linux/drivers/mmc/host/sunxi-mmc.c

1493 lines
40 KiB
C
Raw Normal View History

/*
* Driver for sunxi SD/MMC host controllers
* (C) Copyright 2007-2011 Reuuimlla Technology Co., Ltd.
* (C) Copyright 2007-2011 Aaron Maoye <leafy.myeh@reuuimllatech.com>
* (C) Copyright 2013-2014 O2S GmbH <www.o2s.ch>
* (C) Copyright 2013-2014 David Lanzendörfer <david.lanzendoerfer@o2s.ch>
* (C) Copyright 2013-2014 Hans de Goede <hdegoede@redhat.com>
* (C) Copyright 2017 Sootech SA
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*/
#include <linux/clk.h>
#include <linux/clk/sunxi-ng.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/gpio.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/mmc/card.h>
#include <linux/mmc/core.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/sd.h>
#include <linux/mmc/sdio.h>
#include <linux/mmc/slot-gpio.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of_gpio.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/regulator/consumer.h>
#include <linux/reset.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
/* register offset definitions */
#define SDXC_REG_GCTRL (0x00) /* SMC Global Control Register */
#define SDXC_REG_CLKCR (0x04) /* SMC Clock Control Register */
#define SDXC_REG_TMOUT (0x08) /* SMC Time Out Register */
#define SDXC_REG_WIDTH (0x0C) /* SMC Bus Width Register */
#define SDXC_REG_BLKSZ (0x10) /* SMC Block Size Register */
#define SDXC_REG_BCNTR (0x14) /* SMC Byte Count Register */
#define SDXC_REG_CMDR (0x18) /* SMC Command Register */
#define SDXC_REG_CARG (0x1C) /* SMC Argument Register */
#define SDXC_REG_RESP0 (0x20) /* SMC Response Register 0 */
#define SDXC_REG_RESP1 (0x24) /* SMC Response Register 1 */
#define SDXC_REG_RESP2 (0x28) /* SMC Response Register 2 */
#define SDXC_REG_RESP3 (0x2C) /* SMC Response Register 3 */
#define SDXC_REG_IMASK (0x30) /* SMC Interrupt Mask Register */
#define SDXC_REG_MISTA (0x34) /* SMC Masked Interrupt Status Register */
#define SDXC_REG_RINTR (0x38) /* SMC Raw Interrupt Status Register */
#define SDXC_REG_STAS (0x3C) /* SMC Status Register */
#define SDXC_REG_FTRGL (0x40) /* SMC FIFO Threshold Watermark Registe */
#define SDXC_REG_FUNS (0x44) /* SMC Function Select Register */
#define SDXC_REG_CBCR (0x48) /* SMC CIU Byte Count Register */
#define SDXC_REG_BBCR (0x4C) /* SMC BIU Byte Count Register */
#define SDXC_REG_DBGC (0x50) /* SMC Debug Enable Register */
#define SDXC_REG_HWRST (0x78) /* SMC Card Hardware Reset for Register */
#define SDXC_REG_DMAC (0x80) /* SMC IDMAC Control Register */
#define SDXC_REG_DLBA (0x84) /* SMC IDMAC Descriptor List Base Addre */
#define SDXC_REG_IDST (0x88) /* SMC IDMAC Status Register */
#define SDXC_REG_IDIE (0x8C) /* SMC IDMAC Interrupt Enable Register */
#define SDXC_REG_CHDA (0x90)
#define SDXC_REG_CBDA (0x94)
/* New registers introduced in A64 */
#define SDXC_REG_A12A 0x058 /* SMC Auto Command 12 Register */
#define SDXC_REG_SD_NTSR 0x05C /* SMC New Timing Set Register */
#define SDXC_REG_DRV_DL 0x140 /* Drive Delay Control Register */
#define SDXC_REG_SAMP_DL_REG 0x144 /* SMC sample delay control */
#define SDXC_REG_DS_DL_REG 0x148 /* SMC data strobe delay control */
#define mmc_readl(host, reg) \
readl((host)->reg_base + SDXC_##reg)
#define mmc_writel(host, reg, value) \
writel((value), (host)->reg_base + SDXC_##reg)
/* global control register bits */
#define SDXC_SOFT_RESET BIT(0)
#define SDXC_FIFO_RESET BIT(1)
#define SDXC_DMA_RESET BIT(2)
#define SDXC_INTERRUPT_ENABLE_BIT BIT(4)
#define SDXC_DMA_ENABLE_BIT BIT(5)
#define SDXC_DEBOUNCE_ENABLE_BIT BIT(8)
#define SDXC_POSEDGE_LATCH_DATA BIT(9)
#define SDXC_DDR_MODE BIT(10)
#define SDXC_MEMORY_ACCESS_DONE BIT(29)
#define SDXC_ACCESS_DONE_DIRECT BIT(30)
#define SDXC_ACCESS_BY_AHB BIT(31)
#define SDXC_ACCESS_BY_DMA (0 << 31)
#define SDXC_HARDWARE_RESET \
(SDXC_SOFT_RESET | SDXC_FIFO_RESET | SDXC_DMA_RESET)
/* clock control bits */
#define SDXC_MASK_DATA0 BIT(31)
#define SDXC_CARD_CLOCK_ON BIT(16)
#define SDXC_LOW_POWER_ON BIT(17)
/* bus width */
#define SDXC_WIDTH1 0
#define SDXC_WIDTH4 1
#define SDXC_WIDTH8 2
/* smc command bits */
#define SDXC_RESP_EXPIRE BIT(6)
#define SDXC_LONG_RESPONSE BIT(7)
#define SDXC_CHECK_RESPONSE_CRC BIT(8)
#define SDXC_DATA_EXPIRE BIT(9)
#define SDXC_WRITE BIT(10)
#define SDXC_SEQUENCE_MODE BIT(11)
#define SDXC_SEND_AUTO_STOP BIT(12)
#define SDXC_WAIT_PRE_OVER BIT(13)
#define SDXC_STOP_ABORT_CMD BIT(14)
#define SDXC_SEND_INIT_SEQUENCE BIT(15)
#define SDXC_UPCLK_ONLY BIT(21)
#define SDXC_READ_CEATA_DEV BIT(22)
#define SDXC_CCS_EXPIRE BIT(23)
#define SDXC_ENABLE_BIT_BOOT BIT(24)
#define SDXC_ALT_BOOT_OPTIONS BIT(25)
#define SDXC_BOOT_ACK_EXPIRE BIT(26)
#define SDXC_BOOT_ABORT BIT(27)
#define SDXC_VOLTAGE_SWITCH BIT(28)
#define SDXC_USE_HOLD_REGISTER BIT(29)
#define SDXC_START BIT(31)
/* interrupt bits */
#define SDXC_RESP_ERROR BIT(1)
#define SDXC_COMMAND_DONE BIT(2)
#define SDXC_DATA_OVER BIT(3)
#define SDXC_TX_DATA_REQUEST BIT(4)
