2017-12-15 04:25:28 +00:00
|
|
|
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
/*
|
2020-07-13 18:05:16 +00:00
|
|
|
* Copyright (C) 2016-2017 Texas Instruments Incorporated - https://www.ti.com/
|
2017-12-15 04:25:28 +00:00
|
|
|
* Nishanth Menon <nm@ti.com>
|
|
|
|
* Dave Gerlach <d-gerlach@ti.com>
|
|
|
|
*
|
|
|
|
* TI OPP supply driver that provides override into the regulator control
|
|
|
|
* for generic opp core to handle devices with ABB regulator and/or
|
|
|
|
* SmartReflex Class0.
|
|
|
|
*/
|
|
|
|
#include <linux/clk.h>
|
|
|
|
#include <linux/cpufreq.h>
|
|
|
|
#include <linux/device.h>
|
|
|
|
#include <linux/io.h>
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/notifier.h>
|
|
|
|
#include <linux/of_device.h>
|
|
|
|
#include <linux/of.h>
|
|
|
|
#include <linux/platform_device.h>
|
|
|
|
#include <linux/pm_opp.h>
|
|
|
|
#include <linux/regulator/consumer.h>
|
|
|
|
#include <linux/slab.h>
|
|
|
|
|
|
|
|
/**
|
|
|
|
* struct ti_opp_supply_optimum_voltage_table - optimized voltage table
|
|
|
|
* @reference_uv: reference voltage (usually Nominal voltage)
|
|
|
|
* @optimized_uv: Optimized voltage from efuse
|
|
|
|
*/
|
|
|
|
struct ti_opp_supply_optimum_voltage_table {
|
|
|
|
unsigned int reference_uv;
|
|
|
|
unsigned int optimized_uv;
|
|
|
|
};
|
|
|
|
|
|
|
|
/**
|
|
|
|
* struct ti_opp_supply_data - OMAP specific opp supply data
|
|
|
|
* @vdd_table: Optimized voltage mapping table
|
|
|
|
* @num_vdd_table: number of entries in vdd_table
|
|
|
|
* @vdd_absolute_max_voltage_uv: absolute maximum voltage in UV for the supply
|
|
|
|
*/
|
|
|
|
struct ti_opp_supply_data {
|
|
|
|
struct ti_opp_supply_optimum_voltage_table *vdd_table;
|
|
|
|
u32 num_vdd_table;
|
|
|
|
u32 vdd_absolute_max_voltage_uv;
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct ti_opp_supply_data opp_data;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* struct ti_opp_supply_of_data - device tree match data
|
|
|
|
* @flags: specific type of opp supply
|
|
|
|
* @efuse_voltage_mask: mask required for efuse register representing voltage
|
|
|
|
* @efuse_voltage_uv: Are the efuse entries in micro-volts? if not, assume
|
|
|
|
* milli-volts.
|
|
|
|
*/
|
|
|
|
struct ti_opp_supply_of_data {
|
|
|
|
#define OPPDM_EFUSE_CLASS0_OPTIMIZED_VOLTAGE BIT(1)
|
|
|
|
#define OPPDM_HAS_NO_ABB BIT(2)
|
|
|
|
const u8 flags;
|
|
|
|
const u32 efuse_voltage_mask;
|
|
|
|
const bool efuse_voltage_uv;
|
|
|
|
};
|
|
|
|
|
|
|
|
/**
|
|
|
|
* _store_optimized_voltages() - store optimized voltages
|
|
|
|
* @dev: ti opp supply device for which we need to store info
|
|
|
|
* @data: data specific to the device
|
|
|
|
*
|
|
|
|
* Picks up efuse based optimized voltages for VDD unique per device and
|
|
|
|
* stores it in internal data structure for use during transition requests.
|
|
|
|
*
|
|
|
|
* Return: If successful, 0, else appropriate error value.
