linux/drivers/net/ethernet/atheros/ag71xx.c

1899 lines
45 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/* Atheros AR71xx built-in ethernet mac driver
*
* Copyright (C) 2019 Oleksij Rempel <o.rempel@pengutronix.de>
*
* List of authors contributed to this driver before mainlining:
* Alexander Couzens <lynxis@fe80.eu>
* Christian Lamparter <chunkeey@gmail.com>
* Chuanhong Guo <gch981213@gmail.com>
* Daniel F. Dickinson <cshored@thecshore.com>
* David Bauer <mail@david-bauer.net>
* Felix Fietkau <nbd@nbd.name>
* Gabor Juhos <juhosg@freemail.hu>
* Hauke Mehrtens <hauke@hauke-m.de>
* Johann Neuhauser <johann@it-neuhauser.de>
* John Crispin <john@phrozen.org>
* Jo-Philipp Wich <jo@mein.io>
* Koen Vandeputte <koen.vandeputte@ncentric.com>
* Lucian Cristian <lucian.cristian@gmail.com>
* Matt Merhar <mattmerhar@protonmail.com>
* Milan Krstic <milan.krstic@gmail.com>
* Petr Štetiar <ynezz@true.cz>
* Rosen Penev <rosenp@gmail.com>
* Stephen Walker <stephendwalker+github@gmail.com>
* Vittorio Gambaletta <openwrt@vittgam.net>
* Weijie Gao <hackpascal@gmail.com>
* Imre Kaloz <kaloz@openwrt.org>
*/
#include <linux/if_vlan.h>
#include <linux/mfd/syscon.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include <linux/of_platform.h>
#include <linux/regmap.h>
#include <linux/reset.h>
#include <linux/clk.h>
/* For our NAPI weight bigger does *NOT* mean better - it means more
* D-cache misses and lots more wasted cycles than we'll ever
* possibly gain from saving instructions.
*/
#define AG71XX_NAPI_WEIGHT 32
#define AG71XX_OOM_REFILL (1 + HZ / 10)
#define AG71XX_INT_ERR (AG71XX_INT_RX_BE | AG71XX_INT_TX_BE)
#define AG71XX_INT_TX (AG71XX_INT_TX_PS)
#define AG71XX_INT_RX (AG71XX_INT_RX_PR | AG71XX_INT_RX_OF)
#define AG71XX_INT_POLL (AG71XX_INT_RX | AG71XX_INT_TX)
#define AG71XX_INT_INIT (AG71XX_INT_ERR | AG71XX_INT_POLL)
#define AG71XX_TX_MTU_LEN 1540
#define AG71XX_TX_RING_SPLIT 512
#define AG71XX_TX_RING_DS_PER_PKT DIV_ROUND_UP(AG71XX_TX_MTU_LEN, \
AG71XX_TX_RING_SPLIT)
#define AG71XX_TX_RING_SIZE_DEFAULT 128
#define AG71XX_RX_RING_SIZE_DEFAULT 256
#define AG71XX_MDIO_RETRY 1000
#define AG71XX_MDIO_DELAY 5
#define AG71XX_MDIO_MAX_CLK 5000000
/* Register offsets */
#define AG71XX_REG_MAC_CFG1 0x0000
#define MAC_CFG1_TXE BIT(0) /* Tx Enable */
#define MAC_CFG1_STX BIT(1) /* Synchronize Tx Enable */
#define MAC_CFG1_RXE BIT(2) /* Rx Enable */
#define MAC_CFG1_SRX BIT(3) /* Synchronize Rx Enable */
#define MAC_CFG1_TFC BIT(4) /* Tx Flow Control Enable */
#define MAC_CFG1_RFC BIT(5) /* Rx Flow Control Enable */
#define MAC_CFG1_SR BIT(31) /* Soft Reset */
#define MAC_CFG1_INIT (MAC_CFG1_RXE | MAC_CFG1_TXE | \
MAC_CFG1_SRX | MAC_CFG1_STX)
#define AG71XX_REG_MAC_CFG2 0x0004
#define MAC_CFG2_FDX BIT(0)
#define MAC_CFG2_PAD_CRC_EN BIT(2)
#define MAC_CFG2_LEN_CHECK BIT(4)
#define MAC_CFG2_IF_1000 BIT(9)
#define MAC_CFG2_IF_10_100 BIT(8)
#define AG71XX_REG_MAC_MFL 0x0010
#define AG71XX_REG_MII_CFG 0x0020
#define MII_CFG_CLK_DIV_4 0
#define MII_CFG_CLK_DIV_6 2
#define MII_CFG_CLK_DIV_8 3
#define MII_CFG_CLK_DIV_10 4
#define MII_CFG_CLK_DIV_14 5
#define MII_CFG_CLK_DIV_20 6
#define MII_CFG_CLK_DIV_28 7
#define MII_CFG_CLK_DIV_34 8
#define MII_CFG_CLK_DIV_42 9
#define MII_CFG_CLK_DIV_50 10
#define MII_CFG_CLK_DIV_58 11
#define MII_CFG_CLK_DIV_66 12
#define MII_CFG_CLK_DIV_74 13
#define MII_CFG_CLK_DIV_82 14
#define MII_CFG_CLK_DIV_98 15
#define MII_CFG_RESET BIT(31)
#define AG71XX_REG_MII_CMD 0x0024
#define MII_CMD_READ BIT(0)
#define AG71XX_REG_MII_ADDR 0x0028
#define MII_ADDR_SHIFT 8
#define AG71XX_REG_MII_CTRL 0x002c
#define AG71XX_REG_MII_STATUS 0x0030
#define AG71XX_REG_MII_IND 0x0034
#define MII_IND_BUSY BIT(0)
#define MII_IND_INVALID BIT(2)
#define AG71XX_REG_MAC_IFCTL 0x0038
#define MAC_IFCTL_SPEED BIT(16)
#define AG71XX_REG_MAC_ADDR1 0x0040
#define AG71XX_REG_MAC_ADDR2 0x0044
#define AG71XX_REG_FIFO_CFG0 0x0048
#define FIFO_CFG0_WTM BIT(0) /* Watermark Module */
#define FIFO_CFG0_RXS BIT(1) /* Rx System Module */
#define FIFO_CFG0_RXF BIT(2) /* Rx Fabric Module */
#define FIFO_CFG0_TXS BIT(3) /* Tx System Module */
#define FIFO_CFG0_TXF BIT(4) /* Tx Fabric Module */
#define FIFO_CFG0_ALL (FIFO_CFG0_WTM | FIFO_CFG0_RXS | FIFO_CFG0_RXF \
| FIFO_CFG0_TXS | FIFO_CFG0_TXF)
#define FIFO_CFG0_INIT (FIFO_CFG0_ALL << FIFO_CFG0_ENABLE_SHIFT)
#define FIFO_CFG0_ENABLE_SHIFT 8
#define AG71XX_REG_FIFO_CFG1 0x004c
#define AG71XX_REG_FIFO_CFG2 0x0050
#define AG71XX_REG_FIFO_CFG3 0x0054
#define AG71XX_REG_FIFO_CFG4 0x0058
#define FIFO_CFG4_DE BIT(0) /* Drop Event */
#define FIFO_CFG4_DV BIT(1) /* RX_DV Event */
