-2 RESERVE does not contain a size in the SCSI CDB.
|
|
|
|
* Assume the passthrough or $FABRIC_MOD will tell us about it.
|
|
|
|
*/
|
|
|
|
if (cdb[0] == RESERVE_10)
|
|
|
|
size = (cdb[7] << 8) | cdb[8];
|
|
|
|
else
|
|
|
|
size = cmd->data_length;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Setup the legacy emulated handler for SPC-2 and
|
|
|
|
* >= SPC-3 compatible reservation handling (CRH=1)
|
|
|
|
* Otherwise, we assume the underlying SCSI logic is
|
|
|
|
* is running in SPC_PASSTHROUGH, and wants reservations
|
|
|
|
* emulation disabled.
|
|
|
|
*/
|
|
|
|
cmd->transport_emulate_cdb =
|
|
|
|
(T10_RES(su_dev)->res_type !=
|
|
|
|
SPC_PASSTHROUGH) ?
|
|
|
|
&core_scsi2_emulate_crh : NULL;
|
|
|
|
cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
|
|
|
|
break;
|
|
|
|
case RELEASE:
|
|
|
|
case RELEASE_10:
|
|
|
|
/*
|
|
|
|
* The SPC-2 RELEASE does not contain a size in the SCSI CDB.
|
|
|
|
* Assume the passthrough or $FABRIC_MOD will tell us about it.
|
|
|
|
*/
|
|
|
|
if (cdb[0] == RELEASE_10)
|
|
|
|
size = (cdb[7] << 8) | cdb[8];
|
|
|
|
else
|
|
|
|
size = cmd->data_length;
|
|
|
|
|
|
|
|
cmd->transport_emulate_cdb =
|
|
|
|
(T10_RES(su_dev)->res_type !=
|
|
|
|
SPC_PASSTHROUGH) ?
|
|
|
|
&core_scsi2_emulate_crh : NULL;
|
|
|
|
cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
|
|
|
|
break;
|
|
|
|
case SYNCHRONIZE_CACHE:
|
|
|
|
case 0x91: /* SYNCHRONIZE_CACHE_16: */
|
|
|
|
/*
|
|
|
|
* Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
|
|
|
|
*/
|
|
|
|
if (cdb[0] == SYNCHRONIZE_CACHE) {
|
|
|
|
sectors = transport_get_sectors_10(cdb, cmd, §or_ret);
|
|
|
|
T_TASK(cmd)->t_task_lba = transport_lba_32(cdb);
|
|
|
|
} else {
|
|
|
|
sectors = transport_get_sectors_16(cdb, cmd, §or_ret);
|
|
|
|
T_TASK(cmd)->t_task_lba = transport_lba_64(cdb);
|
|
|
|
}
|
|
|
|
if (sector_ret)
|
|
|
|
goto out_unsupported_cdb;
|
|
|
|
|
|
|
|
size = transport_get_size(sectors, cdb, cmd);
|
|
|
|
cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* For TCM/pSCSI passthrough, skip cmd->transport_emulate_cdb()
|
|
|
|
*/
|
|
|
|
if (TRANSPORT(dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
|
|
|
|
break;
|
|
|
|
/*
|
|
|
|
* Set SCF_EMULATE_CDB_ASYNC to ensure asynchronous operation
|
|
|
|
* for SYNCHRONIZE_CACHE* Immed=1 case in __transport_execute_tasks()
|
|
|
|
*/
|
|
|
|
cmd->se_cmd_flags |= SCF_EMULATE_CDB_ASYNC;
|
|
|
|
/*
|
|
|
|
* Check to ensure that LBA + Range does not exceed past end of
|
|
|
|
* device.
|
|
|
|
*/
|
|
|
|
if (transport_get_sectors(cmd) < 0)
|
|
|
|
goto out_invalid_cdb_field;
|
|
|
|
break;
|
|
|
|
case UNMAP:
|
|
|
|
size = get_unaligned_be16(&cdb[7]);
|
|
|
|
passthrough = (TRANSPORT(dev)->transport_type ==
|
|
|
|
TRANSPORT_PLUGIN_PHBA_PDEV);
|
|
|
|
/*
|
|
|
|
* Determine if the received UNMAP used to for direct passthrough
|
|
|
|
* into Linux/SCSI with struct request via TCM/pSCSI or we are
|
|
|
|
* signaling the use of internal transport_generic_unmap() emulation
|
|
|
|
* for UNMAP -> Linux/BLOCK disbard with TCM/IBLOCK and TCM/FILEIO
|
|
|
|
* subsystem plugin backstores.
|
|
|
|
*/
|
|
|
|
if (!(passthrough))
|
|
|
|
cmd->se_cmd_flags |= SCF_EMULATE_SYNC_UNMAP;
|
|
|
|
|
|
|
|
cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
|
|
|
|
break;
|
|
|
|
case WRITE_SAME_16:
|
|
|
|
sectors = transport_get_sectors_16(cdb, cmd, §or_ret);
|
|
|
|
if (sector_ret)
|
|
|
|
goto out_unsupported_cdb;
|
|
|
|
size = transport_get_size(sectors, cdb, cmd);
|
|
|
|
T_TASK(cmd)->t_task_lba = get_unaligned_be16(&cdb[2]);
|
|
|
|
passthrough = (TRANSPORT(dev)->transport_type ==
|
|
|
|
TRANSPORT_PLUGIN_PHBA_PDEV);
|
|
|
|
/*
|
|
|
|
* Determine if the received WRITE_SAME_16 is used to for direct
|
|
|
|
* passthrough into Linux/SCSI with struct request via TCM/pSCSI
|
|
|
|
* or we are signaling the use of internal WRITE_SAME + UNMAP=1
|
|
|
|
* emulation for -> Linux/BLOCK disbard with TCM/IBLOCK and
|
|
|
|
* TCM/FILEIO subsystem plugin backstores.
|
|
|
|
*/
|
|
|
|
if (!(passthrough)) {
|
|
|
|
if ((cdb[1] & 0x04) || (cdb[1] & 0x02)) {
|
|
|
|
printk(KERN_ERR "WRITE_SAME PBDATA and LBDATA"
|
|
|
|
" bits not supported for Block Discard"
|
|
|
|
" Emulation\n");
|
|
|
|
goto out_invalid_cdb_field;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Currently for the emulated case we only accept
|
|
|
|
* tpws with the UNMAP=1 bit set.
|
|
|
|
*/
|
|
|
|
if (!(cdb[1] & 0x08)) {
|
|
|
|
printk(KERN_ERR "WRITE_SAME w/o UNMAP bit not "
|
|
|
|
" supported for Block Discard Emulation\n");
|
|
|
|
goto out_invalid_cdb_field;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
|
|
|
|
break;
|
|
|
|
case ALLOW_MEDIUM_REMOVAL:
|
|
|
|
case GPCMD_CLOSE_TRACK:
|
|
|
|
case ERASE:
|
|
|
|
case INITIALIZE_ELEMENT_STATUS:
|
|
|
|
case GPCMD_LOAD_UNLOAD:
|
|
|
|
case REZERO_UNIT:
|
|
|
|
case SEEK_10:
|
|
|
|
case GPCMD_SET_SPEED:
|
|
|
|
case SPACE:
|
|
|
|
case START_STOP:
|
|
|
|
case TEST_UNIT_READY:
|
|
|
|
case VERIFY:
|
|
|
|
case WRITE_FILEMARKS:
|
|
|
|
case MOVE_MEDIUM:
|
|
|
|
cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
|
|
|
|
break;
|
|
|
|
case REPORT_LUNS:
|
|
|
|
cmd->transport_emulate_cdb =
|
|
|
|
&transport_core_report_lun_response;
|
|
|
|
size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
|
|
|
|
/*
|
|
|
|
* Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
|
|
|
|
* See spc4r17 section 5.3
|
|
|
|
*/
|
|
|
|
if (SE_DEV(cmd)->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
|
2011-05-20 03:19:14 +00:00
|
|
|
cmd->sam_task_attr = MSG_HEAD_TAG;
|
[SCSI] target: Add LIO target core v4.0.0-rc6
LIO target is a full featured in-kernel target framework with the
following feature set:
High-performance, non-blocking, multithreaded architecture with SIMD
support.
Advanced SCSI feature set:
* Persistent Reservations (PRs)
* Asymmetric Logical Unit Assignment (ALUA)
* Protocol and intra-nexus multiplexing, load-balancing and failover (MC/S)
* Full Error Recovery (ERL=0,1,2)
* Active/active task migration and session continuation (ERL=2)
* Thin LUN provisioning (UNMAP and WRITE_SAMExx)
Multiprotocol target plugins
Storage media independence:
* Virtualization of all storage media; transparent mapping of IO to LUNs
* No hard limits on number of LUNs per Target; maximum LUN size ~750 TB
* Backstores: SATA, SAS, SCSI, BluRay, DVD, FLASH, USB, ramdisk, etc.
Standards compliance:
* Full compliance with IETF (RFC 3720)
* Full implementation of SPC-4 PRs and ALUA
Significant code cleanups done by Christoph Hellwig.
[jejb: fix up for new block bdev exclusive interface. Minor fixes from
Randy Dunlap and Dan Carpenter.]
Signed-off-by: Nicholas A. Bellinger <nab@linux-iscsi.org>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-12-17 19:11:26 +00:00
|
|
|
cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
printk(KERN_WARNING "TARGET_CORE[%s]: Unsupported SCSI Opcode"
|
|
|
|
" 0x%02x, sending CHECK_CONDITION.\n",
|
|
|
|
CMD_TFO(cmd)->get_fabric_name(), cdb[0]);
|
|
|
|
cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
|
|
|
|
goto out_unsupported_cdb;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (size != cmd->data_length) {
|
|
|
|
printk(KERN_WARNING "TARGET_CORE[%s]: Expected Transfer Length:"
|
|
|
|
" %u does not match SCSI CDB Length: %u for SAM Opcode:"
|
|
|
|
" 0x%02x\n", CMD_TFO(cmd)->get_fabric_name(),
|
|
|
|
cmd->data_length, size, cdb[0]);
|
|
|
|
|
|
|
|
cmd->cmd_spdtl = size;
|
|
|
|
|
|
|
|
if (cmd->data_direction == DMA_TO_DEVICE) {
|
|
|
|
printk(KERN_ERR "Rejecting underflow/overflow"
|
|
|
|
" WRITE data\n");
|
|
|
|
goto out_invalid_cdb_field;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Reject READ_* or WRITE_* with overflow/underflow for
|
|
|
|
* type SCF_SCSI_DATA_SG_IO_CDB.
|
|
|
|
*/
|
|
|
|
if (!(ret) && (DEV_ATTRIB(dev)->block_size != 512)) {
|
|
|
|
printk(KERN_ERR "Failing OVERFLOW/UNDERFLOW for LBA op"
|
|
|
|
" CDB on non 512-byte sector setup subsystem"
|
|
|
|
" plugin: %s\n", TRANSPORT(dev)->name);
|
|
|
|
/* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
|
|
|
|
goto out_invalid_cdb_field;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (size > cmd->data_length) {
|
|
|
|
cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
|
|
|
|
cmd->residual_count = (size - cmd->data_length);
|
|
|
|
} else {
|
|
|
|
cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
|
|
|
|
cmd->residual_count = (cmd->data_length - size);
|
|
|
|
}
|
|
|
|
cmd->data_length = size;
|
|
|
|
}
|
|
|
|
|
|
|
|
transport_set_supported_SAM_opcode(cmd);
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
out_unsupported_cdb:
|
|
|
|
cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
|
|
|
|
cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
|
|
|
|
return -2;
|
|
|
|
out_invalid_cdb_field:
|
|
|
|
cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
|
|
|
|
cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
|
|
|
|
return -2;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void transport_release_tasks(struct se_cmd *);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This function will copy a contiguous *src buffer into a destination
|
|
|
|
* struct scatterlist array.
|
|
|
|
*/
|
|
|
|
static void transport_memcpy_write_contig(
|
|
|
|
struct se_cmd *cmd,
|
|
|
|
struct scatterlist *sg_d,
|
|
|
|
unsigned char *src)
|
|
|
|
{
|
|
|
|
u32 i = 0, length = 0, total_length = cmd->data_length;
|
|
|
|
void *dst;
|
|
|
|
|
|
|
|
while (total_length) {
|
|
|
|
length = sg_d[i].length;
|
|
|
|
|
|
|
|
if (length > total_length)
|
|
|
|
length = total_length;
|
|
|
|
|
|
|
|
dst = sg_virt(&sg_d[i]);
|
|
|
|
|
|
|
|
memcpy(dst, src, length);
|
|
|
|
|
|
|
|
if (!(total_length -= length))
|
|
|
|
return;
|
|
|
|
|
|
|
|
src += length;
|
|
|
|
i++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This function will copy a struct scatterlist array *sg_s into a destination
|
|
|
|
* contiguous *dst buffer.
|
|
|
|
*/
|
|
|
|
static void transport_memcpy_read_contig(
|
|
|
|
struct se_cmd *cmd,
|
|
|
|
unsigned char *dst,
|
|
|
|
struct scatterlist *sg_s)
|
|
|
|
{
|
|
|
|
u32 i = 0, length = 0, total_length = cmd->data_length;
|
|
|
|
void *src;
|
|
|
|
|
|
|
|
while (total_length) {
|
|
|
|
length = sg_s[i].length;
|
|
|
|
|
|
|
|
if (length > total_length)
|
|
|
|
length = total_length;
|
|
|
|
|
|
|
|
src = sg_virt(&sg_s[i]);
|
|
|
|
|
|
|
|
memcpy(dst, src, length);
|
|
|
|
|
|
|
|
if (!(total_length -= length))
|
|
|
|
return;
|
|
|
|
|
|
|
|
dst += length;
|
|
|
|
i++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void transport_memcpy_se_mem_read_contig(
|
|
|
|
struct se_cmd *cmd,
|
|
|
|
unsigned char *dst,
|
|
|
|
struct list_head *se_mem_list)
|
|
|
|
{
|
|
|
|
struct se_mem *se_mem;
|
|
|
|
void *src;
|
|
|
|
u32 length = 0, total_length = cmd->data_length;
|
|
|
|
|
|
|
|
list_for_each_entry(se_mem, se_mem_list, se_list) {
|
|
|
|
length = se_mem->se_len;
|
|
|
|
|
|
|
|
if (length > total_length)
|
|
|
|
length = total_length;
|
|
|
|
|
|
|
|
src = page_address(se_mem->se_page) + se_mem->se_off;
|
|
|
|
|
|
|
|
memcpy(dst, src, length);
|
|
|
|
|
|
|
|
if (!(total_length -= length))
|
|
|
|
return;
|
|
|
|
|
|
|
|
dst += length;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Called from transport_generic_complete_ok() and
|
|
|
|
* transport_generic_request_failure() to determine which dormant/delayed
|
|
|
|
* and ordered cmds need to have their tasks added to the execution queue.
|
|
|
|
*/
|
|
|
|
static void transport_complete_task_attr(struct se_cmd *cmd)
|
|
|
|
{
|
|
|
|
struct se_device *dev = SE_DEV(cmd);
|
|
|
|
struct se_cmd *cmd_p, *cmd_tmp;
|
|
|
|
int new_active_tasks = 0;
|
|
|
|
|
2011-05-20 03:19:14 +00:00
|
|
|
if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
|
[SCSI] target: Add LIO target core v4.0.0-rc6
LIO target is a full featured in-kernel target framework with the
following feature set:
High-performance, non-blocking, multithreaded architecture with SIMD
support.
Advanced SCSI feature set:
* Persistent Reservations (PRs)
* Asymmetric Logical Unit Assignment (ALUA)
* Protocol and intra-nexus multiplexing, load-balancing and failover (MC/S)
* Full Error Recovery (ERL=0,1,2)
* Active/active task migration and session continuation (ERL=2)
* Thin LUN provisioning (UNMAP and WRITE_SAMExx)
Multiprotocol target plugins
Storage media independence:
* Virtualization of all storage media; transparent mapping of IO to LUNs
* No hard limits on number of LUNs per Target; maximum LUN size ~750 TB
* Backstores: SATA, SAS, SCSI, BluRay, DVD, FLASH, USB, ramdisk, etc.
Standards compliance:
* Full compliance with IETF (RFC 3720)
* Full implementation of SPC-4 PRs and ALUA
Significant code cleanups done by Christoph Hellwig.
[jejb: fix up for new block bdev exclusive interface. Minor fixes from
Randy Dunlap and Dan Carpenter.]
Signed-off-by: Nicholas A. Bellinger <nab@linux-iscsi.org>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-12-17 19:11:26 +00:00
|
|
|
atomic_dec(&dev->simple_cmds);
|
|
|
|
smp_mb__after_atomic_dec();
|
|
|
|
dev->dev_cur_ordered_id++;
|
|
|
|
DEBUG_STA("Incremented dev->dev_cur_ordered_id: %u for"
|
|
|
|
" SIMPLE: %u\n", dev->dev_cur_ordered_id,
|
|
|
|
cmd->se_ordered_id);
|
2011-05-20 03:19:14 +00:00
|
|
|
} else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
|
[SCSI] target: Add LIO target core v4.0.0-rc6
LIO target is a full featured in-kernel target framework with the
following feature set:
High-performance, non-blocking, multithreaded architecture with SIMD
support.
Advanced SCSI feature set:
* Persistent Reservations (PRs)
* Asymmetric Logical Unit Assignment (ALUA)
* Protocol and intra-nexus multiplexing, load-balancing and failover (MC/S)
* Full Error Recovery (ERL=0,1,2)
* Active/active task migration and session continuation (ERL=2)
* Thin LUN provisioning (UNMAP and WRITE_SAMExx)
Multiprotocol target plugins
Storage media independence:
* Virtualization of all storage media; transparent mapping of IO to LUNs
* No hard limits on number of LUNs per Target; maximum LUN size ~750 TB
* Backstores: SATA, SAS, SCSI, BluRay, DVD, FLASH, USB, ramdisk, etc.
Standards compliance:
* Full compliance with IETF (RFC 3720)
* Full implementation of SPC-4 PRs and ALUA
Significant code cleanups done by Christoph Hellwig.
[jejb: fix up for new block bdev exclusive interface. Minor fixes from
Randy Dunlap and Dan Carpenter.]
Signed-off-by: Nicholas A. Bellinger <nab@linux-iscsi.org>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-12-17 19:11:26 +00:00
|
|
|
atomic_dec(&dev->dev_hoq_count);
|
|
|
|
smp_mb__after_atomic_dec();
|
|
|
|
dev->dev_cur_ordered_id++;
|
|
|
|
DEBUG_STA("Incremented dev_cur_ordered_id: %u for"
|
|
|
|
" HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
|
|
|
|
cmd->se_ordered_id);
|
2011-05-20 03:19:14 +00:00
|
|
|
} else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
|
[SCSI] target: Add LIO target core v4.0.0-rc6
LIO target is a full featured in-kernel target framework with the
following feature set:
High-performance, non-blocking, multithreaded architecture with SIMD
support.
Advanced SCSI feature set:
* Persistent Reservations (PRs)
* Asymmetric Logical Unit Assignment (ALUA)
* Protocol and intra-nexus multiplexing, load-balancing and failover (MC/S)
* Full Error Recovery (ERL=0,1,2)
* Active/active task migration and session continuation (ERL=2)
* Thin LUN provisioning (UNMAP and WRITE_SAMExx)
Multiprotocol target plugins
Storage media independence:
* Virtualization of all storage media; transparent mapping of IO to LUNs
* No hard limits on number of LUNs per Target; maximum LUN size ~750 TB
* Backstores: SATA, SAS, SCSI, BluRay, DVD, FLASH, USB, ramdisk, etc.
