2005-10-10 12:36:14 +00:00
|
|
|
/*
|
|
|
|
* PowerPC version
|
|
|
|
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
|
|
|
|
* Rewritten by Cort Dougan (cort@cs.nmt.edu) for PReP
|
|
|
|
* Copyright (C) 1996 Cort Dougan <cort@cs.nmt.edu>
|
|
|
|
* Adapted for Power Macintosh by Paul Mackerras.
|
|
|
|
* Low-level exception handlers and MMU support
|
|
|
|
* rewritten by Paul Mackerras.
|
|
|
|
* Copyright (C) 1996 Paul Mackerras.
|
|
|
|
* MPC8xx modifications Copyright (C) 1997 Dan Malek (dmalek@jlc.net).
|
|
|
|
*
|
|
|
|
* This file contains the system call entry code, context switch
|
|
|
|
* code, and exception/interrupt return code for PowerPC.
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU General Public License
|
|
|
|
* as published by the Free Software Foundation; either version
|
|
|
|
* 2 of the License, or (at your option) any later version.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/errno.h>
|
powerpc/kernel: Switch to using MAX_ERRNO
Currently on powerpc we have our own #define for the highest (negative)
errno value, called _LAST_ERRNO. This is defined to be 516, for reasons
which are not clear.
The generic code, and x86, use MAX_ERRNO, which is defined to be 4095.
In particular seccomp uses MAX_ERRNO to restrict the value that a
seccomp filter can return.
Currently with the mismatch between _LAST_ERRNO and MAX_ERRNO, a seccomp
tracer wanting to return 600, expecting it to be seen as an error, would
instead find on powerpc that userspace sees a successful syscall with a
return value of 600.
To avoid this inconsistency, switch powerpc to use MAX_ERRNO.
We are somewhat confident that generic syscalls that can return a
non-error value above negative MAX_ERRNO have already been updated to
use force_successful_syscall_return().
I have also checked all the powerpc specific syscalls, and believe that
none of them expect to return a non-error value between -MAX_ERRNO and
-516. So this change should be safe ...
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Kees Cook <keescook@chromium.org>
2015-07-23 10:21:01 +00:00
|
|
|
#include <linux/err.h>
|
2005-10-10 12:36:14 +00:00
|
|
|
#include <asm/unistd.h>
|
|
|
|
#include <asm/processor.h>
|
|
|
|
#include <asm/page.h>
|
|
|
|
#include <asm/mmu.h>
|
|
|
|
#include <asm/thread_info.h>
|
2018-07-23 15:07:54 +00:00
|
|
|
#include <asm/code-patching-asm.h>
|
2005-10-10 12:36:14 +00:00
|
|
|
#include <asm/ppc_asm.h>
|
|
|
|
#include <asm/asm-offsets.h>
|
|
|
|
#include <asm/cputable.h>
|
2006-09-25 08:19:00 +00:00
|
|
|
#include <asm/firmware.h>
|
2007-01-01 18:45:34 +00:00
|
|
|
#include <asm/bug.h>
|
2008-04-17 04:34:59 +00:00
|
|
|
#include <asm/ptrace.h>
|
2008-04-17 04:35:01 +00:00
|
|
|
#include <asm/irqflags.h>
|
powerpc: Rework lazy-interrupt handling
The current implementation of lazy interrupts handling has some
issues that this tries to address.
We don't do the various workarounds we need to do when re-enabling
interrupts in some cases such as when returning from an interrupt
and thus we may still lose or get delayed decrementer or doorbell
interrupts.
The current scheme also makes it much harder to handle the external
"edge" interrupts provided by some BookE processors when using the
EPR facility (External Proxy) and the Freescale Hypervisor.
Additionally, we tend to keep interrupts hard disabled in a number
of cases, such as decrementer interrupts, external interrupts, or
when a masked decrementer interrupt is pending. This is sub-optimal.
This is an attempt at fixing it all in one go by reworking the way
we do the lazy interrupt disabling from the ground up.
The base idea is to replace the "hard_enabled" field with a
"irq_happened" field in which we store a bit mask of what interrupt
occurred while soft-disabled.
When re-enabling, either via arch_local_irq_restore() or when returning
from an interrupt, we can now decide what to do by testing bits in that
field.
We then implement replaying of the missed interrupts either by
re-using the existing exception frame (in exception exit case) or via
the creation of a new one from an assembly trampoline (in the
arch_local_irq_enable case).
This removes the need to play with the decrementer to try to create
fake interrupts, among others.
In addition, this adds a few refinements:
- We no longer hard disable decrementer interrupts that occur
while soft-disabled. We now simply bump the decrementer back to max
(on BookS) or leave it stopped (on BookE) and continue with hard interrupts
enabled, which means that we'll potentially get better sample quality from
performance monitor interrupts.
- Timer, decrementer and doorbell interrupts now hard-enable
shortly after removing the source of the interrupt, which means
they no longer run entirely hard disabled. Again, this will improve
perf sample quality.
- On Book3E 64-bit, we now make the performance monitor interrupt
act as an NMI like Book3S (the necessary C code for that to work
appear to already be present in the FSL perf code, notably calling
nmi_enter instead of irq_enter). (This also fixes a bug where BookE
perfmon interrupts could clobber r14 ... oops)
- We could make "masked" decrementer interrupts act as NMIs when doing
timer-based perf sampling to improve the sample quality.
Signed-off-by-yet: Benjamin Herrenschmidt <benh@kernel.crashing.org>
---
v2:
- Add hard-enable to decrementer, timer and doorbells
- Fix CR clobber in masked irq handling on BookE
- Make embedded perf interrupt act as an NMI
- Add a PACA_HAPPENED_EE_EDGE for use by FSL if they want
to retrigger an interrupt without preventing hard-enable
v3:
- Fix or vs. ori bug on Book3E
- Fix enabling of interrupts for some exceptions on Book3E
v4:
- Fix resend of doorbells on return from interrupt on Book3E
v5:
- Rebased on top of my latest series, which involves some significant
rework of some aspects of the patch.
v6:
- 32-bit compile fix
- more compile fixes with various .config combos
- factor out the asm code to soft-disable interrupts
- remove the C wrapper around preempt_schedule_irq
v7:
- Fix a bug with hard irq state tracking on native power7
2012-03-06 07:27:59 +00:00
|
|
|
#include <asm/hw_irq.h>
|
2013-05-13 16:16:43 +00:00
|
|
|
#include <asm/context_tracking.h>
|
2015-06-12 01:06:32 +00:00
|
|
|
#include <asm/tm.h>
|
2016-04-26 00:28:50 +00:00
|
|
|
#include <asm/ppc-opcode.h>
|
2018-04-24 04:15:59 +00:00
|
|
|
#include <asm/barrier.h>
|
2016-01-14 04:33:46 +00:00
|
|
|
#include <asm/export.h>
|
2018-07-05 16:24:57 +00:00
|
|
|
#include <asm/asm-compat.h>
|
2018-01-09 16:07:15 +00:00
|
|
|
#ifdef CONFIG_PPC_BOOK3S
|
|
|
|
#include <asm/exception-64s.h>
|
|
|
|
#else
|
|
|
|
#include <asm/exception-64e.h>
|
|
|
|
#endif
|
2018-07-05 16:25:01 +00:00
|
|
|
#include <asm/feature-fixups.h>
|
2019-04-18 06:51:24 +00:00
|
|
|
#include <asm/kup.h>
|
2005-10-10 12:36:14 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* System calls.
|
|
|
|
*/
|
|
|
|
.section ".toc","aw"
|
2014-02-04 05:05:53 +00:00
|
|
|
SYS_CALL_TABLE:
|
|
|
|
.tc sys_call_table[TC],sys_call_table
|
2005-10-10 12:36:14 +00:00
|
|
|
|
2018-12-17 10:40:35 +00:00
|
|
|
COMPAT_SYS_CALL_TABLE:
|
|
|
|
.tc compat_sys_call_table[TC],compat_sys_call_table
|
|
|
|
|
2005-10-10 12:36:14 +00:00
|
|
|
/* This value is used to mark exception frames on the stack. */
|
|
|
|
exception_marker:
|
2008-04-17 04:34:59 +00:00
|
|
|
.tc ID_EXC_MARKER[TC],STACK_FRAME_REGS_MARKER
|
2005-10-10 12:36:14 +00:00
|
|
|
|
|
|
|
.section ".text"
|
|
|
|
.align 7
|
|
|
|
|
|
|
|
.globl system_call_common
|
|
|
|
system_call_common:
|
2015-06-12 01:06:32 +00:00
|
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
|
|
BEGIN_FTR_SECTION
|
|
|
|
extrdi. r10, r12, 1, (63-MSR_TS_T_LG) /* transaction active? */
|
2017-06-29 17:49:16 +00:00
|
|
|
bne .Ltabort_syscall
|
2015-06-12 01:06:32 +00:00
|
|
|
END_FTR_SECTION_IFSET(CPU_FTR_TM)
|
|
|
|
#endif
|
2005-10-10 12:36:14 +00:00
|
|
|
andi. r10,r12,MSR_PR
|
|
|
|
mr r10,r1
|
|
|
|
addi r1,r1,-INT_FRAME_SIZE
|
|
|
|
beq- 1f
|
|
|
|
ld r1,PACAKSAVE(r13)
|
|
|
|
1: std r10,0(r1)
|
|
|
|
std r11,_NIP(r1)
|
|
|
|
std r12,_MSR(r1)
|
|
|
|
std r0,GPR0(r1)
|
|
|
|
std r10,GPR1(r1)
|
2012-12-06 21:46:37 +00:00
|
|
|
beq 2f /* if from kernel mode */
|
2018-12-12 14:03:05 +00:00
|
|
|
#ifdef CONFIG_PPC_FSL_BOOK3E
|
|
|
|
START_BTB_FLUSH_SECTION
|
|
|
|
BTB_FLUSH(r10)
|
|
|
|
END_BTB_FLUSH_SECTION
|
|
|
|
#endif
|
2016-05-17 06:33:46 +00:00
|
|
|
ACCOUNT_CPU_USER_ENTRY(r13, r10, r11)
|
2012-12-06 21:46:37 +00:00
|
|
|
2: std r2,GPR2(r1)
|
2005-10-10 12:36:14 +00:00
|
|
|
std r3,GPR3(r1)
|
2012-04-05 03:44:48 +00:00
|
|
|
mfcr r2
|
2005-10-10 12:36:14 +00:00
|
|
|
std r4,GPR4(r1)
|
|
|
|
std r5,GPR5(r1)
|
|
|
|
std r6,GPR6(r1)
|
|
|
|
std r7,GPR7(r1)
|
|
|
|
std r8,GPR8(r1)
|
|
|
|
li r11,0
|
|
|
|
std r11,GPR9(r1)
|
|
|
|
std r11,GPR10(r1)
|
|
|
|
std r11,GPR11(r1)
|
|
|
|
std r11,GPR12(r1)
|
2012-04-04 18:24:29 +00:00
|
|
|
std r11,_XER(r1)
|
2012-04-04 18:26:39 +00:00
|
|
|
std r11,_CTR(r1)
|
2005-10-10 12:36:14 +00:00
|
|
|
std r9,GPR13(r1)
|
|
|
|
mflr r10
|
2012-04-05 03:44:48 +00:00
|
|
|
/*
|
|
|
|
* This clears CR0.SO (bit 28), which is the error indication on
|
|
|
|
* return from this system call.
|
|
|
|
*/
|
|
|
|
rldimi r2,r11,28,(63-28)
|
2005-10-10 12:36:14 +00:00
|
|
|
li r11,0xc01
|
|
|
|
std r10,_LINK(r1)
|
|
|
|
std r11,_TRAP(r1)
|
|
|
|
std r3,ORIG_GPR3(r1)
|
2012-04-05 03:44:48 +00:00
|
|
|
std r2,_CCR(r1)
|
2005-10-10 12:36:14 +00:00
|
|
|
ld r2,PACATOC(r13)
|
|
|
|
addi r9,r1,STACK_FRAME_OVERHEAD
|
|
|
|
ld r11,exception_marker@toc(r2)
|
|
|
|
std r11,-16(r9) /* "regshere" marker */
|
2019-04-18 06:51:24 +00:00
|
|
|
|
|
|
|
kuap_check_amr r10, r11
|
|
|
|
|
2012-07-25 05:56:04 +00:00
|
|
|
#if defined(CONFIG_VIRT_CPU_ACCOUNTING_NATIVE) && defined(CONFIG_PPC_SPLPAR)
|
powerpc: Account time using timebase rather than PURR
Currently, when CONFIG_VIRT_CPU_ACCOUNTING is enabled, we use the
PURR register for measuring the user and system time used by
processes, as well as other related times such as hardirq and
softirq times. This turns out to be quite confusing for users
because it means that a program will often be measured as taking
less time when run on a multi-threaded processor (SMT2 or SMT4 mode)
than it does when run on a single-threaded processor (ST mode), even
though the program takes longer to finish. The discrepancy is
accounted for as stolen time, which is also confusing, particularly
when there are no other partitions running.