#define FIFO_CFG4_FC BIT(2) /* False Carrier */
#define FIFO_CFG4_CE BIT(3) /* Code Error */
#define FIFO_CFG4_CR BIT(4) /* CRC error */
#define FIFO_CFG4_LM BIT(5) /* Length Mismatch */
#define FIFO_CFG4_LO BIT(6) /* Length out of range */
#define FIFO_CFG4_OK BIT(7) /* Packet is OK */
#define FIFO_CFG4_MC BIT(8) /* Multicast Packet */
#define FIFO_CFG4_BC BIT(9) /* Broadcast Packet */
#define FIFO_CFG4_DR BIT(10) /* Dribble */
#define FIFO_CFG4_LE BIT(11) /* Long Event */
#define FIFO_CFG4_CF BIT(12) /* Control Frame */
#define FIFO_CFG4_PF BIT(13) /* Pause Frame */
#define FIFO_CFG4_UO BIT(14) /* Unsupported Opcode */
#define FIFO_CFG4_VT BIT(15) /* VLAN tag detected */
#define FIFO_CFG4_FT BIT(16) /* Frame Truncated */
#define FIFO_CFG4_UC BIT(17) /* Unicast Packet */
#define FIFO_CFG4_INIT (FIFO_CFG4_DE | FIFO_CFG4_DV | FIFO_CFG4_FC | \
FIFO_CFG4_CE | FIFO_CFG4_CR | FIFO_CFG4_LM | \
FIFO_CFG4_LO | FIFO_CFG4_OK | FIFO_CFG4_MC | \
FIFO_CFG4_BC | FIFO_CFG4_DR | FIFO_CFG4_LE | \
FIFO_CFG4_CF | FIFO_CFG4_PF | FIFO_CFG4_UO | \
FIFO_CFG4_VT)
#define AG71XX_REG_FIFO_CFG5 0x005c
#define FIFO_CFG5_DE BIT(0) /* Drop Event */
#define FIFO_CFG5_DV BIT(1) /* RX_DV Event */
#define FIFO_CFG5_FC BIT(2) /* False Carrier */
#define FIFO_CFG5_CE BIT(3) /* Code Error */
#define FIFO_CFG5_LM BIT(4) /* Length Mismatch */
#define FIFO_CFG5_LO BIT(5) /* Length Out of Range */
#define FIFO_CFG5_OK BIT(6) /* Packet is OK */
#define FIFO_CFG5_MC BIT(7) /* Multicast Packet */
#define FIFO_CFG5_BC BIT(8) /* Broadcast Packet */
#define FIFO_CFG5_DR BIT(9) /* Dribble */
#define FIFO_CFG5_CF BIT(10) /* Control Frame */
#define FIFO_CFG5_PF BIT(11) /* Pause Frame */
#define FIFO_CFG5_UO BIT(12) /* Unsupported Opcode */
#define FIFO_CFG5_VT BIT(13) /* VLAN tag detected */
#define FIFO_CFG5_LE BIT(14) /* Long Event */
#define FIFO_CFG5_FT BIT(15) /* Frame Truncated */
#define FIFO_CFG5_16 BIT(16) /* unknown */
#define FIFO_CFG5_17 BIT(17) /* unknown */
#define FIFO_CFG5_SF BIT(18) /* Short Frame */
#define FIFO_CFG5_BM BIT(19) /* Byte Mode */
#define FIFO_CFG5_INIT (FIFO_CFG5_DE | FIFO_CFG5_DV | FIFO_CFG5_FC | \
FIFO_CFG5_CE | FIFO_CFG5_LO | FIFO_CFG5_OK | \
FIFO_CFG5_MC | FIFO_CFG5_BC | FIFO_CFG5_DR | \
FIFO_CFG5_CF | FIFO_CFG5_PF | FIFO_CFG5_VT | \
FIFO_CFG5_LE | FIFO_CFG5_FT | FIFO_CFG5_16 | \
FIFO_CFG5_17 | FIFO_CFG5_SF)
#define AG71XX_REG_TX_CTRL 0x0180
#define TX_CTRL_TXE BIT(0) /* Tx Enable */
#define AG71XX_REG_TX_DESC 0x0184
#define AG71XX_REG_TX_STATUS 0x0188
#define TX_STATUS_PS BIT(0) /* Packet Sent */
#define TX_STATUS_UR BIT(1) /* Tx Underrun */
#define TX_STATUS_BE BIT(3) /* Bus Error */
#define AG71XX_REG_RX_CTRL 0x018c
#define RX_CTRL_RXE BIT(0) /* Rx Enable */
#define AG71XX_DMA_RETRY 10
#define AG71XX_DMA_DELAY 1
#define AG71XX_REG_RX_DESC 0x0190
#define AG71XX_REG_RX_STATUS 0x0194
#define RX_STATUS_PR BIT(0) /* Packet Received */
#define RX_STATUS_OF BIT(2) /* Rx Overflow */
#define RX_STATUS_BE BIT(3) /* Bus Error */
#define AG71XX_REG_INT_ENABLE 0x0198
#define AG71XX_REG_INT_STATUS 0x019c
#define AG71XX_INT_TX_PS BIT(0)
#define AG71XX_INT_TX_UR BIT(1)
#define AG71XX_INT_TX_BE BIT(3)
#define AG71XX_INT_RX_PR BIT(4)
#define AG71XX_INT_RX_OF BIT(6)
#define AG71XX_INT_RX_BE BIT(7)
#define AG71XX_REG_FIFO_DEPTH 0x01a8
#define AG71XX_REG_RX_SM 0x01b0
#define AG71XX_REG_TX_SM 0x01b4
#define ETH_SWITCH_HEADER_LEN 2
#define AG71XX_DEFAULT_MSG_ENABLE \
(NETIF_MSG_DRV \
| NETIF_MSG_PROBE \
| NETIF_MSG_LINK \
| NETIF_MSG_TIMER \
| NETIF_MSG_IFDOWN \
| NETIF_MSG_IFUP \
| NETIF_MSG_RX_ERR \
| NETIF_MSG_TX_ERR)
#define DESC_EMPTY BIT(31)
#define DESC_MORE BIT(24)
#define DESC_PKTLEN_M 0xfff
struct ag71xx_desc {
u32 data;
u32 ctrl;
u32 next;
u32 pad;
} __aligned(4);
#define AG71XX_DESC_SIZE roundup(sizeof(struct ag71xx_desc), \
L1_CACHE_BYTES)
struct ag71xx_buf {
union {
struct {
struct sk_buff *skb;
unsigned int len;
} tx;
struct {
dma_addr_t dma_addr;
void *rx_buf;
} rx;
};
};
struct ag71xx_ring {
/* "Hot" fields in the data path. */
unsigned int curr;
unsigned int dirty;
/* "Cold" fields - not used in the data path. */
struct ag71xx_buf *buf;
u16 order;
u16 desc_split;
dma_addr_t descs_dma;
u8 *descs_cpu;
};
enum ag71xx_type {
AR7100,
AR7240,
AR9130,
AR9330,
AR9340,
QCA9530,
QCA9550,
};
struct ag71xx_dcfg {
u32 max_frame_len;
const u32 *fifodata;
u16 desc_pktlen_mask;
bool tx_hang_workaround;
enum ag71xx_type type;
};
struct ag71xx {
/* Critical data related to the per-packet data path are clustered
* early in this structure to help improve the D-cache footprint.
