linux/drivers/crypto/caam/qi.c

803 lines
20 KiB
C
Raw Normal View History

crypto: caam - add Queue Interface (QI) backend support CAAM engine supports two interfaces for crypto job submission: -job ring interface - already existing caam/jr driver -Queue Interface (QI) - caam/qi driver added in current patch QI is present in CAAM engines found on DPAA platforms. QI gets its I/O (frame descriptors) from QMan (Queue Manager) queues. This patch adds a platform device for accessing CAAM's queue interface. The requests are submitted to CAAM using one frame queue per cryptographic context. Each crypto context has one shared descriptor. This shared descriptor is attached to frame queue associated with corresponding driver context using context_a. The driver hides the mechanics of FQ creation, initialisation from its applications. Each cryptographic context needs to be associated with driver context which houses the FQ to be used to transport the job to CAAM. The driver provides API for: (a) Context creation (b) Job submission (c) Context deletion (d) Congestion indication - whether path to/from CAAM is congested The driver supports affining its context to a particular CPU. This means that any responses from CAAM for the context in question would arrive at the given CPU. This helps in implementing one CPU per packet round trip in IPsec application. The driver processes CAAM responses under NAPI contexts. NAPI contexts are instantiated only on cores with affined portals since only cores having their own portal can receive responses from DQRR. The responses from CAAM for all cryptographic contexts ride on a fixed set of FQs. We use one response FQ per portal owning core. The response FQ is configured in each core's and thus portal's dedicated channel. This gives the flexibility to direct CAAM's responses for a crypto context on a given core. Signed-off-by: Vakul Garg <vakul.garg@nxp.com> Signed-off-by: Alex Porosanu <alexandru.porosanu@nxp.com> Signed-off-by: Horia Geantă <horia.geanta@nxp.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-03-17 10:06:01 +00:00
/*
* CAAM/SEC 4.x QI transport/backend driver
* Queue Interface backend functionality
*
* Copyright 2013-2016 Freescale Semiconductor, Inc.
* Copyright 2016-2017 NXP
*/
#include <linux/cpumask.h>
#include <linux/kthread.h>
#include <soc/fsl/qman.h>
#include "regs.h"
#include "qi.h"
#include "desc.h"
#include "intern.h"
#include "desc_constr.h"
#define PREHDR_RSLS_SHIFT 31
/*
* Use a reasonable backlog of frames (per CPU) as congestion threshold,
* so that resources used by the in-flight buffers do not become a memory hog.
*/
#define MAX_RSP_FQ_BACKLOG_PER_CPU 256
#define CAAM_QI_ENQUEUE_RETRIES 10000
#define CAAM_NAPI_WEIGHT 63
/*
* caam_napi - struct holding CAAM NAPI-related params
* @irqtask: IRQ task for QI backend
* @p: QMan portal
*/
struct caam_napi {
struct napi_struct irqtask;
struct qman_portal *p;
};
/*
* caam_qi_pcpu_priv - percpu private data structure to main list of pending
* responses expected on each cpu.