This changes the accounting to use the timebase instead, meaning that
the reported user and system times are the actual number of real-time
seconds that the program was executing on the processor thread,
regardless of which SMT mode the processor is in. Thus a program will
generally show greater user and system times when run on a
multi-threaded processor than on a single-threaded processor.
On pSeries systems on POWER5 or later processors, we measure the
stolen time (time when this partition wasn't running) using the
hypervisor dispatch trace log. We check for new entries in the
log on every entry from user mode and on every transition from
kernel process context to soft or hard IRQ context (i.e. when
account_system_vtime() gets called). So that we can correctly
distinguish time stolen from user time and time stolen from system
time, without having to check the log on every exit to user mode,
we store separate timestamps for exit to user mode and entry from
user mode.
On systems that have a SPURR (POWER6 and POWER7), we read the SPURR
in account_system_vtime() (as before), and then apportion the SPURR
ticks since the last time we read it between scaled user time and
scaled system time according to the relative proportions of user
time and system time over the same interval. This avoids having to
read the SPURR on every kernel entry and exit. On systems that have
PURR but not SPURR (i.e., POWER5), we do the same using the PURR
rather than the SPURR.
This disables the DTL user interface in /sys/debug/kernel/powerpc/dtl
for now since it conflicts with the use of the dispatch trace log
by the time accounting code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2010-08-26 19:56:43 +00:00
|
|
|
BEGIN_FW_FTR_SECTION
|
|
|
|
beq 33f
|
|
|
|
/* if from user, see if there are any DTL entries to process */
|
|
|
|
ld r10,PACALPPACAPTR(r13) /* get ptr to VPA */
|
|
|
|
ld r11,PACA_DTL_RIDX(r13) /* get log read index */
|
2013-08-06 16:01:46 +00:00
|
|
|
addi r10,r10,LPPACA_DTLIDX
|
|
|
|
LDX_BE r10,0,r10 /* get log write index */
|
powerpc: Account time using timebase rather than PURR
Currently, when CONFIG_VIRT_CPU_ACCOUNTING is enabled, we use the
PURR register for measuring the user and system time used by
processes, as well as other related times such as hardirq and
softirq times. This turns out to be quite confusing for users
because it means that a program will often be measured as taking
less time when run on a multi-threaded processor (SMT2 or SMT4 mode)
than it does when run on a single-threaded processor (ST mode), even
though the program takes longer to finish. The discrepancy is
accounted for as stolen time, which is also confusing, particularly
when there are no other partitions running.
This changes the accounting to use the timebase instead, meaning that
the reported user and system times are the actual number of real-time
seconds that the program was executing on the processor thread,
regardless of which SMT mode the processor is in. Thus a program will
generally show greater user and system times when run on a
multi-threaded processor than on a single-threaded processor.
On pSeries systems on POWER5 or later processors, we measure the
stolen time (time when this partition wasn't running) using the
hypervisor dispatch trace log. We check for new entries in the
log on every entry from user mode and on every transition from
kernel process context to soft or hard IRQ context (i.e. when
account_system_vtime() gets called). So that we can correctly
distinguish time stolen from user time and time stolen from system
time, without having to check the log on every exit to user mode,
we store separate timestamps for exit to user mode and entry from
user mode.
On systems that have a SPURR (POWER6 and POWER7), we read the SPURR
in account_system_vtime() (as before), and then apportion the SPURR
ticks since the last time we read it between scaled user time and
scaled system time according to the relative proportions of user
time and system time over the same interval. This avoids having to
read the SPURR on every kernel entry and exit. On systems that have
PURR but not SPURR (i.e., POWER5), we do the same using the PURR
rather than the SPURR.
This disables the DTL user interface in /sys/debug/kernel/powerpc/dtl
for now since it conflicts with the use of the dispatch trace log
by the time accounting code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2010-08-26 19:56:43 +00:00
|
|
|
cmpd cr1,r11,r10
|
|
|
|
beq+ cr1,33f
|
2014-02-04 05:04:35 +00:00
|
|
|
bl accumulate_stolen_time
|
powerpc: Account time using timebase rather than PURR
Currently, when CONFIG_VIRT_CPU_ACCOUNTING is enabled, we use the
PURR register for measuring the user and system time used by
processes, as well as other related times such as hardirq and
softirq times. This turns out to be quite confusing for users
because it means that a program will often be measured as taking
less time when run on a multi-threaded processor (SMT2 or SMT4 mode)
than it does when run on a single-threaded processor (ST mode), even
though the program takes longer to finish. The discrepancy is
accounted for as stolen time, which is also confusing, particularly
when there are no other partitions running.
This changes the accounting to use the timebase instead, meaning that
the reported user and system times are the actual number of real-time
seconds that the program was executing on the processor thread,
regardless of which SMT mode the processor is in. Thus a program will
generally show greater user and system times when run on a
multi-threaded processor than on a single-threaded processor.
On pSeries systems on POWER5 or later processors, we measure the
stolen time (time when this partition wasn't running) using the
hypervisor dispatch trace log. We check for new entries in the
log on every entry from user mode and on every transition from
kernel process context to soft or hard IRQ context (i.e. when
account_system_vtime() gets called). So that we can correctly
distinguish time stolen from user time and time stolen from system
time, without having to check the log on every exit to user mode,
we store separate timestamps for exit to user mode and entry from
user mode.
On systems that have a SPURR (POWER6 and POWER7), we read the SPURR
in account_system_vtime() (as before), and then apportion the SPURR
ticks since the last time we read it between scaled user time and
scaled system time according to the relative proportions of user
time and system time over the same interval. This avoids having to
read the SPURR on every kernel entry and exit. On systems that have
PURR but not SPURR (i.e., POWER5), we do the same using the PURR
rather than the SPURR.
This disables the DTL user interface in /sys/debug/kernel/powerpc/dtl
for now since it conflicts with the use of the dispatch trace log
by the time accounting code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2010-08-26 19:56:43 +00:00
|
|
|
REST_GPR(0,r1)
|
|
|
|
REST_4GPRS(3,r1)
|
|
|
|
REST_2GPRS(7,r1)
|
|
|
|
addi r9,r1,STACK_FRAME_OVERHEAD
|
|
|
|
33:
|
|
|
|
END_FW_FTR_SECTION_IFSET(FW_FEATURE_SPLPAR)
|
2012-07-25 05:56:04 +00:00
|
|
|
#endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE && CONFIG_PPC_SPLPAR */
|
powerpc: Account time using timebase rather than PURR
Currently, when CONFIG_VIRT_CPU_ACCOUNTING is enabled, we use the
PURR register for measuring the user and system time used by
processes, as well as other related times such as hardirq and
softirq times. This turns out to be quite confusing for users
because it means that a program will often be measured as taking
less time when run on a multi-threaded processor (SMT2 or SMT4 mode)
than it does when run on a single-threaded processor (ST mode), even
though the program takes longer to finish. The discrepancy is
accounted for as stolen time, which is also confusing, particularly
when there are no other partitions running.
This changes the accounting to use the timebase instead, meaning that
the reported user and system times are the actual number of real-time
seconds that the program was executing on the processor thread,
regardless of which SMT mode the processor is in. Thus a program will
generally show greater user and system times when run on a
multi-threaded processor than on a single-threaded processor.
On pSeries systems on POWER5 or later processors, we measure the
stolen time (time when this partition wasn't running) using the
hypervisor dispatch trace log. We check for new entries in the
log on every entry from user mode and on every transition from
kernel process context to soft or hard IRQ context (i.e. when
account_system_vtime() gets called). So that we can correctly
distinguish time stolen from user time and time stolen from system
time, without having to check the log on every exit to user mode,
we store separate timestamps for exit to user mode and entry from
user mode.
On systems that have a SPURR (POWER6 and POWER7), we read the SPURR
in account_system_vtime() (as before), and then apportion the SPURR
ticks since the last time we read it between scaled user time and
scaled system time according to the relative proportions of user
time and system time over the same interval. This avoids having to
read the SPURR on every kernel entry and exit. On systems that have
PURR but not SPURR (i.e., POWER5), we do the same using the PURR
rather than the SPURR.
This disables the DTL user interface in /sys/debug/kernel/powerpc/dtl
for now since it conflicts with the use of the dispatch trace log
by the time accounting code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2010-08-26 19:56:43 +00:00
|
|
|
|
2012-03-01 04:40:23 +00:00
|
|
|
/*
|
|
|
|
* A syscall should always be called with interrupts enabled
|
|
|
|
* so we just unconditionally hard-enable here. When some kind
|
|
|
|
* of irq tracing is used, we additionally check that condition
|
|
|
|
* is correct
|
|
|
|
*/
|
2017-12-20 03:55:54 +00:00
|
|
|
#if defined(CONFIG_PPC_IRQ_SOFT_MASK_DEBUG) && defined(CONFIG_BUG)
|
2017-12-20 03:55:50 +00:00
|
|
|
lbz r10,PACAIRQSOFTMASK(r13)
|
powerpc/64: Change soft_enabled from flag to bitmask
"paca->soft_enabled" is used as a flag to mask some of interrupts.
Currently supported flags values and their details:
soft_enabled MSR[EE]
0 0 Disabled (PMI and HMI not masked)
1 1 Enabled
"paca->soft_enabled" is initialized to 1 to make the interripts as
enabled. arch_local_irq_disable() will toggle the value when
interrupts needs to disbled. At this point, the interrupts are not
actually disabled, instead, interrupt vector has code to check for the
flag and mask it when it occurs. By "mask it", it update interrupt
paca->irq_happened and return. arch_local_irq_restore() is called to
re-enable interrupts, which checks and replays interrupts if any
occured.
Now, as mentioned, current logic doesnot mask "performance monitoring
interrupts" and PMIs are implemented as NMI. But this patchset depends
on local_irq_* for a successful local_* update. Meaning, mask all
possible interrupts during local_* update and replay them after the
update.
So the idea here is to reserve the "paca->soft_enabled" logic. New
values and details:
soft_enabled MSR[EE]
1 0 Disabled (PMI and HMI not masked)
0 1 Enabled
Reason for the this change is to create foundation for a third mask
value "0x2" for "soft_enabled" to add support to mask PMIs. When
->soft_enabled is set to a value "3", PMI interrupts are mask and when
set to a value of "1", PMI are not mask. With this patch also extends
soft_enabled as interrupt disable mask.
Current flags are renamed from IRQ_[EN?DIS}ABLED to
IRQS_ENABLED and IRQS_DISABLED.
Patch also fixes the ptrace call to force the user to see the softe
value to be alway 1. Reason being, even though userspace has no
business knowing about softe, it is part of pt_regs. Like-wise in
signal context.