#define SDXC_RX_DATA_REQUEST BIT(5)
#define SDXC_RESP_CRC_ERROR BIT(6)
#define SDXC_DATA_CRC_ERROR BIT(7)
#define SDXC_RESP_TIMEOUT BIT(8)
#define SDXC_DATA_TIMEOUT BIT(9)
#define SDXC_VOLTAGE_CHANGE_DONE BIT(10)
#define SDXC_FIFO_RUN_ERROR BIT(11)
#define SDXC_HARD_WARE_LOCKED BIT(12)
#define SDXC_START_BIT_ERROR BIT(13)
#define SDXC_AUTO_COMMAND_DONE BIT(14)
#define SDXC_END_BIT_ERROR BIT(15)
#define SDXC_SDIO_INTERRUPT BIT(16)
#define SDXC_CARD_INSERT BIT(30)
#define SDXC_CARD_REMOVE BIT(31)
#define SDXC_INTERRUPT_ERROR_BIT \
(SDXC_RESP_ERROR | SDXC_RESP_CRC_ERROR | SDXC_DATA_CRC_ERROR | \
SDXC_RESP_TIMEOUT | SDXC_DATA_TIMEOUT | SDXC_FIFO_RUN_ERROR | \
SDXC_HARD_WARE_LOCKED | SDXC_START_BIT_ERROR | SDXC_END_BIT_ERROR)
#define SDXC_INTERRUPT_DONE_BIT \
(SDXC_AUTO_COMMAND_DONE | SDXC_DATA_OVER | \
SDXC_COMMAND_DONE | SDXC_VOLTAGE_CHANGE_DONE)
/* status */
#define SDXC_RXWL_FLAG BIT(0)
#define SDXC_TXWL_FLAG BIT(1)
#define SDXC_FIFO_EMPTY BIT(2)
#define SDXC_FIFO_FULL BIT(3)
#define SDXC_CARD_PRESENT BIT(8)
#define SDXC_CARD_DATA_BUSY BIT(9)
#define SDXC_DATA_FSM_BUSY BIT(10)
#define SDXC_DMA_REQUEST BIT(31)
#define SDXC_FIFO_SIZE 16
/* Function select */
#define SDXC_CEATA_ON (0xceaa << 16)
#define SDXC_SEND_IRQ_RESPONSE BIT(0)
#define SDXC_SDIO_READ_WAIT BIT(1)
#define SDXC_ABORT_READ_DATA BIT(2)
#define SDXC_SEND_CCSD BIT(8)
#define SDXC_SEND_AUTO_STOPCCSD BIT(9)
#define SDXC_CEATA_DEV_IRQ_ENABLE BIT(10)
/* IDMA controller bus mod bit field */
#define SDXC_IDMAC_SOFT_RESET BIT(0)
#define SDXC_IDMAC_FIX_BURST BIT(1)
#define SDXC_IDMAC_IDMA_ON BIT(7)
#define SDXC_IDMAC_REFETCH_DES BIT(31)
/* IDMA status bit field */
#define SDXC_IDMAC_TRANSMIT_INTERRUPT BIT(0)
#define SDXC_IDMAC_RECEIVE_INTERRUPT BIT(1)
#define SDXC_IDMAC_FATAL_BUS_ERROR BIT(2)
#define SDXC_IDMAC_DESTINATION_INVALID BIT(4)
#define SDXC_IDMAC_CARD_ERROR_SUM BIT(5)
#define SDXC_IDMAC_NORMAL_INTERRUPT_SUM BIT(8)
#define SDXC_IDMAC_ABNORMAL_INTERRUPT_SUM BIT(9)
#define SDXC_IDMAC_HOST_ABORT_INTERRUPT BIT(10)
#define SDXC_IDMAC_IDLE (0 << 13)
#define SDXC_IDMAC_SUSPEND (1 << 13)
#define SDXC_IDMAC_DESC_READ (2 << 13)
#define SDXC_IDMAC_DESC_CHECK (3 << 13)
#define SDXC_IDMAC_READ_REQUEST_WAIT (4 << 13)
#define SDXC_IDMAC_WRITE_REQUEST_WAIT (5 << 13)
#define SDXC_IDMAC_READ (6 << 13)
#define SDXC_IDMAC_WRITE (7 << 13)
#define SDXC_IDMAC_DESC_CLOSE (8 << 13)
/*
* If the idma-des-size-bits of property is ie 13, bufsize bits are:
* Bits 0-12: buf1 size
* Bits 13-25: buf2 size
* Bits 26-31: not used
* Since we only ever set buf1 size, we can simply store it directly.
*/
#define SDXC_IDMAC_DES0_DIC BIT(1) /* disable interrupt on completion */
#define SDXC_IDMAC_DES0_LD BIT(2) /* last descriptor */
#define SDXC_IDMAC_DES0_FD BIT(3) /* first descriptor */
#define SDXC_IDMAC_DES0_CH BIT(4) /* chain mode */
#define SDXC_IDMAC_DES0_ER BIT(5) /* end of ring */
#define SDXC_IDMAC_DES0_CES BIT(30) /* card error summary */
#define SDXC_IDMAC_DES0_OWN BIT(31) /* 1-idma owns it, 0-host owns it */
#define SDXC_CLK_400K 0
#define SDXC_CLK_25M 1
#define SDXC_CLK_50M 2
#define SDXC_CLK_50M_DDR 3
#define SDXC_CLK_50M_DDR_8BIT 4
#define SDXC_2X_TIMING_MODE BIT(31)
#define SDXC_CAL_START BIT(15)
#define SDXC_CAL_DONE BIT(14)
#define SDXC_CAL_DL_SHIFT 8
#define SDXC_CAL_DL_SW_EN BIT(7)
#define SDXC_CAL_DL_SW_SHIFT 0
#define SDXC_CAL_DL_MASK 0x3f
#define SDXC_CAL_TIMEOUT 3 /* in seconds, 3s is enough*/
struct sunxi_mmc_clk_delay {
u32 output;
u32 sample;
};
struct sunxi_idma_des {
__le32 config;
__le32 buf_size;
__le32 buf_addr_ptr1;
__le32 buf_addr_ptr2;
};
struct sunxi_mmc_cfg {
u32 idma_des_size_bits;
const struct sunxi_mmc_clk_delay *clk_delays;
/* does the IP block support autocalibration? */
bool can_calibrate;
/* Does DATA0 needs to be masked while the clock is updated */
bool mask_data0;
/* hardware only supports new timing mode */
bool needs_new_timings;
/* hardware can switch between old and new timing modes */
bool has_timings_switch;
};
struct sunxi_mmc_host {
struct device *dev;
struct mmc_host *mmc;
struct reset_control *reset;
const struct sunxi_mmc_cfg *cfg;
/* IO mapping base */
void __iomem *reg_base;
/* clock management */
struct clk *clk_ahb;
struct clk *clk_mmc;
struct clk *clk_sample;
struct clk *clk_output;
/* irq */
spinlock_t lock;
int irq;
u32 int_sum;
u32 sdio_imask;
/* dma */
dma_addr_t sg_dma;
void *sg_cpu;
bool wait_dma;
struct mmc_request *mrq;
struct mmc_request *manual_stop_mrq;
int ferror;
/* vqmmc */
bool vqmmc_enabled;
/* timings */
bool use_new_timings;
};
static int sunxi_mmc_reset_host(struct sunxi_mmc_host *host)
{
unsigned long expire = jiffies + msecs_to_jiffies(250);
u32 rval;
mmc_writel(host, REG_GCTRL, SDXC_HARDWARE_RESET);
do {
rval = mmc_readl(host, REG_GCTRL);
} while (time_before(jiffies, expire) && (rval & SDXC_HARDWARE_RESET));
if (rval & SDXC_HARDWARE_RESET) {
dev_err(mmc_dev(host->mmc), "fatal err reset timeout\n");
return -EIO;
}
return 0;
}
static int sunxi_mmc_init_host(struct sunxi_mmc_host *host)