* @caam_napi: CAAM NAPI params
* @net_dev: netdev used by NAPI
* @rsp_fq: response FQ from CAAM
*/
struct caam_qi_pcpu_priv {
struct caam_napi caam_napi;
struct net_device net_dev;
struct qman_fq *rsp_fq;
} ____cacheline_aligned;
static DEFINE_PER_CPU(struct caam_qi_pcpu_priv, pcpu_qipriv);
static DEFINE_PER_CPU(int, last_cpu);
crypto: caam - add Queue Interface (QI) backend support CAAM engine supports two interfaces for crypto job submission: -job ring interface - already existing caam/jr driver -Queue Interface (QI) - caam/qi driver added in current patch QI is present in CAAM engines found on DPAA platforms. QI gets its I/O (frame descriptors) from QMan (Queue Manager) queues. This patch adds a platform device for accessing CAAM's queue interface. The requests are submitted to CAAM using one frame queue per cryptographic context. Each crypto context has one shared descriptor. This shared descriptor is attached to frame queue associated with corresponding driver context using context_a. The driver hides the mechanics of FQ creation, initialisation from its applications. Each cryptographic context needs to be associated with driver context which houses the FQ to be used to transport the job to CAAM. The driver provides API for: (a) Context creation (b) Job submission (c) Context deletion (d) Congestion indication - whether path to/from CAAM is congested The driver supports affining its context to a particular CPU. This means that any responses from CAAM for the context in question would arrive at the given CPU. This helps in implementing one CPU per packet round trip in IPsec application. The driver processes CAAM responses under NAPI contexts. NAPI contexts are instantiated only on cores with affined portals since only cores having their own portal can receive responses from DQRR. The responses from CAAM for all cryptographic contexts ride on a fixed set of FQs. We use one response FQ per portal owning core. The response FQ is configured in each core's and thus portal's dedicated channel. This gives the flexibility to direct CAAM's responses for a crypto context on a given core. Signed-off-by: Vakul Garg <vakul.garg@nxp.com> Signed-off-by: Alex Porosanu <alexandru.porosanu@nxp.com> Signed-off-by: Horia Geantă <horia.geanta@nxp.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-03-17 10:06:01 +00:00
/*
* caam_qi_priv - CAAM QI backend private params
* @cgr: QMan congestion group
* @qi_pdev: platform device for QI backend
*/
struct caam_qi_priv {
struct qman_cgr cgr;
struct platform_device *qi_pdev;
};
static struct caam_qi_priv qipriv ____cacheline_aligned;
/*
* This is written by only one core - the one that initialized the CGR - and
* read by multiple cores (all the others).
*/
bool caam_congested __read_mostly;
EXPORT_SYMBOL(caam_congested);
#ifdef CONFIG_DEBUG_FS
/*
* This is a counter for the number of times the congestion group (where all
* the request and response queueus are) reached congestion. Incremented
* each time the congestion callback is called with congested == true.
*/
static u64 times_congested;
#endif
/*
* CPU from where the module initialised. This is required because QMan driver
* requires CGRs to be removed from same CPU from where they were originally
* allocated.
*/
static int mod_init_cpu;
/*
* This is a a cache of buffers, from which the users of CAAM QI driver
* can allocate short (CAAM_QI_MEMCACHE_SIZE) buffers. It's faster than
* doing malloc on the hotpath.
* NOTE: A more elegant solution would be to have some headroom in the frames