Signed-off-by: Madhavan Srinivasan <maddy@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-12-20 03:55:49 +00:00
|
|
|
1: tdnei r10,IRQS_ENABLED
|
2012-03-01 04:40:23 +00:00
|
|
|
EMIT_BUG_ENTRY 1b,__FILE__,__LINE__,BUGFLAG_WARNING
|
|
|
|
#endif
|
2009-07-23 23:15:59 +00:00
|
|
|
|
|
|
|
#ifdef CONFIG_PPC_BOOK3E
|
|
|
|
wrteei 1
|
|
|
|
#else
|
2016-09-15 09:04:46 +00:00
|
|
|
li r11,MSR_RI
|
2005-10-10 12:36:14 +00:00
|
|
|
ori r11,r11,MSR_EE
|
|
|
|
mtmsrd r11,1
|
2009-07-23 23:15:59 +00:00
|
|
|
#endif /* CONFIG_PPC_BOOK3E */
|
2005-10-10 12:36:14 +00:00
|
|
|
|
2017-06-29 17:49:17 +00:00
|
|
|
system_call: /* label this so stack traces look sane */
|
2012-03-01 04:40:23 +00:00
|
|
|
/* We do need to set SOFTE in the stack frame or the return
|
|
|
|
* from interrupt will be painful
|
|
|
|
*/
|
2017-12-20 03:55:42 +00:00
|
|
|
li r10,IRQS_ENABLED
|
2012-03-01 04:40:23 +00:00
|
|
|
std r10,SOFTE(r1)
|
|
|
|
|
2019-01-12 09:55:50 +00:00
|
|
|
ld r11, PACA_THREAD_INFO(r13)
|
2005-10-10 12:36:14 +00:00
|
|
|
ld r10,TI_FLAGS(r11)
|
2015-01-15 01:01:42 +00:00
|
|
|
andi. r11,r10,_TIF_SYSCALL_DOTRACE
|
2017-06-29 17:49:16 +00:00
|
|
|
bne .Lsyscall_dotrace /* does not return */
|
2005-10-10 12:36:14 +00:00
|
|
|
cmpldi 0,r0,NR_syscalls
|
2017-06-29 17:49:16 +00:00
|
|
|
bge- .Lsyscall_enosys
|
2005-10-10 12:36:14 +00:00
|
|
|
|
2017-06-29 17:49:17 +00:00
|
|
|
.Lsyscall:
|
2005-10-10 12:36:14 +00:00
|
|
|
/*
|
|
|
|
* Need to vector to 32 Bit or default sys_call_table here,
|
|
|
|
* based on caller's run-mode / personality.
|
|
|
|
*/
|
2014-02-04 05:05:53 +00:00
|
|
|
ld r11,SYS_CALL_TABLE@toc(2)
|
powerpc: Redefine TIF_32BITS thread flag
Moving TIF_32BIT to use bit 20 instead of 4 in the task flag field.
This change is making room for an upcoming new task macro
(_TIF_SYSCALL_EMU) which is preferred to set a bit in the lower 16-bits
part of the word.
This upcoming flag macro will take part in a composed macro
(_TIF_SYSCALL_DOTRACE) which will contain other flags as well, and it is
preferred that the whole _TIF_SYSCALL_DOTRACE macro only sets the lower 16
bits of a word, so, it could be handled using immediate operations (as load
immediate, add immediate, ...) where the immediate operand (SI) is limited
to 16-bits.
Another possible solution would be using the LOAD_REG_IMMEDIATE() macro
to load a full 64-bits word immediate, but it takes 5 operations instead of
one.
Having TIF_32BITS being redefined to use an upper bit is not a problem
since there is only one place in the assembly code where TIF_32BIT is being
used, and it could be replaced with an operation with right shift (addis),
since it is used alone, i.e. not being part of a composed macro, which has
different bits set, and would require LOAD_REG_IMMEDIATE().
Tested on a 64 bits Big Endian machine running a 32 bits task.
Signed-off-by: Breno Leitao <leitao@debian.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-09-20 16:45:05 +00:00
|
|
|
andis. r10,r10,_TIF_32BIT@h
|
2005-10-10 12:36:14 +00:00
|
|
|
beq 15f
|
2018-12-17 10:40:35 +00:00
|
|
|
ld r11,COMPAT_SYS_CALL_TABLE@toc(2)
|
2005-10-10 12:36:14 +00:00
|
|
|
clrldi r3,r3,32
|
|
|
|
clrldi r4,r4,32
|
|
|
|
clrldi r5,r5,32
|
|
|
|
clrldi r6,r6,32
|
|
|
|
clrldi r7,r7,32
|
|
|
|
clrldi r8,r8,32
|
|
|
|
15:
|
2018-12-17 10:40:35 +00:00
|
|
|
slwi r0,r0,3
|
2018-04-24 04:15:59 +00:00
|
|
|
|
|
|
|
barrier_nospec_asm
|
|
|
|
/*
|
|
|
|
* Prevent the load of the handler below (based on the user-passed
|
|
|
|
* system call number) being speculatively executed until the test
|
|
|
|
* against NR_syscalls and branch to .Lsyscall_enosys above has
|
|
|
|
* committed.
|
|
|
|
*/
|
|
|
|
|
2014-02-04 05:07:47 +00:00
|
|
|
ldx r12,r11,r0 /* Fetch system call handler [ptr] */
|
|
|
|
mtctr r12
|
2005-10-10 12:36:14 +00:00
|
|
|
bctrl /* Call handler */
|
|
|
|
|
2014-12-05 10:16:59 +00:00
|
|
|
.Lsyscall_exit:
|
[PATCH] syscall entry/exit revamp
This cleanup patch speeds up the null syscall path on ppc64 by about 3%,
and brings the ppc32 and ppc64 code slightly closer together.
The ppc64 code was checking current_thread_info()->flags twice in the
syscall exit path; once for TIF_SYSCALL_T_OR_A before disabling
interrupts, and then again for TIF_SIGPENDING|TIF_NEED_RESCHED etc after
disabling interrupts. Now we do the same as ppc32 -- check the flags
only once in the fast path, and re-enable interrupts if necessary in the
ptrace case.
The patch abolishes the 'syscall_noerror' member of struct thread_info
and replaces it with a TIF_NOERROR bit in the flags, which is handled in
the slow path. This shortens the syscall entry code, which no longer
needs to clear syscall_noerror.
The patch adds a TIF_SAVE_NVGPRS flag which causes the syscall exit slow
path to save the non-volatile GPRs into a signal frame. This removes the
need for the assembly wrappers around sys_sigsuspend(),
sys_rt_sigsuspend(), et al which existed solely to save those registers
in advance. It also means I don't have to add new wrappers for ppoll()
and pselect(), which is what I was supposed to be doing when I got
distracted into this...
Finally, it unifies the ppc64 and ppc32 methods of handling syscall exit
directly into a signal handler (as required by sigsuspend et al) by
introducing a TIF_RESTOREALL flag which causes _all_ the registers to be
reloaded from the pt_regs by taking the ret_from_exception path, instead
of the normal syscall exit path which stomps on the callee-saved GPRs.
It appears to pass an LTP test run on ppc64, and passes basic testing on
ppc32 too. Brief tests of ptrace functionality with strace and gdb also
appear OK. I wouldn't send it to Linus for 2.6.15 just yet though :)
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2005-11-15 18:52:18 +00:00
|
|
|
std r3,RESULT(r1)
|
2018-06-02 12:44:01 +00:00
|
|
|
|
|
|
|
#ifdef CONFIG_DEBUG_RSEQ
|
|
|
|
/* Check whether the syscall is issued inside a restartable sequence */
|
|
|
|
addi r3,r1,STACK_FRAME_OVERHEAD
|
|
|
|
bl rseq_syscall
|
|
|
|
ld r3,RESULT(r1)
|
|
|
|
#endif
|
|
|
|
|
2019-01-12 09:55:50 +00:00
|
|
|
ld r12, PACA_THREAD_INFO(r13)
|
2005-10-10 12:36:14 +00:00
|
|
|
|
|
|
|
ld r8,_MSR(r1)
|
2009-07-23 23:15:59 +00:00
|
|
|
#ifdef CONFIG_PPC_BOOK3S
|
|
|
|
/* No MSR:RI on BookE */
|
2005-10-10 12:36:14 +00:00
|
|
|
andi. r10,r8,MSR_RI
|
2017-06-29 17:49:19 +00:00
|
|
|
beq- .Lunrecov_restore
|
2009-07-23 23:15:59 +00:00
|
|
|
#endif
|
2017-06-29 17:49:18 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* This is a few instructions into the actual syscall exit path (which actually
|
|
|
|
* starts at .Lsyscall_exit) to cater to kprobe blacklisting and to reduce the
|
|
|
|
* number of visible symbols for profiling purposes.
|
|
|
|
*
|
|
|
|
* We can probe from system_call until this point as MSR_RI is set. But once it
|
|
|
|
* is cleared below, we won't be able to take a trap.
|
|
|
|
*
|
|
|
|
* This is blacklisted from kprobes further below with _ASM_NOKPROBE_SYMBOL().
|
|
|
|
*/
|
|
|
|
system_call_exit:
|
2012-03-01 04:40:23 +00:00
|
|
|
/*
|
|
|
|
* Disable interrupts so current_thread_info()->flags can't change,
|
2009-07-23 23:15:59 +00:00
|
|
|
* and so that we don't get interrupted after loading SRR0/1.
|
2018-11-29 06:42:24 +00:00
|
|
|
*
|
|
|
|
* Leave MSR_RI enabled for now, because with THREAD_INFO_IN_TASK we
|
|
|
|
* could fault on the load of the TI_FLAGS below.
|
2009-07-23 23:15:59 +00:00
|
|
|
*/
|
|
|
|
#ifdef CONFIG_PPC_BOOK3E
|
|
|
|
wrteei 0
|
|
|
|
#else
|
2018-11-29 06:42:24 +00:00
|
|
|
li r11,MSR_RI
|
2012-05-29 12:22:00 +00:00
|
|
|
mtmsrd r11,1
|
2009-07-23 23:15:59 +00:00
|
|
|
#endif /* CONFIG_PPC_BOOK3E */
|
|
|
|
|
2005-10-10 12:36:14 +00:00
|
|
|
ld r9,TI_FLAGS(r12)
|
powerpc/kernel: Switch to using MAX_ERRNO
Currently on powerpc we have our own #define for the highest (negative)
errno value, called _LAST_ERRNO. This is defined to be 516, for reasons
which are not clear.
The generic code, and x86, use MAX_ERRNO, which is defined to be 4095.
In particular seccomp uses MAX_ERRNO to restrict the value that a
seccomp filter can return.
Currently with the mismatch between _LAST_ERRNO and MAX_ERRNO, a seccomp
tracer wanting to return 600, expecting it to be seen as an error, would
instead find on powerpc that userspace sees a successful syscall with a
return value of 600.
To avoid this inconsistency, switch powerpc to use MAX_ERRNO.
We are somewhat confident that generic syscalls that can return a
non-error value above negative MAX_ERRNO have already been updated to
use force_successful_syscall_return().
I have also checked all the powerpc specific syscalls, and believe that
none of them expect to return a non-error value between -MAX_ERRNO and
-516. So this change should be safe ...
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Kees Cook <keescook@chromium.org>
2015-07-23 10:21:01 +00:00
|
|
|
li r11,-MAX_ERRNO
|
2015-01-15 01:01:42 +00:00
|
|
|
andi. r0,r9,(_TIF_SYSCALL_DOTRACE|_TIF_SINGLESTEP|_TIF_USER_WORK_MASK|_TIF_PERSYSCALL_MASK)
|
2017-06-29 17:49:16 +00:00
|
|
|
bne- .Lsyscall_exit_work
|
2016-02-29 06:53:47 +00:00
|
|
|
|
2017-08-07 11:25:01 +00:00
|
|
|
andi. r0,r8,MSR_FP
|
|
|
|
beq 2f
|
2016-02-29 06:53:47 +00:00
|
|
|
#ifdef CONFIG_ALTIVEC
|
2017-08-07 11:25:01 +00:00
|
|
|
andis. r0,r8,MSR_VEC@h
|
|
|
|
bne 3f
|
2016-02-29 06:53:47 +00:00
|
|
|
#endif
|
2017-08-07 11:25:01 +00:00
|
|
|
2: addi r3,r1,STACK_FRAME_OVERHEAD
|
|
|
|
bl restore_math
|
|
|
|
ld r8,_MSR(r1)
|
|
|
|
ld r3,RESULT(r1)
|
|
|
|
li r11,-MAX_ERRNO
|
2016-02-29 06:53:47 +00:00
|
|
|
|
2017-08-07 11:25:01 +00:00
|
|
|
3: cmpld r3,r11
|
[PATCH] syscall entry/exit revamp
This cleanup patch speeds up the null syscall path on ppc64 by about 3%,
and brings the ppc32 and ppc64 code slightly closer together.
The ppc64 code was checking current_thread_info()->flags twice in the
syscall exit path; once for TIF_SYSCALL_T_OR_A before disabling
interrupts, and then again for TIF_SIGPENDING|TIF_NEED_RESCHED etc after
disabling interrupts. Now we do the same as ppc32 -- check the flags
only once in the fast path, and re-enable interrupts if necessary in the
ptrace case.
The patch abolishes the 'syscall_noerror' member of struct thread_info
and replaces it with a TIF_NOERROR bit in the flags, which is handled in
the slow path. This shortens the syscall entry code, which no longer
needs to clear syscall_noerror.
The patch adds a TIF_SAVE_NVGPRS flag which causes the syscall exit slow
path to save the non-volatile GPRs into a signal frame. This removes the
need for the assembly wrappers around sys_sigsuspend(),
sys_rt_sigsuspend(), et al which existed solely to save those registers
in advance. It also means I don't have to add new wrappers for ppoll()
and pselect(), which is what I was supposed to be doing when I got
distracted into this...