*/
struct ag71xx_ring rx_ring ____cacheline_aligned;
struct ag71xx_ring tx_ring ____cacheline_aligned;
u16 rx_buf_size;
u8 rx_buf_offset;
struct net_device *ndev;
struct platform_device *pdev;
struct napi_struct napi;
u32 msg_enable;
const struct ag71xx_dcfg *dcfg;
/* From this point onwards we're not looking at per-packet fields. */
void __iomem *mac_base;
struct ag71xx_desc *stop_desc;
dma_addr_t stop_desc_dma;
int phy_if_mode;
struct delayed_work restart_work;
struct timer_list oom_timer;
struct reset_control *mac_reset;
u32 fifodata[3];
int mac_idx;
struct reset_control *mdio_reset;
struct mii_bus *mii_bus;
struct clk *clk_mdio;
struct clk *clk_eth;
};
static int ag71xx_desc_empty(struct ag71xx_desc *desc)
{
return (desc->ctrl & DESC_EMPTY) != 0;
}
static struct ag71xx_desc *ag71xx_ring_desc(struct ag71xx_ring *ring, int idx)
{
return (struct ag71xx_desc *)&ring->descs_cpu[idx * AG71XX_DESC_SIZE];
}
static int ag71xx_ring_size_order(int size)
{
return fls(size - 1);
}
static bool ag71xx_is(struct ag71xx *ag, enum ag71xx_type type)
{
return ag->dcfg->type == type;
}
static void ag71xx_wr(struct ag71xx *ag, unsigned int reg, u32 value)
{
iowrite32(value, ag->mac_base + reg);
/* flush write */
(void)ioread32(ag->mac_base + reg);
}
static u32 ag71xx_rr(struct ag71xx *ag, unsigned int reg)
{
return ioread32(ag->mac_base + reg);
}
static void ag71xx_sb(struct ag71xx *ag, unsigned int reg, u32 mask)
{
void __iomem *r;
r = ag->mac_base + reg;
iowrite32(ioread32(r) | mask, r);
/* flush write */
(void)ioread32(r);
}
static void ag71xx_cb(struct ag71xx *ag, unsigned int reg, u32 mask)
{
void __iomem *r;
r = ag->mac_base + reg;
iowrite32(ioread32(r) & ~mask, r);
/* flush write */
(void)ioread32(r);
}
static void ag71xx_int_enable(struct ag71xx *ag, u32 ints)
{
ag71xx_sb(ag, AG71XX_REG_INT_ENABLE, ints);
}
static void ag71xx_int_disable(struct ag71xx *ag, u32 ints)
{
ag71xx_cb(ag, AG71XX_REG_INT_ENABLE, ints);
}
static int ag71xx_mdio_wait_busy(struct ag71xx *ag)
{
struct net_device *ndev = ag->ndev;
int i;
for (i = 0; i < AG71XX_MDIO_RETRY; i++) {
u32 busy;
udelay(AG71XX_MDIO_DELAY);
busy = ag71xx_rr(ag, AG71XX_REG_MII_IND);
if (!busy)
return 0;
udelay(AG71XX_MDIO_DELAY);
}
netif_err(ag, link, ndev, "MDIO operation timed out\n");
return -ETIMEDOUT;
}
static int ag71xx_mdio_mii_read(struct mii_bus *bus, int addr, int reg)
{
struct ag71xx *ag = bus->priv;
int err, val;
err = ag71xx_mdio_wait_busy(ag);
if (err)
return err;
ag71xx_wr(ag, AG71XX_REG_MII_ADDR,
((addr & 0x1f) << MII_ADDR_SHIFT) | (reg & 0xff));
/* enable read mode */
ag71xx_wr(ag, AG71XX_REG_MII_CMD, MII_CMD_READ);
err = ag71xx_mdio_wait_busy(ag);
if (err)
return err;
val = ag71xx_rr(ag, AG71XX_REG_MII_STATUS);
/* disable read mode */
ag71xx_wr(ag, AG71XX_REG_MII_CMD, 0);
netif_dbg(ag, link, ag->ndev, "mii_read: addr=%04x, reg=%04x, value=%04x\n",
addr, reg, val);
return val;
}
static int ag71xx_mdio_mii_write(struct mii_bus *bus, int addr, int reg,
u16 val)
{
struct ag71xx *ag = bus->priv;
netif_dbg(ag, link, ag->ndev, "mii_write: addr=%04x, reg=%04x, value=%04x\n",
addr, reg, val);
ag71xx_wr(ag, AG71XX_REG_MII_ADDR,
((addr & 0x1f) << MII_ADDR_SHIFT) | (reg & 0xff));
ag71xx_wr(ag, AG71XX_REG_MII_CTRL, val);
return ag71xx_mdio_wait_busy(ag);
}
static const u32 ar71xx_mdio_div_table[] = {
4, 4, 6, 8, 10, 14, 20, 28,
};
static const u32 ar7240_mdio_div_table[] = {
2, 2, 4, 6, 8, 12, 18, 26, 32, 40, 48, 56, 62, 70, 78, 96,
};
static const u32 ar933x_mdio_div_table[] = {
4, 4, 6, 8, 10, 14, 20, 28, 34, 42, 50, 58, 66, 74, 82, 98,
};
static int ag71xx_mdio_get_divider(struct ag71xx *ag, u32 *div)
{
unsigned long ref_clock;
const u32 *table;
int ndivs, i;
ref_clock = clk_get_rate(ag->clk_mdio);
if (!ref_clock)
return -EINVAL;
if (ag71xx_is(ag, AR9330) || ag71xx_is(ag, AR9340)) {
table = ar933x_mdio_div_table;
ndivs = ARRAY_SIZE(ar933x_mdio_div_table);
} else if (ag71xx_is(ag, AR7240)) {
table = ar7240_mdio_div_table;
ndivs = ARRAY_SIZE(ar7240_mdio_div_table);
} else {
table = ar71xx_mdio_div_table;
ndivs = ARRAY_SIZE(ar71xx_mdio_div_table);
}
for (i = 0; i < ndivs; i++) {
unsigned long t;
t = ref_clock / table[i];
if (t <= AG71XX_MDIO_MAX_CLK) {
*div = i;
return 0;
}
}
return -ENOENT;
}
static int ag71xx_mdio_reset(struct mii_bus *bus)
{
struct ag71xx *ag = bus->priv;
int err;
u32 t;
err = ag71xx_mdio_get_divider(ag, &t);
if (err)
return err;
ag71xx_wr(ag, AG71XX_REG_MII_CFG, t | MII_CFG_RESET);
usleep_range(100, 200);
ag71xx_wr(ag, AG71XX_REG_MII_CFG, t);
usleep_range(100, 200);
return 0;
}
static int ag71xx_mdio_probe(struct ag71xx *ag)
{
struct device *dev = &ag->pdev->dev;
struct net_device *ndev = ag->ndev;
static struct mii_bus *mii_bus;
struct device_node *np;
int err;
np = dev->of_node;
ag->mii_bus = NULL;
ag->clk_mdio = devm_clk_get(dev, "mdio");
if (IS_ERR(ag->clk_mdio)) {
netif_err(ag, probe, ndev, "Failed to get mdio clk.\n");
return PTR_ERR(ag->clk_mdio);
}
err = clk_prepare_enable(ag->clk_mdio);
if (err) {
netif_err(ag, probe, ndev, "Failed to enable mdio clk.\n");
return err;
}
mii_bus = devm_mdiobus_alloc(dev);
if (!mii_bus) {
err = -ENOMEM;
goto mdio_err_put_clk;
}
ag->mdio_reset = of_reset_control_get_exclusive(np, "mdio");
if (IS_ERR(ag->mdio_reset)) {
netif_err(ag, probe, ndev, "Failed to get reset mdio.\n");
return PTR_ERR(ag->mdio_reset);
}
mii_bus->name = "ag71xx_mdio";
mii_bus->read = ag71xx_mdio_mii_read;
mii_bus->write = ag71xx_mdio_mii_write;
mii_bus->reset = ag71xx_mdio_reset;
mii_bus->priv = ag;
mii_bus->parent = dev;
snprintf(mii_bus->id, MII_BUS_ID_SIZE, "%s.%d", np->name, ag->mac_idx);
if (!IS_ERR(ag->mdio_reset)) {
reset_control_assert(ag->mdio_reset);
msleep(100);
reset_control_deassert(ag->mdio_reset);
msleep(200);
}
