linux/drivers/crypto/chelsio/chtls/chtls_io.c

1862 lines
44 KiB
C
Raw Normal View History

/*
* Copyright (c) 2018 Chelsio Communications, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Written by: Atul Gupta (atul.gupta@chelsio.com)
*/
#include <linux/module.h>
#include <linux/list.h>
#include <linux/workqueue.h>
#include <linux/skbuff.h>
#include <linux/timer.h>
#include <linux/notifier.h>
#include <linux/inetdevice.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/sched/signal.h>
#include <net/tcp.h>
#include <net/busy_poll.h>
#include <crypto/aes.h>
#include "chtls.h"
#include "chtls_cm.h"
static bool is_tls_tx(struct chtls_sock *csk)
{
return csk->tlshws.txkey >= 0;
}
static bool is_tls_rx(struct chtls_sock *csk)
{
return csk->tlshws.rxkey >= 0;
}
static int data_sgl_len(const struct sk_buff *skb)
{
unsigned int cnt;
cnt = skb_shinfo(skb)->nr_frags;
return sgl_len(cnt) * 8;
}
static int nos_ivs(struct sock *sk, unsigned int size)
{
struct chtls_sock *csk = rcu_dereference_sk_user_data(sk);
return DIV_ROUND_UP(size, csk->tlshws.mfs);
}
static int set_ivs_imm(struct sock *sk, const struct sk_buff *skb)
{
int ivs_size = nos_ivs(sk, skb->len) * CIPHER_BLOCK_SIZE;
int hlen = TLS_WR_CPL_LEN + data_sgl_len(skb);
if ((hlen + KEY_ON_MEM_SZ + ivs_size) <
MAX_IMM_OFLD_TX_DATA_WR_LEN) {
ULP_SKB_CB(skb)->ulp.tls.iv = 1;
return 1;
}
ULP_SKB_CB(skb)->ulp.tls.iv = 0;
return 0;
}
static int max_ivs_size(struct sock *sk, int size)
{
return nos_ivs(sk, size) * CIPHER_BLOCK_SIZE;
}
static int ivs_size(struct sock *sk, const struct sk_buff *skb)
{
return set_ivs_imm(sk, skb) ? (nos_ivs(sk, skb->len) *
CIPHER_BLOCK_SIZE) : 0;
}
static int flowc_wr_credits(int nparams, int *flowclenp)
{
int flowclen16, flowclen;
flowclen = offsetof(struct fw_flowc_wr, mnemval[nparams]);
flowclen16 = DIV_ROUND_UP(flowclen, 16);
flowclen = flowclen16 * 16;
if (flowclenp)
*flowclenp = flowclen;
return flowclen16;
}
static struct sk_buff *create_flowc_wr_skb(struct sock *sk,
struct fw_flowc_wr *flowc,
int flowclen)
{
struct chtls_sock *csk = rcu_dereference_sk_user_data(sk);
struct sk_buff *skb;
skb = alloc_skb(flowclen, GFP_ATOMIC);
if (!skb)
return NULL;
memcpy(__skb_put(skb, flowclen), flowc, flowclen);
skb_set_queue_mapping(skb, (csk->txq_idx << 1) | CPL_PRIORITY_DATA);
return skb;
}
static int send_flowc_wr(struct sock *sk, struct fw_flowc_wr *flowc,
int flowclen)
{
struct chtls_sock *csk = rcu_dereference_sk_user_data(sk);
struct tcp_sock *tp = tcp_sk(sk);
struct sk_buff *skb;
int flowclen16;
int ret;
flowclen16 = flowclen / 16;
if (csk_flag(sk, CSK_TX_DATA_SENT)) {
skb = create_flowc_wr_skb(sk, flowc, flowclen);
if (!skb)
return -ENOMEM;
skb_entail(sk, skb,
ULPCB_FLAG_NO_HDR | ULPCB_FLAG_NO_APPEND);
return 0;
}
ret = cxgb4_immdata_send(csk->egress_dev,
csk->txq_idx,
flowc, flowclen);
if (!ret)
return flowclen16;
skb = create_flowc_wr_skb(sk, flowc, flowclen);
if (!skb)
return -ENOMEM;
send_or_defer(sk, tp, skb, 0);
return flowclen16;
}
static u8 tcp_state_to_flowc_state(u8 state)
{
switch (state) {
case TCP_ESTABLISHED:
return FW_FLOWC_MNEM_TCPSTATE_ESTABLISHED;
case TCP_CLOSE_WAIT:
return FW_FLOWC_MNEM_TCPSTATE_CLOSEWAIT;
case TCP_FIN_WAIT1:
return FW_FLOWC_MNEM_TCPSTATE_FINWAIT1;
case TCP_CLOSING:
return FW_FLOWC_MNEM_TCPSTATE_CLOSING;
case TCP_LAST_ACK:
return FW_FLOWC_MNEM_TCPSTATE_LASTACK;
case TCP_FIN_WAIT2:
return FW_FLOWC_MNEM_TCPSTATE_FINWAIT2;
}
return FW_FLOWC_MNEM_TCPSTATE_ESTABLISHED;
}
int send_tx_flowc_wr(struct sock *sk, int compl,
u32 snd_nxt, u32 rcv_nxt)
{
struct flowc_packed {
struct fw_flowc_wr fc;
struct fw_flowc_mnemval mnemval[FW_FLOWC_MNEM_MAX];
} __packed sflowc;
int nparams, paramidx, flowclen16, flowclen;
struct fw_flowc_wr *flowc;
struct chtls_sock *csk;
struct tcp_sock *tp;
csk = rcu_dereference_sk_user_data(sk);
tp = tcp_sk(sk);
memset(&sflowc, 0, sizeof(sflowc));
flowc = &sflowc.fc;
#define FLOWC_PARAM(__m, __v) \
do { \
flowc->mnemval[paramidx].mnemonic = FW_FLOWC_MNEM_##__m; \
flowc->mnemval[paramidx].val = cpu_to_be32(__v); \
paramidx++; \
} while (0)
paramidx = 0;
FLOWC_PARAM(PFNVFN, FW_PFVF_CMD_PFN_V(csk->cdev->lldi->pf));
FLOWC_PARAM(CH, csk->tx_chan);
FLOWC_PARAM(PORT, csk->tx_chan);
FLOWC_PARAM(IQID, csk->rss_qid);
FLOWC_PARAM(SNDNXT, tp->snd_nxt);
FLOWC_PARAM(RCVNXT, tp->rcv_nxt);
FLOWC_PARAM(SNDBUF, csk->sndbuf);
FLOWC_PARAM(MSS, tp->mss_cache);
FLOWC_PARAM(TCPSTATE, tcp_state_to_flowc_state(sk->sk_state));
if (SND_WSCALE(tp))
FLOWC_PARAM(RCV_SCALE, SND_WSCALE(tp));
if (csk->ulp_mode == ULP_MODE_TLS)
FLOWC_PARAM(ULD_MODE, ULP_MODE_TLS);
if (csk->tlshws.fcplenmax)
FLOWC_PARAM(TXDATAPLEN_MAX, csk->tlshws.fcplenmax);
nparams = paramidx;
#undef FLOWC_PARAM
flowclen16 = flowc_wr_credits(nparams, &flowclen);
flowc->op_to_nparams =
cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) |
FW_WR_COMPL_V(compl) |
FW_FLOWC_WR_NPARAMS_V(nparams));
flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(flowclen16) |
FW_WR_FLOWID_V(csk->tid));
return send_flowc_wr(sk, flowc, flowclen);
}
/* Copy IVs to WR */
static int tls_copy_ivs(struct sock *sk, struct sk_buff *skb)
{
struct chtls_sock *csk;