* being processed. This could be added by the dpaa-ethernet driver.
* This would pose a problem for userspace application processing which
* cannot know of this limitation. So for now, this will work.
* NOTE: The memcache is SMP-safe. No need to handle spinlocks in-here
*/
static struct kmem_cache *qi_cache;
int caam_qi_enqueue(struct device *qidev, struct caam_drv_req *req)
{
struct qm_fd fd;
dma_addr_t addr;
int ret;
int num_retries = 0;
qm_fd_clear_fd(&fd);
qm_fd_set_compound(&fd, qm_sg_entry_get_len(&req->fd_sgt[1]));
addr = dma_map_single(qidev, req->fd_sgt, sizeof(req->fd_sgt),
DMA_BIDIRECTIONAL);
if (dma_mapping_error(qidev, addr)) {
dev_err(qidev, "DMA mapping error for QI enqueue request\n");
return -EIO;
}
qm_fd_addr_set64(&fd, addr);
do {
ret = qman_enqueue(req->drv_ctx->req_fq, &fd);
if (likely(!ret))
return 0;
if (ret != -EBUSY)
break;
num_retries++;
} while (num_retries < CAAM_QI_ENQUEUE_RETRIES);
dev_err(qidev, "qman_enqueue failed: %d\n", ret);
return ret;
}
EXPORT_SYMBOL(caam_qi_enqueue);
static void caam_fq_ern_cb(struct qman_portal *qm, struct qman_fq *fq,
const union qm_mr_entry *msg)
{
const struct qm_fd *fd;
struct caam_drv_req *drv_req;
struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev.dev);
fd = &msg->ern.fd;
if (qm_fd_get_format(fd) != qm_fd_compound) {
dev_err(qidev, "Non-compound FD from CAAM\n");
return;
}
drv_req = (struct caam_drv_req *)phys_to_virt(qm_fd_addr_get64(fd));
if (!drv_req) {
dev_err(qidev,
"Can't find original request for CAAM response\n");
return;
}
dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd),
sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL);
drv_req->cbk(drv_req, -EIO);
}
static struct qman_fq *create_caam_req_fq(struct device *qidev,
struct qman_fq *rsp_fq,
dma_addr_t hwdesc,
int fq_sched_flag)
{
int ret;
struct qman_fq *req_fq;
struct qm_mcc_initfq opts;
req_fq = kzalloc(sizeof(*req_fq), GFP_ATOMIC);
if (!req_fq)
return ERR_PTR(-ENOMEM);
req_fq->cb.ern = caam_fq_ern_cb;
req_fq->cb.fqs = NULL;
ret = qman_create_fq(0, QMAN_FQ_FLAG_DYNAMIC_FQID |
QMAN_FQ_FLAG_TO_DCPORTAL, req_fq);
if (ret) {
dev_err(qidev, "Failed to create session req FQ\n");
goto create_req_fq_fail;
}
memset(&opts, 0, sizeof(opts));
opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ |
QM_INITFQ_WE_CONTEXTB |
QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID);
opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE);
qm_fqd_set_destwq(&opts.fqd, qm_channel_caam, 2);
opts.fqd.context_b = cpu_to_be32(qman_fq_fqid(rsp_fq));
qm_fqd_context_a_set64(&opts.fqd, hwdesc);
opts.fqd.cgid = qipriv.cgr.cgrid;
ret = qman_init_fq(req_fq, fq_sched_flag, &opts);
if (ret) {
dev_err(qidev, "Failed to init session req FQ\n");
goto init_req_fq_fail;
}
dev_info(qidev, "Allocated request FQ %u for CPU %u\n", req_fq->fqid,
smp_processor_id());
return req_fq;
init_req_fq_fail:
qman_destroy_fq(req_fq);
create_req_fq_fail:
kfree(req_fq);
return ERR_PTR(ret);
}
static int empty_retired_fq(struct device *qidev, struct qman_fq *fq)
{
int ret;
ret = qman_volatile_dequeue(fq, QMAN_VOLATILE_FLAG_WAIT_INT |
QMAN_VOLATILE_FLAG_FINISH,
QM_VDQCR_PRECEDENCE_VDQCR |
QM_VDQCR_NUMFRAMES_TILLEMPTY);
if (ret) {
dev_err(qidev, "Volatile dequeue fail for FQ: %u\n", fq->fqid);
return ret;
}
do {
struct qman_portal *p;
p = qman_get_affine_portal(smp_processor_id());
qman_p_poll_dqrr(p, 16);
} while (fq->flags & QMAN_FQ_STATE_NE);
return 0;
}
static int kill_fq(struct device *qidev, struct qman_fq *fq)