{
u32 rval;
if (sunxi_mmc_reset_host(host))
return -EIO;
/*
* Burst 8 transfers, RX trigger level: 7, TX trigger level: 8
*
* TODO: sun9i has a larger FIFO and supports higher trigger values
*/
mmc_writel(host, REG_FTRGL, 0x20070008);
/* Maximum timeout value */
mmc_writel(host, REG_TMOUT, 0xffffffff);
/* Unmask SDIO interrupt if needed */
mmc_writel(host, REG_IMASK, host->sdio_imask);
/* Clear all pending interrupts */
mmc_writel(host, REG_RINTR, 0xffffffff);
/* Debug register? undocumented */
mmc_writel(host, REG_DBGC, 0xdeb);
/* Enable CEATA support */
mmc_writel(host, REG_FUNS, SDXC_CEATA_ON);
/* Set DMA descriptor list base address */
mmc_writel(host, REG_DLBA, host->sg_dma);
rval = mmc_readl(host, REG_GCTRL);
rval |= SDXC_INTERRUPT_ENABLE_BIT;
/* Undocumented, but found in Allwinner code */
rval &= ~SDXC_ACCESS_DONE_DIRECT;
mmc_writel(host, REG_GCTRL, rval);
return 0;
}
static void sunxi_mmc_init_idma_des(struct sunxi_mmc_host *host,
struct mmc_data *data)
{
struct sunxi_idma_des *pdes = (struct sunxi_idma_des *)host->sg_cpu;
dma_addr_t next_desc = host->sg_dma;
int i, max_len = (1 << host->cfg->idma_des_size_bits);
for (i = 0; i < data->sg_len; i++) {
pdes[i].config = cpu_to_le32(SDXC_IDMAC_DES0_CH |
SDXC_IDMAC_DES0_OWN |
SDXC_IDMAC_DES0_DIC);
if (data->sg[i].length == max_len)
pdes[i].buf_size = 0; /* 0 == max_len */
else
pdes[i].buf_size = cpu_to_le32(data->sg[i].length);
next_desc += sizeof(struct sunxi_idma_des);
pdes[i].buf_addr_ptr1 =
cpu_to_le32(sg_dma_address(&data->sg[i]));
pdes[i].buf_addr_ptr2 = cpu_to_le32((u32)next_desc);
}
pdes[0].config |= cpu_to_le32(SDXC_IDMAC_DES0_FD);
pdes[i - 1].config |= cpu_to_le32(SDXC_IDMAC_DES0_LD |
SDXC_IDMAC_DES0_ER);
pdes[i - 1].config &= cpu_to_le32(~SDXC_IDMAC_DES0_DIC);
pdes[i - 1].buf_addr_ptr2 = 0;
/*
* Avoid the io-store starting the idmac hitting io-mem before the
* descriptors hit the main-mem.
*/
wmb();
}
static int sunxi_mmc_map_dma(struct sunxi_mmc_host *host,
struct mmc_data *data)
{
u32 i, dma_len;
struct scatterlist *sg;
dma_len = dma_map_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
mmc_get_dma_dir(data));
if (dma_len == 0) {
dev_err(mmc_dev(host->mmc), "dma_map_sg failed\n");
return -ENOMEM;
}
for_each_sg(data->sg, sg, data->sg_len, i) {
if (sg->offset & 3 || sg->length & 3) {
dev_err(mmc_dev(host->mmc),
"unaligned scatterlist: os %x length %d\n",
sg->offset, sg->length);
return -EINVAL;
}
}
return 0;
}
static void sunxi_mmc_start_dma(struct sunxi_mmc_host *host,
struct mmc_data *data)
{
u32 rval;
sunxi_mmc_init_idma_des(host, data);
rval = mmc_readl(host, REG_GCTRL);
rval |= SDXC_DMA_ENABLE_BIT;
mmc_writel(host, REG_GCTRL, rval);
rval |= SDXC_DMA_RESET;
mmc_writel(host, REG_GCTRL, rval);
mmc_writel(host, REG_DMAC, SDXC_IDMAC_SOFT_RESET);
if (!(data->flags & MMC_DATA_WRITE))
mmc_writel(host, REG_IDIE, SDXC_IDMAC_RECEIVE_INTERRUPT);
mmc_writel(host, REG_DMAC,
SDXC_IDMAC_FIX_BURST | SDXC_IDMAC_IDMA_ON);
}
static void sunxi_mmc_send_manual_stop(struct sunxi_mmc_host *host,
struct mmc_request *req)
{
u32 arg, cmd_val, ri;
unsigned long expire = jiffies + msecs_to_jiffies(1000);
cmd_val = SDXC_START | SDXC_RESP_EXPIRE |
SDXC_STOP_ABORT_CMD | SDXC_CHECK_RESPONSE_CRC;
if (req->cmd->opcode == SD_IO_RW_EXTENDED) {
cmd_val |= SD_IO_RW_DIRECT;
arg = (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
((req->cmd->arg >> 28) & 0x7);
} else {
cmd_val |= MMC_STOP_TRANSMISSION;
arg = 0;
}
mmc_writel(host, REG_CARG, arg);
mmc_writel(host, REG_CMDR, cmd_val);
do {
ri = mmc_readl(host, REG_RINTR);
} while (!(ri & (SDXC_COMMAND_DONE | SDXC_INTERRUPT_ERROR_BIT)) &&
time_before(jiffies, expire));
if (!(ri & SDXC_COMMAND_DONE) || (ri & SDXC_INTERRUPT_ERROR_BIT)) {
dev_err(mmc_dev(host->mmc), "send stop command failed\n");
if (req->stop)
req->stop->resp[0] = -ETIMEDOUT;
} else {
if (req->stop)
req->stop->resp[0] = mmc_readl(host, REG_RESP0);
}
mmc_writel(host, REG_RINTR, 0xffff);
}
static void sunxi_mmc_dump_errinfo(struct sunxi_mmc_host *host)
{
struct mmc_command *cmd = host->mrq->cmd;
struct mmc_data *data = host->mrq->data;
/* For some cmds timeout is normal with sd/mmc cards */
if ((host->int_sum & SDXC_INTERRUPT_ERROR_BIT) ==
SDXC_RESP_TIMEOUT && (cmd->opcode == SD_IO_SEND_OP_COND ||
cmd->opcode == SD_IO_RW_DIRECT))
return;
dev_dbg(mmc_dev(host->mmc),
"smc %d err, cmd %d,%s%s%s%s%s%s%s%s%s%s !!\n",
host->mmc->index, cmd->opcode,
data ? (data->flags & MMC_DATA_WRITE ? " WR" : " RD") : "",
host->int_sum & SDXC_RESP_ERROR ? " RE" : "",
host->int_sum & SDXC_RESP_CRC_ERROR ? " RCE" : "",
host->int_sum & SDXC_DATA_CRC_ERROR ? " DCE" : "",
host->int_sum & SDXC_RESP_TIMEOUT ? " RTO" : "",
host->int_sum & SDXC_DATA_TIMEOUT ? " DTO" : "",
host->int_sum & SDXC_FIFO_RUN_ERROR ? " FE" : "",
host->int_sum & SDXC_HARD_WARE_LOCKED ? " HL" : "",
host->int_sum & SDXC_START_BIT_ERROR ? " SBE" : "",
host->int_sum & SDXC_END_BIT_ERROR ? " EBE" : ""
);
}
/* Called in interrupt context! */