unsigned char *iv_loc;
struct chtls_hws *hws;
unsigned char *ivs;
u16 number_of_ivs;
struct page *page;
int err = 0;
csk = rcu_dereference_sk_user_data(sk);
hws = &csk->tlshws;
number_of_ivs = nos_ivs(sk, skb->len);
if (number_of_ivs > MAX_IVS_PAGE) {
pr_warn("MAX IVs in PAGE exceeded %d\n", number_of_ivs);
return -ENOMEM;
}
/* generate the IVs */
treewide: kmalloc() -> kmalloc_array() The kmalloc() function has a 2-factor argument form, kmalloc_array(). This patch replaces cases of: kmalloc(a * b, gfp) with: kmalloc_array(a * b, gfp) as well as handling cases of: kmalloc(a * b * c, gfp) with: kmalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kmalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kmalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The tools/ directory was manually excluded, since it has its own implementation of kmalloc(). The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kmalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kmalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kmalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(char) * COUNT + COUNT , ...) | kmalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kmalloc + kmalloc_array ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kmalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kmalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kmalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kmalloc(C1 * C2 * C3, ...) | kmalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kmalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kmalloc(sizeof(THING) * C2, ...) | kmalloc(sizeof(TYPE) * C2, ...) | kmalloc(C1 * C2 * C3, ...) | kmalloc(C1 * C2, ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - (E1) * E2 + E1, E2 , ...) | - kmalloc + kmalloc_array ( - (E1) * (E2) + E1, E2 , ...) | - kmalloc + kmalloc_array ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 20:55:00 +00:00
ivs = kmalloc_array(CIPHER_BLOCK_SIZE, number_of_ivs, GFP_ATOMIC);
if (!ivs)
return -ENOMEM;
get_random_bytes(ivs, number_of_ivs * CIPHER_BLOCK_SIZE);
if (skb_ulp_tls_iv_imm(skb)) {
/* send the IVs as immediate data in the WR */
iv_loc = (unsigned char *)__skb_push(skb, number_of_ivs *
CIPHER_BLOCK_SIZE);
if (iv_loc)
memcpy(iv_loc, ivs, number_of_ivs * CIPHER_BLOCK_SIZE);
hws->ivsize = number_of_ivs * CIPHER_BLOCK_SIZE;
} else {
/* Send the IVs as sgls */
/* Already accounted IV DSGL for credits */
skb_shinfo(skb)->nr_frags--;
page = alloc_pages(sk->sk_allocation | __GFP_COMP, 0);
if (!page) {
pr_info("%s : Page allocation for IVs failed\n",
__func__);
err = -ENOMEM;
goto out;
}
memcpy(page_address(page), ivs, number_of_ivs *
CIPHER_BLOCK_SIZE);
skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, page, 0,
number_of_ivs * CIPHER_BLOCK_SIZE);
hws->ivsize = 0;
}
out:
kfree(ivs);
return err;
}
/* Copy Key to WR */
static void tls_copy_tx_key(struct sock *sk, struct sk_buff *skb)
{
struct ulptx_sc_memrd *sc_memrd;
struct chtls_sock *csk;
struct chtls_dev *cdev;
struct ulptx_idata *sc;
struct chtls_hws *hws;
u32 immdlen;
int kaddr;
csk = rcu_dereference_sk_user_data(sk);
hws = &csk->tlshws;
cdev = csk->cdev;
immdlen = sizeof(*sc) + sizeof(*sc_memrd);
kaddr = keyid_to_addr(cdev->kmap.start, hws->txkey);
sc = (struct ulptx_idata *)__skb_push(skb, immdlen);
if (sc) {
sc->cmd_more = htonl(ULPTX_CMD_V(ULP_TX_SC_NOOP));
sc->len = htonl(0);
sc_memrd = (struct ulptx_sc_memrd *)(sc + 1);
sc_memrd->cmd_to_len =
htonl(ULPTX_CMD_V(ULP_TX_SC_MEMRD) |
ULP_TX_SC_MORE_V(1) |
ULPTX_LEN16_V(hws->keylen >> 4));
sc_memrd->addr = htonl(kaddr);
}
}
static u64 tlstx_incr_seqnum(struct chtls_hws *hws)
{
return hws->tx_seq_no++;
}
static bool is_sg_request(const struct sk_buff *skb)
{
return skb->peeked ||
(skb->len > MAX_IMM_ULPTX_WR_LEN);
}
/*
* Returns true if an sk_buff carries urgent data.
*/
static bool skb_urgent(struct sk_buff *skb)
{
return ULP_SKB_CB(skb)->flags & ULPCB_FLAG_URG;
}
/* TLS content type for CPL SFO */
static unsigned char tls_content_type(unsigned char content_type)
{
switch (content_type) {
case TLS_HDR_TYPE_CCS:
return CPL_TX_TLS_SFO_TYPE_CCS;
case TLS_HDR_TYPE_ALERT:
return CPL_TX_TLS_SFO_TYPE_ALERT;
case TLS_HDR_TYPE_HANDSHAKE:
return CPL_TX_TLS_SFO_TYPE_HANDSHAKE;
case TLS_HDR_TYPE_HEARTBEAT:
return CPL_TX_TLS_SFO_TYPE_HEARTBEAT;
}
return CPL_TX_TLS_SFO_TYPE_DATA;
}
static void tls_tx_data_wr(struct sock *sk, struct sk_buff *skb,
int dlen, int tls_immd, u32 credits,
int expn, int pdus)
{
struct fw_tlstx_data_wr *req_wr;
struct cpl_tx_tls_sfo *req_cpl;
unsigned int wr_ulp_mode_force;
struct tls_scmd *updated_scmd;
unsigned char data_type;
struct chtls_sock *csk;
struct net_device *dev;
struct chtls_hws *hws;
struct tls_scmd *scmd;
struct adapter *adap;
unsigned char *req;
int immd_len;
int iv_imm;
int len;
csk = rcu_dereference_sk_user_data(sk);
iv_imm = skb_ulp_tls_iv_imm(skb);
dev = csk->egress_dev;
adap = netdev2adap(dev);
hws = &csk->tlshws;
scmd = &hws->scmd;
len = dlen + expn;
dlen = (dlen < hws->mfs) ? dlen : hws->mfs;
atomic_inc(&adap->chcr_stats.tls_pdu_tx);
updated_scmd = scmd;