err = of_mdiobus_register(mii_bus, np);
if (err)
goto mdio_err_put_clk;
ag->mii_bus = mii_bus;
return 0;
mdio_err_put_clk:
clk_disable_unprepare(ag->clk_mdio);
return err;
}
static void ag71xx_mdio_remove(struct ag71xx *ag)
{
if (ag->mii_bus)
mdiobus_unregister(ag->mii_bus);
clk_disable_unprepare(ag->clk_mdio);
}
static void ag71xx_hw_stop(struct ag71xx *ag)
{
/* disable all interrupts and stop the rx/tx engine */
ag71xx_wr(ag, AG71XX_REG_INT_ENABLE, 0);
ag71xx_wr(ag, AG71XX_REG_RX_CTRL, 0);
ag71xx_wr(ag, AG71XX_REG_TX_CTRL, 0);
}
static bool ag71xx_check_dma_stuck(struct ag71xx *ag)
{
unsigned long timestamp;
u32 rx_sm, tx_sm, rx_fd;
timestamp = netdev_get_tx_queue(ag->ndev, 0)->trans_start;
if (likely(time_before(jiffies, timestamp + HZ / 10)))
return false;
if (!netif_carrier_ok(ag->ndev))
return false;
rx_sm = ag71xx_rr(ag, AG71XX_REG_RX_SM);
if ((rx_sm & 0x7) == 0x3 && ((rx_sm >> 4) & 0x7) == 0x6)
return true;
tx_sm = ag71xx_rr(ag, AG71XX_REG_TX_SM);
rx_fd = ag71xx_rr(ag, AG71XX_REG_FIFO_DEPTH);
if (((tx_sm >> 4) & 0x7) == 0 && ((rx_sm & 0x7) == 0) &&
((rx_sm >> 4) & 0x7) == 0 && rx_fd == 0)
return true;
return false;
}
static int ag71xx_tx_packets(struct ag71xx *ag, bool flush)
{
struct ag71xx_ring *ring = &ag->tx_ring;
int sent = 0, bytes_compl = 0, n = 0;
struct net_device *ndev = ag->ndev;
int ring_mask, ring_size;
bool dma_stuck = false;
ring_mask = BIT(ring->order) - 1;
ring_size = BIT(ring->order);
netif_dbg(ag, tx_queued, ndev, "processing TX ring\n");
while (ring->dirty + n != ring->curr) {
struct ag71xx_desc *desc;
struct sk_buff *skb;
unsigned int i;
i = (ring->dirty + n) & ring_mask;
desc = ag71xx_ring_desc(ring, i);
skb = ring->buf[i].tx.skb;
if (!flush && !ag71xx_desc_empty(desc)) {
if (ag->dcfg->tx_hang_workaround &&
ag71xx_check_dma_stuck(ag)) {
schedule_delayed_work(&ag->restart_work,
HZ / 2);
dma_stuck = true;
}
break;
}
if (flush)
desc->ctrl |= DESC_EMPTY;
n++;
if (!skb)
continue;
dev_kfree_skb_any(skb);
ring->buf[i].tx.skb = NULL;
bytes_compl += ring->buf[i].tx.len;
sent++;
ring->dirty += n;
while (n > 0) {
ag71xx_wr(ag, AG71XX_REG_TX_STATUS, TX_STATUS_PS);
n--;
}
}
netif_dbg(ag, tx_done, ndev, "%d packets sent out\n", sent);
if (!sent)
return 0;
ag->ndev->stats.tx_bytes += bytes_compl;
ag->ndev->stats.tx_packets += sent;
netdev_completed_queue(ag->ndev, sent, bytes_compl);
if ((ring->curr - ring->dirty) < (ring_size * 3) / 4)
netif_wake_queue(ag->ndev);
if (!dma_stuck)
cancel_delayed_work(&ag->restart_work);
return sent;
}
static void ag71xx_dma_wait_stop(struct ag71xx *ag)
{
struct net_device *ndev = ag->ndev;
int i;
for (i = 0; i < AG71XX_DMA_RETRY; i++) {
u32 rx, tx;
mdelay(AG71XX_DMA_DELAY);
rx = ag71xx_rr(ag, AG71XX_REG_RX_CTRL) & RX_CTRL_RXE;
tx = ag71xx_rr(ag, AG71XX_REG_TX_CTRL) & TX_CTRL_TXE;
if (!rx && !tx)
return;
}
netif_err(ag, hw, ndev, "DMA stop operation timed out\n");
}
static void ag71xx_dma_reset(struct ag71xx *ag)
{
struct net_device *ndev = ag->ndev;
u32 val;
int i;
/* stop RX and TX */
ag71xx_wr(ag, AG71XX_REG_RX_CTRL, 0);
ag71xx_wr(ag, AG71XX_REG_TX_CTRL, 0);
/* give the hardware some time to really stop all rx/tx activity
* clearing the descriptors too early causes random memory corruption
*/
ag71xx_dma_wait_stop(ag);
/* clear descriptor addresses */
ag71xx_wr(ag, AG71XX_REG_TX_DESC, ag->stop_desc_dma);
ag71xx_wr(ag, AG71XX_REG_RX_DESC, ag->stop_desc_dma);
/* clear pending RX/TX interrupts */
for (i = 0; i < 256; i++) {
ag71xx_wr(ag, AG71XX_REG_RX_STATUS, RX_STATUS_PR);
ag71xx_wr(ag, AG71XX_REG_TX_STATUS, TX_STATUS_PS);
}
/* clear pending errors */
ag71xx_wr(ag, AG71XX_REG_RX_STATUS, RX_STATUS_BE | RX_STATUS_OF);
ag71xx_wr(ag, AG71XX_REG_TX_STATUS, TX_STATUS_BE | TX_STATUS_UR);
val = ag71xx_rr(ag, AG71XX_REG_RX_STATUS);
if (val)
netif_err(ag, hw, ndev, "unable to clear DMA Rx status: %08x\n",
val);
val = ag71xx_rr(ag, AG71XX_REG_TX_STATUS);
/* mask out reserved bits */
val &= ~0xff000000;
if (val)
netif_err(ag, hw, ndev, "unable to clear DMA Tx status: %08x\n",
val);
}
static void ag71xx_hw_setup(struct ag71xx *ag)
{
u32 init = MAC_CFG1_INIT;
/* setup MAC configuration registers */
ag71xx_wr(ag, AG71XX_REG_MAC_CFG1, init);
ag71xx_sb(ag, AG71XX_REG_MAC_CFG2,
MAC_CFG2_PAD_CRC_EN | MAC_CFG2_LEN_CHECK);
/* setup max frame length to zero */
ag71xx_wr(ag, AG71XX_REG_MAC_MFL, 0);
/* setup FIFO configuration registers */
ag71xx_wr(ag, AG71XX_REG_FIFO_CFG0, FIFO_CFG0_INIT);
ag71xx_wr(ag, AG71XX_REG_FIFO_CFG1, ag->fifodata[0]);
ag71xx_wr(ag, AG71XX_REG_FIFO_CFG2, ag->fifodata[1]);
ag71xx_wr(ag, AG71XX_REG_FIFO_CFG4, FIFO_CFG4_INIT);
ag71xx_wr(ag, AG71XX_REG_FIFO_CFG5, FIFO_CFG5_INIT);
}
static unsigned int ag71xx_max_frame_len(unsigned int mtu)
{
return ETH_SWITCH_HEADER_LEN + ETH_HLEN + VLAN_HLEN + mtu + ETH_FCS_LEN;
}
static void ag71xx_hw_set_macaddr(struct ag71xx *ag, unsigned char *mac)
{
u32 t;
t = (((u32)mac[5]) << 24) | (((u32)mac[4]) << 16)
| (((u32)mac[3]) << 8) | ((u32)mac[2]);
ag71xx_wr(ag, AG71XX_REG_MAC_ADDR1, t);
t = (((u32)mac[1]) << 24) | (((u32)mac[0]) << 16);
ag71xx_wr(ag, AG71XX_REG_MAC_ADDR2, t);
}
static void ag71xx_fast_reset(struct ag71xx *ag)
{
struct net_device *dev = ag->ndev;
u32 rx_ds;
u32 mii_reg;
ag71xx_hw_stop(ag);
mii_reg = ag71xx_rr(ag, AG71XX_REG_MII_CFG);
rx_ds = ag71xx_rr(ag, AG71XX_REG_RX_DESC);
ag71xx_tx_packets(ag, true);
reset_control_assert(ag->mac_reset);
usleep_range(10, 20);
reset_control_deassert(ag->mac_reset);
usleep_range(10, 20);
ag71xx_dma_reset(ag);
ag71xx_hw_setup(ag);
ag->tx_ring.curr = 0;
ag->tx_ring.dirty = 0;
netdev_reset_queue(ag->ndev);
/* setup max frame length */
ag71xx_wr(ag, AG71XX_REG_MAC_MFL,
ag71xx_max_frame_len(ag->ndev->mtu));
ag71xx_wr(ag, AG71XX_REG_RX_DESC, rx_ds);
ag71xx_wr(ag, AG71XX_REG_TX_DESC, ag->tx_ring.descs_dma);