static irqreturn_t sunxi_mmc_finalize_request(struct sunxi_mmc_host *host)
{
struct mmc_request *mrq = host->mrq;
struct mmc_data *data = mrq->data;
u32 rval;
mmc_writel(host, REG_IMASK, host->sdio_imask);
mmc_writel(host, REG_IDIE, 0);
if (host->int_sum & SDXC_INTERRUPT_ERROR_BIT) {
sunxi_mmc_dump_errinfo(host);
mrq->cmd->error = -ETIMEDOUT;
if (data) {
data->error = -ETIMEDOUT;
host->manual_stop_mrq = mrq;
}
if (mrq->stop)
mrq->stop->error = -ETIMEDOUT;
} else {
if (mrq->cmd->flags & MMC_RSP_136) {
mrq->cmd->resp[0] = mmc_readl(host, REG_RESP3);
mrq->cmd->resp[1] = mmc_readl(host, REG_RESP2);
mrq->cmd->resp[2] = mmc_readl(host, REG_RESP1);
mrq->cmd->resp[3] = mmc_readl(host, REG_RESP0);
} else {
mrq->cmd->resp[0] = mmc_readl(host, REG_RESP0);
}
if (data)
data->bytes_xfered = data->blocks * data->blksz;
}
if (data) {
mmc_writel(host, REG_IDST, 0x337);
mmc_writel(host, REG_DMAC, 0);
rval = mmc_readl(host, REG_GCTRL);
rval |= SDXC_DMA_RESET;
mmc_writel(host, REG_GCTRL, rval);
rval &= ~SDXC_DMA_ENABLE_BIT;
mmc_writel(host, REG_GCTRL, rval);
rval |= SDXC_FIFO_RESET;
mmc_writel(host, REG_GCTRL, rval);
dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
mmc_get_dma_dir(data));
}
mmc_writel(host, REG_RINTR, 0xffff);
host->mrq = NULL;
host->int_sum = 0;
host->wait_dma = false;
return host->manual_stop_mrq ? IRQ_WAKE_THREAD : IRQ_HANDLED;
}
static irqreturn_t sunxi_mmc_irq(int irq, void *dev_id)
{
struct sunxi_mmc_host *host = dev_id;
struct mmc_request *mrq;
u32 msk_int, idma_int;
bool finalize = false;
bool sdio_int = false;
irqreturn_t ret = IRQ_HANDLED;
spin_lock(&host->lock);
idma_int = mmc_readl(host, REG_IDST);
msk_int = mmc_readl(host, REG_MISTA);
dev_dbg(mmc_dev(host->mmc), "irq: rq %p mi %08x idi %08x\n",
host->mrq, msk_int, idma_int);
mrq = host->mrq;
if (mrq) {
if (idma_int & SDXC_IDMAC_RECEIVE_INTERRUPT)
host->wait_dma = false;
host->int_sum |= msk_int;
/* Wait for COMMAND_DONE on RESPONSE_TIMEOUT before finalize */
if ((host->int_sum & SDXC_RESP_TIMEOUT) &&
!(host->int_sum & SDXC_COMMAND_DONE))
mmc_writel(host, REG_IMASK,
host->sdio_imask | SDXC_COMMAND_DONE);
/* Don't wait for dma on error */
else if (host->int_sum & SDXC_INTERRUPT_ERROR_BIT)
finalize = true;
else if ((host->int_sum & SDXC_INTERRUPT_DONE_BIT) &&
!host->wait_dma)
finalize = true;
}
if (msk_int & SDXC_SDIO_INTERRUPT)
sdio_int = true;
mmc_writel(host, REG_RINTR, msk_int);
mmc_writel(host, REG_IDST, idma_int);
if (finalize)
ret = sunxi_mmc_finalize_request(host);
spin_unlock(&host->lock);
if (finalize && ret == IRQ_HANDLED)
mmc_request_done(host->mmc, mrq);
if (sdio_int)
mmc_signal_sdio_irq(host->mmc);
return ret;
}
static irqreturn_t sunxi_mmc_handle_manual_stop(int irq, void *dev_id)
{
struct sunxi_mmc_host *host = dev_id;
struct mmc_request *mrq;
unsigned long iflags;
spin_lock_irqsave(&host->lock, iflags);
mrq = host->manual_stop_mrq;
spin_unlock_irqrestore(&host->lock, iflags);
if (!mrq) {
dev_err(mmc_dev(host->mmc), "no request for manual stop\n");
return IRQ_HANDLED;
}
dev_err(mmc_dev(host->mmc), "data error, sending stop command\n");
/*
* We will never have more than one outstanding request,
* and we do not complete the request until after
* we've cleared host->manual_stop_mrq so we do not need to
* spin lock this function.
* Additionally we have wait states within this function
* so having it in a lock is a very bad idea.
*/
sunxi_mmc_send_manual_stop(host, mrq);
spin_lock_irqsave(&host->lock, iflags);
host->manual_stop_mrq = NULL;
spin_unlock_irqrestore(&host->lock, iflags);
mmc_request_done(host->mmc, mrq);
return IRQ_HANDLED;
}
static int sunxi_mmc_oclk_onoff(struct sunxi_mmc_host *host, u32 oclk_en)
{
unsigned long expire = jiffies + msecs_to_jiffies(750);
u32 rval;
dev_dbg(mmc_dev(host->mmc), "%sabling the clock\n",
oclk_en ? "en" : "dis");
rval = mmc_readl(host, REG_CLKCR);
rval &= ~(SDXC_CARD_CLOCK_ON | SDXC_LOW_POWER_ON | SDXC_MASK_DATA0);
if (oclk_en)
rval |= SDXC_CARD_CLOCK_ON;
if (host->cfg->mask_data0)
rval |= SDXC_MASK_DATA0;
mmc_writel(host, REG_CLKCR, rval);
rval = SDXC_START | SDXC_UPCLK_ONLY | SDXC_WAIT_PRE_OVER;
mmc_writel(host, REG_CMDR, rval);
do {
rval = mmc_readl(host, REG_CMDR);
} while (time_before(jiffies, expire) && (rval & SDXC_START));
/* clear irq status bits set by the command */
mmc_writel(host, REG_RINTR,
mmc_readl(host, REG_RINTR) & ~SDXC_SDIO_INTERRUPT);
if (rval & SDXC_START) {
dev_err(mmc_dev(host->mmc), "fatal err update clk timeout\n");
return -EIO;
}
if (host->cfg->mask_data0) {
rval = mmc_readl(host, REG_CLKCR);
mmc_writel(host, REG_CLKCR, rval & ~SDXC_MASK_DATA0);
}
return 0;
}
static int sunxi_mmc_calibrate(struct sunxi_mmc_host *host, int reg_off)
{
if (!host->cfg->can_calibrate)
return 0;
/*
* FIXME:
* This is not clear how the calibration is supposed to work
* yet. The best rate have been obtained by simply setting the
* delay to 0, as Allwinner does in its BSP.
*
* The only mode that doesn't have such a delay is HS400, that
* is in itself a TODO.