updated_scmd->seqno_numivs &= 0xffffff80;
updated_scmd->seqno_numivs |= SCMD_NUM_IVS_V(pdus);
hws->scmd = *updated_scmd;
req = (unsigned char *)__skb_push(skb, sizeof(struct cpl_tx_tls_sfo));
req_cpl = (struct cpl_tx_tls_sfo *)req;
req = (unsigned char *)__skb_push(skb, (sizeof(struct
fw_tlstx_data_wr)));
req_wr = (struct fw_tlstx_data_wr *)req;
immd_len = (tls_immd ? dlen : 0);
req_wr->op_to_immdlen =
htonl(FW_WR_OP_V(FW_TLSTX_DATA_WR) |
FW_TLSTX_DATA_WR_COMPL_V(1) |
FW_TLSTX_DATA_WR_IMMDLEN_V(immd_len));
req_wr->flowid_len16 = htonl(FW_TLSTX_DATA_WR_FLOWID_V(csk->tid) |
FW_TLSTX_DATA_WR_LEN16_V(credits));
wr_ulp_mode_force = TX_ULP_MODE_V(ULP_MODE_TLS);
if (is_sg_request(skb))
wr_ulp_mode_force |= FW_OFLD_TX_DATA_WR_ALIGNPLD_F |
((tcp_sk(sk)->nonagle & TCP_NAGLE_OFF) ? 0 :
FW_OFLD_TX_DATA_WR_SHOVE_F);
req_wr->lsodisable_to_flags =
htonl(TX_ULP_MODE_V(ULP_MODE_TLS) |
TX_URG_V(skb_urgent(skb)) |
T6_TX_FORCE_F | wr_ulp_mode_force |
TX_SHOVE_V((!csk_flag(sk, CSK_TX_MORE_DATA)) &&
skb_queue_empty(&csk->txq)));
req_wr->ctxloc_to_exp =
htonl(FW_TLSTX_DATA_WR_NUMIVS_V(pdus) |
FW_TLSTX_DATA_WR_EXP_V(expn) |
FW_TLSTX_DATA_WR_CTXLOC_V(CHTLS_KEY_CONTEXT_DDR) |
FW_TLSTX_DATA_WR_IVDSGL_V(!iv_imm) |
FW_TLSTX_DATA_WR_KEYSIZE_V(hws->keylen >> 4));
/* Fill in the length */
req_wr->plen = htonl(len);
req_wr->mfs = htons(hws->mfs);
req_wr->adjustedplen_pkd =
htons(FW_TLSTX_DATA_WR_ADJUSTEDPLEN_V(hws->adjustlen));
req_wr->expinplenmax_pkd =
htons(FW_TLSTX_DATA_WR_EXPINPLENMAX_V(hws->expansion));
req_wr->pdusinplenmax_pkd =
FW_TLSTX_DATA_WR_PDUSINPLENMAX_V(hws->pdus);
req_wr->r10 = 0;
data_type = tls_content_type(ULP_SKB_CB(skb)->ulp.tls.type);
req_cpl->op_to_seg_len = htonl(CPL_TX_TLS_SFO_OPCODE_V(CPL_TX_TLS_SFO) |
CPL_TX_TLS_SFO_DATA_TYPE_V(data_type) |
CPL_TX_TLS_SFO_CPL_LEN_V(2) |
CPL_TX_TLS_SFO_SEG_LEN_V(dlen));
req_cpl->pld_len = htonl(len - expn);
req_cpl->type_protover = htonl(CPL_TX_TLS_SFO_TYPE_V
((data_type == CPL_TX_TLS_SFO_TYPE_HEARTBEAT) ?
TLS_HDR_TYPE_HEARTBEAT : 0) |
CPL_TX_TLS_SFO_PROTOVER_V(0));
/* create the s-command */
req_cpl->r1_lo = 0;
req_cpl->seqno_numivs = cpu_to_be32(hws->scmd.seqno_numivs);
req_cpl->ivgen_hdrlen = cpu_to_be32(hws->scmd.ivgen_hdrlen);
req_cpl->scmd1 = cpu_to_be64(tlstx_incr_seqnum(hws));
}
/*
* Calculate the TLS data expansion size
*/
static int chtls_expansion_size(struct sock *sk, int data_len,
int fullpdu,
unsigned short *pducnt)
{
struct chtls_sock *csk = rcu_dereference_sk_user_data(sk);
struct chtls_hws *hws = &csk->tlshws;
struct tls_scmd *scmd = &hws->scmd;
int fragsize = hws->mfs;
int expnsize = 0;
int fragleft;
int fragcnt;
int expppdu;
if (SCMD_CIPH_MODE_G(scmd->seqno_numivs) ==
SCMD_CIPH_MODE_AES_GCM) {
expppdu = GCM_TAG_SIZE + AEAD_EXPLICIT_DATA_SIZE +
TLS_HEADER_LENGTH;
if (fullpdu) {
*pducnt = data_len / (expppdu + fragsize);
if (*pducnt > 32)
*pducnt = 32;
else if (!*pducnt)
*pducnt = 1;
expnsize = (*pducnt) * expppdu;
return expnsize;
}
fragcnt = (data_len / fragsize);
expnsize = fragcnt * expppdu;
fragleft = data_len % fragsize;
if (fragleft > 0)
expnsize += expppdu;
}
return expnsize;
}
/* WR with IV, KEY and CPL SFO added */
static void make_tlstx_data_wr(struct sock *sk, struct sk_buff *skb,
int tls_tx_imm, int tls_len, u32 credits)
{
unsigned short pdus_per_ulp = 0;
struct chtls_sock *csk;
struct chtls_hws *hws;
int expn_sz;
int pdus;
csk = rcu_dereference_sk_user_data(sk);
hws = &csk->tlshws;
pdus = DIV_ROUND_UP(tls_len, hws->mfs);
expn_sz = chtls_expansion_size(sk, tls_len, 0, NULL);
if (!hws->compute) {
hws->expansion = chtls_expansion_size(sk,
hws->fcplenmax,
1, &pdus_per_ulp);
hws->pdus = pdus_per_ulp;
hws->adjustlen = hws->pdus *
((hws->expansion / hws->pdus) + hws->mfs);
hws->compute = 1;
}
if (tls_copy_ivs(sk, skb))
return;
tls_copy_tx_key(sk, skb);
tls_tx_data_wr(sk, skb, tls_len, tls_tx_imm, credits, expn_sz, pdus);
hws->tx_seq_no += (pdus - 1);
}
static void make_tx_data_wr(struct sock *sk, struct sk_buff *skb,
unsigned int immdlen, int len,
u32 credits, u32 compl)
{
struct fw_ofld_tx_data_wr *req;
unsigned int wr_ulp_mode_force;
struct chtls_sock *csk;
unsigned int opcode;
csk = rcu_dereference_sk_user_data(sk);
opcode = FW_OFLD_TX_DATA_WR;
req = (struct fw_ofld_tx_data_wr *)__skb_push(skb, sizeof(*req));
req->op_to_immdlen = htonl(WR_OP_V(opcode) |
FW_WR_COMPL_V(compl) |
FW_WR_IMMDLEN_V(immdlen));
req->flowid_len16 = htonl(FW_WR_FLOWID_V(csk->tid) |
FW_WR_LEN16_V(credits));
wr_ulp_mode_force = TX_ULP_MODE_V(csk->ulp_mode);
if (is_sg_request(skb))
wr_ulp_mode_force |= FW_OFLD_TX_DATA_WR_ALIGNPLD_F |
((tcp_sk(sk)->nonagle & TCP_NAGLE_OFF) ? 0 :
FW_OFLD_TX_DATA_WR_SHOVE_F);
req->tunnel_to_proxy = htonl(wr_ulp_mode_force |
TX_URG_V(skb_urgent(skb)) |
TX_SHOVE_V((!csk_flag(sk, CSK_TX_MORE_DATA)) &&
skb_queue_empty(&csk->txq)));
req->plen = htonl(len);
}
static int chtls_wr_size(struct chtls_sock *csk, const struct sk_buff *skb,
bool size)
{
int wr_size;
wr_size = TLS_WR_CPL_LEN;
wr_size += KEY_ON_MEM_SZ;
wr_size += ivs_size(csk->sk, skb);
if (size)
return wr_size;
/* frags counted for IV dsgl */
if (!skb_ulp_tls_iv_imm(skb))
skb_shinfo(skb)->nr_frags++;
