forked from Minki/linux
104 lines
2.6 KiB
C
104 lines
2.6 KiB
C
|
/* -*- linux-c -*- ------------------------------------------------------- *
|
||
|
*
|
||
|
* Copyright 2002 H. Peter Anvin - All Rights Reserved
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation, Inc., 53 Temple Place Ste 330,
|
||
|
* Bostom MA 02111-1307, USA; either version 2 of the License, or
|
||
|
* (at your option) any later version; incorporated herein by reference.
|
||
|
*
|
||
|
* ----------------------------------------------------------------------- */
|
||
|
|
||
|
/*
|
||
|
* raid6test.c
|
||
|
*
|
||
|
* Test RAID-6 recovery with various algorithms
|
||
|
*/
|
||
|
|
||
|
#include <stdlib.h>
|
||
|
#include <stdio.h>
|
||
|
#include <string.h>
|
||
|
#include "raid6.h"
|
||
|
|
||
|
#define NDISKS 16 /* Including P and Q */
|
||
|
|
||
|
const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
|
||
|
struct raid6_calls raid6_call;
|
||
|
|
||
|
char *dataptrs[NDISKS];
|
||
|
char data[NDISKS][PAGE_SIZE];
|
||
|
char recovi[PAGE_SIZE], recovj[PAGE_SIZE];
|
||
|
|
||
|
void makedata(void)
|
||
|
{
|
||
|
int i, j;
|
||
|
|
||
|
for ( i = 0 ; i < NDISKS ; i++ ) {
|
||
|
for ( j = 0 ; j < PAGE_SIZE ; j++ ) {
|
||
|
data[i][j] = rand();
|
||
|
}
|
||
|
dataptrs[i] = data[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int main(int argc, char *argv[])
|
||
|
{
|
||
|
const struct raid6_calls * const * algo;
|
||
|
int i, j;
|
||
|
int erra, errb;
|
||
|
|
||
|
makedata();
|
||
|
|
||
|
for ( algo = raid6_algos ; *algo ; algo++ ) {
|
||
|
if ( !(*algo)->valid || (*algo)->valid() ) {
|
||
|
raid6_call = **algo;
|
||
|
|
||
|
/* Nuke syndromes */
|
||
|
memset(data[NDISKS-2], 0xee, 2*PAGE_SIZE);
|
||
|
|
||
|
/* Generate assumed good syndrome */
|
||
|
raid6_call.gen_syndrome(NDISKS, PAGE_SIZE, (void **)&dataptrs);
|
||
|
|
||
|
for ( i = 0 ; i < NDISKS-1 ; i++ ) {
|
||
|
for ( j = i+1 ; j < NDISKS ; j++ ) {
|
||
|
memset(recovi, 0xf0, PAGE_SIZE);
|
||
|
memset(recovj, 0xba, PAGE_SIZE);
|
||
|
|
||
|
dataptrs[i] = recovi;
|
||
|
dataptrs[j] = recovj;
|
||
|
|
||
|
raid6_dual_recov(NDISKS, PAGE_SIZE, i, j, (void **)&dataptrs);
|
||
|
|
||
|
erra = memcmp(data[i], recovi, PAGE_SIZE);
|
||
|
errb = memcmp(data[j], recovj, PAGE_SIZE);
|
||
|
|
||
|
if ( i < NDISKS-2 && j == NDISKS-1 ) {
|
||
|
/* We don't implement the DQ failure scenario, since it's
|
||
|
equivalent to a RAID-5 failure (XOR, then recompute Q) */
|
||
|
} else {
|
||
|
printf("algo=%-8s faila=%3d(%c) failb=%3d(%c) %s\n",
|
||
|
raid6_call.name,
|
||
|
i, (i==NDISKS-2)?'P':'D',
|
||
|
j, (j==NDISKS-1)?'Q':(j==NDISKS-2)?'P':'D',
|
||
|
(!erra && !errb) ? "OK" :
|
||
|
!erra ? "ERRB" :
|
||
|
!errb ? "ERRA" :
|
||
|
"ERRAB");
|
||
|
}
|
||
|
|
||
|
dataptrs[i] = data[i];
|
||
|
dataptrs[j] = data[j];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
printf("\n");
|
||
|
}
|
||
|
|
||
|
printf("\n");
|
||
|
/* Pick the best algorithm test */
|
||
|
raid6_select_algo();
|
||
|
|
||
|
return 0;
|
||
|
}
|