|
|
|
|
*/
|
|
|
|
static int _store_optimized_voltages(struct device *dev,
|
|
|
|
struct ti_opp_supply_data *data)
|
|
|
|
{
|
|
|
|
void __iomem *base;
|
|
|
|
struct property *prop;
|
|
|
|
struct resource *res;
|
|
|
|
const __be32 *val;
|
|
|
|
int proplen, i;
|
|
|
|
int ret = 0;
|
|
|
|
struct ti_opp_supply_optimum_voltage_table *table;
|
|
|
|
const struct ti_opp_supply_of_data *of_data = dev_get_drvdata(dev);
|
|
|
|
|
|
|
|
/* pick up Efuse based voltages */
|
|
|
|
res = platform_get_resource(to_platform_device(dev), IORESOURCE_MEM, 0);
|
|
|
|
if (!res) {
|
|
|
|
dev_err(dev, "Unable to get IO resource\n");
|
|
|
|
ret = -ENODEV;
|
|
|
|
goto out_map;
|
|
|
|
}
|
|
|
|
|
2020-01-06 08:43:50 +00:00
|
|
|
base = ioremap(res->start, resource_size(res));
|
2017-12-15 04:25:28 +00:00
|
|
|
if (!base) {
|
|
|
|
dev_err(dev, "Unable to map Efuse registers\n");
|
|
|
|
ret = -ENOMEM;
|
|
|
|
goto out_map;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Fetch efuse-settings. */
|
|
|
|
prop = of_find_property(dev->of_node, "ti,efuse-settings", NULL);
|
|
|
|
if (!prop) {
|
|
|
|
dev_err(dev, "No 'ti,efuse-settings' property found\n");
|
|
|
|
ret = -EINVAL;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
proplen = prop->length / sizeof(int);
|
|
|
|
data->num_vdd_table = proplen / 2;
|
|
|
|
/* Verify for corrupted OPP entries in dt */
|
|
|
|
if (data->num_vdd_table * 2 * sizeof(int) != prop->length) {
|
|
|
|
dev_err(dev, "Invalid 'ti,efuse-settings'\n");
|
|
|
|
ret = -EINVAL;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = of_property_read_u32(dev->of_node, "ti,absolute-max-voltage-uv",
|
|
|
|
&data->vdd_absolute_max_voltage_uv);
|
|
|
|
if (ret) {
|
|
|
|
dev_err(dev, "ti,absolute-max-voltage-uv is missing\n");
|
|
|
|
ret = -EINVAL;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
treewide: kzalloc() -> kcalloc()
The kzalloc() function has a 2-factor argument form, kcalloc(). This
patch replaces cases of:
kzalloc(a * b, gfp)
with:
kcalloc(a * b, gfp)
as well as handling cases of:
kzalloc(a * b * c, gfp)
with:
kzalloc(array3_size(a, b, c), gfp)
as it's slightly less ugly than:
kzalloc_array(array_size(a, b), c, gfp)
This does, however, attempt to ignore constant size factors like:
kzalloc(4 * 1024, gfp)
though any constants defined via macros get caught up in the conversion.
Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.
The Coccinelle script used for this was:
// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@
(
kzalloc(
- (sizeof(TYPE)) * E
+ sizeof(TYPE) * E
, ...)
|
kzalloc(
- (sizeof(THING)) * E
+ sizeof(THING) * E
, ...)
)
// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@
(
kzalloc(
- sizeof(u8) * (COUNT)
+ COUNT
, ...)
|
kzalloc(
- sizeof(__u8) * (COUNT)
+ COUNT
, ...)
|
kzalloc(
- sizeof(char) * (COUNT)
+ COUNT
, ...)
|
kzalloc(
- sizeof(unsigned char) * (COUNT)
+ COUNT
, ...)
|
kzalloc(
- sizeof(u8) * COUNT
+ COUNT
, ...)
|
kzalloc(
- sizeof(__u8) * COUNT
+ COUNT
, ...)
|
kzalloc(
- sizeof(char) * COUNT
+ COUNT
, ...)
|
kzalloc(
- sizeof(unsigned char) * COUNT
+ COUNT
, ...)
)
// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@
(
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * (COUNT_ID)
+ COUNT_ID, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * COUNT_ID
+ COUNT_ID, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * (COUNT_CONST)
+ COUNT_CONST, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * COUNT_CONST
+ COUNT_CONST, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * (COUNT_ID)
+ COUNT_ID, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * COUNT_ID
+ COUNT_ID, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * (COUNT_CONST)
+ COUNT_CONST, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * COUNT_CONST
+ COUNT_CONST, sizeof(THING)
, ...)