Standards compliance:
* Full compliance with IETF (RFC 3720)
* Full implementation of SPC-4 PRs and ALUA
Significant code cleanups done by Christoph Hellwig.
[jejb: fix up for new block bdev exclusive interface. Minor fixes from
Randy Dunlap and Dan Carpenter.]
Signed-off-by: Nicholas A. Bellinger <nab@linux-iscsi.org>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-12-17 19:11:26 +00:00
|
|
|
spin_lock(&dev->ordered_cmd_lock);
|
|
|
|
list_del(&cmd->se_ordered_list);
|
|
|
|
atomic_dec(&dev->dev_ordered_sync);
|
|
|
|
smp_mb__after_atomic_dec();
|
|
|
|
spin_unlock(&dev->ordered_cmd_lock);
|
|
|
|
|
|
|
|
dev->dev_cur_ordered_id++;
|
|
|
|
DEBUG_STA("Incremented dev_cur_ordered_id: %u for ORDERED:"
|
|
|
|
" %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Process all commands up to the last received
|
|
|
|
* ORDERED task attribute which requires another blocking
|
|
|
|
* boundary
|
|
|
|
*/
|
|
|
|
spin_lock(&dev->delayed_cmd_lock);
|
|
|
|
list_for_each_entry_safe(cmd_p, cmd_tmp,
|
|
|
|
&dev->delayed_cmd_list, se_delayed_list) {
|
|
|
|
|
|
|
|
list_del(&cmd_p->se_delayed_list);
|
|
|
|
spin_unlock(&dev->delayed_cmd_lock);
|
|
|
|
|
|
|
|
DEBUG_STA("Calling add_tasks() for"
|
|
|
|
" cmd_p: 0x%02x Task Attr: 0x%02x"
|
|
|
|
" Dormant -> Active, se_ordered_id: %u\n",
|
|
|
|
T_TASK(cmd_p)->t_task_cdb[0],
|
|
|
|
cmd_p->sam_task_attr, cmd_p->se_ordered_id);
|
|
|
|
|
|
|
|
transport_add_tasks_from_cmd(cmd_p);
|
|
|
|
new_active_tasks++;
|
|
|
|
|
|
|
|
spin_lock(&dev->delayed_cmd_lock);
|
2011-05-20 03:19:14 +00:00
|
|
|
if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
|
[SCSI] target: Add LIO target core v4.0.0-rc6
LIO target is a full featured in-kernel target framework with the
following feature set:
High-performance, non-blocking, multithreaded architecture with SIMD
support.
Advanced SCSI feature set:
* Persistent Reservations (PRs)
* Asymmetric Logical Unit Assignment (ALUA)
* Protocol and intra-nexus multiplexing, load-balancing and failover (MC/S)
* Full Error Recovery (ERL=0,1,2)
* Active/active task migration and session continuation (ERL=2)
* Thin LUN provisioning (UNMAP and WRITE_SAMExx)
Multiprotocol target plugins
Storage media independence:
* Virtualization of all storage media; transparent mapping of IO to LUNs
* No hard limits on number of LUNs per Target; maximum LUN size ~750 TB
* Backstores: SATA, SAS, SCSI, BluRay, DVD, FLASH, USB, ramdisk, etc.
Standards compliance:
* Full compliance with IETF (RFC 3720)
* Full implementation of SPC-4 PRs and ALUA
Significant code cleanups done by Christoph Hellwig.
[jejb: fix up for new block bdev exclusive interface. Minor fixes from
Randy Dunlap and Dan Carpenter.]
Signed-off-by: Nicholas A. Bellinger <nab@linux-iscsi.org>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-12-17 19:11:26 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
spin_unlock(&dev->delayed_cmd_lock);
|
|
|
|
/*
|
|
|
|
* If new tasks have become active, wake up the transport thread
|
|
|
|
* to do the processing of the Active tasks.
|
|
|
|
*/
|
|
|
|
if (new_active_tasks != 0)
|
|
|
|
wake_up_interruptible(&dev->dev_queue_obj->thread_wq);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void transport_generic_complete_ok(struct se_cmd *cmd)
|
|
|
|
{
|
|
|
|
int reason = 0;
|
|
|
|
/*
|
|
|
|
* Check if we need to move delayed/dormant tasks from cmds on the
|
|
|
|
* delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
|
|
|
|
* Attribute.
|
|
|
|
*/
|
|
|
|
if (SE_DEV(cmd)->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
|
|
|
|
transport_complete_task_attr(cmd);
|
|
|
|
/*
|
|
|
|
* Check if we need to retrieve a sense buffer from
|
|
|
|
* the struct se_cmd in question.
|
|
|
|
*/
|
|
|
|
if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
|
|
|
|
if (transport_get_sense_data(cmd) < 0)
|
|
|
|
reason = TCM_NON_EXISTENT_LUN;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Only set when an struct se_task->task_scsi_status returned
|
|
|
|
* a non GOOD status.
|
|
|
|
*/
|
|
|
|
if (cmd->scsi_status) {
|
|
|
|
transport_send_check_condition_and_sense(
|
|
|
|
cmd, reason, 1);
|
|
|
|
transport_lun_remove_cmd(cmd);
|
|
|
|
transport_cmd_check_stop_to_fabric(cmd);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
2011-03-31 01:57:33 +00:00
|
|
|
* Check for a callback, used by amongst other things
|
[SCSI] target: Add LIO target core v4.0.0-rc6
LIO target is a full featured in-kernel target framework with the
following feature set:
High-performance, non-blocking, multithreaded architecture with SIMD
support.
Advanced SCSI feature set:
* Persistent Reservations (PRs)
* Asymmetric Logical Unit Assignment (ALUA)
* Protocol and intra-nexus multiplexing, load-balancing and failover (MC/S)
* Full Error Recovery (ERL=0,1,2)
* Active/active task migration and session continuation (ERL=2)
* Thin LUN provisioning (UNMAP and WRITE_SAMExx)
Multiprotocol target plugins
Storage media independence:
* Virtualization of all storage media; transparent mapping of IO to LUNs
* No hard limits on number of LUNs per Target; maximum LUN size ~750 TB
* Backstores: SATA, SAS, SCSI, BluRay, DVD, FLASH, USB, ramdisk, etc.
Standards compliance:
* Full compliance with IETF (RFC 3720)
* Full implementation of SPC-4 PRs and ALUA
Significant code cleanups done by Christoph Hellwig.
[jejb: fix up for new block bdev exclusive interface. Minor fixes from
Randy Dunlap and Dan Carpenter.]
Signed-off-by: Nicholas A. Bellinger <nab@linux-iscsi.org>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-12-17 19:11:26 +00:00
|
|
|
* XDWRITE_READ_10 emulation.
|
|
|
|
*/
|
|
|
|
if (cmd->transport_complete_callback)
|
|
|
|
cmd->transport_complete_callback(cmd);
|
|
|
|
|
|
|
|
switch (cmd->data_direction) {
|
|
|
|
case DMA_FROM_DEVICE:
|
|
|
|
spin_lock(&cmd->se_lun->lun_sep_lock);
|
|
|
|
if (SE_LUN(cmd)->lun_sep) {
|
|
|
|
SE_LUN(cmd)->lun_sep->sep_stats.tx_data_octets +=
|
|
|
|
cmd->data_length;
|
|
|
|
}
|
|
|
|
spin_unlock(&cmd->se_lun->lun_sep_lock);
|
|
|
|
/*
|
|
|
|
* If enabled by TCM fabirc module pre-registered SGL
|
|
|
|
* memory, perform the memcpy() from the TCM internal
|
|
|
|
* contigious buffer back to the original SGL.
|
|
|
|
*/
|
|
|
|
if (cmd->se_cmd_flags & SCF_PASSTHROUGH_CONTIG_TO_SG)
|
|
|
|
transport_memcpy_write_contig(cmd,
|
|
|
|
T_TASK(cmd)->t_task_pt_sgl,
|
|
|
|
T_TASK(cmd)->t_task_buf);
|
|
|
|
|
|
|
|
CMD_TFO(cmd)->queue_data_in(cmd);
|
|
|
|
break;
|
|
|
|
case DMA_TO_DEVICE:
|
|
|
|
spin_lock(&cmd->se_lun->lun_sep_lock);
|
|
|
|
if (SE_LUN(cmd)->lun_sep) {
|
|
|
|
SE_LUN(cmd)->lun_sep->sep_stats.rx_data_octets +=
|
|
|
|
cmd->data_length;
|
|
|
|
}
|
|
|
|
spin_unlock(&cmd->se_lun->lun_sep_lock);
|
|
|
|
/*
|
|
|
|
* Check if we need to send READ payload for BIDI-COMMAND
|
|
|
|
*/
|
|
|
|
if (T_TASK(cmd)->t_mem_bidi_list != NULL) {
|
|
|
|
spin_lock(&cmd->se_lun->lun_sep_lock);
|
|
|
|
if (SE_LUN(cmd)->lun_sep) {
|
|
|
|
SE_LUN(cmd)->lun_sep->sep_stats.tx_data_octets +=
|
|
|
|
cmd->data_length;
|
|
|
|
}
|
|
|
|
spin_unlock(&cmd->se_lun->lun_sep_lock);
|
|
|
|
CMD_TFO(cmd)->queue_data_in(cmd);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
/* Fall through for DMA_TO_DEVICE */
|
|
|
|
case DMA_NONE:
|
|
|
|
CMD_TFO(cmd)->queue_status(cmd);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
transport_lun_remove_cmd(cmd);
|
|
|
|
transport_cmd_check_stop_to_fabric(cmd);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void transport_free_dev_tasks(struct se_cmd *cmd)
|
|
|
|
{
|
|
|
|
struct se_task *task, *task_tmp;
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
list_for_each_entry_safe(task, task_tmp,
|
|
|
|
&T_TASK(cmd)->t_task_list, t_list) {
|
|
|
|
if (atomic_read(&task->task_active))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
kfree(task->task_sg_bidi);
|
|
|
|
kfree(task->task_sg);
|
|
|
|
|
|
|
|
list_del(&task->t_list);
|
|
|
|
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
if (task->se_dev)
|
|
|
|
TRANSPORT(task->se_dev)->free_task(task);
|
|
|
|
else
|
|
|
|
printk(KERN_ERR "task[%u] - task->se_dev is NULL\n",
|
|
|
|
task->task_no);
|
|
|
|
spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
}
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void transport_free_pages(struct se_cmd *cmd)
|
|
|
|
{
|
|
|
|
struct se_mem *se_mem, *se_mem_tmp;
|
|
|
|
int free_page = 1;
|
|
|
|
|
|
|
|
if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
|
|
|
|
free_page = 0;
|
|
|
|
if (cmd->se_dev->transport->do_se_mem_map)
|
|
|
|
free_page = 0;
|
|
|
|
|
|
|
|
if (T_TASK(cmd)->t_task_buf) {
|
|
|
|
kfree(T_TASK(cmd)->t_task_buf);
|
|
|
|
T_TASK(cmd)->t_task_buf = NULL;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Caller will handle releasing of struct se_mem.
|
|
|
|
*/
|
|
|
|
if (cmd->se_cmd_flags & SCF_CMD_PASSTHROUGH_NOALLOC)
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (!(T_TASK(cmd)->t_tasks_se_num))
|
|
|
|
return;
|
|
|
|
|
|
|
|
list_for_each_entry_safe(se_mem, se_mem_tmp,
|
|
|
|
T_TASK(cmd)->t_mem_list, se_list) {
|
|
|
|
/*
|
|
|
|
* We only release call __free_page(struct se_mem->se_page) when
|
|
|
|
* SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC is NOT in use,
|
|
|
|
*/
|
|
|
|
if (free_page)
|
|
|
|
__free_page(se_mem->se_page);
|
|
|
|
|
|
|
|
list_del(&se_mem->se_list);
|
|
|
|
kmem_cache_free(se_mem_cache, se_mem);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (T_TASK(cmd)->t_mem_bidi_list && T_TASK(cmd)->t_tasks_se_bidi_num) {
|
|
|
|
list_for_each_entry_safe(se_mem, se_mem_tmp,
|
|
|
|
T_TASK(cmd)->t_mem_bidi_list, se_list) {
|
|
|
|
/*
|
|
|
|
* We only release call __free_page(struct se_mem->se_page) when
|
|
|
|
* SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC is NOT in use,
|
|
|
|
*/
|
|
|
|
if (free_page)
|
|
|
|
__free_page(se_mem->se_page);
|
|
|
|
|
|
|
|
list_del(&se_mem->se_list);
|
|
|
|
kmem_cache_free(se_mem_cache, se_mem);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
kfree(T_TASK(cmd)->t_mem_bidi_list);
|
|
|
|
T_TASK(cmd)->t_mem_bidi_list = NULL;
|
|
|
|
kfree(T_TASK(cmd)->t_mem_list);
|
|
|
|
T_TASK(cmd)->t_mem_list = NULL;
|
|
|
|
T_TASK(cmd)->t_tasks_se_num = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void transport_release_tasks(struct se_cmd *cmd)
|
|
|
|
{
|
|
|
|
transport_free_dev_tasks(cmd);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int transport_dec_and_check(struct se_cmd *cmd)
|
|
|
|
{
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
if (atomic_read(&T_TASK(cmd)->t_fe_count)) {
|
|
|
|
if (!(atomic_dec_and_test(&T_TASK(cmd)->t_fe_count))) {
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
|
|
|
|
flags);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (atomic_read(&T_TASK(cmd)->t_se_count)) {
|
|
|
|
if (!(atomic_dec_and_test(&T_TASK(cmd)->t_se_count))) {
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
|
|
|
|
flags);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void transport_release_fe_cmd(struct se_cmd *cmd)
|
|
|
|
{
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
if (transport_dec_and_check(cmd))
|
|
|
|
return;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
if (!(atomic_read(&T_TASK(cmd)->transport_dev_active))) {
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
goto free_pages;
|
|
|
|
}
|
|
|
|
atomic_set(&T_TASK(cmd)->transport_dev_active, 0);
|
|
|
|
transport_all_task_dev_remove_state(cmd);
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
|
|
|
|
transport_release_tasks(cmd);
|
|
|
|
free_pages:
|
|
|
|
transport_free_pages(cmd);
|
|
|
|
transport_free_se_cmd(cmd);
|
|
|
|
CMD_TFO(cmd)->release_cmd_direct(cmd);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int transport_generic_remove(
|
|
|
|
struct se_cmd *cmd,
|
|
|
|
int release_to_pool,
|
|
|
|
int session_reinstatement)
|
|
|
|
{
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
if (!(T_TASK(cmd)))
|
|
|
|
goto release_cmd;
|
|
|
|
|
|
|
|
if (transport_dec_and_check(cmd)) {
|
|
|
|
if (session_reinstatement) {
|
|
|
|
spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
transport_all_task_dev_remove_state(cmd);
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
|
|
|
|
flags);
|
|
|
|
}
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
if (!(atomic_read(&T_TASK(cmd)->transport_dev_active))) {
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
goto free_pages;
|
|
|
|
}
|
|
|
|
atomic_set(&T_TASK(cmd)->transport_dev_active, 0);
|
|
|
|
transport_all_task_dev_remove_state(cmd);
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
|
|
|
|
transport_release_tasks(cmd);
|
|
|
|
free_pages:
|
|
|
|
transport_free_pages(cmd);
|
|
|
|
|
|
|
|
release_cmd:
|
|
|
|
if (release_to_pool) {
|
|
|
|
transport_release_cmd_to_pool(cmd);
|
|
|
|
} else {
|
|
|
|
transport_free_se_cmd(cmd);
|
|
|
|
CMD_TFO(cmd)->release_cmd_direct(cmd);
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* transport_generic_map_mem_to_cmd - Perform SGL -> struct se_mem map
|
|
|
|
* @cmd: Associated se_cmd descriptor
|
|
|
|
* @mem: SGL style memory for TCM WRITE / READ
|
|
|
|
* @sg_mem_num: Number of SGL elements
|
|
|
|
* @mem_bidi_in: SGL style memory for TCM BIDI READ
|
|
|
|
* @sg_mem_bidi_num: Number of BIDI READ SGL elements
|
|
|
|
*
|
|
|
|
* Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
|
|
|
|
* of parameters.
|
|
|
|
*/
|
|
|
|
int transport_generic_map_mem_to_cmd(
|
|
|
|
struct se_cmd *cmd,
|
|
|
|
struct scatterlist *mem,
|
|
|
|
u32 sg_mem_num,
|
|
|
|
struct scatterlist *mem_bidi_in,
|
|
|
|
u32 sg_mem_bidi_num)
|
|
|
|
{
|
|
|
|
u32 se_mem_cnt_out = 0;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
if (!(mem) || !(sg_mem_num))
|
|
|
|
return 0;
|
|
|
|
/*
|
|
|
|
* Passed *mem will contain a list_head containing preformatted
|
|
|
|
* struct se_mem elements...
|
|
|
|
*/
|
|
|
|
if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM)) {
|
|
|
|
if ((mem_bidi_in) || (sg_mem_bidi_num)) {
|
|
|
|
printk(KERN_ERR "SCF_CMD_PASSTHROUGH_NOALLOC not supported"
|
|
|
|
" with BIDI-COMMAND\n");
|
|
|
|
return -ENOSYS;
|
|
|
|
}
|
|
|
|
|
|
|
|
T_TASK(cmd)->t_mem_list = (struct list_head *)mem;
|
|
|
|
T_TASK(cmd)->t_tasks_se_num = sg_mem_num;
|
|
|
|
cmd->se_cmd_flags |= SCF_CMD_PASSTHROUGH_NOALLOC;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Otherwise, assume the caller is passing a struct scatterlist
|
|
|
|
* array from include/linux/scatterlist.h
|
|
|
|
*/
|
|
|
|
if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
|
|
|
|
(cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
|
|
|
|
/*
|
|
|
|
* For CDB using TCM struct se_mem linked list scatterlist memory
|
|
|
|
* processed into a TCM struct se_subsystem_dev, we do the mapping
|
|
|
|
* from the passed physical memory to struct se_mem->se_page here.
|
|
|
|
*/
|
|
|
|
T_TASK(cmd)->t_mem_list = transport_init_se_mem_list();
|
|
|
|
if (!(T_TASK(cmd)->t_mem_list))
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
ret = transport_map_sg_to_mem(cmd,
|
|
|
|
T_TASK(cmd)->t_mem_list, mem, &se_mem_cnt_out);
|
|
|
|
if (ret < 0)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
T_TASK(cmd)->t_tasks_se_num = se_mem_cnt_out;
|
|
|
|
/*
|
|
|
|
* Setup BIDI READ list of struct se_mem elements
|
|
|
|
*/
|
|
|
|
if ((mem_bidi_in) && (sg_mem_bidi_num)) {
|
|
|
|
T_TASK(cmd)->t_mem_bidi_list = transport_init_se_mem_list();
|
|
|
|
if (!(T_TASK(cmd)->t_mem_bidi_list)) {
|
|
|
|
kfree(T_TASK(cmd)->t_mem_list);
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
se_mem_cnt_out = 0;
|
|
|
|
|
|
|
|
ret = transport_map_sg_to_mem(cmd,
|
|
|
|
T_TASK(cmd)->t_mem_bidi_list, mem_bidi_in,
|
|
|
|
&se_mem_cnt_out);
|
|
|
|
if (ret < 0) {
|
|
|
|
kfree(T_TASK(cmd)->t_mem_list);
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
T_TASK(cmd)->t_tasks_se_bidi_num = se_mem_cnt_out;
|
|
|
|
}
|
|
|
|
cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
|
|
|
|
|
|
|
|
} else if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_NONSG_IO_CDB) {
|
|
|
|
if (mem_bidi_in || sg_mem_bidi_num) {
|
|
|
|
printk(KERN_ERR "BIDI-Commands not supported using "
|
|
|
|
"SCF_SCSI_CONTROL_NONSG_IO_CDB\n");
|
|
|
|
return -ENOSYS;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* For incoming CDBs using a contiguous buffer internall with TCM,
|
|
|
|
* save the passed struct scatterlist memory. After TCM storage object
|
|
|
|
* processing has completed for this struct se_cmd, TCM core will call
|
|
|
|
* transport_memcpy_[write,read]_contig() as necessary from
|
|
|
|
* transport_generic_complete_ok() and transport_write_pending() in order
|
|
|
|
* to copy the TCM buffer to/from the original passed *mem in SGL ->
|
|
|
|
* struct scatterlist format.