Finally, it unifies the ppc64 and ppc32 methods of handling syscall exit
directly into a signal handler (as required by sigsuspend et al) by
introducing a TIF_RESTOREALL flag which causes _all_ the registers to be
reloaded from the pt_regs by taking the ret_from_exception path, instead
of the normal syscall exit path which stomps on the callee-saved GPRs.
It appears to pass an LTP test run on ppc64, and passes basic testing on
ppc32 too. Brief tests of ptrace functionality with strace and gdb also
appear OK. I wouldn't send it to Linus for 2.6.15 just yet though :)
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2005-11-15 18:52:18 +00:00
|
|
|
ld r5,_CCR(r1)
|
2017-06-29 17:49:16 +00:00
|
|
|
bge- .Lsyscall_error
|
2012-04-04 18:23:27 +00:00
|
|
|
.Lsyscall_error_cont:
|
2005-10-10 12:36:14 +00:00
|
|
|
ld r7,_NIP(r1)
|
2010-08-11 01:40:27 +00:00
|
|
|
BEGIN_FTR_SECTION
|
2005-10-10 12:36:14 +00:00
|
|
|
stdcx. r0,0,r1 /* to clear the reservation */
|
2010-08-11 01:40:27 +00:00
|
|
|
END_FTR_SECTION_IFCLR(CPU_FTR_STCX_CHECKS_ADDRESS)
|
2005-10-10 12:36:14 +00:00
|
|
|
andi. r6,r8,MSR_PR
|
|
|
|
ld r4,_LINK(r1)
|
2009-07-23 23:15:59 +00:00
|
|
|
|
2019-04-18 06:51:24 +00:00
|
|
|
kuap_check_amr r10, r11
|
|
|
|
|
2018-11-29 06:42:24 +00:00
|
|
|
#ifdef CONFIG_PPC_BOOK3S
|
|
|
|
/*
|
|
|
|
* Clear MSR_RI, MSR_EE is already and remains disabled. We could do
|
|
|
|
* this later, but testing shows that doing it here causes less slow
|
|
|
|
* down than doing it closer to the rfid.
|
|
|
|
*/
|
|
|
|
li r11,0
|
|
|
|
mtmsrd r11,1
|
|
|
|
#endif
|
|
|
|
|
powerpc: Implement accurate task and CPU time accounting
This implements accurate task and cpu time accounting for 64-bit
powerpc kernels. Instead of accounting a whole jiffy of time to a
task on a timer interrupt because that task happened to be running at
the time, we now account time in units of timebase ticks according to
the actual time spent by the task in user mode and kernel mode. We
also count the time spent processing hardware and software interrupts
accurately. This is conditional on CONFIG_VIRT_CPU_ACCOUNTING. If
that is not set, we do tick-based approximate accounting as before.
To get this accurate information, we read either the PURR (processor
utilization of resources register) on POWER5 machines, or the timebase
on other machines on
* each entry to the kernel from usermode
* each exit to usermode
* transitions between process context, hard irq context and soft irq
context in kernel mode
* context switches.
On POWER5 systems with shared-processor logical partitioning we also
read both the PURR and the timebase at each timer interrupt and
context switch in order to determine how much time has been taken by
the hypervisor to run other partitions ("steal" time). Unfortunately,
since we need values of the PURR on both threads at the same time to
accurately calculate the steal time, and since we can only calculate
steal time on a per-core basis, the apportioning of the steal time
between idle time (time which we ceded to the hypervisor in the idle
loop) and actual stolen time is somewhat approximate at the moment.
This is all based quite heavily on what s390 does, and it uses the
generic interfaces that were added by the s390 developers,
i.e. account_system_time(), account_user_time(), etc.
This patch doesn't add any new interfaces between the kernel and
userspace, and doesn't change the units in which time is reported to
userspace by things such as /proc/stat, /proc/<pid>/stat, getrusage(),
times(), etc. Internally the various task and cpu times are stored in
timebase units, but they are converted to USER_HZ units (1/100th of a
second) when reported to userspace. Some precision is therefore lost
but there should not be any accumulating error, since the internal
accumulation is at full precision.
Signed-off-by: Paul Mackerras <paulus@samba.org>
2006-02-23 23:06:59 +00:00
|
|
|
beq- 1f
|
2016-05-17 06:33:46 +00:00
|
|
|
ACCOUNT_CPU_USER_EXIT(r13, r11, r12)
|
2015-11-25 03:25:17 +00:00
|
|
|
|
|
|
|
BEGIN_FTR_SECTION
|
|
|
|
HMT_MEDIUM_LOW
|
|
|
|
END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
|
|
|
|
|
2018-11-26 20:11:58 +00:00
|
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
|
|
std r8, PACATMSCRATCH(r13)
|
|
|
|
#endif
|
|
|
|
|
2019-04-18 06:51:24 +00:00
|
|
|
/*
|
|
|
|
* We don't need to restore AMR on the way back to userspace for KUAP.
|
|
|
|
* The value of AMR only matters while we're in the kernel.
|
|
|
|
*/
|
powerpc: Implement accurate task and CPU time accounting
This implements accurate task and cpu time accounting for 64-bit
powerpc kernels. Instead of accounting a whole jiffy of time to a
task on a timer interrupt because that task happened to be running at
the time, we now account time in units of timebase ticks according to
the actual time spent by the task in user mode and kernel mode. We
also count the time spent processing hardware and software interrupts
accurately. This is conditional on CONFIG_VIRT_CPU_ACCOUNTING. If
that is not set, we do tick-based approximate accounting as before.
To get this accurate information, we read either the PURR (processor
utilization of resources register) on POWER5 machines, or the timebase
on other machines on
* each entry to the kernel from usermode
* each exit to usermode
* transitions between process context, hard irq context and soft irq
context in kernel mode
* context switches.
On POWER5 systems with shared-processor logical partitioning we also
read both the PURR and the timebase at each timer interrupt and
context switch in order to determine how much time has been taken by
the hypervisor to run other partitions ("steal" time). Unfortunately,
since we need values of the PURR on both threads at the same time to
accurately calculate the steal time, and since we can only calculate
steal time on a per-core basis, the apportioning of the steal time
between idle time (time which we ceded to the hypervisor in the idle
loop) and actual stolen time is somewhat approximate at the moment.
This is all based quite heavily on what s390 does, and it uses the
generic interfaces that were added by the s390 developers,
i.e. account_system_time(), account_user_time(), etc.
This patch doesn't add any new interfaces between the kernel and
userspace, and doesn't change the units in which time is reported to
userspace by things such as /proc/stat, /proc/<pid>/stat, getrusage(),
times(), etc. Internally the various task and cpu times are stored in
timebase units, but they are converted to USER_HZ units (1/100th of a
second) when reported to userspace. Some precision is therefore lost
but there should not be any accumulating error, since the internal
accumulation is at full precision.
Signed-off-by: Paul Mackerras <paulus@samba.org>
2006-02-23 23:06:59 +00:00
|
|
|
ld r13,GPR13(r1) /* only restore r13 if returning to usermode */
|
2018-01-09 16:07:15 +00:00
|
|
|
ld r2,GPR2(r1)
|
|
|
|
ld r1,GPR1(r1)
|
|
|
|
mtlr r4
|
|
|
|
mtcr r5
|
|
|
|
mtspr SPRN_SRR0,r7
|
|
|
|
mtspr SPRN_SRR1,r8
|
|
|
|
RFI_TO_USER
|
|
|
|
b . /* prevent speculative execution */
|
|
|
|
|
2019-04-18 06:51:24 +00:00
|
|
|
1: /* exit to kernel */
|
|
|
|
kuap_restore_amr r2
|
|
|
|
|
|
|
|
ld r2,GPR2(r1)
|
2005-10-10 12:36:14 +00:00
|
|
|
ld r1,GPR1(r1)
|
|
|
|
mtlr r4
|
|
|
|
mtcr r5
|
|
|
|
mtspr SPRN_SRR0,r7
|
|
|
|
mtspr SPRN_SRR1,r8
|
2018-01-09 16:07:15 +00:00
|
|
|
RFI_TO_KERNEL
|
2005-10-10 12:36:14 +00:00
|
|
|
b . /* prevent speculative execution */
|
|
|
|
|
2017-06-29 17:49:16 +00:00
|
|
|
.Lsyscall_error:
|
2005-10-10 12:36:14 +00:00
|
|
|
oris r5,r5,0x1000 /* Set SO bit in CR */
|
[PATCH] syscall entry/exit revamp
This cleanup patch speeds up the null syscall path on ppc64 by about 3%,
and brings the ppc32 and ppc64 code slightly closer together.
The ppc64 code was checking current_thread_info()->flags twice in the
syscall exit path; once for TIF_SYSCALL_T_OR_A before disabling
interrupts, and then again for TIF_SIGPENDING|TIF_NEED_RESCHED etc after
disabling interrupts. Now we do the same as ppc32 -- check the flags
only once in the fast path, and re-enable interrupts if necessary in the
ptrace case.
The patch abolishes the 'syscall_noerror' member of struct thread_info
and replaces it with a TIF_NOERROR bit in the flags, which is handled in
the slow path. This shortens the syscall entry code, which no longer
needs to clear syscall_noerror.
The patch adds a TIF_SAVE_NVGPRS flag which causes the syscall exit slow
path to save the non-volatile GPRs into a signal frame. This removes the
need for the assembly wrappers around sys_sigsuspend(),
sys_rt_sigsuspend(), et al which existed solely to save those registers
in advance. It also means I don't have to add new wrappers for ppoll()
and pselect(), which is what I was supposed to be doing when I got
distracted into this...
Finally, it unifies the ppc64 and ppc32 methods of handling syscall exit
directly into a signal handler (as required by sigsuspend et al) by
introducing a TIF_RESTOREALL flag which causes _all_ the registers to be
reloaded from the pt_regs by taking the ret_from_exception path, instead
of the normal syscall exit path which stomps on the callee-saved GPRs.
It appears to pass an LTP test run on ppc64, and passes basic testing on
ppc32 too. Brief tests of ptrace functionality with strace and gdb also
appear OK. I wouldn't send it to Linus for 2.6.15 just yet though :)
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2005-11-15 18:52:18 +00:00
|
|
|
neg r3,r3
|
2005-10-10 12:36:14 +00:00
|
|
|
std r5,_CCR(r1)
|
2012-04-04 18:23:27 +00:00
|
|
|
b .Lsyscall_error_cont
|
2017-06-08 15:35:05 +00:00
|
|
|
|
2005-10-10 12:36:14 +00:00
|
|
|
/* Traced system call support */
|
2017-06-29 17:49:16 +00:00
|
|
|
.Lsyscall_dotrace:
|
2014-02-04 05:04:35 +00:00
|
|
|
bl save_nvgprs
|
2005-10-10 12:36:14 +00:00
|
|
|
addi r3,r1,STACK_FRAME_OVERHEAD
|
2014-02-04 05:04:35 +00:00
|
|
|
bl do_syscall_trace_enter
|
2015-07-23 10:21:02 +00:00
|
|
|
|
2008-07-27 06:51:03 +00:00
|
|
|
/*
|
2015-07-23 10:21:02 +00:00
|
|
|
* We use the return value of do_syscall_trace_enter() as the syscall
|
|
|
|
* number. If the syscall was rejected for any reason do_syscall_trace_enter()
|
|
|
|
* returns an invalid syscall number and the test below against
|
|
|
|
* NR_syscalls will fail.
|
2008-07-27 06:51:03 +00:00
|
|
|
*/
|
|
|
|
mr r0,r3
|
2015-07-23 10:21:02 +00:00
|
|
|
|
|
|
|
/* Restore argument registers just clobbered and/or possibly changed. */
|
2005-10-10 12:36:14 +00:00
|
|
|
ld r3,GPR3(r1)
|
|
|
|
ld r4,GPR4(r1)
|
|
|
|
ld r5,GPR5(r1)
|
|
|
|
ld r6,GPR6(r1)
|
|
|
|
ld r7,GPR7(r1)
|
|
|
|
ld r8,GPR8(r1)
|
2015-07-23 10:21:02 +00:00
|
|
|
|
2017-06-29 17:49:17 +00:00
|
|
|
/* Repopulate r9 and r10 for the syscall path */
|
2005-10-10 12:36:14 +00:00
|
|
|
addi r9,r1,STACK_FRAME_OVERHEAD
|
2019-01-12 09:55:50 +00:00
|
|
|
ld r10, PACA_THREAD_INFO(r13)
|
2005-10-10 12:36:14 +00:00
|
|
|
ld r10,TI_FLAGS(r10)
|
2015-07-23 10:21:02 +00:00
|
|
|
|
|
|
|
cmpldi r0,NR_syscalls
|
2017-06-29 17:49:17 +00:00
|
|
|
blt+ .Lsyscall
|
2015-07-23 10:21:02 +00:00
|
|
|
|
|
|
|
/* Return code is already in r3 thanks to do_syscall_trace_enter() */
|
|
|
|
b .Lsyscall_exit
|
|
|
|
|
2005-10-10 12:36:14 +00:00
|
|
|
|
2017-06-29 17:49:16 +00:00
|
|
|
.Lsyscall_enosys:
|
[PATCH] syscall entry/exit revamp
This cleanup patch speeds up the null syscall path on ppc64 by about 3%,
and brings the ppc32 and ppc64 code slightly closer together.