)
// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@
- kzalloc
+ kcalloc
(
- SIZE * COUNT
+ COUNT, SIZE
, ...)
// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@
(
kzalloc(
- sizeof(TYPE) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kzalloc(
- sizeof(TYPE) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kzalloc(
- sizeof(TYPE) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kzalloc(
- sizeof(TYPE) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kzalloc(
- sizeof(THING) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kzalloc(
- sizeof(THING) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kzalloc(
- sizeof(THING) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kzalloc(
- sizeof(THING) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
)
// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@
(
kzalloc(
- sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
kzalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
kzalloc(
- sizeof(THING1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
kzalloc(
- sizeof(THING1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
kzalloc(
- sizeof(TYPE1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
|
kzalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
)
// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@
(
kzalloc(
- (COUNT) * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- COUNT * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- COUNT * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- (COUNT) * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- COUNT * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- (COUNT) * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- (COUNT) * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- COUNT * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
)
// Any remaining multi-factor products, first at least 3-factor products,
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@
(
kzalloc(C1 * C2 * C3, ...)
|
kzalloc(
- (E1) * E2 * E3
+ array3_size(E1, E2, E3)
, ...)
|
kzalloc(
- (E1) * (E2) * E3
+ array3_size(E1, E2, E3)
, ...)
|
kzalloc(
- (E1) * (E2) * (E3)
+ array3_size(E1, E2, E3)
, ...)
|
kzalloc(
- E1 * E2 * E3
+ array3_size(E1, E2, E3)
, ...)
)
// And then all remaining 2 factors products when they're not all constants,
// keeping sizeof() as the second factor argument.
@@
expression THING, E1, E2;
type TYPE;
constant C1, C2, C3;
@@
(
kzalloc(sizeof(THING) * C2, ...)
|
kzalloc(sizeof(TYPE) * C2, ...)
|
kzalloc(C1 * C2 * C3, ...)
|
kzalloc(C1 * C2, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * (E2)
+ E2, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * E2
+ E2, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * (E2)
+ E2, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * E2
+ E2, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- (E1) * E2
+ E1, E2
, ...)
|
- kzalloc
+ kcalloc
(
- (E1) * (E2)
+ E1, E2
, ...)
|
- kzalloc
+ kcalloc
(
- E1 * E2
+ E1, E2
, ...)
)
Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 21:03:40 +00:00
|
|
|
table = kcalloc(data->num_vdd_table, sizeof(*data->vdd_table),
|
|
|
|
GFP_KERNEL);
|
2017-12-15 04:25:28 +00:00
|
|
|
if (!table) {
|
|
|
|
ret = -ENOMEM;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
data->vdd_table = table;
|
|
|
|
|
|
|
|
val = prop->value;
|
|
|
|
for (i = 0; i < data->num_vdd_table; i++, table++) {
|
|
|
|
u32 efuse_offset;
|
|
|
|
u32 tmp;
|
|
|
|
|
|
|
|
table->reference_uv = be32_to_cpup(val++);
|
|
|
|
efuse_offset = be32_to_cpup(val++);
|
|
|
|
|
|
|
|
tmp = readl(base + efuse_offset);
|
|
|
|
tmp &= of_data->efuse_voltage_mask;
|
|
|
|
tmp >>= __ffs(of_data->efuse_voltage_mask);
|
|
|
|
|
|
|
|
table->optimized_uv = of_data->efuse_voltage_uv ? tmp :
|
|
|
|
tmp * 1000;
|
|
|
|
|
|
|
|
dev_dbg(dev, "[%d] efuse=0x%08x volt_table=%d vset=%d\n",
|
|
|
|
i, efuse_offset, table->reference_uv,
|
|
|
|
table->optimized_uv);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Some older samples might not have optimized efuse
|
|
|
|
* Use reference voltage for those - just add debug message
|
|
|
|
* for them.