*/
writel(SDXC_CAL_DL_SW_EN, host->reg_base + reg_off);
return 0;
}
static int sunxi_mmc_clk_set_phase(struct sunxi_mmc_host *host,
struct mmc_ios *ios, u32 rate)
{
int index;
/* clk controller delays not used under new timings mode */
if (host->use_new_timings)
return 0;
/* some old controllers don't support delays */
if (!host->cfg->clk_delays)
return 0;
/* determine delays */
if (rate <= 400000) {
index = SDXC_CLK_400K;
} else if (rate <= 25000000) {
index = SDXC_CLK_25M;
} else if (rate <= 52000000) {
if (ios->timing != MMC_TIMING_UHS_DDR50 &&
ios->timing != MMC_TIMING_MMC_DDR52) {
index = SDXC_CLK_50M;
} else if (ios->bus_width == MMC_BUS_WIDTH_8) {
index = SDXC_CLK_50M_DDR_8BIT;
} else {
index = SDXC_CLK_50M_DDR;
}
} else {
dev_dbg(mmc_dev(host->mmc), "Invalid clock... returning\n");
return -EINVAL;
}
clk_set_phase(host->clk_sample, host->cfg->clk_delays[index].sample);
clk_set_phase(host->clk_output, host->cfg->clk_delays[index].output);
return 0;
}
static int sunxi_mmc_clk_set_rate(struct sunxi_mmc_host *host,
struct mmc_ios *ios)
{
struct mmc_host *mmc = host->mmc;
long rate;
u32 rval, clock = ios->clock, div = 1;
int ret;
ret = sunxi_mmc_oclk_onoff(host, 0);
if (ret)
return ret;
/* Our clock is gated now */
mmc->actual_clock = 0;
if (!ios->clock)
return 0;
/*
* Under the old timing mode, 8 bit DDR requires the module
* clock to be double the card clock. Under the new timing
* mode, all DDR modes require a doubled module clock.
*
* We currently only support the standard MMC DDR52 mode.
* This block should be updated once support for other DDR
* modes is added.
*/
if (ios->timing == MMC_TIMING_MMC_DDR52 &&
(host->use_new_timings ||
ios->bus_width == MMC_BUS_WIDTH_8)) {
div = 2;
clock <<= 1;
}
if (host->use_new_timings && host->cfg->has_timings_switch) {
ret = sunxi_ccu_set_mmc_timing_mode(host->clk_mmc, true);
if (ret) {
dev_err(mmc_dev(mmc),
"error setting new timing mode\n");
return ret;
}
}
rate = clk_round_rate(host->clk_mmc, clock);
if (rate < 0) {
dev_err(mmc_dev(mmc), "error rounding clk to %d: %ld\n",
clock, rate);
return rate;
}
dev_dbg(mmc_dev(mmc), "setting clk to %d, rounded %ld\n",
clock, rate);
/* setting clock rate */
ret = clk_set_rate(host->clk_mmc, rate);
if (ret) {
dev_err(mmc_dev(mmc), "error setting clk to %ld: %d\n",
rate, ret);
return ret;
}
/* set internal divider */
rval = mmc_readl(host, REG_CLKCR);
rval &= ~0xff;
rval |= div - 1;
mmc_writel(host, REG_CLKCR, rval);
/* update card clock rate to account for internal divider */
rate /= div;
if (host->use_new_timings) {
/* Don't touch the delay bits */
rval = mmc_readl(host, REG_SD_NTSR);
rval |= SDXC_2X_TIMING_MODE;
mmc_writel(host, REG_SD_NTSR, rval);
}
/* sunxi_mmc_clk_set_phase expects the actual card clock rate */
ret = sunxi_mmc_clk_set_phase(host, ios, rate);
if (ret)
return ret;
ret = sunxi_mmc_calibrate(host, SDXC_REG_SAMP_DL_REG);
if (ret)
return ret;
/*
* FIXME:
*
* In HS400 we'll also need to calibrate the data strobe
* signal. This should only happen on the MMC2 controller (at
* least on the A64).
*/
ret = sunxi_mmc_oclk_onoff(host, 1);
if (ret)
return ret;
/* And we just enabled our clock back */
mmc->actual_clock = rate;
return 0;
}
static void sunxi_mmc_set_bus_width(struct sunxi_mmc_host *host,
unsigned char width)
{
switch (width) {
case MMC_BUS_WIDTH_1:
mmc_writel(host, REG_WIDTH, SDXC_WIDTH1);
break;
case MMC_BUS_WIDTH_4:
mmc_writel(host, REG_WIDTH, SDXC_WIDTH4);
break;
case MMC_BUS_WIDTH_8:
mmc_writel(host, REG_WIDTH, SDXC_WIDTH8);
break;
}
}
static void sunxi_mmc_set_clk(struct sunxi_mmc_host *host, struct mmc_ios *ios)
{
u32 rval;
/* set ddr mode */
rval = mmc_readl(host, REG_GCTRL);
if (ios->timing == MMC_TIMING_UHS_DDR50 ||
ios->timing == MMC_TIMING_MMC_DDR52)
rval |= SDXC_DDR_MODE;
else
rval &= ~SDXC_DDR_MODE;
mmc_writel(host, REG_GCTRL, rval);
host->ferror = sunxi_mmc_clk_set_rate(host, ios);
/* Android code had a usleep_range(50000, 55000); here */
}
static void sunxi_mmc_card_power(struct sunxi_mmc_host *host,
struct mmc_ios *ios)
{
struct mmc_host *mmc = host->mmc;
switch (ios->power_mode) {
case MMC_POWER_UP:
dev_dbg(mmc_dev(mmc), "Powering card up\n");
if (!IS_ERR(mmc->supply.vmmc)) {
host->ferror = mmc_regulator_set_ocr(mmc,
mmc->supply.vmmc,
ios->vdd);
if (host->ferror)
return;
}
if (!IS_ERR(mmc->supply.vqmmc)) {
host->ferror = regulator_enable(mmc->supply.vqmmc);
if (host->ferror) {
dev_err(mmc_dev(mmc),
"failed to enable vqmmc\n");
return;
}
host->vqmmc_enabled = true;
}
break;
case MMC_POWER_OFF:
dev_dbg(mmc_dev(mmc), "Powering card off\n");
if (!IS_ERR(mmc->supply.vmmc))
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled)
regulator_disable(mmc->supply.vqmmc);
host->vqmmc_enabled = false;
break;
default:
dev_dbg(mmc_dev(mmc), "Ignoring unknown card power state\n");
break;
}
}
static void sunxi_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct sunxi_mmc_host *host = mmc_priv(mmc);
sunxi_mmc_card_power(host, ios);
sunxi_mmc_set_bus_width(host, ios->bus_width);
sunxi_mmc_set_clk(host, ios);
}
static int sunxi_mmc_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
{
/* vqmmc regulator is available */
if (!IS_ERR(mmc->supply.vqmmc))
return mmc_regulator_set_vqmmc(mmc, ios);
/* no vqmmc regulator, assume fixed regulator at 3/3.3V */
if (mmc->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330)
return 0;
return -EINVAL;
}
static void sunxi_mmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
{
struct sunxi_mmc_host *host = mmc_priv(mmc);
unsigned long flags;
u32 imask;
if (enable)
pm_runtime_get_noresume(host->dev);
spin_lock_irqsave(&host->lock, flags);
imask = mmc_readl(host, REG_IMASK);
if (enable) {
host->sdio_imask = SDXC_SDIO_INTERRUPT;
imask |= SDXC_SDIO_INTERRUPT;
} else {
host->sdio_imask = 0;
imask &= ~SDXC_SDIO_INTERRUPT;
}
mmc_writel(host, REG_IMASK, imask);
spin_unlock_irqrestore(&host->lock, flags);
if (!enable)
pm_runtime_put_noidle(host->mmc->parent);
}
static void sunxi_mmc_hw_reset(struct mmc_host *mmc)
{
struct sunxi_mmc_host *host = mmc_priv(mmc);
mmc_writel(host, REG_HWRST, 0);
udelay(10);