The ppc64 code was checking current_thread_info()->flags twice in the
syscall exit path; once for TIF_SYSCALL_T_OR_A before disabling
interrupts, and then again for TIF_SIGPENDING|TIF_NEED_RESCHED etc after
disabling interrupts. Now we do the same as ppc32 -- check the flags
only once in the fast path, and re-enable interrupts if necessary in the
ptrace case.
The patch abolishes the 'syscall_noerror' member of struct thread_info
and replaces it with a TIF_NOERROR bit in the flags, which is handled in
the slow path. This shortens the syscall entry code, which no longer
needs to clear syscall_noerror.
The patch adds a TIF_SAVE_NVGPRS flag which causes the syscall exit slow
path to save the non-volatile GPRs into a signal frame. This removes the
need for the assembly wrappers around sys_sigsuspend(),
sys_rt_sigsuspend(), et al which existed solely to save those registers
in advance. It also means I don't have to add new wrappers for ppoll()
and pselect(), which is what I was supposed to be doing when I got
distracted into this...
Finally, it unifies the ppc64 and ppc32 methods of handling syscall exit
directly into a signal handler (as required by sigsuspend et al) by
introducing a TIF_RESTOREALL flag which causes _all_ the registers to be
reloaded from the pt_regs by taking the ret_from_exception path, instead
of the normal syscall exit path which stomps on the callee-saved GPRs.
It appears to pass an LTP test run on ppc64, and passes basic testing on
ppc32 too. Brief tests of ptrace functionality with strace and gdb also
appear OK. I wouldn't send it to Linus for 2.6.15 just yet though :)
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2005-11-15 18:52:18 +00:00
|
|
|
li r3,-ENOSYS
|
2014-12-05 10:16:59 +00:00
|
|
|
b .Lsyscall_exit
|
[PATCH] syscall entry/exit revamp
This cleanup patch speeds up the null syscall path on ppc64 by about 3%,
and brings the ppc32 and ppc64 code slightly closer together.
The ppc64 code was checking current_thread_info()->flags twice in the
syscall exit path; once for TIF_SYSCALL_T_OR_A before disabling
interrupts, and then again for TIF_SIGPENDING|TIF_NEED_RESCHED etc after
disabling interrupts. Now we do the same as ppc32 -- check the flags
only once in the fast path, and re-enable interrupts if necessary in the
ptrace case.
The patch abolishes the 'syscall_noerror' member of struct thread_info
and replaces it with a TIF_NOERROR bit in the flags, which is handled in
the slow path. This shortens the syscall entry code, which no longer
needs to clear syscall_noerror.
The patch adds a TIF_SAVE_NVGPRS flag which causes the syscall exit slow
path to save the non-volatile GPRs into a signal frame. This removes the
need for the assembly wrappers around sys_sigsuspend(),
sys_rt_sigsuspend(), et al which existed solely to save those registers
in advance. It also means I don't have to add new wrappers for ppoll()
and pselect(), which is what I was supposed to be doing when I got
distracted into this...
Finally, it unifies the ppc64 and ppc32 methods of handling syscall exit
directly into a signal handler (as required by sigsuspend et al) by
introducing a TIF_RESTOREALL flag which causes _all_ the registers to be
reloaded from the pt_regs by taking the ret_from_exception path, instead
of the normal syscall exit path which stomps on the callee-saved GPRs.
It appears to pass an LTP test run on ppc64, and passes basic testing on
ppc32 too. Brief tests of ptrace functionality with strace and gdb also
appear OK. I wouldn't send it to Linus for 2.6.15 just yet though :)
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2005-11-15 18:52:18 +00:00
|
|
|
|
2017-06-29 17:49:16 +00:00
|
|
|
.Lsyscall_exit_work:
|
[PATCH] syscall entry/exit revamp
This cleanup patch speeds up the null syscall path on ppc64 by about 3%,
and brings the ppc32 and ppc64 code slightly closer together.
The ppc64 code was checking current_thread_info()->flags twice in the
syscall exit path; once for TIF_SYSCALL_T_OR_A before disabling
interrupts, and then again for TIF_SIGPENDING|TIF_NEED_RESCHED etc after
disabling interrupts. Now we do the same as ppc32 -- check the flags
only once in the fast path, and re-enable interrupts if necessary in the
ptrace case.
The patch abolishes the 'syscall_noerror' member of struct thread_info
and replaces it with a TIF_NOERROR bit in the flags, which is handled in
the slow path. This shortens the syscall entry code, which no longer
needs to clear syscall_noerror.
The patch adds a TIF_SAVE_NVGPRS flag which causes the syscall exit slow
path to save the non-volatile GPRs into a signal frame. This removes the
need for the assembly wrappers around sys_sigsuspend(),
sys_rt_sigsuspend(), et al which existed solely to save those registers
in advance. It also means I don't have to add new wrappers for ppoll()
and pselect(), which is what I was supposed to be doing when I got
distracted into this...
Finally, it unifies the ppc64 and ppc32 methods of handling syscall exit
directly into a signal handler (as required by sigsuspend et al) by
introducing a TIF_RESTOREALL flag which causes _all_ the registers to be
reloaded from the pt_regs by taking the ret_from_exception path, instead
of the normal syscall exit path which stomps on the callee-saved GPRs.
It appears to pass an LTP test run on ppc64, and passes basic testing on
ppc32 too. Brief tests of ptrace functionality with strace and gdb also
appear OK. I wouldn't send it to Linus for 2.6.15 just yet though :)
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2005-11-15 18:52:18 +00:00
|
|
|
/* If TIF_RESTOREALL is set, don't scribble on either r3 or ccr.
|
|
|
|
If TIF_NOERROR is set, just save r3 as it is. */
|
|
|
|
|
|
|
|
andi. r0,r9,_TIF_RESTOREALL
|
2006-03-08 02:24:22 +00:00
|
|
|
beq+ 0f
|
|
|
|
REST_NVGPRS(r1)
|
|
|
|
b 2f
|
powerpc/kernel: Switch to using MAX_ERRNO
Currently on powerpc we have our own #define for the highest (negative)
errno value, called _LAST_ERRNO. This is defined to be 516, for reasons
which are not clear.
The generic code, and x86, use MAX_ERRNO, which is defined to be 4095.
In particular seccomp uses MAX_ERRNO to restrict the value that a
seccomp filter can return.
Currently with the mismatch between _LAST_ERRNO and MAX_ERRNO, a seccomp
tracer wanting to return 600, expecting it to be seen as an error, would
instead find on powerpc that userspace sees a successful syscall with a
return value of 600.
To avoid this inconsistency, switch powerpc to use MAX_ERRNO.
We are somewhat confident that generic syscalls that can return a
non-error value above negative MAX_ERRNO have already been updated to
use force_successful_syscall_return().
I have also checked all the powerpc specific syscalls, and believe that
none of them expect to return a non-error value between -MAX_ERRNO and
-516. So this change should be safe ...
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Kees Cook <keescook@chromium.org>
2015-07-23 10:21:01 +00:00
|
|
|
0: cmpld r3,r11 /* r11 is -MAX_ERRNO */
|
[PATCH] syscall entry/exit revamp
This cleanup patch speeds up the null syscall path on ppc64 by about 3%,
and brings the ppc32 and ppc64 code slightly closer together.
The ppc64 code was checking current_thread_info()->flags twice in the
syscall exit path; once for TIF_SYSCALL_T_OR_A before disabling
interrupts, and then again for TIF_SIGPENDING|TIF_NEED_RESCHED etc after
disabling interrupts. Now we do the same as ppc32 -- check the flags
only once in the fast path, and re-enable interrupts if necessary in the
ptrace case.
The patch abolishes the 'syscall_noerror' member of struct thread_info
and replaces it with a TIF_NOERROR bit in the flags, which is handled in
the slow path. This shortens the syscall entry code, which no longer
needs to clear syscall_noerror.
The patch adds a TIF_SAVE_NVGPRS flag which causes the syscall exit slow
path to save the non-volatile GPRs into a signal frame. This removes the
need for the assembly wrappers around sys_sigsuspend(),
sys_rt_sigsuspend(), et al which existed solely to save those registers
in advance. It also means I don't have to add new wrappers for ppoll()
and pselect(), which is what I was supposed to be doing when I got
distracted into this...
Finally, it unifies the ppc64 and ppc32 methods of handling syscall exit
directly into a signal handler (as required by sigsuspend et al) by
introducing a TIF_RESTOREALL flag which causes _all_ the registers to be
reloaded from the pt_regs by taking the ret_from_exception path, instead
of the normal syscall exit path which stomps on the callee-saved GPRs.
It appears to pass an LTP test run on ppc64, and passes basic testing on
ppc32 too. Brief tests of ptrace functionality with strace and gdb also
appear OK. I wouldn't send it to Linus for 2.6.15 just yet though :)
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2005-11-15 18:52:18 +00:00
|
|
|
blt+ 1f
|
|
|
|
andi. r0,r9,_TIF_NOERROR
|
|
|
|
bne- 1f
|
|
|
|
ld r5,_CCR(r1)
|
|
|
|
neg r3,r3
|
|
|
|
oris r5,r5,0x1000 /* Set SO bit in CR */
|
|
|
|
std r5,_CCR(r1)
|
|
|
|
1: std r3,GPR3(r1)
|
|
|
|
2: andi. r0,r9,(_TIF_PERSYSCALL_MASK)
|
|
|
|
beq 4f
|
|
|
|
|
2006-03-08 02:24:22 +00:00
|
|
|
/* Clear per-syscall TIF flags if any are set. */
|
[PATCH] syscall entry/exit revamp
This cleanup patch speeds up the null syscall path on ppc64 by about 3%,
and brings the ppc32 and ppc64 code slightly closer together.
The ppc64 code was checking current_thread_info()->flags twice in the
syscall exit path; once for TIF_SYSCALL_T_OR_A before disabling
interrupts, and then again for TIF_SIGPENDING|TIF_NEED_RESCHED etc after
disabling interrupts. Now we do the same as ppc32 -- check the flags
only once in the fast path, and re-enable interrupts if necessary in the
ptrace case.
The patch abolishes the 'syscall_noerror' member of struct thread_info
and replaces it with a TIF_NOERROR bit in the flags, which is handled in
the slow path. This shortens the syscall entry code, which no longer
needs to clear syscall_noerror.
The patch adds a TIF_SAVE_NVGPRS flag which causes the syscall exit slow
path to save the non-volatile GPRs into a signal frame. This removes the
need for the assembly wrappers around sys_sigsuspend(),
sys_rt_sigsuspend(), et al which existed solely to save those registers
in advance. It also means I don't have to add new wrappers for ppoll()
and pselect(), which is what I was supposed to be doing when I got
distracted into this...
Finally, it unifies the ppc64 and ppc32 methods of handling syscall exit
directly into a signal handler (as required by sigsuspend et al) by
introducing a TIF_RESTOREALL flag which causes _all_ the registers to be
reloaded from the pt_regs by taking the ret_from_exception path, instead
of the normal syscall exit path which stomps on the callee-saved GPRs.