|
|
|
|
*/
|
|
|
|
cmd->se_cmd_flags |= SCF_PASSTHROUGH_CONTIG_TO_SG;
|
|
|
|
T_TASK(cmd)->t_task_pt_sgl = mem;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
|
|
|
|
|
|
|
|
|
|
|
|
static inline long long transport_dev_end_lba(struct se_device *dev)
|
|
|
|
{
|
|
|
|
return dev->transport->get_blocks(dev) + 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int transport_get_sectors(struct se_cmd *cmd)
|
|
|
|
{
|
|
|
|
struct se_device *dev = SE_DEV(cmd);
|
|
|
|
|
|
|
|
T_TASK(cmd)->t_tasks_sectors =
|
|
|
|
(cmd->data_length / DEV_ATTRIB(dev)->block_size);
|
|
|
|
if (!(T_TASK(cmd)->t_tasks_sectors))
|
|
|
|
T_TASK(cmd)->t_tasks_sectors = 1;
|
|
|
|
|
|
|
|
if (TRANSPORT(dev)->get_device_type(dev) != TYPE_DISK)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
if ((T_TASK(cmd)->t_task_lba + T_TASK(cmd)->t_tasks_sectors) >
|
|
|
|
transport_dev_end_lba(dev)) {
|
|
|
|
printk(KERN_ERR "LBA: %llu Sectors: %u exceeds"
|
|
|
|
" transport_dev_end_lba(): %llu\n",
|
|
|
|
T_TASK(cmd)->t_task_lba, T_TASK(cmd)->t_tasks_sectors,
|
|
|
|
transport_dev_end_lba(dev));
|
|
|
|
cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
|
|
|
|
cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY;
|
|
|
|
return PYX_TRANSPORT_REQ_TOO_MANY_SECTORS;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int transport_new_cmd_obj(struct se_cmd *cmd)
|
|
|
|
{
|
|
|
|
struct se_device *dev = SE_DEV(cmd);
|
|
|
|
u32 task_cdbs = 0, rc;
|
|
|
|
|
|
|
|
if (!(cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)) {
|
|
|
|
task_cdbs++;
|
|
|
|
T_TASK(cmd)->t_task_cdbs++;
|
|
|
|
} else {
|
|
|
|
int set_counts = 1;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Setup any BIDI READ tasks and memory from
|
|
|
|
* T_TASK(cmd)->t_mem_bidi_list so the READ struct se_tasks
|
|
|
|
* are queued first for the non pSCSI passthrough case.
|
|
|
|
*/
|
|
|
|
if ((T_TASK(cmd)->t_mem_bidi_list != NULL) &&
|
|
|
|
(TRANSPORT(dev)->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV)) {
|
|
|
|
rc = transport_generic_get_cdb_count(cmd,
|
|
|
|
T_TASK(cmd)->t_task_lba,
|
|
|
|
T_TASK(cmd)->t_tasks_sectors,
|
|
|
|
DMA_FROM_DEVICE, T_TASK(cmd)->t_mem_bidi_list,
|
|
|
|
set_counts);
|
|
|
|
if (!(rc)) {
|
|
|
|
cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
|
|
|
|
cmd->scsi_sense_reason =
|
|
|
|
TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
|
|
|
|
return PYX_TRANSPORT_LU_COMM_FAILURE;
|
|
|
|
}
|
|
|
|
set_counts = 0;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Setup the tasks and memory from T_TASK(cmd)->t_mem_list
|
|
|
|
* Note for BIDI transfers this will contain the WRITE payload
|
|
|
|
*/
|
|
|
|
task_cdbs = transport_generic_get_cdb_count(cmd,
|
|
|
|
T_TASK(cmd)->t_task_lba,
|
|
|
|
T_TASK(cmd)->t_tasks_sectors,
|
|
|
|
cmd->data_direction, T_TASK(cmd)->t_mem_list,
|
|
|
|
set_counts);
|
|
|
|
if (!(task_cdbs)) {
|
|
|
|
cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
|
|
|
|
cmd->scsi_sense_reason =
|
|
|
|
TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
|
|
|
|
return PYX_TRANSPORT_LU_COMM_FAILURE;
|
|
|
|
}
|
|
|
|
T_TASK(cmd)->t_task_cdbs += task_cdbs;
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
printk(KERN_INFO "data_length: %u, LBA: %llu t_tasks_sectors:"
|
|
|
|
" %u, t_task_cdbs: %u\n", obj_ptr, cmd->data_length,
|
|
|
|
T_TASK(cmd)->t_task_lba, T_TASK(cmd)->t_tasks_sectors,
|
|
|
|
T_TASK(cmd)->t_task_cdbs);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
atomic_set(&T_TASK(cmd)->t_task_cdbs_left, task_cdbs);
|
|
|
|
atomic_set(&T_TASK(cmd)->t_task_cdbs_ex_left, task_cdbs);
|
|
|
|
atomic_set(&T_TASK(cmd)->t_task_cdbs_timeout_left, task_cdbs);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct list_head *transport_init_se_mem_list(void)
|
|
|
|
{
|
|
|
|
struct list_head *se_mem_list;
|
|
|
|
|
|
|
|
se_mem_list = kzalloc(sizeof(struct list_head), GFP_KERNEL);
|
|
|
|
if (!(se_mem_list)) {
|
|
|
|
printk(KERN_ERR "Unable to allocate memory for se_mem_list\n");
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
INIT_LIST_HEAD(se_mem_list);
|
|
|
|
|
|
|
|
return se_mem_list;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
transport_generic_get_mem(struct se_cmd *cmd, u32 length, u32 dma_size)
|
|
|
|
{
|
|
|
|
unsigned char *buf;
|
|
|
|
struct se_mem *se_mem;
|
|
|
|
|
|
|
|
T_TASK(cmd)->t_mem_list = transport_init_se_mem_list();
|
|
|
|
if (!(T_TASK(cmd)->t_mem_list))
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If the device uses memory mapping this is enough.
|
|
|
|
*/
|
|
|
|
if (cmd->se_dev->transport->do_se_mem_map)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Setup BIDI-COMMAND READ list of struct se_mem elements
|
|
|
|
*/
|
|
|
|
if (T_TASK(cmd)->t_tasks_bidi) {
|
|
|
|
T_TASK(cmd)->t_mem_bidi_list = transport_init_se_mem_list();
|
|
|
|
if (!(T_TASK(cmd)->t_mem_bidi_list)) {
|
|
|
|
kfree(T_TASK(cmd)->t_mem_list);
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
while (length) {
|
|
|
|
se_mem = kmem_cache_zalloc(se_mem_cache, GFP_KERNEL);
|
|
|
|
if (!(se_mem)) {
|
|
|
|
printk(KERN_ERR "Unable to allocate struct se_mem\n");
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* #warning FIXME Allocate contigous pages for struct se_mem elements */
|
2011-03-14 11:06:05 +00:00
|
|
|
se_mem->se_page = alloc_pages(GFP_KERNEL, 0);
|
[SCSI] target: Add LIO target core v4.0.0-rc6
LIO target is a full featured in-kernel target framework with the
following feature set:
High-performance, non-blocking, multithreaded architecture with SIMD
support.
Advanced SCSI feature set:
* Persistent Reservations (PRs)
* Asymmetric Logical Unit Assignment (ALUA)
* Protocol and intra-nexus multiplexing, load-balancing and failover (MC/S)
* Full Error Recovery (ERL=0,1,2)
* Active/active task migration and session continuation (ERL=2)
* Thin LUN provisioning (UNMAP and WRITE_SAMExx)
Multiprotocol target plugins
Storage media independence:
* Virtualization of all storage media; transparent mapping of IO to LUNs
* No hard limits on number of LUNs per Target; maximum LUN size ~750 TB
* Backstores: SATA, SAS, SCSI, BluRay, DVD, FLASH, USB, ramdisk, etc.
Standards compliance:
* Full compliance with IETF (RFC 3720)
* Full implementation of SPC-4 PRs and ALUA
Significant code cleanups done by Christoph Hellwig.
[jejb: fix up for new block bdev exclusive interface. Minor fixes from
Randy Dunlap and Dan Carpenter.]
Signed-off-by: Nicholas A. Bellinger <nab@linux-iscsi.org>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-12-17 19:11:26 +00:00
|
|
|
if (!(se_mem->se_page)) {
|
|
|
|
printk(KERN_ERR "alloc_pages() failed\n");
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
buf = kmap_atomic(se_mem->se_page, KM_IRQ0);
|
|
|
|
if (!(buf)) {
|
|
|
|
printk(KERN_ERR "kmap_atomic() failed\n");
|
|
|
|
goto out;
|
|
|
|
}
|
2011-03-14 11:06:05 +00:00
|
|
|
INIT_LIST_HEAD(&se_mem->se_list);
|
|
|
|
se_mem->se_len = (length > dma_size) ? dma_size : length;
|
[SCSI] target: Add LIO target core v4.0.0-rc6
LIO target is a full featured in-kernel target framework with the
following feature set:
High-performance, non-blocking, multithreaded architecture with SIMD
support.
Advanced SCSI feature set:
* Persistent Reservations (PRs)
* Asymmetric Logical Unit Assignment (ALUA)
* Protocol and intra-nexus multiplexing, load-balancing and failover (MC/S)
* Full Error Recovery (ERL=0,1,2)
* Active/active task migration and session continuation (ERL=2)
* Thin LUN provisioning (UNMAP and WRITE_SAMExx)
Multiprotocol target plugins
Storage media independence:
* Virtualization of all storage media; transparent mapping of IO to LUNs
* No hard limits on number of LUNs per Target; maximum LUN size ~750 TB
* Backstores: SATA, SAS, SCSI, BluRay, DVD, FLASH, USB, ramdisk, etc.
Standards compliance:
* Full compliance with IETF (RFC 3720)
* Full implementation of SPC-4 PRs and ALUA
Significant code cleanups done by Christoph Hellwig.
[jejb: fix up for new block bdev exclusive interface. Minor fixes from
Randy Dunlap and Dan Carpenter.]
Signed-off-by: Nicholas A. Bellinger <nab@linux-iscsi.org>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-12-17 19:11:26 +00:00
|
|
|
memset(buf, 0, se_mem->se_len);
|
|
|
|
kunmap_atomic(buf, KM_IRQ0);
|
|
|
|
|
|
|
|
list_add_tail(&se_mem->se_list, T_TASK(cmd)->t_mem_list);
|
|
|
|
T_TASK(cmd)->t_tasks_se_num++;
|
|
|
|
|
|
|
|
DEBUG_MEM("Allocated struct se_mem page(%p) Length(%u)"
|
|
|
|
" Offset(%u)\n", se_mem->se_page, se_mem->se_len,
|
|
|
|
se_mem->se_off);
|
|
|
|
|
|
|
|
length -= se_mem->se_len;
|
|
|
|
}
|
|
|
|
|
|
|
|
DEBUG_MEM("Allocated total struct se_mem elements(%u)\n",
|
|
|
|
T_TASK(cmd)->t_tasks_se_num);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
out:
|
2011-03-14 11:06:05 +00:00
|
|
|
if (se_mem)
|
|
|
|
__free_pages(se_mem->se_page, 0);
|
|
|
|
kmem_cache_free(se_mem_cache, se_mem);
|
[SCSI] target: Add LIO target core v4.0.0-rc6
LIO target is a full featured in-kernel target framework with the
following feature set:
High-performance, non-blocking, multithreaded architecture with SIMD
support.
Advanced SCSI feature set:
* Persistent Reservations (PRs)
* Asymmetric Logical Unit Assignment (ALUA)
* Protocol and intra-nexus multiplexing, load-balancing and failover (MC/S)
* Full Error Recovery (ERL=0,1,2)
* Active/active task migration and session continuation (ERL=2)
* Thin LUN provisioning (UNMAP and WRITE_SAMExx)
Multiprotocol target plugins
Storage media independence:
* Virtualization of all storage media; transparent mapping of IO to LUNs
* No hard limits on number of LUNs per Target; maximum LUN size ~750 TB
* Backstores: SATA, SAS, SCSI, BluRay, DVD, FLASH, USB, ramdisk, etc.
Standards compliance:
* Full compliance with IETF (RFC 3720)
* Full implementation of SPC-4 PRs and ALUA
Significant code cleanups done by Christoph Hellwig.
[jejb: fix up for new block bdev exclusive interface. Minor fixes from
Randy Dunlap and Dan Carpenter.]
Signed-off-by: Nicholas A. Bellinger <nab@linux-iscsi.org>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-12-17 19:11:26 +00:00
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
2011-03-14 11:06:01 +00:00
|
|
|
u32 transport_calc_sg_num(
|
[SCSI] target: Add LIO target core v4.0.0-rc6
LIO target is a full featured in-kernel target framework with the
following feature set:
High-performance, non-blocking, multithreaded architecture with SIMD
support.
Advanced SCSI feature set:
* Persistent Reservations (PRs)
* Asymmetric Logical Unit Assignment (ALUA)
* Protocol and intra-nexus multiplexing, load-balancing and failover (MC/S)
* Full Error Recovery (ERL=0,1,2)
* Active/active task migration and session continuation (ERL=2)
* Thin LUN provisioning (UNMAP and WRITE_SAMExx)
Multiprotocol target plugins
Storage media independence:
* Virtualization of all storage media; transparent mapping of IO to LUNs
* No hard limits on number of LUNs per Target; maximum LUN size ~750 TB
* Backstores: SATA, SAS, SCSI, BluRay, DVD, FLASH, USB, ramdisk, etc.
Standards compliance:
* Full compliance with IETF (RFC 3720)
* Full implementation of SPC-4 PRs and ALUA
Significant code cleanups done by Christoph Hellwig.
[jejb: fix up for new block bdev exclusive interface. Minor fixes from
Randy Dunlap and Dan Carpenter.]
Signed-off-by: Nicholas A. Bellinger <nab@linux-iscsi.org>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-12-17 19:11:26 +00:00
|
|
|
struct se_task *task,
|
|
|
|
struct se_mem *in_se_mem,
|
|
|
|
u32 task_offset)
|
|
|
|
{
|
|
|
|
struct se_cmd *se_cmd = task->task_se_cmd;
|
|
|
|
struct se_device *se_dev = SE_DEV(se_cmd);
|
|
|
|
struct se_mem *se_mem = in_se_mem;
|
|
|
|
struct target_core_fabric_ops *tfo = CMD_TFO(se_cmd);
|
|
|
|
u32 sg_length, task_size = task->task_size, task_sg_num_padded;
|
|
|
|
|
|
|
|
while (task_size != 0) {
|
|
|
|
DEBUG_SC("se_mem->se_page(%p) se_mem->se_len(%u)"
|
|
|
|
" se_mem->se_off(%u) task_offset(%u)\n",
|
|
|
|
se_mem->se_page, se_mem->se_len,
|
|
|
|
se_mem->se_off, task_offset);
|
|
|
|
|
|
|
|
if (task_offset == 0) {
|
|
|
|
if (task_size >= se_mem->se_len) {
|
|
|
|
sg_length = se_mem->se_len;
|
|
|
|
|
|
|
|
if (!(list_is_last(&se_mem->se_list,
|
|
|
|
T_TASK(se_cmd)->t_mem_list)))
|
|
|
|
se_mem = list_entry(se_mem->se_list.next,
|
|
|
|
struct se_mem, se_list);
|
|
|
|
} else {
|
|
|
|
sg_length = task_size;
|
|
|
|
task_size -= sg_length;
|
|
|
|
goto next;
|
|
|
|
}
|
|
|
|
|
|
|
|
DEBUG_SC("sg_length(%u) task_size(%u)\n",
|
|
|
|
sg_length, task_size);
|
|
|
|
} else {
|
|
|
|
if ((se_mem->se_len - task_offset) > task_size) {
|
|
|
|
sg_length = task_size;
|
|
|
|
task_size -= sg_length;
|
|
|
|
goto next;
|
|
|
|
} else {
|
|
|
|
sg_length = (se_mem->se_len - task_offset);
|
|
|
|
|
|
|
|
if (!(list_is_last(&se_mem->se_list,
|
|
|
|
T_TASK(se_cmd)->t_mem_list)))
|
|
|
|
se_mem = list_entry(se_mem->se_list.next,
|
|
|
|
struct se_mem, se_list);
|
|
|
|
}
|
|
|
|
|
|
|
|
DEBUG_SC("sg_length(%u) task_size(%u)\n",
|
|
|
|
sg_length, task_size);
|
|
|
|
|
|
|
|
task_offset = 0;
|
|
|
|
}
|
|
|
|
task_size -= sg_length;
|
|
|
|
next:
|
|
|
|
DEBUG_SC("task[%u] - Reducing task_size to(%u)\n",
|
|
|
|
task->task_no, task_size);
|
|
|
|
|
|
|
|
task->task_sg_num++;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Check if the fabric module driver is requesting that all
|
|
|
|
* struct se_task->task_sg[] be chained together.. If so,
|
|
|
|
* then allocate an extra padding SG entry for linking and
|
|
|
|
* marking the end of the chained SGL.
|
|
|
|
*/
|
|
|
|
if (tfo->task_sg_chaining) {
|
|
|
|
task_sg_num_padded = (task->task_sg_num + 1);
|
|
|
|
task->task_padded_sg = 1;
|
|
|
|
} else
|
|
|
|
task_sg_num_padded = task->task_sg_num;
|
|
|
|
|
|
|
|
task->task_sg = kzalloc(task_sg_num_padded *
|
|
|
|
sizeof(struct scatterlist), GFP_KERNEL);
|
|
|
|
if (!(task->task_sg)) {
|
|
|
|
printk(KERN_ERR "Unable to allocate memory for"
|
|
|
|
" task->task_sg\n");
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
sg_init_table(&task->task_sg[0], task_sg_num_padded);
|
|
|
|
/*
|
|
|
|
* Setup task->task_sg_bidi for SCSI READ payload for
|
|
|
|
* TCM/pSCSI passthrough if present for BIDI-COMMAND
|
|
|
|
*/
|
|
|
|
if ((T_TASK(se_cmd)->t_mem_bidi_list != NULL) &&
|
|
|
|
(TRANSPORT(se_dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)) {
|
|
|
|
task->task_sg_bidi = kzalloc(task_sg_num_padded *
|
|
|
|
sizeof(struct scatterlist), GFP_KERNEL);
|
|
|
|
if (!(task->task_sg_bidi)) {
|
|
|
|
printk(KERN_ERR "Unable to allocate memory for"
|
|
|
|
" task->task_sg_bidi\n");
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
sg_init_table(&task->task_sg_bidi[0], task_sg_num_padded);
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* For the chaining case, setup the proper end of SGL for the
|
|
|
|
* initial submission struct task into struct se_subsystem_api.