{
u32 flags;
int ret;
ret = qman_retire_fq(fq, &flags);
if (ret < 0) {
dev_err(qidev, "qman_retire_fq failed: %d\n", ret);
return ret;
}
if (!ret)
goto empty_fq;
/* Async FQ retirement condition */
if (ret == 1) {
/* Retry till FQ gets in retired state */
do {
msleep(20);
} while (fq->state != qman_fq_state_retired);
WARN_ON(fq->flags & QMAN_FQ_STATE_BLOCKOOS);
WARN_ON(fq->flags & QMAN_FQ_STATE_ORL);
}
empty_fq:
if (fq->flags & QMAN_FQ_STATE_NE) {
ret = empty_retired_fq(qidev, fq);
if (ret) {
dev_err(qidev, "empty_retired_fq fail for FQ: %u\n",
fq->fqid);
return ret;
}
}
ret = qman_oos_fq(fq);
if (ret)
dev_err(qidev, "OOS of FQID: %u failed\n", fq->fqid);
qman_destroy_fq(fq);
return ret;
}
static int empty_caam_fq(struct qman_fq *fq)
{
int ret;
struct qm_mcr_queryfq_np np;
/* Wait till the older CAAM FQ get empty */
do {
ret = qman_query_fq_np(fq, &np);
if (ret)
return ret;
if (!qm_mcr_np_get(&np, frm_cnt))
break;
msleep(20);
} while (1);
/*
* Give extra time for pending jobs from this FQ in holding tanks
* to get processed
*/
msleep(20);
return 0;
}
int caam_drv_ctx_update(struct caam_drv_ctx *drv_ctx, u32 *sh_desc)
{
int ret;
u32 num_words;
struct qman_fq *new_fq, *old_fq;
struct device *qidev = drv_ctx->qidev;
num_words = desc_len(sh_desc);
if (num_words > MAX_SDLEN) {
dev_err(qidev, "Invalid descriptor len: %d words\n", num_words);
return -EINVAL;
}
/* Note down older req FQ */
old_fq = drv_ctx->req_fq;
/* Create a new req FQ in parked state */
new_fq = create_caam_req_fq(drv_ctx->qidev, drv_ctx->rsp_fq,
drv_ctx->context_a, 0);
if (unlikely(IS_ERR_OR_NULL(new_fq))) {
dev_err(qidev, "FQ allocation for shdesc update failed\n");
return PTR_ERR(new_fq);
}
/* Hook up new FQ to context so that new requests keep queuing */
drv_ctx->req_fq = new_fq;
/* Empty and remove the older FQ */
ret = empty_caam_fq(old_fq);
if (ret) {
dev_err(qidev, "Old CAAM FQ empty failed: %d\n", ret);
/* We can revert to older FQ */
drv_ctx->req_fq = old_fq;
if (kill_fq(qidev, new_fq))
dev_warn(qidev, "New CAAM FQ: %u kill failed\n",
new_fq->fqid);
return ret;
}
/*
* Re-initialise pre-header. Set RSLS and SDLEN.
* Update the shared descriptor for driver context.
*/
drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) |
num_words);
memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc));
dma_sync_single_for_device(qidev, drv_ctx->context_a,
sizeof(drv_ctx->sh_desc) +
sizeof(drv_ctx->prehdr),
DMA_BIDIRECTIONAL);
/* Put the new FQ in scheduled state */
ret = qman_schedule_fq(new_fq);
if (ret) {
dev_err(qidev, "Fail to sched new CAAM FQ, ecode = %d\n", ret);
/*
* We can kill new FQ and revert to old FQ.
* Since the desc is already modified, it is success case
*/
drv_ctx->req_fq = old_fq;
if (kill_fq(qidev, new_fq))
dev_warn(qidev, "New CAAM FQ: %u kill failed\n",
new_fq->fqid);
} else if (kill_fq(qidev, old_fq)) {
dev_warn(qidev, "Old CAAM FQ: %u kill failed\n", old_fq->fqid);
}
return 0;
}
EXPORT_SYMBOL(caam_drv_ctx_update);
struct caam_drv_ctx *caam_drv_ctx_init(struct device *qidev,
int *cpu,
u32 *sh_desc)
{
size_t size;
u32 num_words;
dma_addr_t hwdesc;
struct caam_drv_ctx *drv_ctx;
const cpumask_t *cpus = qman_affine_cpus();
num_words = desc_len(sh_desc);
if (num_words > MAX_SDLEN) {
dev_err(qidev, "Invalid descriptor len: %d words\n",
num_words);
return ERR_PTR(-EINVAL);
}
drv_ctx = kzalloc(sizeof(*drv_ctx), GFP_ATOMIC);
if (!drv_ctx)
return ERR_PTR(-ENOMEM);
/*
* Initialise pre-header - set RSLS and SDLEN - and shared descriptor
* and dma-map them.