ag71xx_wr(ag, AG71XX_REG_MII_CFG, mii_reg);
ag71xx_hw_set_macaddr(ag, dev->dev_addr);
}
static void ag71xx_hw_start(struct ag71xx *ag)
{
/* start RX engine */
ag71xx_wr(ag, AG71XX_REG_RX_CTRL, RX_CTRL_RXE);
/* enable interrupts */
ag71xx_wr(ag, AG71XX_REG_INT_ENABLE, AG71XX_INT_INIT);
netif_wake_queue(ag->ndev);
}
static void ag71xx_link_adjust(struct ag71xx *ag, bool update)
{
struct phy_device *phydev = ag->ndev->phydev;
u32 cfg2;
u32 ifctl;
u32 fifo5;
if (!phydev->link && update) {
ag71xx_hw_stop(ag);
return;
}
if (!ag71xx_is(ag, AR7100) && !ag71xx_is(ag, AR9130))
ag71xx_fast_reset(ag);
cfg2 = ag71xx_rr(ag, AG71XX_REG_MAC_CFG2);
cfg2 &= ~(MAC_CFG2_IF_1000 | MAC_CFG2_IF_10_100 | MAC_CFG2_FDX);
cfg2 |= (phydev->duplex) ? MAC_CFG2_FDX : 0;
ifctl = ag71xx_rr(ag, AG71XX_REG_MAC_IFCTL);
ifctl &= ~(MAC_IFCTL_SPEED);
fifo5 = ag71xx_rr(ag, AG71XX_REG_FIFO_CFG5);
fifo5 &= ~FIFO_CFG5_BM;
switch (phydev->speed) {
case SPEED_1000:
cfg2 |= MAC_CFG2_IF_1000;
fifo5 |= FIFO_CFG5_BM;
break;
case SPEED_100:
cfg2 |= MAC_CFG2_IF_10_100;
ifctl |= MAC_IFCTL_SPEED;
break;
case SPEED_10:
cfg2 |= MAC_CFG2_IF_10_100;
break;
default:
WARN(1, "not supported speed %i\n", phydev->speed);
return;
}
if (ag->tx_ring.desc_split) {
ag->fifodata[2] &= 0xffff;
ag->fifodata[2] |= ((2048 - ag->tx_ring.desc_split) / 4) << 16;
}
ag71xx_wr(ag, AG71XX_REG_FIFO_CFG3, ag->fifodata[2]);
ag71xx_wr(ag, AG71XX_REG_MAC_CFG2, cfg2);
ag71xx_wr(ag, AG71XX_REG_FIFO_CFG5, fifo5);
ag71xx_wr(ag, AG71XX_REG_MAC_IFCTL, ifctl);
ag71xx_hw_start(ag);
if (update)
phy_print_status(phydev);
}
static void ag71xx_phy_link_adjust(struct net_device *ndev)
{
struct ag71xx *ag = netdev_priv(ndev);
ag71xx_link_adjust(ag, true);
}
static int ag71xx_phy_connect(struct ag71xx *ag)
{
struct device_node *np = ag->pdev->dev.of_node;
struct net_device *ndev = ag->ndev;
struct device_node *phy_node;
struct phy_device *phydev;
int ret;
if (of_phy_is_fixed_link(np)) {
ret = of_phy_register_fixed_link(np);
if (ret < 0) {
netif_err(ag, probe, ndev, "Failed to register fixed PHY link: %d\n",
ret);
return ret;
}
phy_node = of_node_get(np);
} else {
phy_node = of_parse_phandle(np, "phy-handle", 0);
}
if (!phy_node) {
netif_err(ag, probe, ndev, "Could not find valid phy node\n");
return -ENODEV;
}
phydev = of_phy_connect(ag->ndev, phy_node, ag71xx_phy_link_adjust,
0, ag->phy_if_mode);
of_node_put(phy_node);
if (!phydev) {
netif_err(ag, probe, ndev, "Could not connect to PHY device\n");
return -ENODEV;
}
phy_attached_info(phydev);
return 0;
}
static void ag71xx_ring_tx_clean(struct ag71xx *ag)
{
struct ag71xx_ring *ring = &ag->tx_ring;
int ring_mask = BIT(ring->order) - 1;
u32 bytes_compl = 0, pkts_compl = 0;
struct net_device *ndev = ag->ndev;
while (ring->curr != ring->dirty) {
struct ag71xx_desc *desc;
u32 i = ring->dirty & ring_mask;
desc = ag71xx_ring_desc(ring, i);
if (!ag71xx_desc_empty(desc)) {
desc->ctrl = 0;
ndev->stats.tx_errors++;
}
if (ring->buf[i].tx.skb) {
bytes_compl += ring->buf[i].tx.len;
pkts_compl++;
dev_kfree_skb_any(ring->buf[i].tx.skb);
}
ring->buf[i].tx.skb = NULL;
ring->dirty++;
}
/* flush descriptors */
wmb();
netdev_completed_queue(ndev, pkts_compl, bytes_compl);
}
static void ag71xx_ring_tx_init(struct ag71xx *ag)
{
struct ag71xx_ring *ring = &ag->tx_ring;
int ring_size = BIT(ring->order);
int ring_mask = ring_size - 1;
int i;
for (i = 0; i < ring_size; i++) {
struct ag71xx_desc *desc = ag71xx_ring_desc(ring, i);
desc->next = (u32)(ring->descs_dma +
AG71XX_DESC_SIZE * ((i + 1) & ring_mask));
desc->ctrl = DESC_EMPTY;
ring->buf[i].tx.skb = NULL;
}
/* flush descriptors */
wmb();
ring->curr = 0;
ring->dirty = 0;
netdev_reset_queue(ag->ndev);
}
static void ag71xx_ring_rx_clean(struct ag71xx *ag)
{
struct ag71xx_ring *ring = &ag->rx_ring;
int ring_size = BIT(ring->order);
int i;
if (!ring->buf)
return;
for (i = 0; i < ring_size; i++)
if (ring->buf[i].rx.rx_buf) {
dma_unmap_single(&ag->pdev->dev,
ring->buf[i].rx.dma_addr,
ag->rx_buf_size, DMA_FROM_DEVICE);
skb_free_frag(ring->buf[i].rx.rx_buf);
}
}
static int ag71xx_buffer_size(struct ag71xx *ag)
{
return ag->rx_buf_size +
SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
}
static bool ag71xx_fill_rx_buf(struct ag71xx *ag, struct ag71xx_buf *buf,
int offset,
void *(*alloc)(unsigned int size))
{
struct ag71xx_ring *ring = &ag->rx_ring;
struct ag71xx_desc *desc;
void *data;
desc = ag71xx_ring_desc(ring, buf - &ring->buf[0]);
data = alloc(ag71xx_buffer_size(ag));
if (!data)
return false;
buf->rx.rx_buf = data;
buf->rx.dma_addr = dma_map_single(&ag->pdev->dev, data, ag->rx_buf_size,
DMA_FROM_DEVICE);
desc->data = (u32)buf->rx.dma_addr + offset;
return true;
}
static int ag71xx_ring_rx_init(struct ag71xx *ag)
{
struct ag71xx_ring *ring = &ag->rx_ring;
struct net_device *ndev = ag->ndev;
int ring_mask = BIT(ring->order) - 1;
int ring_size = BIT(ring->order);
unsigned int i;
int ret;
ret = 0;
for (i = 0; i < ring_size; i++) {
struct ag71xx_desc *desc = ag71xx_ring_desc(ring, i);
desc->next = (u32)(ring->descs_dma +
AG71XX_DESC_SIZE * ((i + 1) & ring_mask));
netif_dbg(ag, rx_status, ndev, "RX desc at %p, next is %08x\n",
desc, desc->next);
}
for (i = 0; i < ring_size; i++) {
struct ag71xx_desc *desc = ag71xx_ring_desc(ring, i);
if (!ag71xx_fill_rx_buf(ag, &ring->buf[i], ag->rx_buf_offset,
netdev_alloc_frag)) {
ret = -ENOMEM;
break;
}
desc->ctrl = DESC_EMPTY;
}
/* flush descriptors */
wmb();
ring->curr = 0;
ring->dirty = 0;
return ret;
}
static int ag71xx_ring_rx_refill(struct ag71xx *ag)
{
struct ag71xx_ring *ring = &ag->rx_ring;
int ring_mask = BIT(ring->order) - 1;
int offset = ag->rx_buf_offset;
unsigned int count;
count = 0;
for (; ring->curr - ring->dirty > 0; ring->dirty++) {
struct ag71xx_desc *desc;
unsigned int i;