|
|
|
|
* This will be cleared later by transport_do_task_sg_chain()
|
|
|
|
*/
|
|
|
|
if (task->task_padded_sg) {
|
|
|
|
sg_mark_end(&task->task_sg[task->task_sg_num - 1]);
|
|
|
|
/*
|
|
|
|
* Added the 'if' check before marking end of bi-directional
|
|
|
|
* scatterlist (which gets created only in case of request
|
|
|
|
* (RD + WR).
|
|
|
|
*/
|
|
|
|
if (task->task_sg_bidi)
|
|
|
|
sg_mark_end(&task->task_sg_bidi[task->task_sg_num - 1]);
|
|
|
|
}
|
|
|
|
|
|
|
|
DEBUG_SC("Successfully allocated task->task_sg_num(%u),"
|
|
|
|
" task_sg_num_padded(%u)\n", task->task_sg_num,
|
|
|
|
task_sg_num_padded);
|
|
|
|
|
|
|
|
return task->task_sg_num;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int transport_set_tasks_sectors_disk(
|
|
|
|
struct se_task *task,
|
|
|
|
struct se_device *dev,
|
|
|
|
unsigned long long lba,
|
|
|
|
u32 sectors,
|
|
|
|
int *max_sectors_set)
|
|
|
|
{
|
|
|
|
if ((lba + sectors) > transport_dev_end_lba(dev)) {
|
|
|
|
task->task_sectors = ((transport_dev_end_lba(dev) - lba) + 1);
|
|
|
|
|
|
|
|
if (task->task_sectors > DEV_ATTRIB(dev)->max_sectors) {
|
|
|
|
task->task_sectors = DEV_ATTRIB(dev)->max_sectors;
|
|
|
|
*max_sectors_set = 1;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if (sectors > DEV_ATTRIB(dev)->max_sectors) {
|
|
|
|
task->task_sectors = DEV_ATTRIB(dev)->max_sectors;
|
|
|
|
*max_sectors_set = 1;
|
|
|
|
} else
|
|
|
|
task->task_sectors = sectors;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int transport_set_tasks_sectors_non_disk(
|
|
|
|
struct se_task *task,
|
|
|
|
struct se_device *dev,
|
|
|
|
unsigned long long lba,
|
|
|
|
u32 sectors,
|
|
|
|
int *max_sectors_set)
|
|
|
|
{
|
|
|
|
if (sectors > DEV_ATTRIB(dev)->max_sectors) {
|
|
|
|
task->task_sectors = DEV_ATTRIB(dev)->max_sectors;
|
|
|
|
*max_sectors_set = 1;
|
|
|
|
} else
|
|
|
|
task->task_sectors = sectors;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int transport_set_tasks_sectors(
|
|
|
|
struct se_task *task,
|
|
|
|
struct se_device *dev,
|
|
|
|
unsigned long long lba,
|
|
|
|
u32 sectors,
|
|
|
|
int *max_sectors_set)
|
|
|
|
{
|
|
|
|
return (TRANSPORT(dev)->get_device_type(dev) == TYPE_DISK) ?
|
|
|
|
transport_set_tasks_sectors_disk(task, dev, lba, sectors,
|
|
|
|
max_sectors_set) :
|
|
|
|
transport_set_tasks_sectors_non_disk(task, dev, lba, sectors,
|
|
|
|
max_sectors_set);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int transport_map_sg_to_mem(
|
|
|
|
struct se_cmd *cmd,
|
|
|
|
struct list_head *se_mem_list,
|
|
|
|
void *in_mem,
|
|
|
|
u32 *se_mem_cnt)
|
|
|
|
{
|
|
|
|
struct se_mem *se_mem;
|
|
|
|
struct scatterlist *sg;
|
|
|
|
u32 sg_count = 1, cmd_size = cmd->data_length;
|
|
|
|
|
|
|
|
if (!in_mem) {
|
|
|
|
printk(KERN_ERR "No source scatterlist\n");
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
sg = (struct scatterlist *)in_mem;
|
|
|
|
|
|
|
|
while (cmd_size) {
|
|
|
|
se_mem = kmem_cache_zalloc(se_mem_cache, GFP_KERNEL);
|
|
|
|
if (!(se_mem)) {
|
|
|
|
printk(KERN_ERR "Unable to allocate struct se_mem\n");
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
INIT_LIST_HEAD(&se_mem->se_list);
|
|
|
|
DEBUG_MEM("sg_to_mem: Starting loop with cmd_size: %u"
|
|
|
|
" sg_page: %p offset: %d length: %d\n", cmd_size,
|
|
|
|
sg_page(sg), sg->offset, sg->length);
|
|
|
|
|
|
|
|
se_mem->se_page = sg_page(sg);
|
|
|
|
se_mem->se_off = sg->offset;
|
|
|
|
|
|
|
|
if (cmd_size > sg->length) {
|
|
|
|
se_mem->se_len = sg->length;
|
|
|
|
sg = sg_next(sg);
|
|
|
|
sg_count++;
|
|
|
|
} else
|
|
|
|
se_mem->se_len = cmd_size;
|
|
|
|
|
|
|
|
cmd_size -= se_mem->se_len;
|
|
|
|
|
|
|
|
DEBUG_MEM("sg_to_mem: *se_mem_cnt: %u cmd_size: %u\n",
|
|
|
|
*se_mem_cnt, cmd_size);
|
|
|
|
DEBUG_MEM("sg_to_mem: Final se_page: %p se_off: %d se_len: %d\n",
|
|
|
|
se_mem->se_page, se_mem->se_off, se_mem->se_len);
|
|
|
|
|
|
|
|
list_add_tail(&se_mem->se_list, se_mem_list);
|
|
|
|
(*se_mem_cnt)++;
|
|
|
|
}
|
|
|
|
|
|
|
|
DEBUG_MEM("task[0] - Mapped(%u) struct scatterlist segments to(%u)"
|
|
|
|
" struct se_mem\n", sg_count, *se_mem_cnt);
|
|
|
|
|
|
|
|
if (sg_count != *se_mem_cnt)
|
|
|
|
BUG();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* transport_map_mem_to_sg():
|
|
|
|
*
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
int transport_map_mem_to_sg(
|
|
|
|
struct se_task *task,
|
|
|
|
struct list_head *se_mem_list,
|
|
|
|
void *in_mem,
|
|
|
|
struct se_mem *in_se_mem,
|
|
|
|
struct se_mem **out_se_mem,
|
|
|
|
u32 *se_mem_cnt,
|
|
|
|
u32 *task_offset)
|
|
|
|
{
|
|
|
|
struct se_cmd *se_cmd = task->task_se_cmd;
|
|
|
|
struct se_mem *se_mem = in_se_mem;
|
|
|
|
struct scatterlist *sg = (struct scatterlist *)in_mem;
|
|
|
|
u32 task_size = task->task_size, sg_no = 0;
|
|
|
|
|
|
|
|
if (!sg) {
|
|
|
|
printk(KERN_ERR "Unable to locate valid struct"
|
|
|
|
" scatterlist pointer\n");
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
while (task_size != 0) {
|
|
|
|
/*
|
|
|
|
* Setup the contigious array of scatterlists for
|
|
|
|
* this struct se_task.
|
|
|
|
*/
|
|
|
|
sg_assign_page(sg, se_mem->se_page);
|
|
|
|
|
|
|
|
if (*task_offset == 0) {
|
|
|
|
sg->offset = se_mem->se_off;
|
|
|
|
|
|
|
|
if (task_size >= se_mem->se_len) {
|
|
|
|
sg->length = se_mem->se_len;
|
|
|
|
|
|
|
|
if (!(list_is_last(&se_mem->se_list,
|
|
|
|
T_TASK(se_cmd)->t_mem_list))) {
|
|
|
|
se_mem = list_entry(se_mem->se_list.next,
|
|
|
|
struct se_mem, se_list);
|
|
|
|
(*se_mem_cnt)++;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
sg->length = task_size;
|
|
|
|
/*
|
|
|
|
* Determine if we need to calculate an offset
|
|
|
|
* into the struct se_mem on the next go around..
|
|
|
|
*/
|
|
|
|
task_size -= sg->length;
|
|
|
|
if (!(task_size))
|
|
|
|
*task_offset = sg->length;
|
|
|
|
|
|
|
|
goto next;
|
|
|
|
}
|
|
|
|
|
|
|
|
} else {
|
|
|
|
sg->offset = (*task_offset + se_mem->se_off);
|
|
|
|
|
|
|
|
if ((se_mem->se_len - *task_offset) > task_size) {
|
|
|
|
sg->length = task_size;
|
|
|
|
/*
|
|
|
|
* Determine if we need to calculate an offset
|
|
|
|
* into the struct se_mem on the next go around..
|
|
|
|
*/
|
|
|
|
task_size -= sg->length;
|
|
|
|
if (!(task_size))
|
|
|
|
*task_offset += sg->length;
|
|
|
|
|
|
|
|
goto next;
|
|
|
|
} else {
|
|
|
|
sg->length = (se_mem->se_len - *task_offset);
|
|
|
|
|
|
|
|
if (!(list_is_last(&se_mem->se_list,
|
|
|
|
T_TASK(se_cmd)->t_mem_list))) {
|
|
|
|
se_mem = list_entry(se_mem->se_list.next,
|
|
|
|
struct se_mem, se_list);
|
|
|
|
(*se_mem_cnt)++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
*task_offset = 0;
|
|
|
|
}
|
|
|
|
task_size -= sg->length;
|
|
|
|
next:
|
|
|
|
DEBUG_MEM("task[%u] mem_to_sg - sg[%u](%p)(%u)(%u) - Reducing"
|
|
|
|
" task_size to(%u), task_offset: %u\n", task->task_no, sg_no,
|
|
|
|
sg_page(sg), sg->length, sg->offset, task_size, *task_offset);
|
|
|
|
|
|
|
|
sg_no++;
|
|
|
|
if (!(task_size))
|
|
|
|
break;
|
|
|
|
|
|
|
|
sg = sg_next(sg);
|
|
|
|
|
|
|
|
if (task_size > se_cmd->data_length)
|
|
|
|
BUG();
|
|
|
|
}
|
|
|
|
*out_se_mem = se_mem;
|
|
|
|
|
|
|
|
DEBUG_MEM("task[%u] - Mapped(%u) struct se_mem segments to total(%u)"
|
|
|
|
" SGs\n", task->task_no, *se_mem_cnt, sg_no);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This function can be used by HW target mode drivers to create a linked
|
|
|
|
* scatterlist from all contiguously allocated struct se_task->task_sg[].
|
|
|
|
* This is intended to be called during the completion path by TCM Core
|
|
|
|
* when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
|
|
|
|
*/
|
|
|
|
void transport_do_task_sg_chain(struct se_cmd *cmd)
|
|
|
|
{
|
|
|
|
struct scatterlist *sg_head = NULL, *sg_link = NULL, *sg_first = NULL;
|
|
|
|
struct scatterlist *sg_head_cur = NULL, *sg_link_cur = NULL;
|
|
|
|
struct scatterlist *sg, *sg_end = NULL, *sg_end_cur = NULL;
|
|
|
|
struct se_task *task;
|
|
|
|
struct target_core_fabric_ops *tfo = CMD_TFO(cmd);
|
|
|
|
u32 task_sg_num = 0, sg_count = 0;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
if (tfo->task_sg_chaining == 0) {
|
|
|
|
printk(KERN_ERR "task_sg_chaining is diabled for fabric module:"
|
|
|
|
" %s\n", tfo->get_fabric_name());
|
|
|
|
dump_stack();
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Walk the struct se_task list and setup scatterlist chains
|
|
|
|
* for each contiguosly allocated struct se_task->task_sg[].
|
|
|
|
*/
|
|
|
|
list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) {
|
|
|
|
if (!(task->task_sg) || !(task->task_padded_sg))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (sg_head && sg_link) {
|
|
|
|
sg_head_cur = &task->task_sg[0];
|
|
|
|
sg_link_cur = &task->task_sg[task->task_sg_num];
|
|
|
|
/*
|
|
|
|
* Either add chain or mark end of scatterlist
|
|
|
|
*/
|
|
|
|
if (!(list_is_last(&task->t_list,
|
|
|
|
&T_TASK(cmd)->t_task_list))) {
|
|
|
|
/*
|
|
|
|
* Clear existing SGL termination bit set in
|
|
|
|
* transport_calc_sg_num(), see sg_mark_end()
|
|
|
|
*/
|
|
|
|
sg_end_cur = &task->task_sg[task->task_sg_num - 1];
|
|
|
|
sg_end_cur->page_link &= ~0x02;
|
|
|
|
|
|
|
|
sg_chain(sg_head, task_sg_num, sg_head_cur);
|
|
|
|
sg_count += task->task_sg_num;
|
2011-05-20 03:19:09 +00:00
|
|
|
task_sg_num = (task->task_sg_num + 1);
|
|
|
|
} else {
|
|
|
|
sg_chain(sg_head, task_sg_num, sg_head_cur);
|
|
|
|
sg_count += task->task_sg_num;
|
|
|
|
task_sg_num = task->task_sg_num;
|
|
|
|
}
|
[SCSI] target: Add LIO target core v4.0.0-rc6
LIO target is a full featured in-kernel target framework with the
following feature set:
High-performance, non-blocking, multithreaded architecture with SIMD
support.
Advanced SCSI feature set:
* Persistent Reservations (PRs)
* Asymmetric Logical Unit Assignment (ALUA)
* Protocol and intra-nexus multiplexing, load-balancing and failover (MC/S)
* Full Error Recovery (ERL=0,1,2)
* Active/active task migration and session continuation (ERL=2)
* Thin LUN provisioning (UNMAP and WRITE_SAMExx)
Multiprotocol target plugins
Storage media independence:
* Virtualization of all storage media; transparent mapping of IO to LUNs
* No hard limits on number of LUNs per Target; maximum LUN size ~750 TB
* Backstores: SATA, SAS, SCSI, BluRay, DVD, FLASH, USB, ramdisk, etc.
Standards compliance:
* Full compliance with IETF (RFC 3720)
* Full implementation of SPC-4 PRs and ALUA
Significant code cleanups done by Christoph Hellwig.
[jejb: fix up for new block bdev exclusive interface. Minor fixes from
Randy Dunlap and Dan Carpenter.]
Signed-off-by: Nicholas A. Bellinger <nab@linux-iscsi.org>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-12-17 19:11:26 +00:00
|
|
|
|
|
|
|
sg_head = sg_head_cur;
|
|
|
|
sg_link = sg_link_cur;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
sg_head = sg_first = &task->task_sg[0];
|
|
|
|
sg_link = &task->task_sg[task->task_sg_num];
|
|
|
|
/*
|
|
|
|
* Check for single task..
|
|
|
|
*/
|
|
|
|
if (!(list_is_last(&task->t_list, &T_TASK(cmd)->t_task_list))) {
|
|
|
|
/*
|
|
|
|
* Clear existing SGL termination bit set in
|
|
|
|
* transport_calc_sg_num(), see sg_mark_end()
|
|
|
|
*/
|
|
|
|
sg_end = &task->task_sg[task->task_sg_num - 1];
|
|
|
|
sg_end->page_link &= ~0x02;
|
|
|
|
sg_count += task->task_sg_num;
|
2011-05-20 03:19:09 +00:00
|
|
|
task_sg_num = (task->task_sg_num + 1);
|
|
|
|
} else {
|
|
|
|
sg_count += task->task_sg_num;
|
|
|
|
task_sg_num = task->task_sg_num;
|
|
|
|
}
|
[SCSI] target: Add LIO target core v4.0.0-rc6
LIO target is a full featured in-kernel target framework with the
following feature set:
High-performance, non-blocking, multithreaded architecture with SIMD
support.
Advanced SCSI feature set:
* Persistent Reservations (PRs)
* Asymmetric Logical Unit Assignment (ALUA)
* Protocol and intra-nexus multiplexing, load-balancing and failover (MC/S)
* Full Error Recovery (ERL=0,1,2)
* Active/active task migration and session continuation (ERL=2)
* Thin LUN provisioning (UNMAP and WRITE_SAMExx)
Multiprotocol target plugins
Storage media independence:
* Virtualization of all storage media; transparent mapping of IO to LUNs
* No hard limits on number of LUNs per Target; maximum LUN size ~750 TB
* Backstores: SATA, SAS, SCSI, BluRay, DVD, FLASH, USB, ramdisk, etc.
Standards compliance:
* Full compliance with IETF (RFC 3720)
* Full implementation of SPC-4 PRs and ALUA
Significant code cleanups done by Christoph Hellwig.
[jejb: fix up for new block bdev exclusive interface. Minor fixes from
Randy Dunlap and Dan Carpenter.]
Signed-off-by: Nicholas A. Bellinger <nab@linux-iscsi.org>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-12-17 19:11:26 +00:00
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Setup the starting pointer and total t_tasks_sg_linked_no including
|
|
|
|
* padding SGs for linking and to mark the end.
|
|
|
|
*/
|
|
|
|
T_TASK(cmd)->t_tasks_sg_chained = sg_first;
|
|
|
|
T_TASK(cmd)->t_tasks_sg_chained_no = sg_count;
|
|
|
|
|
2011-05-20 03:19:09 +00:00
|
|
|
DEBUG_CMD_M("Setup cmd: %p T_TASK(cmd)->t_tasks_sg_chained: %p and"
|
|
|
|
" t_tasks_sg_chained_no: %u\n", cmd, T_TASK(cmd)->t_tasks_sg_chained,
|
[SCSI] target: Add LIO target core v4.0.0-rc6
LIO target is a full featured in-kernel target framework with the
following feature set:
High-performance, non-blocking, multithreaded architecture with SIMD
support.
Advanced SCSI feature set:
* Persistent Reservations (PRs)
* Asymmetric Logical Unit Assignment (ALUA)
* Protocol and intra-nexus multiplexing, load-balancing and failover (MC/S)
* Full Error Recovery (ERL=0,1,2)
* Active/active task migration and session continuation (ERL=2)
* Thin LUN provisioning (UNMAP and WRITE_SAMExx)
Multiprotocol target plugins
Storage media independence:
* Virtualization of all storage media; transparent mapping of IO to LUNs
* No hard limits on number of LUNs per Target; maximum LUN size ~750 TB
* Backstores: SATA, SAS, SCSI, BluRay, DVD, FLASH, USB, ramdisk, etc.
Standards compliance:
* Full compliance with IETF (RFC 3720)
* Full implementation of SPC-4 PRs and ALUA
Significant code cleanups done by Christoph Hellwig.
[jejb: fix up for new block bdev exclusive interface. Minor fixes from
Randy Dunlap and Dan Carpenter.]
Signed-off-by: Nicholas A. Bellinger <nab@linux-iscsi.org>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-12-17 19:11:26 +00:00
|
|
|
T_TASK(cmd)->t_tasks_sg_chained_no);
|
|
|
|
|
|
|
|
for_each_sg(T_TASK(cmd)->t_tasks_sg_chained, sg,
|
|
|
|
T_TASK(cmd)->t_tasks_sg_chained_no, i) {
|
|
|
|
|
2011-05-20 03:19:09 +00:00
|
|
|
DEBUG_CMD_M("SG[%d]: %p page: %p length: %d offset: %d, magic: 0x%08x\n",
|
|
|
|
i, sg, sg_page(sg), sg->length, sg->offset, sg->sg_magic);
|
[SCSI] target: Add LIO target core v4.0.0-rc6
LIO target is a full featured in-kernel target framework with the
following feature set:
High-performance, non-blocking, multithreaded architecture with SIMD
support.