mmc_writel(host, REG_HWRST, 1);
udelay(300);
}
static void sunxi_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct sunxi_mmc_host *host = mmc_priv(mmc);
struct mmc_command *cmd = mrq->cmd;
struct mmc_data *data = mrq->data;
unsigned long iflags;
u32 imask = SDXC_INTERRUPT_ERROR_BIT;
u32 cmd_val = SDXC_START | (cmd->opcode & 0x3f);
bool wait_dma = host->wait_dma;
int ret;
/* Check for set_ios errors (should never happen) */
if (host->ferror) {
mrq->cmd->error = host->ferror;
mmc_request_done(mmc, mrq);
return;
}
if (data) {
ret = sunxi_mmc_map_dma(host, data);
if (ret < 0) {
dev_err(mmc_dev(mmc), "map DMA failed\n");
cmd->error = ret;
data->error = ret;
mmc_request_done(mmc, mrq);
return;
}
}
if (cmd->opcode == MMC_GO_IDLE_STATE) {
cmd_val |= SDXC_SEND_INIT_SEQUENCE;
imask |= SDXC_COMMAND_DONE;
}
if (cmd->flags & MMC_RSP_PRESENT) {
cmd_val |= SDXC_RESP_EXPIRE;
if (cmd->flags & MMC_RSP_136)
cmd_val |= SDXC_LONG_RESPONSE;
if (cmd->flags & MMC_RSP_CRC)
cmd_val |= SDXC_CHECK_RESPONSE_CRC;
if ((cmd->flags & MMC_CMD_MASK) == MMC_CMD_ADTC) {
cmd_val |= SDXC_DATA_EXPIRE | SDXC_WAIT_PRE_OVER;
if (cmd->data->stop) {
imask |= SDXC_AUTO_COMMAND_DONE;
cmd_val |= SDXC_SEND_AUTO_STOP;
} else {
imask |= SDXC_DATA_OVER;
}
if (cmd->data->flags & MMC_DATA_WRITE)
cmd_val |= SDXC_WRITE;
else
wait_dma = true;
} else {
imask |= SDXC_COMMAND_DONE;
}
} else {
imask |= SDXC_COMMAND_DONE;
}
dev_dbg(mmc_dev(mmc), "cmd %d(%08x) arg %x ie 0x%08x len %d\n",
cmd_val & 0x3f, cmd_val, cmd->arg, imask,
mrq->data ? mrq->data->blksz * mrq->data->blocks : 0);
spin_lock_irqsave(&host->lock, iflags);
if (host->mrq || host->manual_stop_mrq) {
spin_unlock_irqrestore(&host->lock, iflags);
if (data)
dma_unmap_sg(mmc_dev(mmc), data->sg, data->sg_len,
mmc_get_dma_dir(data));
dev_err(mmc_dev(mmc), "request already pending\n");
mrq->cmd->error = -EBUSY;
mmc_request_done(mmc, mrq);
return;
}
if (data) {
mmc_writel(host, REG_BLKSZ, data->blksz);
mmc_writel(host, REG_BCNTR, data->blksz * data->blocks);
sunxi_mmc_start_dma(host, data);
}
host->mrq = mrq;
host->wait_dma = wait_dma;
mmc_writel(host, REG_IMASK, host->sdio_imask | imask);
mmc_writel(host, REG_CARG, cmd->arg);
mmc_writel(host, REG_CMDR, cmd_val);
spin_unlock_irqrestore(&host->lock, iflags);
}
static int sunxi_mmc_card_busy(struct mmc_host *mmc)
{
struct sunxi_mmc_host *host = mmc_priv(mmc);
return !!(mmc_readl(host, REG_STAS) & SDXC_CARD_DATA_BUSY);
}
static const struct mmc_host_ops sunxi_mmc_ops = {
.request = sunxi_mmc_request,
.set_ios = sunxi_mmc_set_ios,
.get_ro = mmc_gpio_get_ro,
.get_cd = mmc_gpio_get_cd,
.enable_sdio_irq = sunxi_mmc_enable_sdio_irq,
.start_signal_voltage_switch = sunxi_mmc_volt_switch,
.hw_reset = sunxi_mmc_hw_reset,
.card_busy = sunxi_mmc_card_busy,
};
static const struct sunxi_mmc_clk_delay sunxi_mmc_clk_delays[] = {
[SDXC_CLK_400K] = { .output = 180, .sample = 180 },
[SDXC_CLK_25M] = { .output = 180, .sample = 75 },
[SDXC_CLK_50M] = { .output = 90, .sample = 120 },
[SDXC_CLK_50M_DDR] = { .output = 60, .sample = 120 },
/* Value from A83T "new timing mode". Works but might not be right. */
[SDXC_CLK_50M_DDR_8BIT] = { .output = 90, .sample = 180 },
};
static const struct sunxi_mmc_clk_delay sun9i_mmc_clk_delays[] = {
[SDXC_CLK_400K] = { .output = 180, .sample = 180 },
[SDXC_CLK_25M] = { .output = 180, .sample = 75 },
[SDXC_CLK_50M] = { .output = 150, .sample = 120 },
[SDXC_CLK_50M_DDR] = { .output = 54, .sample = 36 },
[SDXC_CLK_50M_DDR_8BIT] = { .output = 72, .sample = 72 },
};
static const struct sunxi_mmc_cfg sun4i_a10_cfg = {
.idma_des_size_bits = 13,
.clk_delays = NULL,
.can_calibrate = false,
};
static const struct sunxi_mmc_cfg sun5i_a13_cfg = {
.idma_des_size_bits = 16,
.clk_delays = NULL,
.can_calibrate = false,
};
static const struct sunxi_mmc_cfg sun7i_a20_cfg = {
.idma_des_size_bits = 16,
.clk_delays = sunxi_mmc_clk_delays,
.can_calibrate = false,
};
static const struct sunxi_mmc_cfg sun8i_a83t_emmc_cfg = {
.idma_des_size_bits = 16,
.clk_delays = sunxi_mmc_clk_delays,
.can_calibrate = false,
.has_timings_switch = true,
};
static const struct sunxi_mmc_cfg sun9i_a80_cfg = {
.idma_des_size_bits = 16,
.clk_delays = sun9i_mmc_clk_delays,
.can_calibrate = false,
};
static const struct sunxi_mmc_cfg sun50i_a64_cfg = {
.idma_des_size_bits = 16,
.clk_delays = NULL,
.can_calibrate = true,
.mask_data0 = true,
.needs_new_timings = true,
};
static const struct sunxi_mmc_cfg sun50i_a64_emmc_cfg = {
.idma_des_size_bits = 13,
.clk_delays = NULL,
.can_calibrate = true,
};
static const struct of_device_id sunxi_mmc_of_match[] = {
{ .compatible = "allwinner,sun4i-a10-mmc", .data = &sun4i_a10_cfg },
{ .compatible = "allwinner,sun5i-a13-mmc", .data = &sun5i_a13_cfg },
{ .compatible = "allwinner,sun7i-a20-mmc", .data = &sun7i_a20_cfg },
{ .compatible = "allwinner,sun8i-a83t-emmc", .data = &sun8i_a83t_emmc_cfg },
{ .compatible = "allwinner,sun9i-a80-mmc", .data = &sun9i_a80_cfg },
{ .compatible = "allwinner,sun50i-a64-mmc", .data = &sun50i_a64_cfg },
{ .compatible = "allwinner,sun50i-a64-emmc", .data = &sun50i_a64_emmc_cfg },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, sunxi_mmc_of_match);
static int sunxi_mmc_enable(struct sunxi_mmc_host *host)
{
int ret;
if (!IS_ERR(host->reset)) {
ret = reset_control_reset(host->reset);
if (ret) {
dev_err(host->dev, "Couldn't reset the MMC controller (%d)\n",
ret);
return ret;
}
}
ret = clk_prepare_enable(host->clk_ahb);
if (ret) {
dev_err(host->dev, "Couldn't enable the bus clocks (%d)\n", ret);
goto error_assert_reset;
}
ret = clk_prepare_enable(host->clk_mmc);
if (ret) {
dev_err(host->dev, "Enable mmc clk err %d\n", ret);
goto error_disable_clk_ahb;
}
ret = clk_prepare_enable(host->clk_output);
if (ret) {
dev_err(host->dev, "Enable output clk err %d\n", ret);
goto error_disable_clk_mmc;
}
ret = clk_prepare_enable(host->clk_sample);
if (ret) {
dev_err(host->dev, "Enable sample clk err %d\n", ret);
goto error_disable_clk_output;
}
/*
* Sometimes the controller asserts the irq on boot for some reason,
* make sure the controller is in a sane state before enabling irqs.