It appears to pass an LTP test run on ppc64, and passes basic testing on
ppc32 too. Brief tests of ptrace functionality with strace and gdb also
appear OK. I wouldn't send it to Linus for 2.6.15 just yet though :)
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2005-11-15 18:52:18 +00:00
|
|
|
|
|
|
|
li r11,_TIF_PERSYSCALL_MASK
|
|
|
|
addi r12,r12,TI_FLAGS
|
|
|
|
3: ldarx r10,0,r12
|
|
|
|
andc r10,r10,r11
|
|
|
|
stdcx. r10,0,r12
|
|
|
|
bne- 3b
|
|
|
|
subi r12,r12,TI_FLAGS
|
2006-03-08 02:24:22 +00:00
|
|
|
|
|
|
|
4: /* Anything else left to do? */
|
2015-11-25 03:25:18 +00:00
|
|
|
BEGIN_FTR_SECTION
|
2018-10-12 13:15:16 +00:00
|
|
|
lis r3,DEFAULT_PPR@highest /* Set default PPR */
|
2015-11-25 03:25:18 +00:00
|
|
|
sldi r3,r3,32 /* bits 11-13 are used for ppr */
|
2018-10-12 13:15:16 +00:00
|
|
|
std r3,_PPR(r1)
|
2015-11-25 03:25:18 +00:00
|
|
|
END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
|
|
|
|
|
2015-01-15 01:01:42 +00:00
|
|
|
andi. r0,r9,(_TIF_SYSCALL_DOTRACE|_TIF_SINGLESTEP)
|
2014-02-04 05:04:35 +00:00
|
|
|
beq ret_from_except_lite
|
[PATCH] syscall entry/exit revamp
This cleanup patch speeds up the null syscall path on ppc64 by about 3%,
and brings the ppc32 and ppc64 code slightly closer together.
The ppc64 code was checking current_thread_info()->flags twice in the
syscall exit path; once for TIF_SYSCALL_T_OR_A before disabling
interrupts, and then again for TIF_SIGPENDING|TIF_NEED_RESCHED etc after
disabling interrupts. Now we do the same as ppc32 -- check the flags
only once in the fast path, and re-enable interrupts if necessary in the
ptrace case.
The patch abolishes the 'syscall_noerror' member of struct thread_info
and replaces it with a TIF_NOERROR bit in the flags, which is handled in
the slow path. This shortens the syscall entry code, which no longer
needs to clear syscall_noerror.
The patch adds a TIF_SAVE_NVGPRS flag which causes the syscall exit slow
path to save the non-volatile GPRs into a signal frame. This removes the
need for the assembly wrappers around sys_sigsuspend(),
sys_rt_sigsuspend(), et al which existed solely to save those registers
in advance. It also means I don't have to add new wrappers for ppoll()
and pselect(), which is what I was supposed to be doing when I got
distracted into this...
Finally, it unifies the ppc64 and ppc32 methods of handling syscall exit
directly into a signal handler (as required by sigsuspend et al) by
introducing a TIF_RESTOREALL flag which causes _all_ the registers to be
reloaded from the pt_regs by taking the ret_from_exception path, instead
of the normal syscall exit path which stomps on the callee-saved GPRs.
It appears to pass an LTP test run on ppc64, and passes basic testing on
ppc32 too. Brief tests of ptrace functionality with strace and gdb also
appear OK. I wouldn't send it to Linus for 2.6.15 just yet though :)
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2005-11-15 18:52:18 +00:00
|
|
|
|
|
|
|
/* Re-enable interrupts */
|
2009-07-23 23:15:59 +00:00
|
|
|
#ifdef CONFIG_PPC_BOOK3E
|
|
|
|
wrteei 1
|
|
|
|
#else
|
2016-09-15 09:04:46 +00:00
|
|
|
li r10,MSR_RI
|
[PATCH] syscall entry/exit revamp
This cleanup patch speeds up the null syscall path on ppc64 by about 3%,
and brings the ppc32 and ppc64 code slightly closer together.
The ppc64 code was checking current_thread_info()->flags twice in the
syscall exit path; once for TIF_SYSCALL_T_OR_A before disabling
interrupts, and then again for TIF_SIGPENDING|TIF_NEED_RESCHED etc after
disabling interrupts. Now we do the same as ppc32 -- check the flags
only once in the fast path, and re-enable interrupts if necessary in the
ptrace case.
The patch abolishes the 'syscall_noerror' member of struct thread_info
and replaces it with a TIF_NOERROR bit in the flags, which is handled in
the slow path. This shortens the syscall entry code, which no longer
needs to clear syscall_noerror.
The patch adds a TIF_SAVE_NVGPRS flag which causes the syscall exit slow
path to save the non-volatile GPRs into a signal frame. This removes the
need for the assembly wrappers around sys_sigsuspend(),
sys_rt_sigsuspend(), et al which existed solely to save those registers
in advance. It also means I don't have to add new wrappers for ppoll()
and pselect(), which is what I was supposed to be doing when I got
distracted into this...
Finally, it unifies the ppc64 and ppc32 methods of handling syscall exit
directly into a signal handler (as required by sigsuspend et al) by
introducing a TIF_RESTOREALL flag which causes _all_ the registers to be
reloaded from the pt_regs by taking the ret_from_exception path, instead
of the normal syscall exit path which stomps on the callee-saved GPRs.
It appears to pass an LTP test run on ppc64, and passes basic testing on
ppc32 too. Brief tests of ptrace functionality with strace and gdb also
appear OK. I wouldn't send it to Linus for 2.6.15 just yet though :)
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2005-11-15 18:52:18 +00:00
|
|
|
ori r10,r10,MSR_EE
|
|
|
|
mtmsrd r10,1
|
2009-07-23 23:15:59 +00:00
|
|
|
#endif /* CONFIG_PPC_BOOK3E */
|
[PATCH] syscall entry/exit revamp
This cleanup patch speeds up the null syscall path on ppc64 by about 3%,
and brings the ppc32 and ppc64 code slightly closer together.
The ppc64 code was checking current_thread_info()->flags twice in the
syscall exit path; once for TIF_SYSCALL_T_OR_A before disabling
interrupts, and then again for TIF_SIGPENDING|TIF_NEED_RESCHED etc after
disabling interrupts. Now we do the same as ppc32 -- check the flags
only once in the fast path, and re-enable interrupts if necessary in the
ptrace case.
The patch abolishes the 'syscall_noerror' member of struct thread_info
and replaces it with a TIF_NOERROR bit in the flags, which is handled in
the slow path. This shortens the syscall entry code, which no longer
needs to clear syscall_noerror.
The patch adds a TIF_SAVE_NVGPRS flag which causes the syscall exit slow
path to save the non-volatile GPRs into a signal frame. This removes the
need for the assembly wrappers around sys_sigsuspend(),
sys_rt_sigsuspend(), et al which existed solely to save those registers
in advance. It also means I don't have to add new wrappers for ppoll()
and pselect(), which is what I was supposed to be doing when I got
distracted into this...
Finally, it unifies the ppc64 and ppc32 methods of handling syscall exit
directly into a signal handler (as required by sigsuspend et al) by
introducing a TIF_RESTOREALL flag which causes _all_ the registers to be
reloaded from the pt_regs by taking the ret_from_exception path, instead
of the normal syscall exit path which stomps on the callee-saved GPRs.
It appears to pass an LTP test run on ppc64, and passes basic testing on
ppc32 too. Brief tests of ptrace functionality with strace and gdb also
appear OK. I wouldn't send it to Linus for 2.6.15 just yet though :)
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2005-11-15 18:52:18 +00:00
|
|
|
|
2014-02-04 05:04:35 +00:00
|
|
|
bl save_nvgprs
|
2005-10-10 12:36:14 +00:00
|
|
|
addi r3,r1,STACK_FRAME_OVERHEAD
|
2014-02-04 05:04:35 +00:00
|
|
|
bl do_syscall_trace_leave
|
|
|
|
b ret_from_except
|
2005-10-10 12:36:14 +00:00
|
|
|
|
2015-06-12 01:06:32 +00:00
|
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
2017-06-29 17:49:16 +00:00
|
|
|
.Ltabort_syscall:
|
2015-06-12 01:06:32 +00:00
|
|
|
/* Firstly we need to enable TM in the kernel */
|
|
|
|
mfmsr r10
|
2016-07-25 04:26:51 +00:00
|
|
|
li r9, 1
|
|
|
|
rldimi r10, r9, MSR_TM_LG, 63-MSR_TM_LG
|
2015-06-12 01:06:32 +00:00
|
|
|
mtmsrd r10, 0
|
|
|
|
|
|
|
|
/* tabort, this dooms the transaction, nothing else */
|
2016-07-25 04:26:51 +00:00
|
|
|
li r9, (TM_CAUSE_SYSCALL|TM_CAUSE_PERSISTENT)
|
|
|
|
TABORT(R9)
|
2015-06-12 01:06:32 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Return directly to userspace. We have corrupted user register state,
|
|
|
|
* but userspace will never see that register state. Execution will
|
|
|
|
* resume after the tbegin of the aborted transaction with the
|
|
|
|
* checkpointed register state.
|
|
|
|
*/
|
2016-07-25 04:26:51 +00:00
|
|
|
li r9, MSR_RI
|
|
|
|
andc r10, r10, r9
|
2015-06-12 01:06:32 +00:00
|
|
|
mtmsrd r10, 1
|
|
|
|
mtspr SPRN_SRR0, r11
|
|
|
|
mtspr SPRN_SRR1, r12
|
2018-01-09 16:07:15 +00:00
|
|
|
RFI_TO_USER
|
2015-06-12 01:06:32 +00:00
|
|
|
b . /* prevent speculative execution */
|
|
|
|
#endif
|
2017-06-29 17:49:16 +00:00
|
|
|
_ASM_NOKPROBE_SYMBOL(system_call_common);
|
2017-06-29 17:49:18 +00:00
|
|
|
_ASM_NOKPROBE_SYMBOL(system_call_exit);
|
2015-06-12 01:06:32 +00:00
|
|
|
|
2005-10-10 12:36:14 +00:00
|
|
|
/* Save non-volatile GPRs, if not already saved. */
|
|
|
|
_GLOBAL(save_nvgprs)
|
|
|
|
ld r11,_TRAP(r1)
|
|
|
|
andi. r0,r11,1
|
|
|
|
beqlr-
|
|
|
|
SAVE_NVGPRS(r1)
|
|
|
|
clrrdi r0,r11,1
|
|
|
|
std r0,_TRAP(r1)
|
|
|
|
blr
|
2017-06-29 17:49:19 +00:00
|
|
|
_ASM_NOKPROBE_SYMBOL(save_nvgprs);
|
2005-10-10 12:36:14 +00:00
|
|
|
|
[PATCH] syscall entry/exit revamp
This cleanup patch speeds up the null syscall path on ppc64 by about 3%,
and brings the ppc32 and ppc64 code slightly closer together.
The ppc64 code was checking current_thread_info()->flags twice in the
syscall exit path; once for TIF_SYSCALL_T_OR_A before disabling
interrupts, and then again for TIF_SIGPENDING|TIF_NEED_RESCHED etc after
disabling interrupts. Now we do the same as ppc32 -- check the flags
only once in the fast path, and re-enable interrupts if necessary in the
ptrace case.
The patch abolishes the 'syscall_noerror' member of struct thread_info
and replaces it with a TIF_NOERROR bit in the flags, which is handled in
the slow path. This shortens the syscall entry code, which no longer
needs to clear syscall_noerror.
The patch adds a TIF_SAVE_NVGPRS flag which causes the syscall exit slow
path to save the non-volatile GPRs into a signal frame. This removes the
need for the assembly wrappers around sys_sigsuspend(),
sys_rt_sigsuspend(), et al which existed solely to save those registers
in advance. It also means I don't have to add new wrappers for ppoll()
and pselect(), which is what I was supposed to be doing when I got
distracted into this...
Finally, it unifies the ppc64 and ppc32 methods of handling syscall exit
directly into a signal handler (as required by sigsuspend et al) by
introducing a TIF_RESTOREALL flag which causes _all_ the registers to be
reloaded from the pt_regs by taking the ret_from_exception path, instead
of the normal syscall exit path which stomps on the callee-saved GPRs.