Advanced SCSI feature set:
* Persistent Reservations (PRs)
* Asymmetric Logical Unit Assignment (ALUA)
* Protocol and intra-nexus multiplexing, load-balancing and failover (MC/S)
* Full Error Recovery (ERL=0,1,2)
* Active/active task migration and session continuation (ERL=2)
* Thin LUN provisioning (UNMAP and WRITE_SAMExx)
Multiprotocol target plugins
Storage media independence:
* Virtualization of all storage media; transparent mapping of IO to LUNs
* No hard limits on number of LUNs per Target; maximum LUN size ~750 TB
* Backstores: SATA, SAS, SCSI, BluRay, DVD, FLASH, USB, ramdisk, etc.
Standards compliance:
* Full compliance with IETF (RFC 3720)
* Full implementation of SPC-4 PRs and ALUA
Significant code cleanups done by Christoph Hellwig.
[jejb: fix up for new block bdev exclusive interface. Minor fixes from
Randy Dunlap and Dan Carpenter.]
Signed-off-by: Nicholas A. Bellinger <nab@linux-iscsi.org>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-12-17 19:11:26 +00:00
|
|
|
if (sg_is_chain(sg))
|
|
|
|
DEBUG_CMD_M("SG: %p sg_is_chain=1\n", sg);
|
|
|
|
if (sg_is_last(sg))
|
|
|
|
DEBUG_CMD_M("SG: %p sg_is_last=1\n", sg);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(transport_do_task_sg_chain);
|
|
|
|
|
|
|
|
static int transport_do_se_mem_map(
|
|
|
|
struct se_device *dev,
|
|
|
|
struct se_task *task,
|
|
|
|
struct list_head *se_mem_list,
|
|
|
|
void *in_mem,
|
|
|
|
struct se_mem *in_se_mem,
|
|
|
|
struct se_mem **out_se_mem,
|
|
|
|
u32 *se_mem_cnt,
|
|
|
|
u32 *task_offset_in)
|
|
|
|
{
|
|
|
|
u32 task_offset = *task_offset_in;
|
|
|
|
int ret = 0;
|
|
|
|
/*
|
|
|
|
* se_subsystem_api_t->do_se_mem_map is used when internal allocation
|
|
|
|
* has been done by the transport plugin.
|
|
|
|
*/
|
|
|
|
if (TRANSPORT(dev)->do_se_mem_map) {
|
|
|
|
ret = TRANSPORT(dev)->do_se_mem_map(task, se_mem_list,
|
|
|
|
in_mem, in_se_mem, out_se_mem, se_mem_cnt,
|
|
|
|
task_offset_in);
|
|
|
|
if (ret == 0)
|
|
|
|
T_TASK(task->task_se_cmd)->t_tasks_se_num += *se_mem_cnt;
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
2011-02-09 23:35:04 +00:00
|
|
|
|
|
|
|
BUG_ON(list_empty(se_mem_list));
|
[SCSI] target: Add LIO target core v4.0.0-rc6
LIO target is a full featured in-kernel target framework with the
following feature set:
High-performance, non-blocking, multithreaded architecture with SIMD
support.
Advanced SCSI feature set:
* Persistent Reservations (PRs)
* Asymmetric Logical Unit Assignment (ALUA)
* Protocol and intra-nexus multiplexing, load-balancing and failover (MC/S)
* Full Error Recovery (ERL=0,1,2)
* Active/active task migration and session continuation (ERL=2)
* Thin LUN provisioning (UNMAP and WRITE_SAMExx)
Multiprotocol target plugins
Storage media independence:
* Virtualization of all storage media; transparent mapping of IO to LUNs
* No hard limits on number of LUNs per Target; maximum LUN size ~750 TB
* Backstores: SATA, SAS, SCSI, BluRay, DVD, FLASH, USB, ramdisk, etc.
Standards compliance:
* Full compliance with IETF (RFC 3720)
* Full implementation of SPC-4 PRs and ALUA
Significant code cleanups done by Christoph Hellwig.
[jejb: fix up for new block bdev exclusive interface. Minor fixes from
Randy Dunlap and Dan Carpenter.]
Signed-off-by: Nicholas A. Bellinger <nab@linux-iscsi.org>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-12-17 19:11:26 +00:00
|
|
|
/*
|
|
|
|
* This is the normal path for all normal non BIDI and BIDI-COMMAND
|
|
|
|
* WRITE payloads.. If we need to do BIDI READ passthrough for
|
|
|
|
* TCM/pSCSI the first call to transport_do_se_mem_map ->
|
|
|
|
* transport_calc_sg_num() -> transport_map_mem_to_sg() will do the
|
|
|
|
* allocation for task->task_sg_bidi, and the subsequent call to
|
|
|
|
* transport_do_se_mem_map() from transport_generic_get_cdb_count()
|
|
|
|
*/
|
|
|
|
if (!(task->task_sg_bidi)) {
|
|
|
|
/*
|
|
|
|
* Assume default that transport plugin speaks preallocated
|
|
|
|
* scatterlists.
|
|
|
|
*/
|
|
|
|
if (!(transport_calc_sg_num(task, in_se_mem, task_offset)))
|
|
|
|
return -1;
|
|
|
|
/*
|
|
|
|
* struct se_task->task_sg now contains the struct scatterlist array.
|
|
|
|
*/
|
|
|
|
return transport_map_mem_to_sg(task, se_mem_list, task->task_sg,
|
|
|
|
in_se_mem, out_se_mem, se_mem_cnt,
|
|
|
|
task_offset_in);
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Handle the se_mem_list -> struct task->task_sg_bidi
|
|
|
|
* memory map for the extra BIDI READ payload
|
|
|
|
*/
|
|
|
|
return transport_map_mem_to_sg(task, se_mem_list, task->task_sg_bidi,
|
|
|
|
in_se_mem, out_se_mem, se_mem_cnt,
|
|
|
|
task_offset_in);
|
|
|
|
}
|
|
|
|
|
|
|
|
static u32 transport_generic_get_cdb_count(
|
|
|
|
struct se_cmd *cmd,
|
|
|
|
unsigned long long lba,
|
|
|
|
u32 sectors,
|
|
|
|
enum dma_data_direction data_direction,
|
|
|
|
struct list_head *mem_list,
|
|
|
|
int set_counts)
|
|
|
|
{
|
|
|
|
unsigned char *cdb = NULL;
|
|
|
|
struct se_task *task;
|
|
|
|
struct se_mem *se_mem = NULL, *se_mem_lout = NULL;
|
|
|
|
struct se_mem *se_mem_bidi = NULL, *se_mem_bidi_lout = NULL;
|
|
|
|
struct se_device *dev = SE_DEV(cmd);
|
|
|
|
int max_sectors_set = 0, ret;
|
|
|
|
u32 task_offset_in = 0, se_mem_cnt = 0, se_mem_bidi_cnt = 0, task_cdbs = 0;
|
|
|
|
|
|
|
|
if (!mem_list) {
|
|
|
|
printk(KERN_ERR "mem_list is NULL in transport_generic_get"
|
|
|
|
"_cdb_count()\n");
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* While using RAMDISK_DR backstores is the only case where
|
|
|
|
* mem_list will ever be empty at this point.
|
|
|
|
*/
|
|
|
|
if (!(list_empty(mem_list)))
|
|
|
|
se_mem = list_entry(mem_list->next, struct se_mem, se_list);
|
|
|
|
/*
|
|
|
|
* Check for extra se_mem_bidi mapping for BIDI-COMMANDs to
|
|
|
|
* struct se_task->task_sg_bidi for TCM/pSCSI passthrough operation
|
|
|
|
*/
|
|
|
|
if ((T_TASK(cmd)->t_mem_bidi_list != NULL) &&
|
|
|
|
!(list_empty(T_TASK(cmd)->t_mem_bidi_list)) &&
|
|
|
|
(TRANSPORT(dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV))
|
|
|
|
se_mem_bidi = list_entry(T_TASK(cmd)->t_mem_bidi_list->next,
|
|
|
|
struct se_mem, se_list);
|
|
|
|
|
|
|
|
while (sectors) {
|
|
|
|
DEBUG_VOL("ITT[0x%08x] LBA(%llu) SectorsLeft(%u) EOBJ(%llu)\n",
|
|
|
|
CMD_TFO(cmd)->get_task_tag(cmd), lba, sectors,
|
|
|
|
transport_dev_end_lba(dev));
|
|
|
|
|
|
|
|
task = transport_generic_get_task(cmd, data_direction);
|
|
|
|
if (!(task))
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
transport_set_tasks_sectors(task, dev, lba, sectors,
|
|
|
|
&max_sectors_set);
|
|
|
|
|
|
|
|
task->task_lba = lba;
|
|
|
|
lba += task->task_sectors;
|
|
|
|
sectors -= task->task_sectors;
|
|
|
|
task->task_size = (task->task_sectors *
|
|
|
|
DEV_ATTRIB(dev)->block_size);
|
|
|
|
|
|
|
|
cdb = TRANSPORT(dev)->get_cdb(task);
|
|
|
|
if ((cdb)) {
|
|
|
|
memcpy(cdb, T_TASK(cmd)->t_task_cdb,
|
|
|
|
scsi_command_size(T_TASK(cmd)->t_task_cdb));
|
|
|
|
cmd->transport_split_cdb(task->task_lba,
|
|
|
|
&task->task_sectors, cdb);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Perform the SE OBJ plugin and/or Transport plugin specific
|
|
|
|
* mapping for T_TASK(cmd)->t_mem_list. And setup the
|
|
|
|
* task->task_sg and if necessary task->task_sg_bidi
|
|
|
|
*/
|
|
|
|
ret = transport_do_se_mem_map(dev, task, mem_list,
|
|
|
|
NULL, se_mem, &se_mem_lout, &se_mem_cnt,
|
|
|
|
&task_offset_in);
|
|
|
|
if (ret < 0)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
se_mem = se_mem_lout;
|
|
|
|
/*
|
|
|
|
* Setup the T_TASK(cmd)->t_mem_bidi_list -> task->task_sg_bidi
|
|
|
|
* mapping for SCSI READ for BIDI-COMMAND passthrough with TCM/pSCSI
|
|
|
|
*
|
|
|
|
* Note that the first call to transport_do_se_mem_map() above will
|
|
|
|
* allocate struct se_task->task_sg_bidi in transport_do_se_mem_map()
|
|
|
|
* -> transport_calc_sg_num(), and the second here will do the
|
|
|
|
* mapping for SCSI READ for BIDI-COMMAND passthrough with TCM/pSCSI.
|
|
|
|
*/
|
|
|
|
if (task->task_sg_bidi != NULL) {
|
|
|
|
ret = transport_do_se_mem_map(dev, task,
|
|
|
|
T_TASK(cmd)->t_mem_bidi_list, NULL,
|
|
|
|
se_mem_bidi, &se_mem_bidi_lout, &se_mem_bidi_cnt,
|
|
|
|
&task_offset_in);
|
|
|
|
if (ret < 0)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
se_mem_bidi = se_mem_bidi_lout;
|
|
|
|
}
|
|
|
|
task_cdbs++;
|
|
|
|
|
|
|
|
DEBUG_VOL("Incremented task_cdbs(%u) task->task_sg_num(%u)\n",
|
|
|
|
task_cdbs, task->task_sg_num);
|
|
|
|
|
|
|
|
if (max_sectors_set) {
|
|
|
|
max_sectors_set = 0;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!sectors)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (set_counts) {
|
|
|
|
atomic_inc(&T_TASK(cmd)->t_fe_count);
|
|
|
|
atomic_inc(&T_TASK(cmd)->t_se_count);
|
|
|
|
}
|
|
|
|
|
|
|
|
DEBUG_VOL("ITT[0x%08x] total %s cdbs(%u)\n",
|
|
|
|
CMD_TFO(cmd)->get_task_tag(cmd), (data_direction == DMA_TO_DEVICE)
|
|
|
|
? "DMA_TO_DEVICE" : "DMA_FROM_DEVICE", task_cdbs);
|
|
|
|
|
|
|
|
return task_cdbs;
|
|
|
|
out:
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
transport_map_control_cmd_to_task(struct se_cmd *cmd)
|
|
|
|
{
|
|
|
|
struct se_device *dev = SE_DEV(cmd);
|
|
|
|
unsigned char *cdb;
|
|
|
|
struct se_task *task;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
task = transport_generic_get_task(cmd, cmd->data_direction);
|
|
|
|
if (!task)
|
|
|
|
return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES;
|
|
|
|
|
|
|
|
cdb = TRANSPORT(dev)->get_cdb(task);
|
|
|
|
if (cdb)
|
|
|
|
memcpy(cdb, cmd->t_task->t_task_cdb,
|
|
|
|
scsi_command_size(cmd->t_task->t_task_cdb));
|
|
|
|
|
|
|
|
task->task_size = cmd->data_length;
|
|
|
|
task->task_sg_num =
|
|
|
|
(cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) ? 1 : 0;
|
|
|
|
|
|
|
|
atomic_inc(&cmd->t_task->t_fe_count);
|
|
|
|
atomic_inc(&cmd->t_task->t_se_count);
|
|
|
|
|
|
|
|
if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) {
|
|
|
|
struct se_mem *se_mem = NULL, *se_mem_lout = NULL;
|
|
|
|
u32 se_mem_cnt = 0, task_offset = 0;
|
|
|
|
|
2011-02-09 23:35:04 +00:00
|
|
|
if (!list_empty(T_TASK(cmd)->t_mem_list))
|
|
|
|
se_mem = list_entry(T_TASK(cmd)->t_mem_list->next,
|
|
|
|
struct se_mem, se_list);
|
[SCSI] target: Add LIO target core v4.0.0-rc6
LIO target is a full featured in-kernel target framework with the
following feature set:
High-performance, non-blocking, multithreaded architecture with SIMD
support.
Advanced SCSI feature set:
* Persistent Reservations (PRs)
* Asymmetric Logical Unit Assignment (ALUA)
* Protocol and intra-nexus multiplexing, load-balancing and failover (MC/S)
* Full Error Recovery (ERL=0,1,2)
* Active/active task migration and session continuation (ERL=2)
* Thin LUN provisioning (UNMAP and WRITE_SAMExx)
Multiprotocol target plugins
Storage media independence:
* Virtualization of all storage media; transparent mapping of IO to LUNs
* No hard limits on number of LUNs per Target; maximum LUN size ~750 TB
* Backstores: SATA, SAS, SCSI, BluRay, DVD, FLASH, USB, ramdisk, etc.
Standards compliance:
* Full compliance with IETF (RFC 3720)
* Full implementation of SPC-4 PRs and ALUA
Significant code cleanups done by Christoph Hellwig.
[jejb: fix up for new block bdev exclusive interface. Minor fixes from
Randy Dunlap and Dan Carpenter.]
Signed-off-by: Nicholas A. Bellinger <nab@linux-iscsi.org>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-12-17 19:11:26 +00:00
|
|
|
|
|
|
|
ret = transport_do_se_mem_map(dev, task,
|
|
|
|
cmd->t_task->t_mem_list, NULL, se_mem,
|
|
|
|
&se_mem_lout, &se_mem_cnt, &task_offset);
|
|
|
|
if (ret < 0)
|
|
|
|
return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES;
|
|
|
|
|
|
|
|
if (dev->transport->map_task_SG)
|
|
|
|
return dev->transport->map_task_SG(task);
|
|
|
|
return 0;
|
|
|
|
} else if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_NONSG_IO_CDB) {
|
|
|
|
if (dev->transport->map_task_non_SG)
|
|
|
|
return dev->transport->map_task_non_SG(task);
|
|
|
|
return 0;
|
|
|
|
} else if (cmd->se_cmd_flags & SCF_SCSI_NON_DATA_CDB) {
|
|
|
|
if (dev->transport->cdb_none)
|
|
|
|
return dev->transport->cdb_none(task);
|
|
|
|
return 0;
|
|
|
|
} else {
|
|
|
|
BUG();
|
|
|
|
return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* transport_generic_new_cmd(): Called from transport_processing_thread()
|
|
|
|
*
|
|
|
|
* Allocate storage transport resources from a set of values predefined
|
|
|
|
* by transport_generic_cmd_sequencer() from the iSCSI Target RX process.
|
|
|
|
* Any non zero return here is treated as an "out of resource' op here.
|
|
|
|
*/
|
|
|
|
/*
|
|
|
|
* Generate struct se_task(s) and/or their payloads for this CDB.
|
|
|
|
*/
|
|
|
|
static int transport_generic_new_cmd(struct se_cmd *cmd)
|
|
|
|
{
|
|
|
|
struct se_portal_group *se_tpg;
|
|
|
|
struct se_task *task;
|
|
|
|
struct se_device *dev = SE_DEV(cmd);
|
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Determine is the TCM fabric module has already allocated physical
|
|
|
|
* memory, and is directly calling transport_generic_map_mem_to_cmd()
|
|
|
|
* to setup beforehand the linked list of physical memory at
|
|
|
|
* T_TASK(cmd)->t_mem_list of struct se_mem->se_page
|
|
|
|
*/
|
|
|
|
if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)) {
|
|
|
|
ret = transport_allocate_resources(cmd);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = transport_get_sectors(cmd);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
ret = transport_new_cmd_obj(cmd);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Determine if the calling TCM fabric module is talking to
|
|
|
|
* Linux/NET via kernel sockets and needs to allocate a
|
|
|
|
* struct iovec array to complete the struct se_cmd
|
|
|
|
*/
|
|
|
|
se_tpg = SE_LUN(cmd)->lun_sep->sep_tpg;
|
|
|
|
if (TPG_TFO(se_tpg)->alloc_cmd_iovecs != NULL) {
|
|
|
|
ret = TPG_TFO(se_tpg)->alloc_cmd_iovecs(cmd);
|
|
|
|
if (ret < 0)
|
|
|
|
return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
|
|
|
|
list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) {
|
|
|
|
if (atomic_read(&task->task_sent))
|
|
|
|
continue;
|
|
|
|
if (!dev->transport->map_task_SG)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
ret = dev->transport->map_task_SG(task);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
ret = transport_map_control_cmd_to_task(cmd);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* For WRITEs, let the iSCSI Target RX Thread know its buffer is ready..
|
|
|
|
* This WRITE struct se_cmd (and all of its associated struct se_task's)
|
|
|
|
* will be added to the struct se_device execution queue after its WRITE
|
|
|
|
* data has arrived. (ie: It gets handled by the transport processing
|
|
|
|
* thread a second time)
|
|
|
|
*/
|
|
|
|
if (cmd->data_direction == DMA_TO_DEVICE) {
|
|
|
|
transport_add_tasks_to_state_queue(cmd);
|
|
|
|
return transport_generic_write_pending(cmd);
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Everything else but a WRITE, add the struct se_cmd's struct se_task's
|
|
|
|
* to the execution queue.