|
|
|
|
*/
|
|
|
|
if (!table->optimized_uv) {
|
|
|
|
dev_dbg(dev, "[%d] efuse=0x%08x volt_table=%d:vset0\n",
|
|
|
|
i, efuse_offset, table->reference_uv);
|
|
|
|
table->optimized_uv = table->reference_uv;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
out:
|
|
|
|
iounmap(base);
|
|
|
|
out_map:
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* _free_optimized_voltages() - free resources for optvoltages
|
|
|
|
* @dev: device for which we need to free info
|
|
|
|
* @data: data specific to the device
|
|
|
|
*/
|
|
|
|
static void _free_optimized_voltages(struct device *dev,
|
|
|
|
struct ti_opp_supply_data *data)
|
|
|
|
{
|
|
|
|
kfree(data->vdd_table);
|
|
|
|
data->vdd_table = NULL;
|
|
|
|
data->num_vdd_table = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* _get_optimal_vdd_voltage() - Finds optimal voltage for the supply
|
|
|
|
* @dev: device for which we need to find info
|
|
|
|
* @data: data specific to the device
|
|
|
|
* @reference_uv: reference voltage (OPP voltage) for which we need value
|
|
|
|
*
|
|
|
|
* Return: if a match is found, return optimized voltage, else return
|
|
|
|
* reference_uv, also return reference_uv if no optimization is needed.
|
|
|
|
*/
|
|
|
|
static int _get_optimal_vdd_voltage(struct device *dev,
|
|
|
|
struct ti_opp_supply_data *data,
|
|
|
|
int reference_uv)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
struct ti_opp_supply_optimum_voltage_table *table;
|
|
|
|
|
|
|
|
if (!data->num_vdd_table)
|
|
|
|
return reference_uv;
|
|
|
|
|
|
|
|
table = data->vdd_table;
|
|
|
|
if (!table)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
/* Find a exact match - this list is usually very small */
|
|
|
|
for (i = 0; i < data->num_vdd_table; i++, table++)
|
|
|
|
if (table->reference_uv == reference_uv)
|
|
|
|
return table->optimized_uv;
|
|
|
|
|
|
|
|
/* IF things are screwed up, we'd make a mess on console.. ratelimit */
|
|
|
|
dev_err_ratelimited(dev, "%s: Failed optimized voltage match for %d\n",
|
|
|
|
__func__, reference_uv);
|
|
|
|
return reference_uv;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int _opp_set_voltage(struct device *dev,
|
|
|
|
struct dev_pm_opp_supply *supply,
|
|
|
|
int new_target_uv, struct regulator *reg,
|
|
|
|
char *reg_name)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
unsigned long vdd_uv, uv_max;
|
|
|
|
|
|
|
|
if (new_target_uv)
|
|
|
|
vdd_uv = new_target_uv;
|
|
|
|
else
|
|
|
|
vdd_uv = supply->u_volt;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If we do have an absolute max voltage specified, then we should
|
|
|
|
* use that voltage instead to allow for cases where the voltage rails
|
|
|
|
* are ganged (example if we set the max for an opp as 1.12v, and
|
|
|
|
* the absolute max is 1.5v, for another rail to get 1.25v, it cannot
|
|
|
|
* be achieved if the regulator is constrainted to max of 1.12v, even
|
|
|
|
* if it can function at 1.25v
|
|
|
|
*/
|
|
|
|
if (opp_data.vdd_absolute_max_voltage_uv)
|
|
|
|
uv_max = opp_data.vdd_absolute_max_voltage_uv;
|
|
|
|
else
|
|
|
|
uv_max = supply->u_volt_max;
|
|
|
|
|
|
|
|
if (vdd_uv > uv_max ||
|
|
|
|
vdd_uv < supply->u_volt_min ||
|
|
|
|
supply->u_volt_min > uv_max) {
|
|
|
|
dev_warn(dev,
|
|
|
|
"Invalid range voltages [Min:%lu target:%lu Max:%lu]\n",
|
|
|
|
supply->u_volt_min, vdd_uv, uv_max);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
dev_dbg(dev, "%s scaling to %luuV[min %luuV max %luuV]\n", reg_name,
|
|
|
|
vdd_uv, supply->u_volt_min,
|
|
|
|
uv_max);
|
|
|
|
|
|
|
|
ret = regulator_set_voltage_triplet(reg,
|
|
|
|
supply->u_volt_min,
|
|
|
|
vdd_uv,
|
|
|
|
uv_max);
|
|
|
|
if (ret) {
|
|
|
|
dev_err(dev, "%s failed for %luuV[min %luuV max %luuV]\n",
|
|
|
|
reg_name, vdd_uv, supply->u_volt_min,
|
|
|
|
uv_max);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ti_opp_supply_set_opp() - do the opp supply transition
|
|
|
|
* @data: information on regulators and new and old opps provided by
|
|
|
|
* opp core to use in transition
|
|
|
|
*
|
|
|
|
* Return: If successful, 0, else appropriate error value.