*/
ret = sunxi_mmc_reset_host(host);
if (ret)
goto error_disable_clk_sample;
return 0;
error_disable_clk_sample:
clk_disable_unprepare(host->clk_sample);
error_disable_clk_output:
clk_disable_unprepare(host->clk_output);
error_disable_clk_mmc:
clk_disable_unprepare(host->clk_mmc);
error_disable_clk_ahb:
clk_disable_unprepare(host->clk_ahb);
error_assert_reset:
if (!IS_ERR(host->reset))
reset_control_assert(host->reset);
return ret;
}
static void sunxi_mmc_disable(struct sunxi_mmc_host *host)
{
sunxi_mmc_reset_host(host);
clk_disable_unprepare(host->clk_sample);
clk_disable_unprepare(host->clk_output);
clk_disable_unprepare(host->clk_mmc);
clk_disable_unprepare(host->clk_ahb);
if (!IS_ERR(host->reset))
reset_control_assert(host->reset);
}
static int sunxi_mmc_resource_request(struct sunxi_mmc_host *host,
struct platform_device *pdev)
{
int ret;
host->cfg = of_device_get_match_data(&pdev->dev);
if (!host->cfg)
return -EINVAL;
ret = mmc_regulator_get_supply(host->mmc);
if (ret)
return ret;
host->reg_base = devm_ioremap_resource(&pdev->dev,
platform_get_resource(pdev, IORESOURCE_MEM, 0));
if (IS_ERR(host->reg_base))
return PTR_ERR(host->reg_base);
host->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
if (IS_ERR(host->clk_ahb)) {
dev_err(&pdev->dev, "Could not get ahb clock\n");
return PTR_ERR(host->clk_ahb);
}
host->clk_mmc = devm_clk_get(&pdev->dev, "mmc");
if (IS_ERR(host->clk_mmc)) {
dev_err(&pdev->dev, "Could not get mmc clock\n");
return PTR_ERR(host->clk_mmc);
}
if (host->cfg->clk_delays) {
host->clk_output = devm_clk_get(&pdev->dev, "output");
if (IS_ERR(host->clk_output)) {
dev_err(&pdev->dev, "Could not get output clock\n");
return PTR_ERR(host->clk_output);
}
host->clk_sample = devm_clk_get(&pdev->dev, "sample");
if (IS_ERR(host->clk_sample)) {
dev_err(&pdev->dev, "Could not get sample clock\n");
return PTR_ERR(host->clk_sample);
}
}
host->reset = devm_reset_control_get_optional_exclusive(&pdev->dev,
"ahb");
if (PTR_ERR(host->reset) == -EPROBE_DEFER)
return PTR_ERR(host->reset);
ret = sunxi_mmc_enable(host);
if (ret)
return ret;
host->irq = platform_get_irq(pdev, 0);
if (host->irq <= 0) {
ret = -EINVAL;
goto error_disable_mmc;
}
return devm_request_threaded_irq(&pdev->dev, host->irq, sunxi_mmc_irq,
sunxi_mmc_handle_manual_stop, 0, "sunxi-mmc", host);
error_disable_mmc:
sunxi_mmc_disable(host);
return ret;
}
static int sunxi_mmc_probe(struct platform_device *pdev)
{
struct sunxi_mmc_host *host;
struct mmc_host *mmc;
int ret;
mmc = mmc_alloc_host(sizeof(struct sunxi_mmc_host), &pdev->dev);
if (!mmc) {
dev_err(&pdev->dev, "mmc alloc host failed\n");
return -ENOMEM;
}
platform_set_drvdata(pdev, mmc);
host = mmc_priv(mmc);
host->dev = &pdev->dev;
host->mmc = mmc;
spin_lock_init(&host->lock);
ret = sunxi_mmc_resource_request(host, pdev);
if (ret)
goto error_free_host;
host->sg_cpu = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
&host->sg_dma, GFP_KERNEL);
if (!host->sg_cpu) {
dev_err(&pdev->dev, "Failed to allocate DMA descriptor mem\n");
ret = -ENOMEM;
goto error_free_host;
}
if (host->cfg->has_timings_switch) {
/*
* Supports both old and new timing modes.
* Try setting the clk to new timing mode.
*/
sunxi_ccu_set_mmc_timing_mode(host->clk_mmc, true);
/* And check the result */
ret = sunxi_ccu_get_mmc_timing_mode(host->clk_mmc);
if (ret < 0) {
/*
* For whatever reason we were not able to get
* the current active mode. Default to old mode.