It appears to pass an LTP test run on ppc64, and passes basic testing on
ppc32 too. Brief tests of ptrace functionality with strace and gdb also
appear OK. I wouldn't send it to Linus for 2.6.15 just yet though :)
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2005-11-15 18:52:18 +00:00
|
|
|
|
2005-10-10 12:36:14 +00:00
|
|
|
/*
|
|
|
|
* The sigsuspend and rt_sigsuspend system calls can call do_signal
|
|
|
|
* and thus put the process into the stopped state where we might
|
|
|
|
* want to examine its user state with ptrace. Therefore we need
|
|
|
|
* to save all the nonvolatile registers (r14 - r31) before calling
|
|
|
|
* the C code. Similarly, fork, vfork and clone need the full
|
|
|
|
* register state on the stack so that it can be copied to the child.
|
|
|
|
*/
|
|
|
|
|
|
|
|
_GLOBAL(ppc_fork)
|
2014-02-04 05:04:35 +00:00
|
|
|
bl save_nvgprs
|
|
|
|
bl sys_fork
|
2014-12-05 10:16:59 +00:00
|
|
|
b .Lsyscall_exit
|
2005-10-10 12:36:14 +00:00
|
|
|
|
|
|
|
_GLOBAL(ppc_vfork)
|
2014-02-04 05:04:35 +00:00
|
|
|
bl save_nvgprs
|
|
|
|
bl sys_vfork
|
2014-12-05 10:16:59 +00:00
|
|
|
b .Lsyscall_exit
|
2005-10-10 12:36:14 +00:00
|
|
|
|
|
|
|
_GLOBAL(ppc_clone)
|
2014-02-04 05:04:35 +00:00
|
|
|
bl save_nvgprs
|
|
|
|
bl sys_clone
|
2014-12-05 10:16:59 +00:00
|
|
|
b .Lsyscall_exit
|
2005-10-10 12:36:14 +00:00
|
|
|
|
2006-03-08 02:24:22 +00:00
|
|
|
_GLOBAL(ppc32_swapcontext)
|
2014-02-04 05:04:35 +00:00
|
|
|
bl save_nvgprs
|
|
|
|
bl compat_sys_swapcontext
|
2014-12-05 10:16:59 +00:00
|
|
|
b .Lsyscall_exit
|
2006-03-08 02:24:22 +00:00
|
|
|
|
|
|
|
_GLOBAL(ppc64_swapcontext)
|
2014-02-04 05:04:35 +00:00
|
|
|
bl save_nvgprs
|
|
|
|
bl sys_swapcontext
|
2014-12-05 10:16:59 +00:00
|
|
|
b .Lsyscall_exit
|
2006-03-08 02:24:22 +00:00
|
|
|
|
powerpc: Add a proper syscall for switching endianness
We currently have a "special" syscall for switching endianness. This is
syscall number 0x1ebe, which is handled explicitly in the 64-bit syscall
exception entry.
That has a few problems, firstly the syscall number is outside of the
usual range, which confuses various tools. For example strace doesn't
recognise the syscall at all.
Secondly it's handled explicitly as a special case in the syscall
exception entry, which is complicated enough without it.
As a first step toward removing the special syscall, we need to add a
regular syscall that implements the same functionality.
The logic is simple, it simply toggles the MSR_LE bit in the userspace
MSR. This is the same as the special syscall, with the caveat that the
special syscall clobbers fewer registers.
This version clobbers r9-r12, XER, CTR, and CR0-1,5-7.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-03-28 10:35:16 +00:00
|
|
|
_GLOBAL(ppc_switch_endian)
|
|
|
|
bl save_nvgprs
|
|
|
|
bl sys_switch_endian
|
|
|
|
b .Lsyscall_exit
|
|
|
|
|
2005-10-10 12:36:14 +00:00
|
|
|
_GLOBAL(ret_from_fork)
|
2014-02-04 05:04:35 +00:00
|
|
|
bl schedule_tail
|
2005-10-10 12:36:14 +00:00
|
|
|
REST_NVGPRS(r1)
|
|
|
|
li r3,0
|
2014-12-05 10:16:59 +00:00
|
|
|
b .Lsyscall_exit
|
2005-10-10 12:36:14 +00:00
|
|
|
|
2012-09-12 22:32:42 +00:00
|
|
|
_GLOBAL(ret_from_kernel_thread)
|
2014-02-04 05:04:35 +00:00
|
|
|
bl schedule_tail
|
2012-09-12 22:32:42 +00:00
|
|
|
REST_NVGPRS(r1)
|
|
|
|
mtlr r14
|
|
|
|
mr r3,r15
|
2016-06-06 16:56:10 +00:00
|
|
|
#ifdef PPC64_ELF_ABI_v2
|
2014-02-04 05:08:51 +00:00
|
|
|
mr r12,r14
|
|
|
|
#endif
|
2012-09-12 22:32:42 +00:00
|
|
|
blrl
|
|
|
|
li r3,0
|
2014-12-05 10:16:59 +00:00
|
|
|
b .Lsyscall_exit
|
2012-08-31 19:48:05 +00:00
|
|
|
|
2018-07-23 15:07:54 +00:00
|
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
|
|
|
|
|
|
#define FLUSH_COUNT_CACHE \
|
|
|
|
1: nop; \
|
|
|
|
patch_site 1b, patch__call_flush_count_cache
|
|
|
|
|
|
|
|
|
|
|
|
#define BCCTR_FLUSH .long 0x4c400420
|
|
|
|
|
|
|
|
.macro nops number
|
|
|
|
.rept \number
|
|
|
|
nop
|
|
|
|
.endr
|
|
|
|
.endm
|
|
|
|
|
|
|
|
.balign 32
|
|
|
|
.global flush_count_cache
|
|
|
|
flush_count_cache:
|
|
|
|
/* Save LR into r9 */
|
|
|
|
mflr r9
|
|
|
|
|
|
|
|
.rept 64
|
|
|
|
bl .+4
|
|
|
|
.endr
|
|
|
|
b 1f
|
|
|
|
nops 6
|
|
|
|
|
|
|
|
.balign 32
|
|
|
|
/* Restore LR */
|
|
|
|
1: mtlr r9
|
|
|
|
li r9,0x7fff
|
|
|
|
mtctr r9
|
|
|
|
|
|
|
|
BCCTR_FLUSH
|
|
|
|
|
|
|
|
2: nop
|
|
|
|
patch_site 2b patch__flush_count_cache_return
|
|
|
|
|
|
|
|
nops 3
|
|
|
|
|
|
|
|
.rept 278
|
|
|
|
.balign 32
|
|
|
|
BCCTR_FLUSH
|
|
|
|
nops 7
|
|
|
|
.endr
|
|
|
|
|
|
|
|
blr
|
|
|
|
#else
|
|
|
|
#define FLUSH_COUNT_CACHE
|
|
|
|
#endif /* CONFIG_PPC_BOOK3S_64 */
|
|
|
|
|
2005-10-10 12:36:14 +00:00
|
|
|
/*
|
|
|
|
* This routine switches between two different tasks. The process
|
|
|
|
* state of one is saved on its kernel stack. Then the state
|
|
|
|
* of the other is restored from its kernel stack. The memory
|
|
|
|
* management hardware is updated to the second process's state.
|
|
|
|
* Finally, we can return to the second process, via ret_from_except.
|
|
|
|
* On entry, r3 points to the THREAD for the current task, r4
|
|
|
|
* points to the THREAD for the new task.
|
|
|
|
*
|
|
|
|
* Note: there are two ways to get to the "going out" portion
|
|
|
|
* of this code; either by coming in via the entry (_switch)
|
|
|
|
* or via "fork" which must set up an environment equivalent
|
|
|
|
* to the "_switch" path. If you change this you'll have to change
|
|
|
|
* the fork code also.
|
|
|
|
*
|
|
|
|
* The code which creates the new task context is in 'copy_thread'
|
2006-01-23 16:58:20 +00:00
|
|
|
* in arch/powerpc/kernel/process.c
|
2005-10-10 12:36:14 +00:00
|
|
|
*/
|
|
|
|
.align 7
|
|
|
|
_GLOBAL(_switch)
|
|
|
|
mflr r0
|
|
|
|
std r0,16(r1)
|
|
|
|
stdu r1,-SWITCH_FRAME_SIZE(r1)
|
|
|
|
/* r3-r13 are caller saved -- Cort */
|
|
|
|
SAVE_8GPRS(14, r1)
|
|
|
|
SAVE_10GPRS(22, r1)
|
2015-10-29 00:43:56 +00:00
|
|
|
std r0,_NIP(r1) /* Return to switch caller */
|
2005-10-10 12:36:14 +00:00
|
|
|
mfcr r23
|
|
|
|
std r23,_CCR(r1)
|
|
|
|
std r1,KSP(r3) /* Set old stack pointer */
|
|
|
|
|
2019-04-18 06:51:24 +00:00
|
|
|
kuap_check_amr r9, r10
|
|
|
|
|
2018-07-23 15:07:54 +00:00
|
|
|
FLUSH_COUNT_CACHE
|
|
|
|
|
2017-06-08 15:36:08 +00:00
|
|
|
/*
|
|
|
|
* On SMP kernels, care must be taken because a task may be
|
|
|
|
* scheduled off CPUx and on to CPUy. Memory ordering must be
|
|
|
|
* considered.
|
|
|
|
*
|
|
|
|
* Cacheable stores on CPUx will be visible when the task is
|
|
|
|
* scheduled on CPUy by virtue of the core scheduler barriers
|
|
|
|
* (see "Notes on Program-Order guarantees on SMP systems." in
|
|
|
|
* kernel/sched/core.c).
|
|
|
|
*
|
|
|
|
* Uncacheable stores in the case of involuntary preemption must
|
|
|
|
* be taken care of. The smp_mb__before_spin_lock() in __schedule()
|
|
|
|
* is implemented as hwsync on powerpc, which orders MMIO too. So
|
|
|
|
* long as there is an hwsync in the context switch path, it will
|
|
|
|
* be executed on the source CPU after the task has performed
|
|
|
|
* all MMIO ops on that CPU, and on the destination CPU before the
|
|
|
|
* task performs any MMIO ops there.
|
2005-10-10 12:36:14 +00:00
|
|
|
*/
|
|
|
|
|
2010-08-11 01:40:27 +00:00
|
|
|
/*
|
2017-06-08 15:36:07 +00:00
|
|
|
* The kernel context switch path must contain a spin_lock,
|
|
|
|
* which contains larx/stcx, which will clear any reservation
|
|
|
|
* of the task being switched.
|
2010-08-11 01:40:27 +00:00
|
|
|
*/
|
2013-05-29 19:34:27 +00:00
|
|
|
#ifdef CONFIG_PPC_BOOK3S
|
|
|
|
/* Cancel all explict user streams as they will have no use after context
|
|
|
|
* switch and will stop the HW from creating streams itself
|
|
|
|
*/
|
2018-02-20 19:08:26 +00:00
|
|
|
DCBT_BOOK3S_STOP_ALL_STREAM_IDS(r6)
|
2013-05-29 19:34:27 +00:00
|
|
|
#endif
|
|
|
|
|
2005-10-10 12:36:14 +00:00
|
|
|
addi r6,r4,-THREAD /* Convert THREAD to 'current' */
|
|
|
|
std r6,PACACURRENT(r13) /* Set new 'current' */
|
2018-09-27 07:05:55 +00:00
|
|
|
#if defined(CONFIG_STACKPROTECTOR)
|
|
|
|
ld r6, TASK_CANARY(r6)
|
|
|
|
std r6, PACA_CANARY(r13)
|
|
|
|
#endif
|
2005-10-10 12:36:14 +00:00
|
|
|
|
|
|
|
ld r8,KSP(r4) /* new stack pointer */
|
2017-10-19 04:08:43 +00:00
|
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
2016-04-29 13:26:07 +00:00
|
|
|
BEGIN_MMU_FTR_SECTION
|
|
|
|
b 2f
|
2016-07-27 03:19:01 +00:00
|
|
|
END_MMU_FTR_SECTION_IFSET(MMU_FTR_TYPE_RADIX)
|
2007-10-11 10:37:10 +00:00
|
|
|
BEGIN_FTR_SECTION
|
2005-10-10 12:36:14 +00:00
|
|
|
clrrdi r6,r8,28 /* get its ESID */
|
|
|
|
clrrdi r9,r1,28 /* get current sp ESID */
|
2014-07-10 02:29:20 +00:00
|
|
|
FTR_SECTION_ELSE
|
2007-10-11 10:37:10 +00:00
|
|
|
clrrdi r6,r8,40 /* get its 1T ESID */
|
|
|
|
clrrdi r9,r1,40 /* get current sp 1T ESID */
|
2014-07-10 02:29:20 +00:00
|
|
|
ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_1T_SEGMENT)
|
2005-10-10 12:36:14 +00:00
|
|
|
clrldi. r0,r6,2 /* is new ESID c00000000? */
|
|
|
|
cmpd cr1,r6,r9 /* or is new ESID the same as current ESID? */
|
|
|
|
cror eq,4*cr1+eq,eq
|
|
|
|
beq 2f /* if yes, don't slbie it */
|
|
|
|
|
|
|
|
/* Bolt in the new stack SLB entry */
|
|
|
|
ld r7,KSP_VSID(r4) /* Get new stack's VSID */
|
|
|
|
oris r0,r6,(SLB_ESID_V)@h
|
|
|
|
ori r0,r0,(SLB_NUM_BOLTED-1)@l
|
2007-10-11 10:37:10 +00:00
|
|
|
BEGIN_FTR_SECTION
|
|
|
|
li r9,MMU_SEGSIZE_1T /* insert B field */
|
|
|
|
oris r6,r6,(MMU_SEGSIZE_1T << SLBIE_SSIZE_SHIFT)@h
|
|
|
|
rldimi r7,r9,SLB_VSID_SSIZE_SHIFT,0
|
2011-04-06 19:48:50 +00:00
|
|
|
END_MMU_FTR_SECTION_IFSET(MMU_FTR_1T_SEGMENT)
|
2006-08-07 06:19:19 +00:00
|
|
|
|
2007-08-24 06:58:37 +00:00
|
|
|
/* Update the last bolted SLB. No write barriers are needed
|
|
|
|
* here, provided we only update the current CPU's SLB shadow
|
|
|
|
* buffer.