*/
drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) |
num_words);
memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc));
size = sizeof(drv_ctx->prehdr) + sizeof(drv_ctx->sh_desc);
hwdesc = dma_map_single(qidev, drv_ctx->prehdr, size,
DMA_BIDIRECTIONAL);
if (dma_mapping_error(qidev, hwdesc)) {
dev_err(qidev, "DMA map error for preheader + shdesc\n");
kfree(drv_ctx);
return ERR_PTR(-ENOMEM);
}
drv_ctx->context_a = hwdesc;
/* If given CPU does not own the portal, choose another one that does */
if (!cpumask_test_cpu(*cpu, cpus)) {
int *pcpu = &get_cpu_var(last_cpu);
*pcpu = cpumask_next(*pcpu, cpus);
if (*pcpu >= nr_cpu_ids)
*pcpu = cpumask_first(cpus);
*cpu = *pcpu;
put_cpu_var(last_cpu);
}
drv_ctx->cpu = *cpu;
/* Find response FQ hooked with this CPU */
drv_ctx->rsp_fq = per_cpu(pcpu_qipriv.rsp_fq, drv_ctx->cpu);
/* Attach request FQ */
drv_ctx->req_fq = create_caam_req_fq(qidev, drv_ctx->rsp_fq, hwdesc,
QMAN_INITFQ_FLAG_SCHED);
if (unlikely(IS_ERR_OR_NULL(drv_ctx->req_fq))) {
dev_err(qidev, "create_caam_req_fq failed\n");
dma_unmap_single(qidev, hwdesc, size, DMA_BIDIRECTIONAL);
kfree(drv_ctx);
return ERR_PTR(-ENOMEM);
}
drv_ctx->qidev = qidev;
return drv_ctx;
}
EXPORT_SYMBOL(caam_drv_ctx_init);
void *qi_cache_alloc(gfp_t flags)
{
return kmem_cache_alloc(qi_cache, flags);
}
EXPORT_SYMBOL(qi_cache_alloc);
void qi_cache_free(void *obj)
{
kmem_cache_free(qi_cache, obj);
}
EXPORT_SYMBOL(qi_cache_free);
static int caam_qi_poll(struct napi_struct *napi, int budget)
{
struct caam_napi *np = container_of(napi, struct caam_napi, irqtask);
int cleaned = qman_p_poll_dqrr(np->p, budget);
if (cleaned < budget) {
napi_complete(napi);
qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
}
return cleaned;
}
void caam_drv_ctx_rel(struct caam_drv_ctx *drv_ctx)
{
if (IS_ERR_OR_NULL(drv_ctx))
return;
/* Remove request FQ */
if (kill_fq(drv_ctx->qidev, drv_ctx->req_fq))
dev_err(drv_ctx->qidev, "Crypto session req FQ kill failed\n");
dma_unmap_single(drv_ctx->qidev, drv_ctx->context_a,
sizeof(drv_ctx->sh_desc) + sizeof(drv_ctx->prehdr),
DMA_BIDIRECTIONAL);
kfree(drv_ctx);
}
EXPORT_SYMBOL(caam_drv_ctx_rel);
int caam_qi_shutdown(struct device *qidev)
{
int i, ret;
struct caam_qi_priv *priv = dev_get_drvdata(qidev);
const cpumask_t *cpus = qman_affine_cpus();
struct cpumask old_cpumask = current->cpus_allowed;
for_each_cpu(i, cpus) {
struct napi_struct *irqtask;
irqtask = &per_cpu_ptr(&pcpu_qipriv.caam_napi, i)->irqtask;
napi_disable(irqtask);
netif_napi_del(irqtask);
if (kill_fq(qidev, per_cpu(pcpu_qipriv.rsp_fq, i)))
dev_err(qidev, "Rsp FQ kill failed, cpu: %d\n", i);
kfree(per_cpu(pcpu_qipriv.rsp_fq, i));
}
/*
* QMan driver requires CGRs to be deleted from same CPU from where they
* were instantiated. Hence we get the module removal execute from the
* same CPU from where it was originally inserted.