return wr_size;
}
static bool is_ofld_imm(struct chtls_sock *csk, const struct sk_buff *skb)
{
int length = skb->len;
if (skb->peeked || skb->len > MAX_IMM_ULPTX_WR_LEN)
return false;
if (likely(ULP_SKB_CB(skb)->flags & ULPCB_FLAG_NEED_HDR)) {
/* Check TLS header len for Immediate */
if (csk->ulp_mode == ULP_MODE_TLS &&
skb_ulp_tls_inline(skb))
length += chtls_wr_size(csk, skb, true);
else
length += sizeof(struct fw_ofld_tx_data_wr);
return length <= MAX_IMM_OFLD_TX_DATA_WR_LEN;
}
return true;
}
static unsigned int calc_tx_flits(const struct sk_buff *skb,
unsigned int immdlen)
{
unsigned int flits, cnt;
flits = immdlen / 8; /* headers */
cnt = skb_shinfo(skb)->nr_frags;
if (skb_tail_pointer(skb) != skb_transport_header(skb))
cnt++;
return flits + sgl_len(cnt);
}
static void arp_failure_discard(void *handle, struct sk_buff *skb)
{
kfree_skb(skb);
}
int chtls_push_frames(struct chtls_sock *csk, int comp)
{
struct chtls_hws *hws = &csk->tlshws;
struct tcp_sock *tp;
struct sk_buff *skb;
int total_size = 0;
struct sock *sk;
int wr_size;
wr_size = sizeof(struct fw_ofld_tx_data_wr);
sk = csk->sk;
tp = tcp_sk(sk);
if (unlikely(sk_in_state(sk, TCPF_SYN_SENT | TCPF_CLOSE)))
return 0;
if (unlikely(csk_flag(sk, CSK_ABORT_SHUTDOWN)))
return 0;
while (csk->wr_credits && (skb = skb_peek(&csk->txq)) &&
(!(ULP_SKB_CB(skb)->flags & ULPCB_FLAG_HOLD) ||
skb_queue_len(&csk->txq) > 1)) {
unsigned int credit_len = skb->len;
unsigned int credits_needed;
unsigned int completion = 0;
int tls_len = skb->len;/* TLS data len before IV/key */
unsigned int immdlen;
int len = skb->len; /* length [ulp bytes] inserted by hw */
int flowclen16 = 0;
int tls_tx_imm = 0;
immdlen = skb->len;
if (!is_ofld_imm(csk, skb)) {
immdlen = skb_transport_offset(skb);
if (skb_ulp_tls_inline(skb))
wr_size = chtls_wr_size(csk, skb, false);
credit_len = 8 * calc_tx_flits(skb, immdlen);
} else {
if (skb_ulp_tls_inline(skb)) {
wr_size = chtls_wr_size(csk, skb, false);
tls_tx_imm = 1;
}
}
if (likely(ULP_SKB_CB(skb)->flags & ULPCB_FLAG_NEED_HDR))
credit_len += wr_size;
credits_needed = DIV_ROUND_UP(credit_len, 16);
if (!csk_flag_nochk(csk, CSK_TX_DATA_SENT)) {
flowclen16 = send_tx_flowc_wr(sk, 1, tp->snd_nxt,
tp->rcv_nxt);
if (flowclen16 <= 0)
break;
csk->wr_credits -= flowclen16;
csk->wr_unacked += flowclen16;
csk->wr_nondata += flowclen16;
csk_set_flag(csk, CSK_TX_DATA_SENT);
}
if (csk->wr_credits < credits_needed) {
if (skb_ulp_tls_inline(skb) &&
!skb_ulp_tls_iv_imm(skb))
skb_shinfo(skb)->nr_frags--;
break;
}
__skb_unlink(skb, &csk->txq);
skb_set_queue_mapping(skb, (csk->txq_idx << 1) |
CPL_PRIORITY_DATA);
if (hws->ofld)
hws->txqid = (skb->queue_mapping >> 1);
skb->csum = (__force __wsum)(credits_needed + csk->wr_nondata);
csk->wr_credits -= credits_needed;
csk->wr_unacked += credits_needed;
csk->wr_nondata = 0;
enqueue_wr(csk, skb);
if (likely(ULP_SKB_CB(skb)->flags & ULPCB_FLAG_NEED_HDR)) {
if ((comp && csk->wr_unacked == credits_needed) ||
(ULP_SKB_CB(skb)->flags & ULPCB_FLAG_COMPL) ||
csk->wr_unacked >= csk->wr_max_credits / 2) {
completion = 1;
csk->wr_unacked = 0;
}
if (skb_ulp_tls_inline(skb))
make_tlstx_data_wr(sk, skb, tls_tx_imm,
tls_len, credits_needed);
else
make_tx_data_wr(sk, skb, immdlen, len,
credits_needed, completion);
tp->snd_nxt += len;
tp->lsndtime = tcp_time_stamp(tp);
if (completion)
ULP_SKB_CB(skb)->flags &= ~ULPCB_FLAG_NEED_HDR;
} else {
struct cpl_close_con_req *req = cplhdr(skb);
unsigned int cmd = CPL_OPCODE_G(ntohl
(OPCODE_TID(req)));
if (cmd == CPL_CLOSE_CON_REQ)
csk_set_flag(csk,
CSK_CLOSE_CON_REQUESTED);
if ((ULP_SKB_CB(skb)->flags & ULPCB_FLAG_COMPL) &&
(csk->wr_unacked >= csk->wr_max_credits / 2)) {
req->wr.wr_hi |= htonl(FW_WR_COMPL_F);
csk->wr_unacked = 0;
}
}
total_size += skb->truesize;
if (ULP_SKB_CB(skb)->flags & ULPCB_FLAG_BARRIER)
csk_set_flag(csk, CSK_TX_WAIT_IDLE);
t4_set_arp_err_handler(skb, NULL, arp_failure_discard);
cxgb4_l2t_send(csk->egress_dev, skb, csk->l2t_entry);
}
sk->sk_wmem_queued -= total_size;
return total_size;
}
static void mark_urg(struct tcp_sock *tp, int flags,
struct sk_buff *skb)
{
if (unlikely(flags & MSG_OOB)) {
tp->snd_up = tp->write_seq;
ULP_SKB_CB(skb)->flags = ULPCB_FLAG_URG |
ULPCB_FLAG_BARRIER |
ULPCB_FLAG_NO_APPEND |
ULPCB_FLAG_NEED_HDR;
}
}
/*
* Returns true if a connection should send more data to TCP engine
*/
static bool should_push(struct sock *sk)
{
struct chtls_sock *csk = rcu_dereference_sk_user_data(sk);
struct chtls_dev *cdev = csk->cdev;
struct tcp_sock *tp = tcp_sk(sk);
/*
* If we've released our offload resources there's nothing to do ...
*/
if (!cdev)
return false;
/*
* If there aren't any work requests in flight, or there isn't enough
* data in flight, or Nagle is off then send the current TX_DATA
* otherwise hold it and wait to accumulate more data.
*/
return csk->wr_credits == csk->wr_max_credits ||
(tp->nonagle & TCP_NAGLE_OFF);
}
/*
* Returns true if a TCP socket is corked.
*/
static bool corked(const struct tcp_sock *tp, int flags)
{
return (flags & MSG_MORE) || (tp->nonagle & TCP_NAGLE_CORK);
}
/*
* Returns true if a send should try to push new data.