i = ring->dirty & ring_mask;
desc = ag71xx_ring_desc(ring, i);
if (!ring->buf[i].rx.rx_buf &&
!ag71xx_fill_rx_buf(ag, &ring->buf[i], offset,
napi_alloc_frag))
break;
desc->ctrl = DESC_EMPTY;
count++;
}
/* flush descriptors */
wmb();
netif_dbg(ag, rx_status, ag->ndev, "%u rx descriptors refilled\n",
count);
return count;
}
static int ag71xx_rings_init(struct ag71xx *ag)
{
struct ag71xx_ring *tx = &ag->tx_ring;
struct ag71xx_ring *rx = &ag->rx_ring;
int ring_size, tx_size;
ring_size = BIT(tx->order) + BIT(rx->order);
tx_size = BIT(tx->order);
tx->buf = kcalloc(ring_size, sizeof(*tx->buf), GFP_KERNEL);
if (!tx->buf)
return -ENOMEM;
tx->descs_cpu = dma_alloc_coherent(&ag->pdev->dev,
ring_size * AG71XX_DESC_SIZE,
&tx->descs_dma, GFP_ATOMIC);
if (!tx->descs_cpu) {
kfree(tx->buf);
tx->buf = NULL;
return -ENOMEM;
}
rx->buf = &tx->buf[BIT(tx->order)];
rx->descs_cpu = ((void *)tx->descs_cpu) + tx_size * AG71XX_DESC_SIZE;
rx->descs_dma = tx->descs_dma + tx_size * AG71XX_DESC_SIZE;
ag71xx_ring_tx_init(ag);
return ag71xx_ring_rx_init(ag);
}
static void ag71xx_rings_free(struct ag71xx *ag)
{
struct ag71xx_ring *tx = &ag->tx_ring;
struct ag71xx_ring *rx = &ag->rx_ring;
int ring_size;
ring_size = BIT(tx->order) + BIT(rx->order);
if (tx->descs_cpu)
dma_free_coherent(&ag->pdev->dev, ring_size * AG71XX_DESC_SIZE,
tx->descs_cpu, tx->descs_dma);
kfree(tx->buf);
tx->descs_cpu = NULL;
rx->descs_cpu = NULL;
tx->buf = NULL;
rx->buf = NULL;
}
static void ag71xx_rings_cleanup(struct ag71xx *ag)
{
ag71xx_ring_rx_clean(ag);
ag71xx_ring_tx_clean(ag);
ag71xx_rings_free(ag);
netdev_reset_queue(ag->ndev);
}
static void ag71xx_hw_init(struct ag71xx *ag)
{
ag71xx_hw_stop(ag);
ag71xx_sb(ag, AG71XX_REG_MAC_CFG1, MAC_CFG1_SR);
usleep_range(20, 30);
reset_control_assert(ag->mac_reset);
msleep(100);
reset_control_deassert(ag->mac_reset);
msleep(200);
ag71xx_hw_setup(ag);
ag71xx_dma_reset(ag);
}
static int ag71xx_hw_enable(struct ag71xx *ag)
{
int ret;
ret = ag71xx_rings_init(ag);
if (ret)
return ret;
napi_enable(&ag->napi);
ag71xx_wr(ag, AG71XX_REG_TX_DESC, ag->tx_ring.descs_dma);
ag71xx_wr(ag, AG71XX_REG_RX_DESC, ag->rx_ring.descs_dma);
netif_start_queue(ag->ndev);
return 0;
}
static void ag71xx_hw_disable(struct ag71xx *ag)
{
netif_stop_queue(ag->ndev);
ag71xx_hw_stop(ag);
ag71xx_dma_reset(ag);
napi_disable(&ag->napi);
del_timer_sync(&ag->oom_timer);
ag71xx_rings_cleanup(ag);
}
static int ag71xx_open(struct net_device *ndev)
{
struct ag71xx *ag = netdev_priv(ndev);
unsigned int max_frame_len;
int ret;
max_frame_len = ag71xx_max_frame_len(ndev->mtu);
ag->rx_buf_size =
SKB_DATA_ALIGN(max_frame_len + NET_SKB_PAD + NET_IP_ALIGN);
/* setup max frame length */
ag71xx_wr(ag, AG71XX_REG_MAC_MFL, max_frame_len);
ag71xx_hw_set_macaddr(ag, ndev->dev_addr);
ret = ag71xx_hw_enable(ag);
if (ret)
goto err;
ret = ag71xx_phy_connect(ag);
if (ret)
goto err;
phy_start(ndev->phydev);
return 0;
err:
ag71xx_rings_cleanup(ag);
return ret;
}
static int ag71xx_stop(struct net_device *ndev)
{
struct ag71xx *ag = netdev_priv(ndev);
phy_stop(ndev->phydev);
phy_disconnect(ndev->phydev);
ag71xx_hw_disable(ag);
return 0;
}
static int ag71xx_fill_dma_desc(struct ag71xx_ring *ring, u32 addr, int len)
{
int i, ring_mask, ndesc, split;
struct ag71xx_desc *desc;
ring_mask = BIT(ring->order) - 1;
ndesc = 0;
split = ring->desc_split;
if (!split)
split = len;
while (len > 0) {
unsigned int cur_len = len;
i = (ring->curr + ndesc) & ring_mask;
desc = ag71xx_ring_desc(ring, i);
if (!ag71xx_desc_empty(desc))
return -1;
if (cur_len > split) {
cur_len = split;
/* TX will hang if DMA transfers <= 4 bytes,
* make sure next segment is more than 4 bytes long.
*/
if (len <= split + 4)
cur_len -= 4;
}
desc->data = addr;
addr += cur_len;
len -= cur_len;
if (len > 0)
cur_len |= DESC_MORE;
/* prevent early tx attempt of this descriptor */
if (!ndesc)
cur_len |= DESC_EMPTY;
desc->ctrl = cur_len;
ndesc++;
}
return ndesc;
}
static netdev_tx_t ag71xx_hard_start_xmit(struct sk_buff *skb,
struct net_device *ndev)
{
int i, n, ring_min, ring_mask, ring_size;
struct ag71xx *ag = netdev_priv(ndev);
struct ag71xx_ring *ring;
struct ag71xx_desc *desc;
dma_addr_t dma_addr;
ring = &ag->tx_ring;
ring_mask = BIT(ring->order) - 1;
ring_size = BIT(ring->order);
if (skb->len <= 4) {
netif_dbg(ag, tx_err, ndev, "packet len is too small\n");
goto err_drop;
}
dma_addr = dma_map_single(&ag->pdev->dev, skb->data, skb->len,
DMA_TO_DEVICE);
i = ring->curr & ring_mask;
desc = ag71xx_ring_desc(ring, i);
/* setup descriptor fields */
n = ag71xx_fill_dma_desc(ring, (u32)dma_addr,
skb->len & ag->dcfg->desc_pktlen_mask);
if (n < 0)
goto err_drop_unmap;
i = (ring->curr + n - 1) & ring_mask;
ring->buf[i].tx.len = skb->len;
ring->buf[i].tx.skb = skb;
netdev_sent_queue(ndev, skb->len);
skb_tx_timestamp(skb);
desc->ctrl &= ~DESC_EMPTY;
ring->curr += n;
/* flush descriptor */
wmb();
ring_min = 2;
if (ring->desc_split)
ring_min *= AG71XX_TX_RING_DS_PER_PKT;
if (ring->curr - ring->dirty >= ring_size - ring_min) {
netif_dbg(ag, tx_err, ndev, "tx queue full\n");
netif_stop_queue(ndev);
}
netif_dbg(ag, tx_queued, ndev, "packet injected into TX queue\n");
/* enable TX engine */
ag71xx_wr(ag, AG71XX_REG_TX_CTRL, TX_CTRL_TXE);
return NETDEV_TX_OK;
err_drop_unmap:
dma_unmap_single(&ag->pdev->dev, dma_addr, skb->len, DMA_TO_DEVICE);
err_drop:
ndev->stats.tx_dropped++;
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
static int ag71xx_do_ioctl(struct net_device *ndev, struct ifreq *ifr, int cmd)
{
if (!ndev->phydev)
return -EINVAL;
return phy_mii_ioctl(ndev->phydev, ifr, cmd);
}
static void ag71xx_oom_timer_handler(struct timer_list *t)
{
struct ag71xx *ag = from_timer(ag, t, oom_timer);
napi_schedule(&ag->napi);
}
static void ag71xx_tx_timeout(struct net_device *ndev)