|
|
|
|
*/
|
2017-12-20 05:44:40 +00:00
|
|
|
static int ti_opp_supply_set_opp(struct dev_pm_set_opp_data *data)
|
2017-12-15 04:25:28 +00:00
|
|
|
{
|
|
|
|
struct dev_pm_opp_supply *old_supply_vdd = &data->old_opp.supplies[0];
|
|
|
|
struct dev_pm_opp_supply *old_supply_vbb = &data->old_opp.supplies[1];
|
|
|
|
struct dev_pm_opp_supply *new_supply_vdd = &data->new_opp.supplies[0];
|
|
|
|
struct dev_pm_opp_supply *new_supply_vbb = &data->new_opp.supplies[1];
|
|
|
|
struct device *dev = data->dev;
|
|
|
|
unsigned long old_freq = data->old_opp.rate, freq = data->new_opp.rate;
|
|
|
|
struct clk *clk = data->clk;
|
|
|
|
struct regulator *vdd_reg = data->regulators[0];
|
|
|
|
struct regulator *vbb_reg = data->regulators[1];
|
|
|
|
int vdd_uv;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
vdd_uv = _get_optimal_vdd_voltage(dev, &opp_data,
|
2018-11-07 04:34:23 +00:00
|
|
|
new_supply_vdd->u_volt);
|
2017-12-15 04:25:28 +00:00
|
|
|
|
2018-11-07 04:34:22 +00:00
|
|
|
if (new_supply_vdd->u_volt_min < vdd_uv)
|
|
|
|
new_supply_vdd->u_volt_min = vdd_uv;
|
|
|
|
|
2017-12-15 04:25:28 +00:00
|
|
|
/* Scaling up? Scale voltage before frequency */
|
|
|
|
if (freq > old_freq) {
|
|
|
|
ret = _opp_set_voltage(dev, new_supply_vdd, vdd_uv, vdd_reg,
|
|
|
|
"vdd");
|
|
|
|
if (ret)
|
|
|
|
goto restore_voltage;
|
|
|
|
|
|
|
|
ret = _opp_set_voltage(dev, new_supply_vbb, 0, vbb_reg, "vbb");
|
|
|
|
if (ret)
|
|
|
|
goto restore_voltage;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Change frequency */
|
|
|
|
dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n",
|
|
|
|
__func__, old_freq, freq);
|
|
|
|
|
|
|
|
ret = clk_set_rate(clk, freq);
|
|
|
|
if (ret) {
|
|
|
|
dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
|
|
|
|
ret);
|
|
|
|
goto restore_voltage;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Scaling down? Scale voltage after frequency */
|
|
|
|
if (freq < old_freq) {
|
|
|
|
ret = _opp_set_voltage(dev, new_supply_vbb, 0, vbb_reg, "vbb");
|
|
|
|
if (ret)
|
|
|
|
goto restore_freq;
|
|
|
|
|
|
|
|
ret = _opp_set_voltage(dev, new_supply_vdd, vdd_uv, vdd_reg,
|
|
|
|
"vdd");
|
|
|
|
if (ret)
|
|
|
|
goto restore_freq;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
restore_freq:
|
|
|
|
ret = clk_set_rate(clk, old_freq);
|
|
|
|
if (ret)
|
|
|
|
dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
|
|
|
|
__func__, old_freq);
|
|
|
|
restore_voltage:
|
|
|
|
/* This shouldn't harm even if the voltages weren't updated earlier */
|
|
|
|
if (old_supply_vdd->u_volt) {
|
|
|
|
ret = _opp_set_voltage(dev, old_supply_vbb, 0, vbb_reg, "vbb");
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
ret = _opp_set_voltage(dev, old_supply_vdd, 0, vdd_reg,
|
|