*/
static bool send_should_push(struct sock *sk, int flags)
{
return should_push(sk) && !corked(tcp_sk(sk), flags);
}
void chtls_tcp_push(struct sock *sk, int flags)
{
struct chtls_sock *csk = rcu_dereference_sk_user_data(sk);
int qlen = skb_queue_len(&csk->txq);
if (likely(qlen)) {
struct sk_buff *skb = skb_peek_tail(&csk->txq);
struct tcp_sock *tp = tcp_sk(sk);
mark_urg(tp, flags, skb);
if (!(ULP_SKB_CB(skb)->flags & ULPCB_FLAG_NO_APPEND) &&
corked(tp, flags)) {
ULP_SKB_CB(skb)->flags |= ULPCB_FLAG_HOLD;
return;
}
ULP_SKB_CB(skb)->flags &= ~ULPCB_FLAG_HOLD;
if (qlen == 1 &&
((ULP_SKB_CB(skb)->flags & ULPCB_FLAG_NO_APPEND) ||
should_push(sk)))
chtls_push_frames(csk, 1);
}
}
/*
* Calculate the size for a new send sk_buff. It's maximum size so we can
* pack lots of data into it, unless we plan to send it immediately, in which
* case we size it more tightly.
*
* Note: we don't bother compensating for MSS < PAGE_SIZE because it doesn't
* arise in normal cases and when it does we are just wasting memory.
*/
static int select_size(struct sock *sk, int io_len, int flags, int len)
{
const int pgbreak = SKB_MAX_HEAD(len);
/*
* If the data wouldn't fit in the main body anyway, put only the
* header in the main body so it can use immediate data and place all
* the payload in page fragments.
*/
if (io_len > pgbreak)
return 0;
/*
* If we will be accumulating payload get a large main body.
*/
if (!send_should_push(sk, flags))
return pgbreak;
return io_len;
}
void skb_entail(struct sock *sk, struct sk_buff *skb, int flags)
{
struct chtls_sock *csk = rcu_dereference_sk_user_data(sk);
struct tcp_sock *tp = tcp_sk(sk);
ULP_SKB_CB(skb)->seq = tp->write_seq;
ULP_SKB_CB(skb)->flags = flags;
__skb_queue_tail(&csk->txq, skb);
sk->sk_wmem_queued += skb->truesize;
if (TCP_PAGE(sk) && TCP_OFF(sk)) {
put_page(TCP_PAGE(sk));
TCP_PAGE(sk) = NULL;
TCP_OFF(sk) = 0;
}
}
static struct sk_buff *get_tx_skb(struct sock *sk, int size)
{
struct sk_buff *skb;
skb = alloc_skb(size + TX_HEADER_LEN, sk->sk_allocation);
if (likely(skb)) {
skb_reserve(skb, TX_HEADER_LEN);
skb_entail(sk, skb, ULPCB_FLAG_NEED_HDR);
skb_reset_transport_header(skb);
}
return skb;
}
static struct sk_buff *get_record_skb(struct sock *sk, int size, bool zcopy)
{
struct chtls_sock *csk = rcu_dereference_sk_user_data(sk);
struct sk_buff *skb;
skb = alloc_skb(((zcopy ? 0 : size) + TX_TLSHDR_LEN +
KEY_ON_MEM_SZ + max_ivs_size(sk, size)),
sk->sk_allocation);
if (likely(skb)) {
skb_reserve(skb, (TX_TLSHDR_LEN +
KEY_ON_MEM_SZ + max_ivs_size(sk, size)));
skb_entail(sk, skb, ULPCB_FLAG_NEED_HDR);
skb_reset_transport_header(skb);
ULP_SKB_CB(skb)->ulp.tls.ofld = 1;
ULP_SKB_CB(skb)->ulp.tls.type = csk->tlshws.type;
}
return skb;
}
static void tx_skb_finalize(struct sk_buff *skb)
{
struct ulp_skb_cb *cb = ULP_SKB_CB(skb);
if (!(cb->flags & ULPCB_FLAG_NO_HDR))
cb->flags = ULPCB_FLAG_NEED_HDR;
cb->flags |= ULPCB_FLAG_NO_APPEND;
}
static void push_frames_if_head(struct sock *sk)
{
struct chtls_sock *csk = rcu_dereference_sk_user_data(sk);
if (skb_queue_len(&csk->txq) == 1)
chtls_push_frames(csk, 1);
}
static int chtls_skb_copy_to_page_nocache(struct sock *sk,
struct iov_iter *from,
struct sk_buff *skb,
struct page *page,
int off, int copy)
{
int err;
err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) +
off, copy, skb->len);
if (err)
return err;
skb->len += copy;
skb->data_len += copy;
skb->truesize += copy;
sk->sk_wmem_queued += copy;
return 0;
}
/* Read TLS header to find content type and data length */
static int tls_header_read(struct tls_hdr *thdr, struct iov_iter *from)
{
if (copy_from_iter(thdr, sizeof(*thdr), from) != sizeof(*thdr))
return -EFAULT;
return (__force int)cpu_to_be16(thdr->length);
}
static int csk_mem_free(struct chtls_dev *cdev, struct sock *sk)
{
return (cdev->max_host_sndbuf - sk->sk_wmem_queued);
}
static int csk_wait_memory(struct chtls_dev *cdev,
struct sock *sk, long *timeo_p)
{
DEFINE_WAIT_FUNC(wait, woken_wake_function);
int err = 0;
long current_timeo;
long vm_wait = 0;
bool noblock;
current_timeo = *timeo_p;
noblock = (*timeo_p ? false : true);
if (csk_mem_free(cdev, sk)) {
current_timeo = (prandom_u32() % (HZ / 5)) + 2;
vm_wait = (prandom_u32() % (HZ / 5)) + 2;
}
add_wait_queue(sk_sleep(sk), &wait);
while (1) {
sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
goto do_error;
if (!*timeo_p) {
if (noblock)
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
goto do_nonblock;
}
if (signal_pending(current))
goto do_interrupted;
sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
if (csk_mem_free(cdev, sk) && !vm_wait)
break;
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
sk->sk_write_pending++;
sk_wait_event(sk, &current_timeo, sk->sk_err ||
(sk->sk_shutdown & SEND_SHUTDOWN) ||
(csk_mem_free(cdev, sk) && !vm_wait), &wait);
sk->sk_write_pending--;
if (vm_wait) {
vm_wait -= current_timeo;
current_timeo = *timeo_p;
if (current_timeo != MAX_SCHEDULE_TIMEOUT) {
current_timeo -= vm_wait;
if (current_timeo < 0)
current_timeo = 0;
}
vm_wait = 0;
}
*timeo_p = current_timeo;
}
do_rm_wq:
remove_wait_queue(sk_sleep(sk), &wait);
return err;
do_error:
err = -EPIPE;
goto do_rm_wq;
do_nonblock:
err = -EAGAIN;
goto do_rm_wq;
do_interrupted:
err = sock_intr_errno(*timeo_p);
goto do_rm_wq;
}
int chtls_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
{
struct chtls_sock *csk = rcu_dereference_sk_user_data(sk);
struct chtls_dev *cdev = csk->cdev;
struct tcp_sock *tp = tcp_sk(sk);
struct sk_buff *skb;
int mss, flags, err;
int recordsz = 0;
int copied = 0;
long timeo;
lock_sock(sk);
flags = msg->msg_flags;
timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
if (!sk_in_state(sk, TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
err = sk_stream_wait_connect(sk, &timeo);
if (err)
goto out_err;
}
sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
err = -EPIPE;
if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
goto out_err;
mss = csk->mss;
csk_set_flag(csk, CSK_TX_MORE_DATA);
while (msg_data_left(msg)) {
int copy = 0;
skb = skb_peek_tail(&csk->txq);
if (skb) {