*/
set_cpus_allowed_ptr(current, get_cpu_mask(mod_init_cpu));
ret = qman_delete_cgr(&priv->cgr);
if (ret)
dev_err(qidev, "Deletion of CGR failed: %d\n", ret);
else
qman_release_cgrid(priv->cgr.cgrid);
kmem_cache_destroy(qi_cache);
/* Now that we're done with the CGRs, restore the cpus allowed mask */
set_cpus_allowed_ptr(current, &old_cpumask);
platform_device_unregister(priv->qi_pdev);
return ret;
}
static void cgr_cb(struct qman_portal *qm, struct qman_cgr *cgr, int congested)
{
caam_congested = congested;
if (congested) {
#ifdef CONFIG_DEBUG_FS
times_congested++;
#endif
pr_debug_ratelimited("CAAM entered congestion\n");
} else {
pr_debug_ratelimited("CAAM exited congestion\n");
}
}
static int caam_qi_napi_schedule(struct qman_portal *p, struct caam_napi *np)
{
/*
* In case of threaded ISR, for RT kernels in_irq() does not return
* appropriate value, so use in_serving_softirq to distinguish between
* softirq and irq contexts.
*/
if (unlikely(in_irq() || !in_serving_softirq())) {
/* Disable QMan IRQ source and invoke NAPI */
qman_p_irqsource_remove(p, QM_PIRQ_DQRI);
np->p = p;
napi_schedule(&np->irqtask);
return 1;
}
return 0;
}
static enum qman_cb_dqrr_result caam_rsp_fq_dqrr_cb(struct qman_portal *p,
struct qman_fq *rsp_fq,
const struct qm_dqrr_entry *dqrr)
{
struct caam_napi *caam_napi = raw_cpu_ptr(&pcpu_qipriv.caam_napi);
struct caam_drv_req *drv_req;
const struct qm_fd *fd;
struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev.dev);
u32 status;
if (caam_qi_napi_schedule(p, caam_napi))
return qman_cb_dqrr_stop;
fd = &dqrr->fd;
status = be32_to_cpu(fd->status);
if (unlikely(status))
dev_err(qidev, "Error: %#x in CAAM response FD\n", status);
if (unlikely(qm_fd_get_format(fd) != qm_fd_compound)) {
dev_err(qidev, "Non-compound FD from CAAM\n");
return qman_cb_dqrr_consume;
}
drv_req = (struct caam_drv_req *)phys_to_virt(qm_fd_addr_get64(fd));
if (unlikely(!drv_req)) {
dev_err(qidev,
"Can't find original request for caam response\n");
return qman_cb_dqrr_consume;
}
dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd),
sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL);
drv_req->cbk(drv_req, status);
return qman_cb_dqrr_consume;
}
static int alloc_rsp_fq_cpu(struct device *qidev, unsigned int cpu)
{
struct qm_mcc_initfq opts;
struct qman_fq *fq;
int ret;
fq = kzalloc(sizeof(*fq), GFP_KERNEL | GFP_DMA);
if (!fq)
return -ENOMEM;
fq->cb.dqrr = caam_rsp_fq_dqrr_cb;
ret = qman_create_fq(0, QMAN_FQ_FLAG_NO_ENQUEUE |
QMAN_FQ_FLAG_DYNAMIC_FQID, fq);
if (ret) {
dev_err(qidev, "Rsp FQ create failed\n");
kfree(fq);
return -ENODEV;
}
memset(&opts, 0, sizeof(opts));
opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ |
QM_INITFQ_WE_CONTEXTB |
QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID);
opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CTXASTASHING |
QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE);
qm_fqd_set_destwq(&opts.fqd, qman_affine_channel(cpu), 3);
opts.fqd.cgid = qipriv.cgr.cgrid;
opts.fqd.context_a.stashing.exclusive = QM_STASHING_EXCL_CTX |
QM_STASHING_EXCL_DATA;
qm_fqd_set_stashing(&opts.fqd, 0, 1, 1);
ret = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &opts);
if (ret) {
dev_err(qidev, "Rsp FQ init failed\n");
kfree(fq);
return -ENODEV;
}
per_cpu(pcpu_qipriv.rsp_fq, cpu) = fq;
dev_info(qidev, "Allocated response FQ %u for CPU %u", fq->fqid, cpu);
return 0;
}
static int init_cgr(struct device *qidev)
{
int ret;
struct qm_mcc_initcgr opts;
const u64 cpus = *(u64 *)qman_affine_cpus();
const int num_cpus = hweight64(cpus);
const u64 val = num_cpus * MAX_RSP_FQ_BACKLOG_PER_CPU;
ret = qman_alloc_cgrid(&qipriv.cgr.cgrid);
if (ret) {
dev_err(qidev, "CGR alloc failed for rsp FQs: %d\n", ret);
return ret;
}
qipriv.cgr.cb = cgr_cb;
memset(&opts, 0, sizeof(opts));
opts.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES |
QM_CGR_WE_MODE);
opts.cgr.cscn_en = QM_CGR_EN;
opts.cgr.mode = QMAN_CGR_MODE_FRAME;
qm_cgr_cs_thres_set64(&opts.cgr.cs_thres, val, 1);
ret = qman_create_cgr(&qipriv.cgr, QMAN_CGR_FLAG_USE_INIT, &opts);
if (ret) {
dev_err(qidev, "Error %d creating CAAM CGRID: %u\n", ret,
qipriv.cgr.cgrid);
return ret;
}
dev_info(qidev, "Congestion threshold set to %llu\n", val);
return 0;
}
static int alloc_rsp_fqs(struct device *qidev)
{
int ret, i;
const cpumask_t *cpus = qman_affine_cpus();
/*Now create response FQs*/
for_each_cpu(i, cpus) {
ret = alloc_rsp_fq_cpu(qidev, i);
if (ret) {
dev_err(qidev, "CAAM rsp FQ alloc failed, cpu: %u", i);
return ret;
}
}
return 0;
}
static void free_rsp_fqs(void)
{
int i;
const cpumask_t *cpus = qman_affine_cpus();
for_each_cpu(i, cpus)
kfree(per_cpu(pcpu_qipriv.rsp_fq, i));
}
int caam_qi_init(struct platform_device *caam_pdev)
{
int err, i;
struct platform_device *qi_pdev;
struct device *ctrldev = &caam_pdev->dev, *qidev;
struct caam_drv_private *ctrlpriv;
const cpumask_t *cpus = qman_affine_cpus();
struct cpumask old_cpumask = current->cpus_allowed;
static struct platform_device_info qi_pdev_info = {
.name = "caam_qi",
.id = PLATFORM_DEVID_NONE
};
/*
* QMAN requires CGRs to be removed from same CPU+portal from where it
* was originally allocated. Hence we need to note down the
* initialisation CPU and use the same CPU for module exit.
* We select the first CPU to from the list of portal owning CPUs.
* Then we pin module init to this CPU.