|
|
|
|
*/
|
|
|
|
transport_execute_tasks(cmd);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* transport_generic_process_write():
|
|
|
|
*
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
void transport_generic_process_write(struct se_cmd *cmd)
|
|
|
|
{
|
|
|
|
#if 0
|
|
|
|
/*
|
|
|
|
* Copy SCSI Presented DTL sector(s) from received buffers allocated to
|
|
|
|
* original EDTL
|
|
|
|
*/
|
|
|
|
if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
|
|
|
|
if (!T_TASK(cmd)->t_tasks_se_num) {
|
|
|
|
unsigned char *dst, *buf =
|
|
|
|
(unsigned char *)T_TASK(cmd)->t_task_buf;
|
|
|
|
|
|
|
|
dst = kzalloc(cmd->cmd_spdtl), GFP_KERNEL);
|
|
|
|
if (!(dst)) {
|
|
|
|
printk(KERN_ERR "Unable to allocate memory for"
|
|
|
|
" WRITE underflow\n");
|
|
|
|
transport_generic_request_failure(cmd, NULL,
|
|
|
|
PYX_TRANSPORT_REQ_TOO_MANY_SECTORS, 1);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
memcpy(dst, buf, cmd->cmd_spdtl);
|
|
|
|
|
|
|
|
kfree(T_TASK(cmd)->t_task_buf);
|
|
|
|
T_TASK(cmd)->t_task_buf = dst;
|
|
|
|
} else {
|
|
|
|
struct scatterlist *sg =
|
|
|
|
(struct scatterlist *sg)T_TASK(cmd)->t_task_buf;
|
|
|
|
struct scatterlist *orig_sg;
|
|
|
|
|
|
|
|
orig_sg = kzalloc(sizeof(struct scatterlist) *
|
|
|
|
T_TASK(cmd)->t_tasks_se_num,
|
|
|
|
GFP_KERNEL))) {
|
|
|
|
if (!(orig_sg)) {
|
|
|
|
printk(KERN_ERR "Unable to allocate memory"
|
|
|
|
" for WRITE underflow\n");
|
|
|
|
transport_generic_request_failure(cmd, NULL,
|
|
|
|
PYX_TRANSPORT_REQ_TOO_MANY_SECTORS, 1);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
memcpy(orig_sg, T_TASK(cmd)->t_task_buf,
|
|
|
|
sizeof(struct scatterlist) *
|
|
|
|
T_TASK(cmd)->t_tasks_se_num);
|
|
|
|
|
|
|
|
cmd->data_length = cmd->cmd_spdtl;
|
|
|
|
/*
|
|
|
|
* FIXME, clear out original struct se_task and state
|
|
|
|
* information.
|
|
|
|
*/
|
|
|
|
if (transport_generic_new_cmd(cmd) < 0) {
|
|
|
|
transport_generic_request_failure(cmd, NULL,
|
|
|
|
PYX_TRANSPORT_REQ_TOO_MANY_SECTORS, 1);
|
|
|
|
kfree(orig_sg);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
transport_memcpy_write_sg(cmd, orig_sg);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
transport_execute_tasks(cmd);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(transport_generic_process_write);
|
|
|
|
|
|
|
|
/* transport_generic_write_pending():
|
|
|
|
*
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
static int transport_generic_write_pending(struct se_cmd *cmd)
|
|
|
|
{
|
|
|
|
unsigned long flags;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
cmd->t_state = TRANSPORT_WRITE_PENDING;
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
/*
|
|
|
|
* For the TCM control CDBs using a contiguous buffer, do the memcpy
|
|
|
|
* from the passed Linux/SCSI struct scatterlist located at
|
|
|
|
* T_TASK(se_cmd)->t_task_pt_buf to the contiguous buffer at
|
|
|
|
* T_TASK(se_cmd)->t_task_buf.
|
|
|
|
*/
|
|
|
|
if (cmd->se_cmd_flags & SCF_PASSTHROUGH_CONTIG_TO_SG)
|
|
|
|
transport_memcpy_read_contig(cmd,
|
|
|
|
T_TASK(cmd)->t_task_buf,
|
|
|
|
T_TASK(cmd)->t_task_pt_sgl);
|
|
|
|
/*
|
|
|
|
* Clear the se_cmd for WRITE_PENDING status in order to set
|
|
|
|
* T_TASK(cmd)->t_transport_active=0 so that transport_generic_handle_data
|
|
|
|
* can be called from HW target mode interrupt code. This is safe
|
|
|
|
* to be called with transport_off=1 before the CMD_TFO(cmd)->write_pending
|
|
|
|
* because the se_cmd->se_lun pointer is not being cleared.
|
|
|
|
*/
|
|
|
|
transport_cmd_check_stop(cmd, 1, 0);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Call the fabric write_pending function here to let the
|
|
|
|
* frontend know that WRITE buffers are ready.
|
|
|
|
*/
|
|
|
|
ret = CMD_TFO(cmd)->write_pending(cmd);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
return PYX_TRANSPORT_WRITE_PENDING;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* transport_release_cmd_to_pool():
|
|
|
|
*
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
void transport_release_cmd_to_pool(struct se_cmd *cmd)
|
|
|
|
{
|
|
|
|
BUG_ON(!T_TASK(cmd));
|
|
|
|
BUG_ON(!CMD_TFO(cmd));
|
|
|
|
|
|
|
|
transport_free_se_cmd(cmd);
|
|
|
|
CMD_TFO(cmd)->release_cmd_to_pool(cmd);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(transport_release_cmd_to_pool);
|
|
|
|
|
|
|
|
/* transport_generic_free_cmd():
|
|
|
|
*
|
|
|
|
* Called from processing frontend to release storage engine resources
|
|
|
|
*/
|
|
|
|
void transport_generic_free_cmd(
|
|
|
|
struct se_cmd *cmd,
|
|
|
|
int wait_for_tasks,
|
|
|
|
int release_to_pool,
|
|
|
|
int session_reinstatement)
|
|
|
|
{
|
|
|
|
if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) || !T_TASK(cmd))
|
|
|
|
transport_release_cmd_to_pool(cmd);
|
|
|
|
else {
|
|
|
|
core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
|
|
|
|
|
|
|
|
if (SE_LUN(cmd)) {
|
|
|
|
#if 0
|
|
|
|
printk(KERN_INFO "cmd: %p ITT: 0x%08x contains"
|
|
|
|
" SE_LUN(cmd)\n", cmd,
|
|
|
|
CMD_TFO(cmd)->get_task_tag(cmd));
|
|
|
|
#endif
|
|
|
|
transport_lun_remove_cmd(cmd);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (wait_for_tasks && cmd->transport_wait_for_tasks)
|
|
|
|
cmd->transport_wait_for_tasks(cmd, 0, 0);
|
|
|
|
|
2011-05-20 03:19:11 +00:00
|
|
|
transport_free_dev_tasks(cmd);
|
|
|
|
|
[SCSI] target: Add LIO target core v4.0.0-rc6
LIO target is a full featured in-kernel target framework with the
following feature set:
High-performance, non-blocking, multithreaded architecture with SIMD
support.
Advanced SCSI feature set:
* Persistent Reservations (PRs)
* Asymmetric Logical Unit Assignment (ALUA)
* Protocol and intra-nexus multiplexing, load-balancing and failover (MC/S)
* Full Error Recovery (ERL=0,1,2)
* Active/active task migration and session continuation (ERL=2)
* Thin LUN provisioning (UNMAP and WRITE_SAMExx)
Multiprotocol target plugins
Storage media independence:
* Virtualization of all storage media; transparent mapping of IO to LUNs
* No hard limits on number of LUNs per Target; maximum LUN size ~750 TB
* Backstores: SATA, SAS, SCSI, BluRay, DVD, FLASH, USB, ramdisk, etc.
Standards compliance:
* Full compliance with IETF (RFC 3720)
* Full implementation of SPC-4 PRs and ALUA
Significant code cleanups done by Christoph Hellwig.
[jejb: fix up for new block bdev exclusive interface. Minor fixes from
Randy Dunlap and Dan Carpenter.]
Signed-off-by: Nicholas A. Bellinger <nab@linux-iscsi.org>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-12-17 19:11:26 +00:00
|
|
|
transport_generic_remove(cmd, release_to_pool,
|
|
|
|
session_reinstatement);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(transport_generic_free_cmd);
|
|
|
|
|
|
|
|
static void transport_nop_wait_for_tasks(
|
|
|
|
struct se_cmd *cmd,
|
|
|
|
int remove_cmd,
|
|
|
|
int session_reinstatement)
|
|
|
|
{
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* transport_lun_wait_for_tasks():
|
|
|
|
*
|
|
|
|
* Called from ConfigFS context to stop the passed struct se_cmd to allow
|
|
|
|
* an struct se_lun to be successfully shutdown.
|
|
|
|
*/
|
|
|
|
static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
|
|
|
|
{
|
|
|
|
unsigned long flags;
|
|
|
|
int ret;
|
|
|
|
/*
|
|
|
|
* If the frontend has already requested this struct se_cmd to
|
|
|
|
* be stopped, we can safely ignore this struct se_cmd.
|
|
|
|
*/
|
|
|
|
spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
if (atomic_read(&T_TASK(cmd)->t_transport_stop)) {
|
|
|
|
atomic_set(&T_TASK(cmd)->transport_lun_stop, 0);
|
|
|
|
DEBUG_TRANSPORT_S("ConfigFS ITT[0x%08x] - t_transport_stop =="
|
|
|
|
" TRUE, skipping\n", CMD_TFO(cmd)->get_task_tag(cmd));
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
transport_cmd_check_stop(cmd, 1, 0);
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
atomic_set(&T_TASK(cmd)->transport_lun_fe_stop, 1);
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
|
|
|
|
wake_up_interruptible(&SE_DEV(cmd)->dev_queue_obj->thread_wq);
|
|
|
|
|
|
|
|
ret = transport_stop_tasks_for_cmd(cmd);
|
|
|
|
|
|
|
|
DEBUG_TRANSPORT_S("ConfigFS: cmd: %p t_task_cdbs: %d stop tasks ret:"
|
|
|
|
" %d\n", cmd, T_TASK(cmd)->t_task_cdbs, ret);
|
|
|
|
if (!ret) {
|
|
|
|
DEBUG_TRANSPORT_S("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
|
|
|
|
CMD_TFO(cmd)->get_task_tag(cmd));
|
|
|
|
wait_for_completion(&T_TASK(cmd)->transport_lun_stop_comp);
|
|
|
|
DEBUG_TRANSPORT_S("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
|
|
|
|
CMD_TFO(cmd)->get_task_tag(cmd));
|
|
|
|
}
|
|
|
|
transport_remove_cmd_from_queue(cmd, SE_DEV(cmd)->dev_queue_obj);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* #define DEBUG_CLEAR_LUN */
|
|
|
|
#ifdef DEBUG_CLEAR_LUN
|
|
|
|
#define DEBUG_CLEAR_L(x...) printk(KERN_INFO x)
|
|
|
|
#else
|
|
|
|
#define DEBUG_CLEAR_L(x...)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
static void __transport_clear_lun_from_sessions(struct se_lun *lun)
|
|
|
|
{
|
|
|
|
struct se_cmd *cmd = NULL;
|
|
|
|
unsigned long lun_flags, cmd_flags;
|
|
|
|
/*
|
|
|
|
* Do exception processing and return CHECK_CONDITION status to the
|
|
|
|
* Initiator Port.
|
|
|
|
*/
|
|
|
|
spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
|
|
|
|
while (!list_empty_careful(&lun->lun_cmd_list)) {
|
|
|
|
cmd = list_entry(lun->lun_cmd_list.next,
|
|
|
|
struct se_cmd, se_lun_list);
|
|
|
|
list_del(&cmd->se_lun_list);
|
|
|
|
|
|
|
|
if (!(T_TASK(cmd))) {
|
|
|
|
printk(KERN_ERR "ITT: 0x%08x, T_TASK(cmd) = NULL"
|
|
|
|
"[i,t]_state: %u/%u\n",
|
|
|
|
CMD_TFO(cmd)->get_task_tag(cmd),
|
|
|
|
CMD_TFO(cmd)->get_cmd_state(cmd), cmd->t_state);
|
|
|
|
BUG();
|
|
|
|
}
|
|
|
|
atomic_set(&T_TASK(cmd)->transport_lun_active, 0);
|
|
|
|
/*
|
|
|
|
* This will notify iscsi_target_transport.c:
|
|
|
|
* transport_cmd_check_stop() that a LUN shutdown is in
|
|
|
|
* progress for the iscsi_cmd_t.
|
|
|
|
*/
|
|
|
|
spin_lock(&T_TASK(cmd)->t_state_lock);
|
|
|
|
DEBUG_CLEAR_L("SE_LUN[%d] - Setting T_TASK(cmd)->transport"
|
|
|
|
"_lun_stop for ITT: 0x%08x\n",
|
|
|
|
SE_LUN(cmd)->unpacked_lun,
|
|
|
|
CMD_TFO(cmd)->get_task_tag(cmd));
|
|
|
|
atomic_set(&T_TASK(cmd)->transport_lun_stop, 1);
|
|
|
|
spin_unlock(&T_TASK(cmd)->t_state_lock);
|
|
|
|
|
|
|
|
spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
|
|
|
|
|
|
|
|
if (!(SE_LUN(cmd))) {
|
|
|
|
printk(KERN_ERR "ITT: 0x%08x, [i,t]_state: %u/%u\n",
|
|
|
|
CMD_TFO(cmd)->get_task_tag(cmd),
|
|
|
|
CMD_TFO(cmd)->get_cmd_state(cmd), cmd->t_state);
|
|
|
|
BUG();
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* If the Storage engine still owns the iscsi_cmd_t, determine
|
|
|
|
* and/or stop its context.
|
|
|
|
*/
|
|
|
|
DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x before transport"
|
|
|
|
"_lun_wait_for_tasks()\n", SE_LUN(cmd)->unpacked_lun,
|
|
|
|
CMD_TFO(cmd)->get_task_tag(cmd));
|
|
|
|
|
|
|
|
if (transport_lun_wait_for_tasks(cmd, SE_LUN(cmd)) < 0) {
|
|
|
|
spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
|
|
|
|
"_wait_for_tasks(): SUCCESS\n",
|
|
|
|
SE_LUN(cmd)->unpacked_lun,
|
|
|
|
CMD_TFO(cmd)->get_task_tag(cmd));
|
|
|
|
|
|
|
|
spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, cmd_flags);
|
|
|
|
if (!(atomic_read(&T_TASK(cmd)->transport_dev_active))) {
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, cmd_flags);
|
|
|
|
goto check_cond;
|
|
|
|
}
|
|
|
|
atomic_set(&T_TASK(cmd)->transport_dev_active, 0);
|
|
|
|
transport_all_task_dev_remove_state(cmd);
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, cmd_flags);
|
|
|
|
|
|
|
|
transport_free_dev_tasks(cmd);
|
|
|
|
/*
|
|
|
|
* The Storage engine stopped this struct se_cmd before it was
|
|
|
|
* send to the fabric frontend for delivery back to the
|
|
|
|
* Initiator Node. Return this SCSI CDB back with an
|
|
|
|
* CHECK_CONDITION status.
|
|
|
|
*/
|
|
|
|
check_cond:
|
|
|
|
transport_send_check_condition_and_sense(cmd,
|
|
|
|
TCM_NON_EXISTENT_LUN, 0);
|
|
|
|
/*
|
|
|
|
* If the fabric frontend is waiting for this iscsi_cmd_t to
|
|
|
|
* be released, notify the waiting thread now that LU has
|
|
|
|
* finished accessing it.
|
|
|
|
*/
|
|
|
|
spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, cmd_flags);
|
|
|
|
if (atomic_read(&T_TASK(cmd)->transport_lun_fe_stop)) {
|
|
|
|
DEBUG_CLEAR_L("SE_LUN[%d] - Detected FE stop for"
|
|
|
|
" struct se_cmd: %p ITT: 0x%08x\n",
|
|
|
|
lun->unpacked_lun,
|
|
|
|
cmd, CMD_TFO(cmd)->get_task_tag(cmd));
|
|
|
|
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
|
|
|
|
cmd_flags);
|
|
|
|
transport_cmd_check_stop(cmd, 1, 0);
|
|
|
|
complete(&T_TASK(cmd)->transport_lun_fe_stop_comp);
|
|
|
|
spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
|
|
|
|
lun->unpacked_lun, CMD_TFO(cmd)->get_task_tag(cmd));
|
|
|
|
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, cmd_flags);
|
|
|
|
spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
|
|
|
|
}
|
|
|
|
spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int transport_clear_lun_thread(void *p)
|
|
|
|
{
|
|
|
|
struct se_lun *lun = (struct se_lun *)p;
|
|
|
|
|
|
|
|
__transport_clear_lun_from_sessions(lun);
|
|
|
|
complete(&lun->lun_shutdown_comp);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int transport_clear_lun_from_sessions(struct se_lun *lun)
|
|
|
|
{
|
|
|
|
struct task_struct *kt;
|
|
|
|
|
|
|
|
kt = kthread_run(transport_clear_lun_thread, (void *)lun,
|
|
|
|
"tcm_cl_%u", lun->unpacked_lun);
|
|
|
|
if (IS_ERR(kt)) {
|
|
|
|
printk(KERN_ERR "Unable to start clear_lun thread\n");
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
wait_for_completion(&lun->lun_shutdown_comp);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* transport_generic_wait_for_tasks():
|
|
|
|
*
|
|
|
|
* Called from frontend or passthrough context to wait for storage engine
|
|
|
|
* to pause and/or release frontend generated struct se_cmd.
|
|
|
|
*/
|
|
|
|
static void transport_generic_wait_for_tasks(
|
|
|
|
struct se_cmd *cmd,
|
|
|
|
int remove_cmd,
|
|
|
|
int session_reinstatement)
|
|
|
|
{
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req))
|
|
|
|
return;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
/*
|
|
|
|
* If we are already stopped due to an external event (ie: LUN shutdown)
|
|
|
|
* sleep until the connection can have the passed struct se_cmd back.
|
|
|
|
* The T_TASK(cmd)->transport_lun_stopped_sem will be upped by
|
|
|
|
* transport_clear_lun_from_sessions() once the ConfigFS context caller
|
|
|
|
* has completed its operation on the struct se_cmd.
|
|
|
|
*/
|
|
|
|
if (atomic_read(&T_TASK(cmd)->transport_lun_stop)) {
|
|
|
|
|
|
|
|
DEBUG_TRANSPORT_S("wait_for_tasks: Stopping"
|
|
|
|
" wait_for_completion(&T_TASK(cmd)transport_lun_fe"
|
|
|
|
"_stop_comp); for ITT: 0x%08x\n",
|
|
|
|
CMD_TFO(cmd)->get_task_tag(cmd));
|
|
|
|
/*
|
|
|
|
* There is a special case for WRITES where a FE exception +
|
|
|
|
* LUN shutdown means ConfigFS context is still sleeping on
|
|
|
|
* transport_lun_stop_comp in transport_lun_wait_for_tasks().
|
|
|
|
* We go ahead and up transport_lun_stop_comp just to be sure
|
|
|
|
* here.
|
|
|
|
*/
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
complete(&T_TASK(cmd)->transport_lun_stop_comp);
|
|
|
|
wait_for_completion(&T_TASK(cmd)->transport_lun_fe_stop_comp);
|
|
|
|
spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
|
|
|
|
transport_all_task_dev_remove_state(cmd);
|
|
|
|
/*
|
|
|
|
* At this point, the frontend who was the originator of this
|
|
|
|
* struct se_cmd, now owns the structure and can be released through
|
|
|
|
* normal means below.
|
|
|
|
*/
|
|
|
|
DEBUG_TRANSPORT_S("wait_for_tasks: Stopped"
|
|
|
|
" wait_for_completion(&T_TASK(cmd)transport_lun_fe_"
|
|
|
|
"stop_comp); for ITT: 0x%08x\n",
|
|
|
|
CMD_TFO(cmd)->get_task_tag(cmd));
|
|
|
|
|
|
|
|
atomic_set(&T_TASK(cmd)->transport_lun_stop, 0);
|
|
|
|
}
|
2011-02-25 00:58:20 +00:00
|
|
|
if (!atomic_read(&T_TASK(cmd)->t_transport_active) ||
|
|
|
|
atomic_read(&T_TASK(cmd)->t_transport_aborted))
|
[SCSI] target: Add LIO target core v4.0.0-rc6
LIO target is a full featured in-kernel target framework with the
following feature set:
High-performance, non-blocking, multithreaded architecture with SIMD
support.