copy = mss - skb->len;
skb->ip_summed = CHECKSUM_UNNECESSARY;
}
if (!csk_mem_free(cdev, sk))
goto wait_for_sndbuf;
if (is_tls_tx(csk) && !csk->tlshws.txleft) {
struct tls_hdr hdr;
recordsz = tls_header_read(&hdr, &msg->msg_iter);
size -= TLS_HEADER_LENGTH;
copied += TLS_HEADER_LENGTH;
csk->tlshws.txleft = recordsz;
csk->tlshws.type = hdr.type;
if (skb)
ULP_SKB_CB(skb)->ulp.tls.type = hdr.type;
}
if (!skb || (ULP_SKB_CB(skb)->flags & ULPCB_FLAG_NO_APPEND) ||
copy <= 0) {
new_buf:
if (skb) {
tx_skb_finalize(skb);
push_frames_if_head(sk);
}
if (is_tls_tx(csk)) {
skb = get_record_skb(sk,
select_size(sk,
recordsz,
flags,
TX_TLSHDR_LEN),
false);
} else {
skb = get_tx_skb(sk,
select_size(sk, size, flags,
TX_HEADER_LEN));
}
if (unlikely(!skb))
goto wait_for_memory;
skb->ip_summed = CHECKSUM_UNNECESSARY;
copy = mss;
}
if (copy > size)
copy = size;
if (skb_tailroom(skb) > 0) {
copy = min(copy, skb_tailroom(skb));
if (is_tls_tx(csk))
copy = min_t(int, copy, csk->tlshws.txleft);
err = skb_add_data_nocache(sk, skb,
&msg->msg_iter, copy);
if (err)
goto do_fault;
} else {
int i = skb_shinfo(skb)->nr_frags;
struct page *page = TCP_PAGE(sk);
int pg_size = PAGE_SIZE;
int off = TCP_OFF(sk);
bool merge;
if (page)
pg_size <<= compound_order(page);
if (off < pg_size &&
skb_can_coalesce(skb, i, page, off)) {
merge = 1;
goto copy;
}
merge = 0;
if (i == (is_tls_tx(csk) ? (MAX_SKB_FRAGS - 1) :
MAX_SKB_FRAGS))
goto new_buf;
if (page && off == pg_size) {
put_page(page);
TCP_PAGE(sk) = page = NULL;
pg_size = PAGE_SIZE;
}
if (!page) {
gfp_t gfp = sk->sk_allocation;
int order = cdev->send_page_order;
if (order) {
page = alloc_pages(gfp | __GFP_COMP |
__GFP_NOWARN |
__GFP_NORETRY,
order);
if (page)
pg_size <<=
compound_order(page);
}
if (!page) {
page = alloc_page(gfp);
pg_size = PAGE_SIZE;
}
if (!page)
goto wait_for_memory;
off = 0;
}
copy:
if (copy > pg_size - off)
copy = pg_size - off;
if (is_tls_tx(csk))
copy = min_t(int, copy, csk->tlshws.txleft);
err = chtls_skb_copy_to_page_nocache(sk, &msg->msg_iter,
skb, page,
off, copy);
if (unlikely(err)) {
if (!TCP_PAGE(sk)) {
TCP_PAGE(sk) = page;
TCP_OFF(sk) = 0;
}
goto do_fault;
}
/* Update the skb. */
if (merge) {
skb_shinfo(skb)->frags[i - 1].size += copy;
} else {
skb_fill_page_desc(skb, i, page, off, copy);
if (off + copy < pg_size) {
/* space left keep page */
get_page(page);
TCP_PAGE(sk) = page;
} else {
TCP_PAGE(sk) = NULL;
}
}
TCP_OFF(sk) = off + copy;
}
if (unlikely(skb->len == mss))
tx_skb_finalize(skb);
tp->write_seq += copy;
copied += copy;
size -= copy;
if (is_tls_tx(csk))
csk->tlshws.txleft -= copy;
if (corked(tp, flags) &&
(sk_stream_wspace(sk) < sk_stream_min_wspace(sk)))
ULP_SKB_CB(skb)->flags |= ULPCB_FLAG_NO_APPEND;
if (size == 0)
goto out;
if (ULP_SKB_CB(skb)->flags & ULPCB_FLAG_NO_APPEND)
push_frames_if_head(sk);
continue;
wait_for_sndbuf:
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
wait_for_memory:
err = csk_wait_memory(cdev, sk, &timeo);
if (err)
goto do_error;
}
out:
csk_reset_flag(csk, CSK_TX_MORE_DATA);
if (copied)
chtls_tcp_push(sk, flags);
done:
release_sock(sk);
return copied;
do_fault:
if (!skb->len) {
__skb_unlink(skb, &csk->txq);
sk->sk_wmem_queued -= skb->truesize;
__kfree_skb(skb);
}
do_error:
if (copied)
goto out;
out_err:
if (csk_conn_inline(csk))
csk_reset_flag(csk, CSK_TX_MORE_DATA);
copied = sk_stream_error(sk, flags, err);
goto done;
}
int chtls_sendpage(struct sock *sk, struct page *page,
int offset, size_t size, int flags)
{
struct chtls_sock *csk;
struct chtls_dev *cdev;
int mss, err, copied;
struct tcp_sock *tp;
long timeo;
tp = tcp_sk(sk);
copied = 0;
csk = rcu_dereference_sk_user_data(sk);
cdev = csk->cdev;
timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
err = sk_stream_wait_connect(sk, &timeo);
if (!sk_in_state(sk, TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
err != 0)
goto out_err;
mss = csk->mss;
csk_set_flag(csk, CSK_TX_MORE_DATA);
while (size > 0) {
struct sk_buff *skb = skb_peek_tail(&csk->txq);
int copy, i;
if (!skb || (ULP_SKB_CB(skb)->flags & ULPCB_FLAG_NO_APPEND) ||
(copy = mss - skb->len) <= 0) {
new_buf:
if (!csk_mem_free(cdev, sk))
goto wait_for_sndbuf;
if (is_tls_tx(csk)) {
skb = get_record_skb(sk,
select_size(sk, size,
flags,
TX_TLSHDR_LEN),
true);
} else {
skb = get_tx_skb(sk, 0);
}
if (!skb)
goto wait_for_memory;
copy = mss;
}
if (copy > size)
copy = size;
i = skb_shinfo(skb)->nr_frags;
if (skb_can_coalesce(skb, i, page, offset)) {
skb_shinfo(skb)->frags[i - 1].size += copy;
} else if (i < MAX_SKB_FRAGS) {
get_page(page);
skb_fill_page_desc(skb, i, page, offset, copy);
} else {
tx_skb_finalize(skb);
push_frames_if_head(sk);
goto new_buf;
}
skb->len += copy;
if (skb->len == mss)
tx_skb_finalize(skb);
skb->data_len += copy;
skb->truesize += copy;
sk->sk_wmem_queued += copy;
tp->write_seq += copy;
copied += copy;
offset += copy;
size -= copy;
if (corked(tp, flags) &&
(sk_stream_wspace(sk) < sk_stream_min_wspace(sk)))
ULP_SKB_CB(skb)->flags |= ULPCB_FLAG_NO_APPEND;
if (!size)
break;
if (unlikely(ULP_SKB_CB(skb)->flags & ULPCB_FLAG_NO_APPEND))
push_frames_if_head(sk);
continue;
wait_for_sndbuf:
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
wait_for_memory:
err = csk_wait_memory(cdev, sk, &timeo);
if (err)
goto do_error;
}
out:
csk_reset_flag(csk, CSK_TX_MORE_DATA);
if (copied)
chtls_tcp_push(sk, flags);
done:
release_sock(sk);
return copied;
do_error:
if (copied)
goto out;
out_err:
if (csk_conn_inline(csk))
csk_reset_flag(csk, CSK_TX_MORE_DATA);
copied = sk_stream_error(sk, flags, err);
goto done;
}
static void chtls_select_window(struct sock *sk)
{
struct chtls_sock *csk = rcu_dereference_sk_user_data(sk);
struct tcp_sock *tp = tcp_sk(sk);
unsigned int wnd = tp->rcv_wnd;
wnd = max_t(unsigned int, wnd, tcp_full_space(sk));
wnd = max_t(unsigned int, MIN_RCV_WND, wnd);
if (wnd > MAX_RCV_WND)
wnd = MAX_RCV_WND;
/*
* Check if we need to grow the receive window in response to an increase in
* the socket's receive buffer size. Some applications increase the buffer
* size dynamically and rely on the window to grow accordingly.