*/
mod_init_cpu = cpumask_first(cpus);
set_cpus_allowed_ptr(current, get_cpu_mask(mod_init_cpu));
qi_pdev_info.parent = ctrldev;
qi_pdev_info.dma_mask = dma_get_mask(ctrldev);
qi_pdev = platform_device_register_full(&qi_pdev_info);
if (IS_ERR(qi_pdev))
return PTR_ERR(qi_pdev);
ctrlpriv = dev_get_drvdata(ctrldev);
qidev = &qi_pdev->dev;
qipriv.qi_pdev = qi_pdev;
dev_set_drvdata(qidev, &qipriv);
/* Initialize the congestion detection */
err = init_cgr(qidev);
if (err) {
dev_err(qidev, "CGR initialization failed: %d\n", err);
platform_device_unregister(qi_pdev);
return err;
}
/* Initialise response FQs */
err = alloc_rsp_fqs(qidev);
if (err) {
dev_err(qidev, "Can't allocate CAAM response FQs: %d\n", err);
free_rsp_fqs();
platform_device_unregister(qi_pdev);
return err;
}
/*
* Enable the NAPI contexts on each of the core which has an affine
* portal.
*/
for_each_cpu(i, cpus) {
struct caam_qi_pcpu_priv *priv = per_cpu_ptr(&pcpu_qipriv, i);
struct caam_napi *caam_napi = &priv->caam_napi;
struct napi_struct *irqtask = &caam_napi->irqtask;
struct net_device *net_dev = &priv->net_dev;
net_dev->dev = *qidev;
INIT_LIST_HEAD(&net_dev->napi_list);
netif_napi_add(net_dev, irqtask, caam_qi_poll,
CAAM_NAPI_WEIGHT);
napi_enable(irqtask);
}
/* Hook up QI device to parent controlling caam device */
ctrlpriv->qidev = qidev;
qi_cache = kmem_cache_create("caamqicache", CAAM_QI_MEMCACHE_SIZE, 0,
SLAB_CACHE_DMA, NULL);
if (!qi_cache) {
dev_err(qidev, "Can't allocate CAAM cache\n");
free_rsp_fqs();
platform_device_unregister(qi_pdev);
return -ENOMEM;
crypto: caam - add Queue Interface (QI) backend support CAAM engine supports two interfaces for crypto job submission: -job ring interface - already existing caam/jr driver -Queue Interface (QI) - caam/qi driver added in current patch QI is present in CAAM engines found on DPAA platforms. QI gets its I/O (frame descriptors) from QMan (Queue Manager) queues. This patch adds a platform device for accessing CAAM's queue interface. The requests are submitted to CAAM using one frame queue per cryptographic context. Each crypto context has one shared descriptor. This shared descriptor is attached to frame queue associated with corresponding driver context using context_a. The driver hides the mechanics of FQ creation, initialisation from its applications. Each cryptographic context needs to be associated with driver context which houses the FQ to be used to transport the job to CAAM. The driver provides API for: (a) Context creation (b) Job submission (c) Context deletion (d) Congestion indication - whether path to/from CAAM is congested The driver supports affining its context to a particular CPU. This means that any responses from CAAM for the context in question would arrive at the given CPU. This helps in implementing one CPU per packet round trip in IPsec application. The driver processes CAAM responses under NAPI contexts. NAPI contexts are instantiated only on cores with affined portals since only cores having their own portal can receive responses from DQRR. The responses from CAAM for all cryptographic contexts ride on a fixed set of FQs. We use one response FQ per portal owning core. The response FQ is configured in each core's and thus portal's dedicated channel. This gives the flexibility to direct CAAM's responses for a crypto context on a given core. Signed-off-by: Vakul Garg <vakul.garg@nxp.com> Signed-off-by: Alex Porosanu <alexandru.porosanu@nxp.com> Signed-off-by: Horia Geantă <horia.geanta@nxp.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-03-17 10:06:01 +00:00
}
/* Done with the CGRs; restore the cpus allowed mask */
set_cpus_allowed_ptr(current, &old_cpumask);
#ifdef CONFIG_DEBUG_FS
ctrlpriv->qi_congested = debugfs_create_file("qi_congested", 0444,
ctrlpriv->ctl,
&times_congested,
&caam_fops_u64_ro);
#endif
dev_info(qidev, "Linux CAAM Queue I/F driver initialised\n");
return 0;
}