|
|
"vdd");
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static const struct ti_opp_supply_of_data omap_generic_of_data = {
|
|
|
|
};
|
|
|
|
|
|
|
|
static const struct ti_opp_supply_of_data omap_omap5_of_data = {
|
|
|
|
.flags = OPPDM_EFUSE_CLASS0_OPTIMIZED_VOLTAGE,
|
|
|
|
.efuse_voltage_mask = 0xFFF,
|
|
|
|
.efuse_voltage_uv = false,
|
|
|
|
};
|
|
|
|
|
|
|
|
static const struct ti_opp_supply_of_data omap_omap5core_of_data = {
|
|
|
|
.flags = OPPDM_EFUSE_CLASS0_OPTIMIZED_VOLTAGE | OPPDM_HAS_NO_ABB,
|
|
|
|
.efuse_voltage_mask = 0xFFF,
|
|
|
|
.efuse_voltage_uv = false,
|
|
|
|
};
|
|
|
|
|
|
|
|
static const struct of_device_id ti_opp_supply_of_match[] = {
|
|
|
|
{.compatible = "ti,omap-opp-supply", .data = &omap_generic_of_data},
|
|
|
|
{.compatible = "ti,omap5-opp-supply", .data = &omap_omap5_of_data},
|
|
|
|
{.compatible = "ti,omap5-core-opp-supply",
|
|
|
|
.data = &omap_omap5core_of_data},
|
|
|
|
{},
|
|
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(of, ti_opp_supply_of_match);
|
|
|
|
|
|
|
|
static int ti_opp_supply_probe(struct platform_device *pdev)
|
|
|
|
{
|
|
|
|
struct device *dev = &pdev->dev;
|
|
|
|
struct device *cpu_dev = get_cpu_device(0);
|
|
|
|
const struct of_device_id *match;
|
|
|
|
const struct ti_opp_supply_of_data *of_data;
|
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
match = of_match_device(ti_opp_supply_of_match, dev);
|
|
|
|
if (!match) {
|
|
|
|
/* We do not expect this to happen */
|
|
|
|
dev_err(dev, "%s: Unable to match device\n", __func__);
|
|
|
|
return -ENODEV;
|
|
|
|
}
|
|
|
|
if (!match->data) {
|
|
|
|
/* Again, unlikely.. but mistakes do happen */
|
|
|
|
dev_err(dev, "%s: Bad data in match\n", __func__);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
of_data = match->data;
|
|
|
|
|
|
|
|
dev_set_drvdata(dev, (void *)of_data);
|
|
|
|
|
|
|
|
/* If we need optimized voltage */
|
|
|
|
if (of_data->flags & OPPDM_EFUSE_CLASS0_OPTIMIZED_VOLTAGE) {
|
|
|
|
ret = _store_optimized_voltages(dev, &opp_data);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = PTR_ERR_OR_ZERO(dev_pm_opp_register_set_opp_helper(cpu_dev,
|
|
|
|
ti_opp_supply_set_opp));
|
|
|
|
if (ret)
|
|
|
|
_free_optimized_voltages(dev, &opp_data);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct platform_driver ti_opp_supply_driver = {
|
|
|
|
.probe = ti_opp_supply_probe,
|
|
|
|
.driver = {
|
|
|
|
.name = "ti_opp_supply",
|
|
|
|
.of_match_table = of_match_ptr(ti_opp_supply_of_match),
|
|
|
|
},
|
|
|
|
};
|
|
|
|
module_platform_driver(ti_opp_supply_driver);
|
|
|
|
|
|
|
|
MODULE_DESCRIPTION("Texas Instruments OMAP OPP Supply driver");
|
|
|
|
MODULE_AUTHOR("Texas Instruments Inc.");
|
|
|
|
MODULE_LICENSE("GPL v2");
|