*/
if (wnd > tp->rcv_wnd) {
tp->rcv_wup -= wnd - tp->rcv_wnd;
tp->rcv_wnd = wnd;
/* Mark the receive window as updated */
csk_reset_flag(csk, CSK_UPDATE_RCV_WND);
}
}
/*
* Send RX credits through an RX_DATA_ACK CPL message. We are permitted
* to return without sending the message in case we cannot allocate
* an sk_buff. Returns the number of credits sent.
*/
static u32 send_rx_credits(struct chtls_sock *csk, u32 credits)
{
struct cpl_rx_data_ack *req;
struct sk_buff *skb;
skb = alloc_skb(sizeof(*req), GFP_ATOMIC);
if (!skb)
return 0;
__skb_put(skb, sizeof(*req));
req = (struct cpl_rx_data_ack *)skb->head;
set_wr_txq(skb, CPL_PRIORITY_ACK, csk->port_id);
INIT_TP_WR(req, csk->tid);
OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_RX_DATA_ACK,
csk->tid));
req->credit_dack = cpu_to_be32(RX_CREDITS_V(credits) |
RX_FORCE_ACK_F);
cxgb4_ofld_send(csk->cdev->ports[csk->port_id], skb);
return credits;
}
#define CREDIT_RETURN_STATE (TCPF_ESTABLISHED | \
TCPF_FIN_WAIT1 | \
TCPF_FIN_WAIT2)
/*
* Called after some received data has been read. It returns RX credits
* to the HW for the amount of data processed.
*/
static void chtls_cleanup_rbuf(struct sock *sk, int copied)
{
struct chtls_sock *csk = rcu_dereference_sk_user_data(sk);
struct tcp_sock *tp;
int must_send;
u32 credits;
u32 thres;
thres = 15 * 1024;
if (!sk_in_state(sk, CREDIT_RETURN_STATE))
return;
chtls_select_window(sk);
tp = tcp_sk(sk);
credits = tp->copied_seq - tp->rcv_wup;
if (unlikely(!credits))
return;
/*
* For coalescing to work effectively ensure the receive window has
* at least 16KB left.
*/
must_send = credits + 16384 >= tp->rcv_wnd;
if (must_send || credits >= thres)
tp->rcv_wup += send_rx_credits(csk, credits);
}
static int chtls_pt_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
int nonblock, int flags, int *addr_len)
{
struct chtls_sock *csk = rcu_dereference_sk_user_data(sk);
struct chtls_hws *hws = &csk->tlshws;
struct tcp_sock *tp = tcp_sk(sk);
unsigned long avail;
int buffers_freed;
int copied = 0;
int target;
long timeo;
buffers_freed = 0;
timeo = sock_rcvtimeo(sk, nonblock);
target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
if (unlikely(csk_flag(sk, CSK_UPDATE_RCV_WND)))
chtls_cleanup_rbuf(sk, copied);
do {
struct sk_buff *skb;
u32 offset = 0;
if (unlikely(tp->urg_data &&
tp->urg_seq == tp->copied_seq)) {
if (copied)
break;
if (signal_pending(current)) {
copied = timeo ? sock_intr_errno(timeo) :
-EAGAIN;
break;
}
}
skb = skb_peek(&sk->sk_receive_queue);
if (skb)
goto found_ok_skb;
if (csk->wr_credits &&
skb_queue_len(&csk->txq) &&
chtls_push_frames(csk, csk->wr_credits ==
csk->wr_max_credits))
sk->sk_write_space(sk);
if (copied >= target && !sk->sk_backlog.tail)
break;
if (copied) {
if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
(sk->sk_shutdown & RCV_SHUTDOWN) ||
signal_pending(current))
break;
if (!timeo)
break;
} else {
if (sock_flag(sk, SOCK_DONE))
break;
if (sk->sk_err) {
copied = sock_error(sk);
break;
}
if (sk->sk_shutdown & RCV_SHUTDOWN)
break;
if (sk->sk_state == TCP_CLOSE) {
copied = -ENOTCONN;
break;
}
if (!timeo) {
copied = -EAGAIN;
break;
}
if (signal_pending(current)) {
copied = sock_intr_errno(timeo);
break;
}
}
if (sk->sk_backlog.tail) {
release_sock(sk);
lock_sock(sk);
chtls_cleanup_rbuf(sk, copied);
continue;
}
if (copied >= target)
break;
chtls_cleanup_rbuf(sk, copied);
sk_wait_data(sk, &timeo, NULL);
continue;
found_ok_skb:
if (!skb->len) {
skb_dst_set(skb, NULL);
__skb_unlink(skb, &sk->sk_receive_queue);
kfree_skb(skb);
if (!copied && !timeo) {
copied = -EAGAIN;
break;
}
if (copied < target) {
release_sock(sk);
lock_sock(sk);
continue;
}
break;
}
offset = hws->copied_seq;
avail = skb->len - offset;
if (len < avail)
avail = len;
if (unlikely(tp->urg_data)) {
u32 urg_offset = tp->urg_seq - tp->copied_seq;
if (urg_offset < avail) {
if (urg_offset) {
avail = urg_offset;
} else if (!sock_flag(sk, SOCK_URGINLINE)) {
/* First byte is urgent, skip */
tp->copied_seq++;
offset++;
avail--;
if (!avail)
goto skip_copy;
}
}
}
if (skb_copy_datagram_msg(skb, offset, msg, avail)) {
if (!copied) {
copied = -EFAULT;
break;
}
}
copied += avail;
len -= avail;
hws->copied_seq += avail;
skip_copy:
if (tp->urg_data && after(tp->copied_seq, tp->urg_seq))
tp->urg_data = 0;
if ((avail + offset) >= skb->len) {
if (ULP_SKB_CB(skb)->flags & ULPCB_FLAG_TLS_HDR) {
tp->copied_seq += skb->len;
hws->rcvpld = skb->hdr_len;
} else {
tp->copied_seq += hws->rcvpld;
}
chtls_free_skb(sk, skb);
buffers_freed++;
hws->copied_seq = 0;
if (copied >= target &&
!skb_peek(&sk->sk_receive_queue))
break;
}
} while (len > 0);
if (buffers_freed)
chtls_cleanup_rbuf(sk, copied);
release_sock(sk);
return copied;
}
/*
* Peek at data in a socket's receive buffer.