Advanced SCSI feature set:
* Persistent Reservations (PRs)
* Asymmetric Logical Unit Assignment (ALUA)
* Protocol and intra-nexus multiplexing, load-balancing and failover (MC/S)
* Full Error Recovery (ERL=0,1,2)
* Active/active task migration and session continuation (ERL=2)
* Thin LUN provisioning (UNMAP and WRITE_SAMExx)
Multiprotocol target plugins
Storage media independence:
* Virtualization of all storage media; transparent mapping of IO to LUNs
* No hard limits on number of LUNs per Target; maximum LUN size ~750 TB
* Backstores: SATA, SAS, SCSI, BluRay, DVD, FLASH, USB, ramdisk, etc.
Standards compliance:
* Full compliance with IETF (RFC 3720)
* Full implementation of SPC-4 PRs and ALUA
Significant code cleanups done by Christoph Hellwig.
[jejb: fix up for new block bdev exclusive interface. Minor fixes from
Randy Dunlap and Dan Carpenter.]
Signed-off-by: Nicholas A. Bellinger <nab@linux-iscsi.org>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-12-17 19:11:26 +00:00
|
|
|
goto remove;
|
|
|
|
|
|
|
|
atomic_set(&T_TASK(cmd)->t_transport_stop, 1);
|
|
|
|
|
|
|
|
DEBUG_TRANSPORT_S("wait_for_tasks: Stopping %p ITT: 0x%08x"
|
|
|
|
" i_state: %d, t_state/def_t_state: %d/%d, t_transport_stop"
|
|
|
|
" = TRUE\n", cmd, CMD_TFO(cmd)->get_task_tag(cmd),
|
|
|
|
CMD_TFO(cmd)->get_cmd_state(cmd), cmd->t_state,
|
|
|
|
cmd->deferred_t_state);
|
|
|
|
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
|
|
|
|
wake_up_interruptible(&SE_DEV(cmd)->dev_queue_obj->thread_wq);
|
|
|
|
|
|
|
|
wait_for_completion(&T_TASK(cmd)->t_transport_stop_comp);
|
|
|
|
|
|
|
|
spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
atomic_set(&T_TASK(cmd)->t_transport_active, 0);
|
|
|
|
atomic_set(&T_TASK(cmd)->t_transport_stop, 0);
|
|
|
|
|
|
|
|
DEBUG_TRANSPORT_S("wait_for_tasks: Stopped wait_for_compltion("
|
|
|
|
"&T_TASK(cmd)->t_transport_stop_comp) for ITT: 0x%08x\n",
|
|
|
|
CMD_TFO(cmd)->get_task_tag(cmd));
|
|
|
|
remove:
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
if (!remove_cmd)
|
|
|
|
return;
|
|
|
|
|
|
|
|
transport_generic_free_cmd(cmd, 0, 0, session_reinstatement);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int transport_get_sense_codes(
|
|
|
|
struct se_cmd *cmd,
|
|
|
|
u8 *asc,
|
|
|
|
u8 *ascq)
|
|
|
|
{
|
|
|
|
*asc = cmd->scsi_asc;
|
|
|
|
*ascq = cmd->scsi_ascq;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int transport_set_sense_codes(
|
|
|
|
struct se_cmd *cmd,
|
|
|
|
u8 asc,
|
|
|
|
u8 ascq)
|
|
|
|
{
|
|
|
|
cmd->scsi_asc = asc;
|
|
|
|
cmd->scsi_ascq = ascq;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int transport_send_check_condition_and_sense(
|
|
|
|
struct se_cmd *cmd,
|
|
|
|
u8 reason,
|
|
|
|
int from_transport)
|
|
|
|
{
|
|
|
|
unsigned char *buffer = cmd->sense_buffer;
|
|
|
|
unsigned long flags;
|
|
|
|
int offset;
|
|
|
|
u8 asc = 0, ascq = 0;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
|
|
|
|
spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
|
|
|
|
if (!reason && from_transport)
|
|
|
|
goto after_reason;
|
|
|
|
|
|
|
|
if (!from_transport)
|
|
|
|
cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
|
|
|
|
/*
|
|
|
|
* Data Segment and SenseLength of the fabric response PDU.
|
|
|
|
*
|
|
|
|
* TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
|
|
|
|
* from include/scsi/scsi_cmnd.h
|
|
|
|
*/
|
|
|
|
offset = CMD_TFO(cmd)->set_fabric_sense_len(cmd,
|
|
|
|
TRANSPORT_SENSE_BUFFER);
|
|
|
|
/*
|
|
|
|
* Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
|
|
|
|
* SENSE KEY values from include/scsi/scsi.h
|
|
|
|
*/
|
|
|
|
switch (reason) {
|
|
|
|
case TCM_NON_EXISTENT_LUN:
|
|
|
|
case TCM_UNSUPPORTED_SCSI_OPCODE:
|
|
|
|
case TCM_SECTOR_COUNT_TOO_MANY:
|
|
|
|
/* CURRENT ERROR */
|
|
|
|
buffer[offset] = 0x70;
|
|
|
|
/* ILLEGAL REQUEST */
|
|
|
|
buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
|
|
|
|
/* INVALID COMMAND OPERATION CODE */
|
|
|
|
buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
|
|
|
|
break;
|
|
|
|
case TCM_UNKNOWN_MODE_PAGE:
|
|
|
|
/* CURRENT ERROR */
|
|
|
|
buffer[offset] = 0x70;
|
|
|
|
/* ILLEGAL REQUEST */
|
|
|
|
buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
|
|
|
|
/* INVALID FIELD IN CDB */
|
|
|
|
buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
|
|
|
|
break;
|
|
|
|
case TCM_CHECK_CONDITION_ABORT_CMD:
|
|
|
|
/* CURRENT ERROR */
|
|
|
|
buffer[offset] = 0x70;
|
|
|
|
/* ABORTED COMMAND */
|
|
|
|
buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
|
|
|
|
/* BUS DEVICE RESET FUNCTION OCCURRED */
|
|
|
|
buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
|
|
|
|
buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
|
|
|
|
break;
|
|
|
|
case TCM_INCORRECT_AMOUNT_OF_DATA:
|
|
|
|
/* CURRENT ERROR */
|
|
|
|
buffer[offset] = 0x70;
|
|
|
|
/* ABORTED COMMAND */
|
|
|
|
buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
|
|
|
|
/* WRITE ERROR */
|
|
|
|
buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
|
|
|
|
/* NOT ENOUGH UNSOLICITED DATA */
|
|
|
|
buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
|
|
|
|
break;
|
|
|
|
case TCM_INVALID_CDB_FIELD:
|
|
|
|
/* CURRENT ERROR */
|
|
|
|
buffer[offset] = 0x70;
|
|
|
|
/* ABORTED COMMAND */
|
|
|
|
buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
|
|
|
|
/* INVALID FIELD IN CDB */
|
|
|
|
buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
|
|
|
|
break;
|
|
|
|
case TCM_INVALID_PARAMETER_LIST:
|
|
|
|
/* CURRENT ERROR */
|
|
|
|
buffer[offset] = 0x70;
|
|
|
|
/* ABORTED COMMAND */
|
|
|
|
buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
|
|
|
|
/* INVALID FIELD IN PARAMETER LIST */
|
|
|
|
buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
|
|
|
|
break;
|
|
|
|
case TCM_UNEXPECTED_UNSOLICITED_DATA:
|
|
|
|
/* CURRENT ERROR */
|
|
|
|
buffer[offset] = 0x70;
|
|
|
|
/* ABORTED COMMAND */
|
|
|
|
buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
|
|
|
|
/* WRITE ERROR */
|
|
|
|
buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
|
|
|
|
/* UNEXPECTED_UNSOLICITED_DATA */
|
|
|
|
buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
|
|
|
|
break;
|
|
|
|
case TCM_SERVICE_CRC_ERROR:
|
|
|
|
/* CURRENT ERROR */
|
|
|
|
buffer[offset] = 0x70;
|
|
|
|
/* ABORTED COMMAND */
|
|
|
|
buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
|
|
|
|
/* PROTOCOL SERVICE CRC ERROR */
|
|
|
|
buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
|
|
|
|
/* N/A */
|
|
|
|
buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
|
|
|
|
break;
|
|
|
|
case TCM_SNACK_REJECTED:
|
|
|
|
/* CURRENT ERROR */
|
|
|
|
buffer[offset] = 0x70;
|
|
|
|
/* ABORTED COMMAND */
|
|
|
|
buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
|
|
|
|
/* READ ERROR */
|
|
|
|
buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
|
|
|
|
/* FAILED RETRANSMISSION REQUEST */
|
|
|
|
buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
|
|
|
|
break;
|
|
|
|
case TCM_WRITE_PROTECTED:
|
|
|
|
/* CURRENT ERROR */
|
|
|
|
buffer[offset] = 0x70;
|
|
|
|
/* DATA PROTECT */
|
|
|
|
buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
|
|
|
|
/* WRITE PROTECTED */
|
|
|
|
buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
|
|
|
|
break;
|
|
|
|
case TCM_CHECK_CONDITION_UNIT_ATTENTION:
|
|
|
|
/* CURRENT ERROR */
|
|
|
|
buffer[offset] = 0x70;
|
|
|
|
/* UNIT ATTENTION */
|
|
|
|
buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
|
|
|
|
core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
|
|
|
|
buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
|
|
|
|
buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
|
|
|
|
break;
|
|
|
|
case TCM_CHECK_CONDITION_NOT_READY:
|
|
|
|
/* CURRENT ERROR */
|
|
|
|
buffer[offset] = 0x70;
|
|
|
|
/* Not Ready */
|
|
|
|
buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
|
|
|
|
transport_get_sense_codes(cmd, &asc, &ascq);
|
|
|
|
buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
|
|
|
|
buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
|
|
|
|
break;
|
|
|
|
case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
|
|
|
|
default:
|
|
|
|
/* CURRENT ERROR */
|
|
|
|
buffer[offset] = 0x70;
|
|
|
|
/* ILLEGAL REQUEST */
|
|
|
|
buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
|
|
|
|
/* LOGICAL UNIT COMMUNICATION FAILURE */
|
|
|
|
buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* This code uses linux/include/scsi/scsi.h SAM status codes!
|
|
|
|
*/
|
|
|
|
cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
|
|
|
|
/*
|
|
|
|
* Automatically padded, this value is encoded in the fabric's
|
|
|
|
* data_length response PDU containing the SCSI defined sense data.
|
|
|
|
*/
|
|
|
|
cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset;
|
|
|
|
|
|
|
|
after_reason:
|
|
|
|
CMD_TFO(cmd)->queue_status(cmd);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(transport_send_check_condition_and_sense);
|
|
|
|
|
|
|
|
int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
|
|
|
|
{
|
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
if (atomic_read(&T_TASK(cmd)->t_transport_aborted) != 0) {
|
|
|
|
if (!(send_status) ||
|
|
|
|
(cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
|
|
|
|
return 1;
|
|
|
|
#if 0
|
|
|
|
printk(KERN_INFO "Sending delayed SAM_STAT_TASK_ABORTED"
|
|
|
|
" status for CDB: 0x%02x ITT: 0x%08x\n",
|
|
|
|
T_TASK(cmd)->t_task_cdb[0],
|
|
|
|
CMD_TFO(cmd)->get_task_tag(cmd));
|
|
|
|
#endif
|
|
|
|
cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
|
|
|
|
CMD_TFO(cmd)->queue_status(cmd);
|
|
|
|
ret = 1;
|
|
|
|
}
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(transport_check_aborted_status);
|
|
|
|
|
|
|
|
void transport_send_task_abort(struct se_cmd *cmd)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* If there are still expected incoming fabric WRITEs, we wait
|
|
|
|
* until until they have completed before sending a TASK_ABORTED
|
|
|
|
* response. This response with TASK_ABORTED status will be
|
|
|
|
* queued back to fabric module by transport_check_aborted_status().
|
|
|
|
*/
|
|
|
|
if (cmd->data_direction == DMA_TO_DEVICE) {
|
|
|
|
if (CMD_TFO(cmd)->write_pending_status(cmd) != 0) {
|
|
|
|
atomic_inc(&T_TASK(cmd)->t_transport_aborted);
|
|
|
|
smp_mb__after_atomic_inc();
|
|
|
|
cmd->scsi_status = SAM_STAT_TASK_ABORTED;
|
|
|
|
transport_new_cmd_failure(cmd);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
cmd->scsi_status = SAM_STAT_TASK_ABORTED;
|
|
|
|
#if 0
|
|
|
|
printk(KERN_INFO "Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
|
|
|
|
" ITT: 0x%08x\n", T_TASK(cmd)->t_task_cdb[0],
|
|
|
|
CMD_TFO(cmd)->get_task_tag(cmd));
|
|
|
|
#endif
|
|
|
|
CMD_TFO(cmd)->queue_status(cmd);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* transport_generic_do_tmr():
|
|
|
|
*
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
int transport_generic_do_tmr(struct se_cmd *cmd)
|
|
|
|
{
|
|
|
|
struct se_cmd *ref_cmd;
|
|
|
|
struct se_device *dev = SE_DEV(cmd);
|
|
|
|
struct se_tmr_req *tmr = cmd->se_tmr_req;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
switch (tmr->function) {
|
2011-03-14 11:06:04 +00:00
|
|
|
case TMR_ABORT_TASK:
|
[SCSI] target: Add LIO target core v4.0.0-rc6
LIO target is a full featured in-kernel target framework with the
following feature set:
High-performance, non-blocking, multithreaded architecture with SIMD
support.
Advanced SCSI feature set:
* Persistent Reservations (PRs)
* Asymmetric Logical Unit Assignment (ALUA)
* Protocol and intra-nexus multiplexing, load-balancing and failover (MC/S)
* Full Error Recovery (ERL=0,1,2)
* Active/active task migration and session continuation (ERL=2)
* Thin LUN provisioning (UNMAP and WRITE_SAMExx)
Multiprotocol target plugins
Storage media independence:
* Virtualization of all storage media; transparent mapping of IO to LUNs
* No hard limits on number of LUNs per Target; maximum LUN size ~750 TB
* Backstores: SATA, SAS, SCSI, BluRay, DVD, FLASH, USB, ramdisk, etc.
Standards compliance:
* Full compliance with IETF (RFC 3720)
* Full implementation of SPC-4 PRs and ALUA
Significant code cleanups done by Christoph Hellwig.
[jejb: fix up for new block bdev exclusive interface. Minor fixes from
Randy Dunlap and Dan Carpenter.]
Signed-off-by: Nicholas A. Bellinger <nab@linux-iscsi.org>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-12-17 19:11:26 +00:00
|
|
|
ref_cmd = tmr->ref_cmd;
|
|
|
|
tmr->response = TMR_FUNCTION_REJECTED;
|
|
|
|
break;
|
2011-03-14 11:06:04 +00:00
|
|
|
case TMR_ABORT_TASK_SET:
|
|
|
|
case TMR_CLEAR_ACA:
|
|
|
|
case TMR_CLEAR_TASK_SET:
|
[SCSI] target: Add LIO target core v4.0.0-rc6
LIO target is a full featured in-kernel target framework with the
following feature set:
High-performance, non-blocking, multithreaded architecture with SIMD
support.
Advanced SCSI feature set:
* Persistent Reservations (PRs)
* Asymmetric Logical Unit Assignment (ALUA)
* Protocol and intra-nexus multiplexing, load-balancing and failover (MC/S)
* Full Error Recovery (ERL=0,1,2)
* Active/active task migration and session continuation (ERL=2)
* Thin LUN provisioning (UNMAP and WRITE_SAMExx)
Multiprotocol target plugins
Storage media independence:
* Virtualization of all storage media; transparent mapping of IO to LUNs
* No hard limits on number of LUNs per Target; maximum LUN size ~750 TB
* Backstores: SATA, SAS, SCSI, BluRay, DVD, FLASH, USB, ramdisk, etc.
Standards compliance:
* Full compliance with IETF (RFC 3720)
* Full implementation of SPC-4 PRs and ALUA
Significant code cleanups done by Christoph Hellwig.
[jejb: fix up for new block bdev exclusive interface. Minor fixes from
Randy Dunlap and Dan Carpenter.]
Signed-off-by: Nicholas A. Bellinger <nab@linux-iscsi.org>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-12-17 19:11:26 +00:00
|
|
|
tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
|
|
|
|
break;
|
2011-03-14 11:06:04 +00:00
|
|
|
case TMR_LUN_RESET:
|
[SCSI] target: Add LIO target core v4.0.0-rc6
LIO target is a full featured in-kernel target framework with the
following feature set:
High-performance, non-blocking, multithreaded architecture with SIMD
support.
Advanced SCSI feature set:
* Persistent Reservations (PRs)
* Asymmetric Logical Unit Assignment (ALUA)
* Protocol and intra-nexus multiplexing, load-balancing and failover (MC/S)
* Full Error Recovery (ERL=0,1,2)
* Active/active task migration and session continuation (ERL=2)
* Thin LUN provisioning (UNMAP and WRITE_SAMExx)
Multiprotocol target plugins
Storage media independence:
* Virtualization of all storage media; transparent mapping of IO to LUNs
* No hard limits on number of LUNs per Target; maximum LUN size ~750 TB
* Backstores: SATA, SAS, SCSI, BluRay, DVD, FLASH, USB, ramdisk, etc.
Standards compliance:
* Full compliance with IETF (RFC 3720)
* Full implementation of SPC-4 PRs and ALUA
Significant code cleanups done by Christoph Hellwig.
[jejb: fix up for new block bdev exclusive interface. Minor fixes from
Randy Dunlap and Dan Carpenter.]
Signed-off-by: Nicholas A. Bellinger <nab@linux-iscsi.org>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-12-17 19:11:26 +00:00
|
|
|
ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
|
|
|
|
tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
|
|
|
|
TMR_FUNCTION_REJECTED;
|
|
|
|
break;
|
2011-03-14 11:06:04 +00:00
|
|
|
case TMR_TARGET_WARM_RESET:
|
[SCSI] target: Add LIO target core v4.0.0-rc6
LIO target is a full featured in-kernel target framework with the
following feature set:
High-performance, non-blocking, multithreaded architecture with SIMD
support.
Advanced SCSI feature set:
* Persistent Reservations (PRs)
* Asymmetric Logical Unit Assignment (ALUA)
* Protocol and intra-nexus multiplexing, load-balancing and failover (MC/S)
* Full Error Recovery (ERL=0,1,2)
* Active/active task migration and session continuation (ERL=2)
* Thin LUN provisioning (UNMAP and WRITE_SAMExx)
Multiprotocol target plugins
Storage media independence:
* Virtualization of all storage media; transparent mapping of IO to LUNs
* No hard limits on number of LUNs per Target; maximum LUN size ~750 TB
* Backstores: SATA, SAS, SCSI, BluRay, DVD, FLASH, USB, ramdisk, etc.