{
struct ag71xx *ag = netdev_priv(ndev);
netif_err(ag, tx_err, ndev, "tx timeout\n");
schedule_delayed_work(&ag->restart_work, 1);
}
static void ag71xx_restart_work_func(struct work_struct *work)
{
struct ag71xx *ag = container_of(work, struct ag71xx,
restart_work.work);
struct net_device *ndev = ag->ndev;
rtnl_lock();
ag71xx_hw_disable(ag);
ag71xx_hw_enable(ag);
if (ndev->phydev->link)
ag71xx_link_adjust(ag, false);
rtnl_unlock();
}
static int ag71xx_rx_packets(struct ag71xx *ag, int limit)
{
struct net_device *ndev = ag->ndev;
int ring_mask, ring_size, done = 0;
unsigned int pktlen_mask, offset;
struct sk_buff *next, *skb;
struct ag71xx_ring *ring;
struct list_head rx_list;
ring = &ag->rx_ring;
pktlen_mask = ag->dcfg->desc_pktlen_mask;
offset = ag->rx_buf_offset;
ring_mask = BIT(ring->order) - 1;
ring_size = BIT(ring->order);
netif_dbg(ag, rx_status, ndev, "rx packets, limit=%d, curr=%u, dirty=%u\n",
limit, ring->curr, ring->dirty);
INIT_LIST_HEAD(&rx_list);
while (done < limit) {
unsigned int i = ring->curr & ring_mask;
struct ag71xx_desc *desc = ag71xx_ring_desc(ring, i);
int pktlen;
int err = 0;
if (ag71xx_desc_empty(desc))
break;
if ((ring->dirty + ring_size) == ring->curr) {
WARN_ONCE(1, "RX out of ring");
break;
}
ag71xx_wr(ag, AG71XX_REG_RX_STATUS, RX_STATUS_PR);
pktlen = desc->ctrl & pktlen_mask;
pktlen -= ETH_FCS_LEN;
dma_unmap_single(&ag->pdev->dev, ring->buf[i].rx.dma_addr,
ag->rx_buf_size, DMA_FROM_DEVICE);
ndev->stats.rx_packets++;
ndev->stats.rx_bytes += pktlen;
skb = build_skb(ring->buf[i].rx.rx_buf, ag71xx_buffer_size(ag));
if (!skb) {
skb_free_frag(ring->buf[i].rx.rx_buf);
goto next;
}
skb_reserve(skb, offset);
skb_put(skb, pktlen);
if (err) {
ndev->stats.rx_dropped++;
kfree_skb(skb);
} else {
skb->dev = ndev;
skb->ip_summed = CHECKSUM_NONE;
list_add_tail(&skb->list, &rx_list);
}
next:
ring->buf[i].rx.rx_buf = NULL;
done++;
ring->curr++;
}
ag71xx_ring_rx_refill(ag);
list_for_each_entry_safe(skb, next, &rx_list, list)
skb->protocol = eth_type_trans(skb, ndev);
netif_receive_skb_list(&rx_list);
netif_dbg(ag, rx_status, ndev, "rx finish, curr=%u, dirty=%u, done=%d\n",
ring->curr, ring->dirty, done);
return done;
}
static int ag71xx_poll(struct napi_struct *napi, int limit)
{
struct ag71xx *ag = container_of(napi, struct ag71xx, napi);
struct ag71xx_ring *rx_ring = &ag->rx_ring;
int rx_ring_size = BIT(rx_ring->order);
struct net_device *ndev = ag->ndev;
int tx_done, rx_done;
u32 status;
tx_done = ag71xx_tx_packets(ag, false);
netif_dbg(ag, rx_status, ndev, "processing RX ring\n");
rx_done = ag71xx_rx_packets(ag, limit);
if (!rx_ring->buf[rx_ring->dirty % rx_ring_size].rx.rx_buf)
goto oom;
status = ag71xx_rr(ag, AG71XX_REG_RX_STATUS);
if (unlikely(status & RX_STATUS_OF)) {
ag71xx_wr(ag, AG71XX_REG_RX_STATUS, RX_STATUS_OF);
ndev->stats.rx_fifo_errors++;
/* restart RX */
ag71xx_wr(ag, AG71XX_REG_RX_CTRL, RX_CTRL_RXE);
}
if (rx_done < limit) {
if (status & RX_STATUS_PR)
goto more;
status = ag71xx_rr(ag, AG71XX_REG_TX_STATUS);
if (status & TX_STATUS_PS)
goto more;
netif_dbg(ag, rx_status, ndev, "disable polling mode, rx=%d, tx=%d,limit=%d\n",
rx_done, tx_done, limit);
napi_complete(napi);
/* enable interrupts */
ag71xx_int_enable(ag, AG71XX_INT_POLL);
return rx_done;
}
more:
netif_dbg(ag, rx_status, ndev, "stay in polling mode, rx=%d, tx=%d, limit=%d\n",
rx_done, tx_done, limit);
return limit;
oom:
netif_err(ag, rx_err, ndev, "out of memory\n");
mod_timer(&ag->oom_timer, jiffies + AG71XX_OOM_REFILL);
napi_complete(napi);
return 0;
}
static irqreturn_t ag71xx_interrupt(int irq, void *dev_id)
{
struct net_device *ndev = dev_id;
struct ag71xx *ag;
u32 status;
ag = netdev_priv(ndev);
status = ag71xx_rr(ag, AG71XX_REG_INT_STATUS);
if (unlikely(!status))
return IRQ_NONE;
if (unlikely(status & AG71XX_INT_ERR)) {
if (status & AG71XX_INT_TX_BE) {
ag71xx_wr(ag, AG71XX_REG_TX_STATUS, TX_STATUS_BE);
netif_err(ag, intr, ndev, "TX BUS error\n");
}
if (status & AG71XX_INT_RX_BE) {
ag71xx_wr(ag, AG71XX_REG_RX_STATUS, RX_STATUS_BE);
netif_err(ag, intr, ndev, "RX BUS error\n");
}
}
if (likely(status & AG71XX_INT_POLL)) {
ag71xx_int_disable(ag, AG71XX_INT_POLL);
netif_dbg(ag, intr, ndev, "enable polling mode\n");
napi_schedule(&ag->napi);
}
return IRQ_HANDLED;
}
static int ag71xx_change_mtu(struct net_device *ndev, int new_mtu)
{
struct ag71xx *ag = netdev_priv(ndev);
ndev->mtu = new_mtu;
ag71xx_wr(ag, AG71XX_REG_MAC_MFL,
ag71xx_max_frame_len(ndev->mtu));
return 0;
}
static const struct net_device_ops ag71xx_netdev_ops = {
.ndo_open = ag71xx_open,
.ndo_stop = ag71xx_stop,
.ndo_start_xmit = ag71xx_hard_start_xmit,
.ndo_do_ioctl = ag71xx_do_ioctl,
.ndo_tx_timeout = ag71xx_tx_timeout,
.ndo_change_mtu = ag71xx_change_mtu,
.ndo_set_mac_address = eth_mac_addr,
.ndo_validate_addr = eth_validate_addr,
};
static const u32 ar71xx_addr_ar7100[] = {
0x19000000, 0x1a000000,
};
static int ag71xx_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
const struct ag71xx_dcfg *dcfg;
struct net_device *ndev;
struct resource *res;
const void *mac_addr;
int tx_size, err, i;
struct ag71xx *ag;
if (!np)
return -ENODEV;
ndev = devm_alloc_etherdev(&pdev->dev, sizeof(*ag));
if (!ndev)
return -ENOMEM;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res)
return -EINVAL;
dcfg = of_device_get_match_data(&pdev->dev);
if (!dcfg)
return -EINVAL;
ag = netdev_priv(ndev);
ag->mac_idx = -1;
for (i = 0; i < ARRAY_SIZE(ar71xx_addr_ar7100); i++) {
if (ar71xx_addr_ar7100[i] == res->start)
ag->mac_idx = i;
}
if (ag->mac_idx < 0) {
netif_err(ag, probe, ndev, "unknown mac idx\n");
return -EINVAL;
}
ag->clk_eth = devm_clk_get(&pdev->dev, "eth");
if (IS_ERR(ag->clk_eth)) {
netif_err(ag, probe, ndev, "Failed to get eth clk.\n");
return PTR_ERR(ag->clk_eth);