*/
dev_warn(&pdev->dev, "MMC clk timing mode unknown\n");
host->use_new_timings = false;
} else {
host->use_new_timings = !!ret;
}
} else if (host->cfg->needs_new_timings) {
/* Supports new timing mode only */
host->use_new_timings = true;
}
mmc->ops = &sunxi_mmc_ops;
mmc->max_blk_count = 8192;
mmc->max_blk_size = 4096;
mmc->max_segs = PAGE_SIZE / sizeof(struct sunxi_idma_des);
mmc->max_seg_size = (1 << host->cfg->idma_des_size_bits);
mmc->max_req_size = mmc->max_seg_size * mmc->max_segs;
/* 400kHz ~ 52MHz */
mmc->f_min = 400000;
mmc->f_max = 52000000;
mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED |
MMC_CAP_ERASE | MMC_CAP_SDIO_IRQ;
if (host->cfg->clk_delays || host->use_new_timings)
mmc->caps |= MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR;
ret = mmc_of_parse(mmc);
if (ret)
goto error_free_dma;
ret = sunxi_mmc_init_host(host);
if (ret)
goto error_free_dma;
pm_runtime_set_active(&pdev->dev);
pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
pm_runtime_use_autosuspend(&pdev->dev);
pm_runtime_enable(&pdev->dev);
ret = mmc_add_host(mmc);
if (ret)
goto error_free_dma;
dev_info(&pdev->dev, "base:0x%p irq:%u\n", host->reg_base, host->irq);
return 0;
error_free_dma:
dma_free_coherent(&pdev->dev, PAGE_SIZE, host->sg_cpu, host->sg_dma);
error_free_host:
mmc_free_host(mmc);
return ret;
}
static int sunxi_mmc_remove(struct platform_device *pdev)
{
struct mmc_host *mmc = platform_get_drvdata(pdev);
struct sunxi_mmc_host *host = mmc_priv(mmc);
mmc_remove_host(mmc);
pm_runtime_force_suspend(&pdev->dev);
disable_irq(host->irq);
sunxi_mmc_disable(host);
dma_free_coherent(&pdev->dev, PAGE_SIZE, host->sg_cpu, host->sg_dma);
mmc_free_host(mmc);
return 0;
}
#ifdef CONFIG_PM
static int sunxi_mmc_runtime_resume(struct device *dev)
{
struct mmc_host *mmc = dev_get_drvdata(dev);
struct sunxi_mmc_host *host = mmc_priv(mmc);
int ret;
ret = sunxi_mmc_enable(host);
if (ret)
return ret;
sunxi_mmc_init_host(host);
sunxi_mmc_set_bus_width(host, mmc->ios.bus_width);
sunxi_mmc_set_clk(host, &mmc->ios);
mmc: sunxi: Disable irq during pm_suspend When mmc host controller enters suspend state, the clocks are disabled, but irqs are not. For some reason the irqchip emits false interrupts, which causes system lock loop. Debug log is: ... sunxi-mmc 1c11000.mmc: setting clk to 52000000, rounded 51200000 sunxi-mmc 1c11000.mmc: enabling the clock sunxi-mmc 1c11000.mmc: cmd 13(8000014d) arg 10000 ie 0x0000bbc6 len 0 sunxi-mmc 1c11000.mmc: irq: rq (ptrval) mi 00000004 idi 00000000 sunxi-mmc 1c11000.mmc: cmd 6(80000146) arg 3210101 ie 0x0000bbc6 len 0 sunxi-mmc 1c11000.mmc: irq: rq (ptrval) mi 00000004 idi 00000000 sunxi-mmc 1c11000.mmc: cmd 13(8000014d) arg 10000 ie 0x0000bbc6 len 0 sunxi-mmc 1c11000.mmc: irq: rq (ptrval) mi 00000004 idi 00000000 mmc1: new DDR MMC card at address 0001 mmcblk1: mmc1:0001 AGND3R 14.6 GiB mmcblk1boot0: mmc1:0001 AGND3R partition 1 4.00 MiB mmcblk1boot1: mmc1:0001 AGND3R partition 2 4.00 MiB sunxi-mmc 1c11000.mmc: cmd 18(80003352) arg 0 ie 0x0000fbc2 len 409 sunxi-mmc 1c11000.mmc: irq: rq (ptrval) mi 00004000 idi 00000002 mmcblk1: p1 sunxi-mmc 1c11000.mmc: irq: rq (null) mi 00000000 idi 00000000 sunxi-mmc 1c11000.mmc: irq: rq (null) mi 00000000 idi 00000000 sunxi-mmc 1c11000.mmc: irq: rq (null) mi 00000000 idi 00000000 sunxi-mmc 1c11000.mmc: irq: rq (null) mi 00000000 idi 00000000 and so on... This issue apears on eMMC cards, routed on MMC2 slot. The patch is tested with A20-OLinuXino-MICRO/LIME/LIME2 boards. Fixes: 9a8e1e8cc2c0 ("mmc: sunxi: Add runtime_pm support") Signed-off-by: Stefan Mavrodiev <stefan@olimex.com> Acked-by: Maxime Ripard <maxime.ripard@bootlin.com> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2018-07-04 06:28:59 +00:00
enable_irq(host->irq);
return 0;
}
static int sunxi_mmc_runtime_suspend(struct device *dev)
{
struct mmc_host *mmc = dev_get_drvdata(dev);
struct sunxi_mmc_host *host = mmc_priv(mmc);
mmc: sunxi: Disable irq during pm_suspend When mmc host controller enters suspend state, the clocks are disabled, but irqs are not. For some reason the irqchip emits false interrupts, which causes system lock loop. Debug log is: ... sunxi-mmc 1c11000.mmc: setting clk to 52000000, rounded 51200000 sunxi-mmc 1c11000.mmc: enabling the clock sunxi-mmc 1c11000.mmc: cmd 13(8000014d) arg 10000 ie 0x0000bbc6 len 0 sunxi-mmc 1c11000.mmc: irq: rq (ptrval) mi 00000004 idi 00000000 sunxi-mmc 1c11000.mmc: cmd 6(80000146) arg 3210101 ie 0x0000bbc6 len 0 sunxi-mmc 1c11000.mmc: irq: rq (ptrval) mi 00000004 idi 00000000 sunxi-mmc 1c11000.mmc: cmd 13(8000014d) arg 10000 ie 0x0000bbc6 len 0 sunxi-mmc 1c11000.mmc: irq: rq (ptrval) mi 00000004 idi 00000000 mmc1: new DDR MMC card at address 0001 mmcblk1: mmc1:0001 AGND3R 14.6 GiB mmcblk1boot0: mmc1:0001 AGND3R partition 1 4.00 MiB mmcblk1boot1: mmc1:0001 AGND3R partition 2 4.00 MiB sunxi-mmc 1c11000.mmc: cmd 18(80003352) arg 0 ie 0x0000fbc2 len 409 sunxi-mmc 1c11000.mmc: irq: rq (ptrval) mi 00004000 idi 00000002 mmcblk1: p1 sunxi-mmc 1c11000.mmc: irq: rq (null) mi 00000000 idi 00000000 sunxi-mmc 1c11000.mmc: irq: rq (null) mi 00000000 idi 00000000 sunxi-mmc 1c11000.mmc: irq: rq (null) mi 00000000 idi 00000000 sunxi-mmc 1c11000.mmc: irq: rq (null) mi 00000000 idi 00000000 and so on... This issue apears on eMMC cards, routed on MMC2 slot. The patch is tested with A20-OLinuXino-MICRO/LIME/LIME2 boards. Fixes: 9a8e1e8cc2c0 ("mmc: sunxi: Add runtime_pm support") Signed-off-by: Stefan Mavrodiev <stefan@olimex.com> Acked-by: Maxime Ripard <maxime.ripard@bootlin.com> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2018-07-04 06:28:59 +00:00
/*
* When clocks are off, it's possible receiving
* fake interrupts, which will stall the system.
* Disabling the irq will prevent this.
*/
disable_irq(host->irq);
sunxi_mmc_reset_host(host);
sunxi_mmc_disable(host);
return 0;
}
#endif
static const struct dev_pm_ops sunxi_mmc_pm_ops = {
SET_RUNTIME_PM_OPS(sunxi_mmc_runtime_suspend,
sunxi_mmc_runtime_resume,
NULL)
};
static struct platform_driver sunxi_mmc_driver = {
.driver = {
.name = "sunxi-mmc",
.of_match_table = of_match_ptr(sunxi_mmc_of_match),
.pm = &sunxi_mmc_pm_ops,
},
.probe = sunxi_mmc_probe,
.remove = sunxi_mmc_remove,
};
module_platform_driver(sunxi_mmc_driver);
MODULE_DESCRIPTION("Allwinner's SD/MMC Card Controller Driver");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("David Lanzendörfer <david.lanzendoerfer@o2s.ch>");
MODULE_ALIAS("platform:sunxi-mmc");