*/
static int peekmsg(struct sock *sk, struct msghdr *msg,
size_t len, int nonblock, int flags)
{
struct tcp_sock *tp = tcp_sk(sk);
u32 peek_seq, offset;
struct sk_buff *skb;
int copied = 0;
size_t avail; /* amount of available data in current skb */
long timeo;
lock_sock(sk);
timeo = sock_rcvtimeo(sk, nonblock);
peek_seq = tp->copied_seq;
do {
if (unlikely(tp->urg_data && tp->urg_seq == peek_seq)) {
if (copied)
break;
if (signal_pending(current)) {
copied = timeo ? sock_intr_errno(timeo) :
-EAGAIN;
break;
}
}
skb_queue_walk(&sk->sk_receive_queue, skb) {
offset = peek_seq - ULP_SKB_CB(skb)->seq;
if (offset < skb->len)
goto found_ok_skb;
}
/* empty receive queue */
if (copied)
break;
if (sock_flag(sk, SOCK_DONE))
break;
if (sk->sk_err) {
copied = sock_error(sk);
break;
}
if (sk->sk_shutdown & RCV_SHUTDOWN)
break;
if (sk->sk_state == TCP_CLOSE) {
copied = -ENOTCONN;
break;
}
if (!timeo) {
copied = -EAGAIN;
break;
}
if (signal_pending(current)) {
copied = sock_intr_errno(timeo);
break;
}
if (sk->sk_backlog.tail) {
/* Do not sleep, just process backlog. */
release_sock(sk);
lock_sock(sk);
} else {
sk_wait_data(sk, &timeo, NULL);
}
if (unlikely(peek_seq != tp->copied_seq)) {
if (net_ratelimit())
pr_info("TCP(%s:%d), race in MSG_PEEK.\n",
current->comm, current->pid);
peek_seq = tp->copied_seq;
}
continue;
found_ok_skb:
avail = skb->len - offset;
if (len < avail)
avail = len;
/*
* Do we have urgent data here? We need to skip over the
* urgent byte.
*/
if (unlikely(tp->urg_data)) {
u32 urg_offset = tp->urg_seq - peek_seq;
if (urg_offset < avail) {
/*
* The amount of data we are preparing to copy
* contains urgent data.
*/
if (!urg_offset) { /* First byte is urgent */
if (!sock_flag(sk, SOCK_URGINLINE)) {
peek_seq++;
offset++;
avail--;
}
if (!avail)
continue;
} else {
/* stop short of the urgent data */
avail = urg_offset;
}
}
}
/*
* If MSG_TRUNC is specified the data is discarded.
*/
if (likely(!(flags & MSG_TRUNC)))
if (skb_copy_datagram_msg(skb, offset, msg, len)) {
if (!copied) {
copied = -EFAULT;
break;
}
}
peek_seq += avail;
copied += avail;
len -= avail;
} while (len > 0);
release_sock(sk);
return copied;
}
int chtls_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
int nonblock, int flags, int *addr_len)
{
struct tcp_sock *tp = tcp_sk(sk);
struct chtls_sock *csk;
unsigned long avail; /* amount of available data in current skb */
int buffers_freed;
int copied = 0;
long timeo;
int target; /* Read at least this many bytes */
buffers_freed = 0;
if (unlikely(flags & MSG_OOB))
return tcp_prot.recvmsg(sk, msg, len, nonblock, flags,
addr_len);
if (unlikely(flags & MSG_PEEK))
return peekmsg(sk, msg, len, nonblock, flags);
if (sk_can_busy_loop(sk) &&
skb_queue_empty(&sk->sk_receive_queue) &&
sk->sk_state == TCP_ESTABLISHED)
sk_busy_loop(sk, nonblock);
lock_sock(sk);
csk = rcu_dereference_sk_user_data(sk);
if (is_tls_rx(csk))
return chtls_pt_recvmsg(sk, msg, len, nonblock,
flags, addr_len);
timeo = sock_rcvtimeo(sk, nonblock);
target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
if (unlikely(csk_flag(sk, CSK_UPDATE_RCV_WND)))
chtls_cleanup_rbuf(sk, copied);
do {
struct sk_buff *skb;
u32 offset;
if (unlikely(tp->urg_data && tp->urg_seq == tp->copied_seq)) {
if (copied)
break;
if (signal_pending(current)) {
copied = timeo ? sock_intr_errno(timeo) :
-EAGAIN;
break;
}
}
skb = skb_peek(&sk->sk_receive_queue);
if (skb)
goto found_ok_skb;
if (csk->wr_credits &&
skb_queue_len(&csk->txq) &&
chtls_push_frames(csk, csk->wr_credits ==
csk->wr_max_credits))
sk->sk_write_space(sk);
if (copied >= target && !sk->sk_backlog.tail)
break;
if (copied) {
if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
(sk->sk_shutdown & RCV_SHUTDOWN) ||
signal_pending(current))
break;
} else {
if (sock_flag(sk, SOCK_DONE))
break;
if (sk->sk_err) {
copied = sock_error(sk);
break;
}
if (sk->sk_shutdown & RCV_SHUTDOWN)
break;
if (sk->sk_state == TCP_CLOSE) {
copied = -ENOTCONN;
break;
}
if (!timeo) {
copied = -EAGAIN;
break;
}
if (signal_pending(current)) {
copied = sock_intr_errno(timeo);
break;
}
}
if (sk->sk_backlog.tail) {
release_sock(sk);
lock_sock(sk);
chtls_cleanup_rbuf(sk, copied);
continue;
}
if (copied >= target)
break;
chtls_cleanup_rbuf(sk, copied);
sk_wait_data(sk, &timeo, NULL);
continue;
found_ok_skb:
if (!skb->len) {
chtls_kfree_skb(sk, skb);
if (!copied && !timeo) {
copied = -EAGAIN;
break;
}
if (copied < target)
continue;
break;
}
offset = tp->copied_seq - ULP_SKB_CB(skb)->seq;
avail = skb->len - offset;
if (len < avail)
avail = len;
if (unlikely(tp->urg_data)) {
u32 urg_offset = tp->urg_seq - tp->copied_seq;
if (urg_offset < avail) {
if (urg_offset) {
avail = urg_offset;
} else if (!sock_flag(sk, SOCK_URGINLINE)) {
tp->copied_seq++;
offset++;
avail--;
if (!avail)
goto skip_copy;
}
}
}
if (likely(!(flags & MSG_TRUNC))) {
if (skb_copy_datagram_msg(skb, offset,
msg, avail)) {
if (!copied) {
copied = -EFAULT;
break;
}
}
}
tp->copied_seq += avail;
copied += avail;
len -= avail;
skip_copy:
if (tp->urg_data && after(tp->copied_seq, tp->urg_seq))
tp->urg_data = 0;
if (avail + offset >= skb->len) {
if (likely(skb))
chtls_free_skb(sk, skb);
buffers_freed++;
if (copied >= target &&
!skb_peek(&sk->sk_receive_queue))
break;
}
} while (len > 0);
if (buffers_freed)
chtls_cleanup_rbuf(sk, copied);
release_sock(sk);
return copied;
}