Standards compliance:
* Full compliance with IETF (RFC 3720)
* Full implementation of SPC-4 PRs and ALUA
Significant code cleanups done by Christoph Hellwig.
[jejb: fix up for new block bdev exclusive interface. Minor fixes from
Randy Dunlap and Dan Carpenter.]
Signed-off-by: Nicholas A. Bellinger <nab@linux-iscsi.org>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-12-17 19:11:26 +00:00
|
|
|
tmr->response = TMR_FUNCTION_REJECTED;
|
|
|
|
break;
|
2011-03-14 11:06:04 +00:00
|
|
|
case TMR_TARGET_COLD_RESET:
|
[SCSI] target: Add LIO target core v4.0.0-rc6
LIO target is a full featured in-kernel target framework with the
following feature set:
High-performance, non-blocking, multithreaded architecture with SIMD
support.
Advanced SCSI feature set:
* Persistent Reservations (PRs)
* Asymmetric Logical Unit Assignment (ALUA)
* Protocol and intra-nexus multiplexing, load-balancing and failover (MC/S)
* Full Error Recovery (ERL=0,1,2)
* Active/active task migration and session continuation (ERL=2)
* Thin LUN provisioning (UNMAP and WRITE_SAMExx)
Multiprotocol target plugins
Storage media independence:
* Virtualization of all storage media; transparent mapping of IO to LUNs
* No hard limits on number of LUNs per Target; maximum LUN size ~750 TB
* Backstores: SATA, SAS, SCSI, BluRay, DVD, FLASH, USB, ramdisk, etc.
Standards compliance:
* Full compliance with IETF (RFC 3720)
* Full implementation of SPC-4 PRs and ALUA
Significant code cleanups done by Christoph Hellwig.
[jejb: fix up for new block bdev exclusive interface. Minor fixes from
Randy Dunlap and Dan Carpenter.]
Signed-off-by: Nicholas A. Bellinger <nab@linux-iscsi.org>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-12-17 19:11:26 +00:00
|
|
|
tmr->response = TMR_FUNCTION_REJECTED;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
printk(KERN_ERR "Uknown TMR function: 0x%02x.\n",
|
|
|
|
tmr->function);
|
|
|
|
tmr->response = TMR_FUNCTION_REJECTED;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
|
|
|
|
CMD_TFO(cmd)->queue_tm_rsp(cmd);
|
|
|
|
|
|
|
|
transport_cmd_check_stop(cmd, 2, 0);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Called with spin_lock_irq(&dev->execute_task_lock); held
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
static struct se_task *
|
|
|
|
transport_get_task_from_state_list(struct se_device *dev)
|
|
|
|
{
|
|
|
|
struct se_task *task;
|
|
|
|
|
|
|
|
if (list_empty(&dev->state_task_list))
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
list_for_each_entry(task, &dev->state_task_list, t_state_list)
|
|
|
|
break;
|
|
|
|
|
|
|
|
list_del(&task->t_state_list);
|
|
|
|
atomic_set(&task->task_state_active, 0);
|
|
|
|
|
|
|
|
return task;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void transport_processing_shutdown(struct se_device *dev)
|
|
|
|
{
|
|
|
|
struct se_cmd *cmd;
|
|
|
|
struct se_queue_req *qr;
|
|
|
|
struct se_task *task;
|
|
|
|
u8 state;
|
|
|
|
unsigned long flags;
|
|
|
|
/*
|
|
|
|
* Empty the struct se_device's struct se_task state list.
|
|
|
|
*/
|
|
|
|
spin_lock_irqsave(&dev->execute_task_lock, flags);
|
|
|
|
while ((task = transport_get_task_from_state_list(dev))) {
|
|
|
|
if (!(TASK_CMD(task))) {
|
|
|
|
printk(KERN_ERR "TASK_CMD(task) is NULL!\n");
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
cmd = TASK_CMD(task);
|
|
|
|
|
|
|
|
if (!T_TASK(cmd)) {
|
|
|
|
printk(KERN_ERR "T_TASK(cmd) is NULL for task: %p cmd:"
|
|
|
|
" %p ITT: 0x%08x\n", task, cmd,
|
|
|
|
CMD_TFO(cmd)->get_task_tag(cmd));
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
spin_unlock_irqrestore(&dev->execute_task_lock, flags);
|
|
|
|
|
|
|
|
spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
|
|
|
|
DEBUG_DO("PT: cmd: %p task: %p ITT/CmdSN: 0x%08x/0x%08x,"
|
|
|
|
" i_state/def_i_state: %d/%d, t_state/def_t_state:"
|
|
|
|
" %d/%d cdb: 0x%02x\n", cmd, task,
|
|
|
|
CMD_TFO(cmd)->get_task_tag(cmd), cmd->cmd_sn,
|
|
|
|
CMD_TFO(cmd)->get_cmd_state(cmd), cmd->deferred_i_state,
|
|
|
|
cmd->t_state, cmd->deferred_t_state,
|
|
|
|
T_TASK(cmd)->t_task_cdb[0]);
|
|
|
|
DEBUG_DO("PT: ITT[0x%08x] - t_task_cdbs: %d t_task_cdbs_left:"
|
|
|
|
" %d t_task_cdbs_sent: %d -- t_transport_active: %d"
|
|
|
|
" t_transport_stop: %d t_transport_sent: %d\n",
|
|
|
|
CMD_TFO(cmd)->get_task_tag(cmd),
|
|
|
|
T_TASK(cmd)->t_task_cdbs,
|
|
|
|
atomic_read(&T_TASK(cmd)->t_task_cdbs_left),
|
|
|
|
atomic_read(&T_TASK(cmd)->t_task_cdbs_sent),
|
|
|
|
atomic_read(&T_TASK(cmd)->t_transport_active),
|
|
|
|
atomic_read(&T_TASK(cmd)->t_transport_stop),
|
|
|
|
atomic_read(&T_TASK(cmd)->t_transport_sent));
|
|
|
|
|
|
|
|
if (atomic_read(&task->task_active)) {
|
|
|
|
atomic_set(&task->task_stop, 1);
|
|
|
|
spin_unlock_irqrestore(
|
|
|
|
&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
|
|
|
|
DEBUG_DO("Waiting for task: %p to shutdown for dev:"
|
|
|
|
" %p\n", task, dev);
|
|
|
|
wait_for_completion(&task->task_stop_comp);
|
|
|
|
DEBUG_DO("Completed task: %p shutdown for dev: %p\n",
|
|
|
|
task, dev);
|
|
|
|
|
|
|
|
spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
atomic_dec(&T_TASK(cmd)->t_task_cdbs_left);
|
|
|
|
|
|
|
|
atomic_set(&task->task_active, 0);
|
|
|
|
atomic_set(&task->task_stop, 0);
|
2011-02-25 00:58:20 +00:00
|
|
|
} else {
|
|
|
|
if (atomic_read(&task->task_execute_queue) != 0)
|
|
|
|
transport_remove_task_from_execute_queue(task, dev);
|
[SCSI] target: Add LIO target core v4.0.0-rc6
LIO target is a full featured in-kernel target framework with the
following feature set:
High-performance, non-blocking, multithreaded architecture with SIMD
support.
Advanced SCSI feature set:
* Persistent Reservations (PRs)
* Asymmetric Logical Unit Assignment (ALUA)
* Protocol and intra-nexus multiplexing, load-balancing and failover (MC/S)
* Full Error Recovery (ERL=0,1,2)
* Active/active task migration and session continuation (ERL=2)
* Thin LUN provisioning (UNMAP and WRITE_SAMExx)
Multiprotocol target plugins
Storage media independence:
* Virtualization of all storage media; transparent mapping of IO to LUNs
* No hard limits on number of LUNs per Target; maximum LUN size ~750 TB
* Backstores: SATA, SAS, SCSI, BluRay, DVD, FLASH, USB, ramdisk, etc.
Standards compliance:
* Full compliance with IETF (RFC 3720)
* Full implementation of SPC-4 PRs and ALUA
Significant code cleanups done by Christoph Hellwig.
[jejb: fix up for new block bdev exclusive interface. Minor fixes from
Randy Dunlap and Dan Carpenter.]
Signed-off-by: Nicholas A. Bellinger <nab@linux-iscsi.org>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-12-17 19:11:26 +00:00
|
|
|
}
|
|
|
|
__transport_stop_task_timer(task, &flags);
|
|
|
|
|
|
|
|
if (!(atomic_dec_and_test(&T_TASK(cmd)->t_task_cdbs_ex_left))) {
|
|
|
|
spin_unlock_irqrestore(
|
|
|
|
&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
|
|
|
|
DEBUG_DO("Skipping task: %p, dev: %p for"
|
|
|
|
" t_task_cdbs_ex_left: %d\n", task, dev,
|
|
|
|
atomic_read(&T_TASK(cmd)->t_task_cdbs_ex_left));
|
|
|
|
|
|
|
|
spin_lock_irqsave(&dev->execute_task_lock, flags);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (atomic_read(&T_TASK(cmd)->t_transport_active)) {
|
|
|
|
DEBUG_DO("got t_transport_active = 1 for task: %p, dev:"
|
|
|
|
" %p\n", task, dev);
|
|
|
|
|
|
|
|
if (atomic_read(&T_TASK(cmd)->t_fe_count)) {
|
|
|
|
spin_unlock_irqrestore(
|
|
|
|
&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
transport_send_check_condition_and_sense(
|
|
|
|
cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE,
|
|
|
|
0);
|
|
|
|
transport_remove_cmd_from_queue(cmd,
|
|
|
|
SE_DEV(cmd)->dev_queue_obj);
|
|
|
|
|
|
|
|
transport_lun_remove_cmd(cmd);
|
|
|
|
transport_cmd_check_stop(cmd, 1, 0);
|
|
|
|
} else {
|
|
|
|
spin_unlock_irqrestore(
|
|
|
|
&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
|
|
|
|
transport_remove_cmd_from_queue(cmd,
|
|
|
|
SE_DEV(cmd)->dev_queue_obj);
|
|
|
|
|
|
|
|
transport_lun_remove_cmd(cmd);
|
|
|
|
|
|
|
|
if (transport_cmd_check_stop(cmd, 1, 0))
|
|
|
|
transport_generic_remove(cmd, 0, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
spin_lock_irqsave(&dev->execute_task_lock, flags);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
DEBUG_DO("Got t_transport_active = 0 for task: %p, dev: %p\n",
|
|
|
|
task, dev);
|
|
|
|
|
|
|
|
if (atomic_read(&T_TASK(cmd)->t_fe_count)) {
|
|
|
|
spin_unlock_irqrestore(
|
|
|
|
&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
transport_send_check_condition_and_sense(cmd,
|
|
|
|
TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE, 0);
|
|
|
|
transport_remove_cmd_from_queue(cmd,
|
|
|
|
SE_DEV(cmd)->dev_queue_obj);
|
|
|
|
|
|
|
|
transport_lun_remove_cmd(cmd);
|
|
|
|
transport_cmd_check_stop(cmd, 1, 0);
|
|
|
|
} else {
|
|
|
|
spin_unlock_irqrestore(
|
|
|
|
&T_TASK(cmd)->t_state_lock, flags);
|
|
|
|
|
|
|
|
transport_remove_cmd_from_queue(cmd,
|
|
|
|
SE_DEV(cmd)->dev_queue_obj);
|
|
|
|
transport_lun_remove_cmd(cmd);
|
|
|
|
|
|
|
|
if (transport_cmd_check_stop(cmd, 1, 0))
|
|
|
|
transport_generic_remove(cmd, 0, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
spin_lock_irqsave(&dev->execute_task_lock, flags);
|
|
|
|
}
|
|
|
|
spin_unlock_irqrestore(&dev->execute_task_lock, flags);
|
|
|
|
/*
|
|
|
|
* Empty the struct se_device's struct se_cmd list.
|
|
|
|
*/
|
|
|
|
spin_lock_irqsave(&dev->dev_queue_obj->cmd_queue_lock, flags);
|
|
|
|
while ((qr = __transport_get_qr_from_queue(dev->dev_queue_obj))) {
|
|
|
|
spin_unlock_irqrestore(
|
|
|
|
&dev->dev_queue_obj->cmd_queue_lock, flags);
|
|
|
|
cmd = (struct se_cmd *)qr->cmd;
|
|
|
|
state = qr->state;
|
|
|
|
kfree(qr);
|
|
|
|
|
|
|
|
DEBUG_DO("From Device Queue: cmd: %p t_state: %d\n",
|
|
|
|
cmd, state);
|
|
|
|
|
|
|
|
if (atomic_read(&T_TASK(cmd)->t_fe_count)) {
|
|
|
|
transport_send_check_condition_and_sense(cmd,
|
|
|
|
TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE, 0);
|
|
|
|
|
|
|
|
transport_lun_remove_cmd(cmd);
|
|
|
|
transport_cmd_check_stop(cmd, 1, 0);
|
|
|
|
} else {
|
|
|
|
transport_lun_remove_cmd(cmd);
|
|
|
|
if (transport_cmd_check_stop(cmd, 1, 0))
|
|
|
|
transport_generic_remove(cmd, 0, 0);
|
|
|
|
}
|
|
|
|
spin_lock_irqsave(&dev->dev_queue_obj->cmd_queue_lock, flags);
|
|
|
|
}
|
|
|
|
spin_unlock_irqrestore(&dev->dev_queue_obj->cmd_queue_lock, flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* transport_processing_thread():
|
|
|
|
*
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
static int transport_processing_thread(void *param)
|
|
|
|
{
|
|
|
|
int ret, t_state;
|
|
|
|
struct se_cmd *cmd;
|
|
|
|
struct se_device *dev = (struct se_device *) param;
|
|
|
|
struct se_queue_req *qr;
|
|
|
|
|
|
|
|
set_user_nice(current, -20);
|
|
|
|
|
|
|
|
while (!kthread_should_stop()) {
|
|
|
|
ret = wait_event_interruptible(dev->dev_queue_obj->thread_wq,
|
|
|
|
atomic_read(&dev->dev_queue_obj->queue_cnt) ||
|
|
|
|
kthread_should_stop());
|
|
|
|
if (ret < 0)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
spin_lock_irq(&dev->dev_status_lock);
|
|
|
|
if (dev->dev_status & TRANSPORT_DEVICE_SHUTDOWN) {
|
|
|
|
spin_unlock_irq(&dev->dev_status_lock);
|
|
|
|
transport_processing_shutdown(dev);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
spin_unlock_irq(&dev->dev_status_lock);
|
|
|
|
|
|
|
|
get_cmd:
|
|
|
|
__transport_execute_tasks(dev);
|
|
|
|
|
|
|
|
qr = transport_get_qr_from_queue(dev->dev_queue_obj);
|
|
|
|
if (!(qr))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
cmd = (struct se_cmd *)qr->cmd;
|
|
|
|
t_state = qr->state;
|
|
|
|
kfree(qr);
|
|
|
|
|
|
|
|
switch (t_state) {
|
|
|
|
case TRANSPORT_NEW_CMD_MAP:
|
|
|
|
if (!(CMD_TFO(cmd)->new_cmd_map)) {
|
|
|
|
printk(KERN_ERR "CMD_TFO(cmd)->new_cmd_map is"
|
|
|
|
" NULL for TRANSPORT_NEW_CMD_MAP\n");
|
|
|
|
BUG();
|
|
|
|
}
|
|
|
|
ret = CMD_TFO(cmd)->new_cmd_map(cmd);
|
|
|
|
if (ret < 0) {
|
|
|
|
cmd->transport_error_status = ret;
|
|
|
|
transport_generic_request_failure(cmd, NULL,
|
|
|
|
0, (cmd->data_direction !=
|
|
|
|
DMA_TO_DEVICE));
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
/* Fall through */
|
|
|
|
case TRANSPORT_NEW_CMD:
|
|
|
|
ret = transport_generic_new_cmd(cmd);
|
|
|
|
if (ret < 0) {
|
|
|
|
cmd->transport_error_status = ret;
|
|
|
|
transport_generic_request_failure(cmd, NULL,
|
|
|
|
0, (cmd->data_direction !=
|
|
|
|
DMA_TO_DEVICE));
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case TRANSPORT_PROCESS_WRITE:
|
|
|
|
transport_generic_process_write(cmd);
|
|
|
|
break;
|
|
|
|
case TRANSPORT_COMPLETE_OK:
|
|
|
|
transport_stop_all_task_timers(cmd);
|
|
|
|
transport_generic_complete_ok(cmd);
|
|
|
|
break;
|
|
|
|
case TRANSPORT_REMOVE:
|
|
|
|
transport_generic_remove(cmd, 1, 0);
|
|
|
|
break;
|
2011-05-20 03:19:11 +00:00
|
|
|
case TRANSPORT_FREE_CMD_INTR:
|
|
|
|
transport_generic_free_cmd(cmd, 0, 1, 0);
|
|
|
|
break;
|
[SCSI] target: Add LIO target core v4.0.0-rc6
LIO target is a full featured in-kernel target framework with the
following feature set:
High-performance, non-blocking, multithreaded architecture with SIMD
support.
Advanced SCSI feature set:
* Persistent Reservations (PRs)
* Asymmetric Logical Unit Assignment (ALUA)
* Protocol and intra-nexus multiplexing, load-balancing and failover (MC/S)
* Full Error Recovery (ERL=0,1,2)
* Active/active task migration and session continuation (ERL=2)
* Thin LUN provisioning (UNMAP and WRITE_SAMExx)
Multiprotocol target plugins
Storage media independence:
* Virtualization of all storage media; transparent mapping of IO to LUNs
* No hard limits on number of LUNs per Target; maximum LUN size ~750 TB
* Backstores: SATA, SAS, SCSI, BluRay, DVD, FLASH, USB, ramdisk, etc.
Standards compliance:
* Full compliance with IETF (RFC 3720)
* Full implementation of SPC-4 PRs and ALUA
Significant code cleanups done by Christoph Hellwig.
[jejb: fix up for new block bdev exclusive interface. Minor fixes from
Randy Dunlap and Dan Carpenter.]
Signed-off-by: Nicholas A. Bellinger <nab@linux-iscsi.org>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2010-12-17 19:11:26 +00:00
|
|
|
case TRANSPORT_PROCESS_TMR:
|
|
|
|
transport_generic_do_tmr(cmd);
|
|
|
|
break;
|
|
|
|
case TRANSPORT_COMPLETE_FAILURE:
|
|
|
|
transport_generic_request_failure(cmd, NULL, 1, 1);
|
|
|
|
break;
|
|
|
|
case TRANSPORT_COMPLETE_TIMEOUT:
|
|
|
|
transport_stop_all_task_timers(cmd);
|
|
|
|
transport_generic_request_timeout(cmd);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
printk(KERN_ERR "Unknown t_state: %d deferred_t_state:"
|
|
|
|
" %d for ITT: 0x%08x i_state: %d on SE LUN:"
|
|
|
|
" %u\n", t_state, cmd->deferred_t_state,
|
|
|
|
CMD_TFO(cmd)->get_task_tag(cmd),
|
|
|
|
CMD_TFO(cmd)->get_cmd_state(cmd),
|
|
|
|
SE_LUN(cmd)->unpacked_lun);
|
|
|
|
BUG();
|
|
|
|
}
|
|
|
|
|
|
|
|
goto get_cmd;
|
|
|
|
}
|
|
|
|
|
|
|
|
out:
|
|
|
|
transport_release_all_cmds(dev);
|
|
|
|
dev->process_thread = NULL;
|
|
|
|
return 0;
|
|
|
|
}
|