}
SET_NETDEV_DEV(ndev, &pdev->dev);
ag->pdev = pdev;
ag->ndev = ndev;
ag->dcfg = dcfg;
ag->msg_enable = netif_msg_init(-1, AG71XX_DEFAULT_MSG_ENABLE);
memcpy(ag->fifodata, dcfg->fifodata, sizeof(ag->fifodata));
ag->mac_reset = devm_reset_control_get(&pdev->dev, "mac");
if (IS_ERR(ag->mac_reset)) {
netif_err(ag, probe, ndev, "missing mac reset\n");
err = PTR_ERR(ag->mac_reset);
goto err_free;
}
ag->mac_base = devm_ioremap_nocache(&pdev->dev, res->start,
res->end - res->start + 1);
if (!ag->mac_base) {
err = -ENOMEM;
goto err_free;
}
ndev->irq = platform_get_irq(pdev, 0);
err = devm_request_irq(&pdev->dev, ndev->irq, ag71xx_interrupt,
0x0, dev_name(&pdev->dev), ndev);
if (err) {
netif_err(ag, probe, ndev, "unable to request IRQ %d\n",
ndev->irq);
goto err_free;
}
ndev->netdev_ops = &ag71xx_netdev_ops;
INIT_DELAYED_WORK(&ag->restart_work, ag71xx_restart_work_func);
timer_setup(&ag->oom_timer, ag71xx_oom_timer_handler, 0);
tx_size = AG71XX_TX_RING_SIZE_DEFAULT;
ag->rx_ring.order = ag71xx_ring_size_order(AG71XX_RX_RING_SIZE_DEFAULT);
ndev->min_mtu = 68;
ndev->max_mtu = dcfg->max_frame_len - ag71xx_max_frame_len(0);
ag->rx_buf_offset = NET_SKB_PAD;
if (!ag71xx_is(ag, AR7100) && !ag71xx_is(ag, AR9130))
ag->rx_buf_offset += NET_IP_ALIGN;
if (ag71xx_is(ag, AR7100)) {
ag->tx_ring.desc_split = AG71XX_TX_RING_SPLIT;
tx_size *= AG71XX_TX_RING_DS_PER_PKT;
}
ag->tx_ring.order = ag71xx_ring_size_order(tx_size);
ag->stop_desc = dmam_alloc_coherent(&pdev->dev,
sizeof(struct ag71xx_desc),
&ag->stop_desc_dma, GFP_KERNEL);
if (!ag->stop_desc)
goto err_free;
ag->stop_desc->data = 0;
ag->stop_desc->ctrl = 0;
ag->stop_desc->next = (u32)ag->stop_desc_dma;
mac_addr = of_get_mac_address(np);
if (mac_addr)
memcpy(ndev->dev_addr, mac_addr, ETH_ALEN);
if (!mac_addr || !is_valid_ether_addr(ndev->dev_addr)) {
netif_err(ag, probe, ndev, "invalid MAC address, using random address\n");
eth_random_addr(ndev->dev_addr);
}
ag->phy_if_mode = of_get_phy_mode(np);
if (ag->phy_if_mode < 0) {
netif_err(ag, probe, ndev, "missing phy-mode property in DT\n");
err = ag->phy_if_mode;
goto err_free;
}
netif_napi_add(ndev, &ag->napi, ag71xx_poll, AG71XX_NAPI_WEIGHT);
err = clk_prepare_enable(ag->clk_eth);
if (err) {
netif_err(ag, probe, ndev, "Failed to enable eth clk.\n");
goto err_free;
}
ag71xx_wr(ag, AG71XX_REG_MAC_CFG1, 0);
ag71xx_hw_init(ag);
err = ag71xx_mdio_probe(ag);
if (err)
goto err_put_clk;
platform_set_drvdata(pdev, ndev);
err = register_netdev(ndev);
if (err) {
netif_err(ag, probe, ndev, "unable to register net device\n");
platform_set_drvdata(pdev, NULL);
goto err_mdio_remove;
}
netif_info(ag, probe, ndev, "Atheros AG71xx at 0x%08lx, irq %d, mode:%s\n",
(unsigned long)ag->mac_base, ndev->irq,
phy_modes(ag->phy_if_mode));
return 0;
err_mdio_remove:
ag71xx_mdio_remove(ag);
err_put_clk:
clk_disable_unprepare(ag->clk_eth);
err_free:
free_netdev(ndev);
return err;
}
static int ag71xx_remove(struct platform_device *pdev)
{
struct net_device *ndev = platform_get_drvdata(pdev);
struct ag71xx *ag;
if (!ndev)
return 0;
ag = netdev_priv(ndev);
unregister_netdev(ndev);
ag71xx_mdio_remove(ag);
clk_disable_unprepare(ag->clk_eth);
platform_set_drvdata(pdev, NULL);
return 0;
}
static const u32 ar71xx_fifo_ar7100[] = {
0x0fff0000, 0x00001fff, 0x00780fff,
};
static const u32 ar71xx_fifo_ar9130[] = {
0x0fff0000, 0x00001fff, 0x008001ff,
};
static const u32 ar71xx_fifo_ar9330[] = {
0x0010ffff, 0x015500aa, 0x01f00140,
};
static const struct ag71xx_dcfg ag71xx_dcfg_ar7100 = {
.type = AR7100,
.fifodata = ar71xx_fifo_ar7100,
.max_frame_len = 1540,
.desc_pktlen_mask = SZ_4K - 1,
.tx_hang_workaround = false,
};
static const struct ag71xx_dcfg ag71xx_dcfg_ar7240 = {
.type = AR7240,
.fifodata = ar71xx_fifo_ar7100,
.max_frame_len = 1540,
.desc_pktlen_mask = SZ_4K - 1,
.tx_hang_workaround = true,
};
static const struct ag71xx_dcfg ag71xx_dcfg_ar9130 = {
.type = AR9130,
.fifodata = ar71xx_fifo_ar9130,
.max_frame_len = 1540,
.desc_pktlen_mask = SZ_4K - 1,
.tx_hang_workaround = false,
};
static const struct ag71xx_dcfg ag71xx_dcfg_ar9330 = {
.type = AR9330,
.fifodata = ar71xx_fifo_ar9330,
.max_frame_len = 1540,
.desc_pktlen_mask = SZ_4K - 1,
.tx_hang_workaround = true,
};
static const struct ag71xx_dcfg ag71xx_dcfg_ar9340 = {
.type = AR9340,
.fifodata = ar71xx_fifo_ar9330,
.max_frame_len = SZ_16K - 1,
.desc_pktlen_mask = SZ_16K - 1,
.tx_hang_workaround = true,
};
static const struct ag71xx_dcfg ag71xx_dcfg_qca9530 = {
.type = QCA9530,
.fifodata = ar71xx_fifo_ar9330,
.max_frame_len = SZ_16K - 1,
.desc_pktlen_mask = SZ_16K - 1,
.tx_hang_workaround = true,
};
static const struct ag71xx_dcfg ag71xx_dcfg_qca9550 = {
.type = QCA9550,
.fifodata = ar71xx_fifo_ar9330,
.max_frame_len = 1540,
.desc_pktlen_mask = SZ_16K - 1,
.tx_hang_workaround = true,
};
static const struct of_device_id ag71xx_match[] = {
{ .compatible = "qca,ar7100-eth", .data = &ag71xx_dcfg_ar7100 },
{ .compatible = "qca,ar7240-eth", .data = &ag71xx_dcfg_ar7240 },
{ .compatible = "qca,ar7241-eth", .data = &ag71xx_dcfg_ar7240 },
{ .compatible = "qca,ar7242-eth", .data = &ag71xx_dcfg_ar7240 },
{ .compatible = "qca,ar9130-eth", .data = &ag71xx_dcfg_ar9130 },
{ .compatible = "qca,ar9330-eth", .data = &ag71xx_dcfg_ar9330 },
{ .compatible = "qca,ar9340-eth", .data = &ag71xx_dcfg_ar9340 },
{ .compatible = "qca,qca9530-eth", .data = &ag71xx_dcfg_qca9530 },
{ .compatible = "qca,qca9550-eth", .data = &ag71xx_dcfg_qca9550 },
{ .compatible = "qca,qca9560-eth", .data = &ag71xx_dcfg_qca9550 },
{}
};
static struct platform_driver ag71xx_driver = {
.probe = ag71xx_probe,
.remove = ag71xx_remove,
.driver = {
.name = "ag71xx",
.of_match_table = ag71xx_match,
}
};
module_platform_driver(ag71xx_driver);
MODULE_LICENSE("GPL v2");