|
|
|
|
*/
|
2006-08-07 06:19:19 +00:00
|
|
|
ld r9,PACA_SLBSHADOWPTR(r13)
|
2006-08-09 07:00:30 +00:00
|
|
|
li r12,0
|
2013-08-06 16:01:46 +00:00
|
|
|
std r12,SLBSHADOW_STACKESID(r9) /* Clear ESID */
|
|
|
|
li r12,SLBSHADOW_STACKVSID
|
|
|
|
STDX_BE r7,r12,r9 /* Save VSID */
|
|
|
|
li r12,SLBSHADOW_STACKESID
|
|
|
|
STDX_BE r0,r12,r9 /* Save ESID */
|
2006-08-07 06:19:19 +00:00
|
|
|
|
2011-04-06 19:48:50 +00:00
|
|
|
/* No need to check for MMU_FTR_NO_SLBIE_B here, since when
|
2007-10-15 14:58:59 +00:00
|
|
|
* we have 1TB segments, the only CPUs known to have the errata
|
|
|
|
* only support less than 1TB of system memory and we'll never
|
|
|
|
* actually hit this code path.
|
|
|
|
*/
|
|
|
|
|
powerpc/mm/hash: Add missing isync prior to kernel stack SLB switch
Currently we do not have an isync, or any other context synchronizing
instruction prior to the slbie/slbmte in _switch() that updates the
SLB entry for the kernel stack.
However that is not correct as outlined in the ISA.
From Power ISA Version 3.0B, Book III, Chapter 11, page 1133:
"Changing the contents of ... the contents of SLB entries ... can
have the side effect of altering the context in which data
addresses and instruction addresses are interpreted, and in which
instructions are executed and data accesses are performed.
...
These side effects need not occur in program order, and therefore
may require explicit synchronization by software.
...
The synchronizing instruction before the context-altering
instruction ensures that all instructions up to and including that
synchronizing instruction are fetched and executed in the context
that existed before the alteration."
And page 1136:
"For data accesses, the context synchronizing instruction before the
slbie, slbieg, slbia, slbmte, tlbie, or tlbiel instruction ensures
that all preceding instructions that access data storage have
completed to a point at which they have reported all exceptions
they will cause."
We're not aware of any bugs caused by this, but it should be fixed
regardless.
Add the missing isync when updating kernel stack SLB entry.
Cc: stable@vger.kernel.org
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
[mpe: Flesh out change log with more ISA text & explanation]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-05-30 13:18:04 +00:00
|
|
|
isync
|
2005-10-10 12:36:14 +00:00
|
|
|
slbie r6
|
2018-09-14 15:30:46 +00:00
|
|
|
BEGIN_FTR_SECTION
|
2005-10-10 12:36:14 +00:00
|
|
|
slbie r6 /* Workaround POWER5 < DD2.1 issue */
|
2018-09-14 15:30:46 +00:00
|
|
|
END_FTR_SECTION_IFCLR(CPU_FTR_ARCH_207S)
|
2005-10-10 12:36:14 +00:00
|
|
|
slbmte r7,r0
|
|
|
|
isync
|
|
|
|
2:
|
2017-10-19 04:08:43 +00:00
|
|
|
#endif /* CONFIG_PPC_BOOK3S_64 */
|
2009-07-23 23:15:59 +00:00
|
|
|
|
2019-01-17 12:23:57 +00:00
|
|
|
clrrdi r7, r8, THREAD_SHIFT /* base of new stack */
|
2005-10-10 12:36:14 +00:00
|
|
|
/* Note: this uses SWITCH_FRAME_SIZE rather than INT_FRAME_SIZE
|
|
|
|
because we don't need to leave the 288-byte ABI gap at the
|
|
|
|
top of the kernel stack. */
|
|
|
|
addi r7,r7,THREAD_SIZE-SWITCH_FRAME_SIZE
|
|
|
|
|
2017-06-08 15:36:06 +00:00
|
|
|
/*
|
|
|
|
* PMU interrupts in radix may come in here. They will use r1, not
|
|
|
|
* PACAKSAVE, so this stack switch will not cause a problem. They
|
|
|
|
* will store to the process stack, which may then be migrated to
|
|
|
|
* another CPU. However the rq lock release on this CPU paired with
|
|
|
|
* the rq lock acquire on the new CPU before the stack becomes
|
|
|
|
* active on the new CPU, will order those stores.
|
|
|
|
*/
|
2005-10-10 12:36:14 +00:00
|
|
|
mr r1,r8 /* start using new stack pointer */
|
|
|
|
std r7,PACAKSAVE(r13)
|
|
|
|
|
2012-09-03 16:51:10 +00:00
|
|
|
ld r6,_CCR(r1)
|
|
|
|
mtcrf 0xFF,r6
|
|
|
|
|
2005-10-10 12:36:14 +00:00
|
|
|
/* r3-r13 are destroyed -- Cort */
|
|
|
|
REST_8GPRS(14, r1)
|
|
|
|
REST_10GPRS(22, r1)
|
|
|
|
|
|
|
|
/* convert old thread to its task_struct for return value */
|
|
|
|
addi r3,r3,-THREAD
|
|
|
|
ld r7,_NIP(r1) /* Return to _switch caller in new task */
|
|
|
|
mtlr r7
|
|
|
|
addi r1,r1,SWITCH_FRAME_SIZE
|
|
|
|
blr
|
|
|
|
|
|
|
|
.align 7
|
|
|
|
_GLOBAL(ret_from_except)
|
|
|
|
ld r11,_TRAP(r1)
|
|
|
|
andi. r0,r11,1
|
2014-02-04 05:04:35 +00:00
|
|
|
bne ret_from_except_lite
|
2005-10-10 12:36:14 +00:00
|
|
|
REST_NVGPRS(r1)
|
|
|
|
|
|
|
|
_GLOBAL(ret_from_except_lite)
|
|
|
|
/*
|
|
|
|
* Disable interrupts so that current_thread_info()->flags
|
|
|
|
* can't change between when we test it and when we return
|
|
|
|
* from the interrupt.
|
|
|
|
*/
|
2009-07-23 23:15:59 +00:00
|
|
|
#ifdef CONFIG_PPC_BOOK3E
|
|
|
|
wrteei 0
|
|
|
|
#else
|
2016-09-15 09:04:46 +00:00
|
|
|
li r10,MSR_RI
|
2012-03-02 00:33:52 +00:00
|
|
|
mtmsrd r10,1 /* Update machine state */
|
2009-07-23 23:15:59 +00:00
|
|
|
#endif /* CONFIG_PPC_BOOK3E */
|
2005-10-10 12:36:14 +00:00
|
|
|
|
2019-01-12 09:55:50 +00:00
|
|
|
ld r9, PACA_THREAD_INFO(r13)
|
2005-10-10 12:36:14 +00:00
|
|
|
ld r3,_MSR(r1)
|
2013-05-22 04:20:59 +00:00
|
|
|
#ifdef CONFIG_PPC_BOOK3E
|
|
|
|
ld r10,PACACURRENT(r13)
|
|
|
|
#endif /* CONFIG_PPC_BOOK3E */
|
2005-10-10 12:36:14 +00:00
|
|
|
ld r4,TI_FLAGS(r9)
|
|
|
|
andi. r3,r3,MSR_PR
|
ppc64: fix missing to check all bits of _TIF_USER_WORK_MASK in preempt
In entry_64.S version of ret_from_except_lite, you'll notice that
in the !preempt case, after we've checked MSR_PR we test for any
TIF flag in _TIF_USER_WORK_MASK to decide whether to go to do_work
or not. However, in the preempt case, we do a convoluted trick to
test SIGPENDING only if PR was set and always test NEED_RESCHED ...
but we forget to test any other bit of _TIF_USER_WORK_MASK !!! So
that means that with preempt, we completely fail to test for things
like single step, syscall tracing, etc...
This should be fixed as the following path:
- Test PR. If not set, go to resume_kernel, else continue.
- If go resume_kernel, to do that original do_work.
- If else, then always test for _TIF_USER_WORK_MASK to decide to do
that original user_work, else restore directly.
Signed-off-by: Tiejun Chen <tiejun.chen@windriver.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2012-06-06 20:56:43 +00:00
|
|
|
beq resume_kernel
|
2013-05-22 04:20:59 +00:00
|
|
|
#ifdef CONFIG_PPC_BOOK3E
|
|
|
|
lwz r3,(THREAD+THREAD_DBCR0)(r10)
|
|
|
|
#endif /* CONFIG_PPC_BOOK3E */
|
2005-10-10 12:36:14 +00:00
|
|
|
|
|
|
|
/* Check current_thread_info()->flags */
|
ppc64: fix missing to check all bits of _TIF_USER_WORK_MASK in preempt
In entry_64.S version of ret_from_except_lite, you'll notice that
in the !preempt case, after we've checked MSR_PR we test for any
TIF flag in _TIF_USER_WORK_MASK to decide whether to go to do_work
or not. However, in the preempt case, we do a convoluted trick to
test SIGPENDING only if PR was set and always test NEED_RESCHED ...
but we forget to test any other bit of _TIF_USER_WORK_MASK !!! So
that means that with preempt, we completely fail to test for things
like single step, syscall tracing, etc...
This should be fixed as the following path:
- Test PR. If not set, go to resume_kernel, else continue.
- If go resume_kernel, to do that original do_work.
- If else, then always test for _TIF_USER_WORK_MASK to decide to do
that original user_work, else restore directly.
Signed-off-by: Tiejun Chen <tiejun.chen@windriver.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2012-06-06 20:56:43 +00:00
|
|
|
andi. r0,r4,_TIF_USER_WORK_MASK
|
2013-05-22 04:20:59 +00:00
|
|
|
bne 1f
|
2016-02-29 06:53:47 +00:00
|
|
|
#ifdef CONFIG_PPC_BOOK3E
|
2013-05-22 04:20:59 +00:00
|
|
|
/*
|
|
|
|
* Check to see if the dbcr0 register is set up to debug.
|
|
|
|
* Use the internal debug mode bit to do this.
|
|
|
|
*/
|
|
|
|
andis. r0,r3,DBCR0_IDM@h
|
ppc64: fix missing to check all bits of _TIF_USER_WORK_MASK in preempt
In entry_64.S version of ret_from_except_lite, you'll notice that
in the !preempt case, after we've checked MSR_PR we test for any
TIF flag in _TIF_USER_WORK_MASK to decide whether to go to do_work
or not. However, in the preempt case, we do a convoluted trick to
test SIGPENDING only if PR was set and always test NEED_RESCHED ...
but we forget to test any other bit of _TIF_USER_WORK_MASK !!! So
that means that with preempt, we completely fail to test for things
like single step, syscall tracing, etc...
This should be fixed as the following path:
- Test PR. If not set, go to resume_kernel, else continue.
- If go resume_kernel, to do that original do_work.
- If else, then always test for _TIF_USER_WORK_MASK to decide to do
that original user_work, else restore directly.
Signed-off-by: Tiejun Chen <tiejun.chen@windriver.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2012-06-06 20:56:43 +00:00
|
|
|
beq restore
|
2013-05-22 04:20:59 +00:00
|
|
|
mfmsr r0
|
|
|
|
rlwinm r0,r0,0,~MSR_DE /* Clear MSR.DE */
|
|
|
|
mtmsr r0
|
|
|
|
mtspr SPRN_DBCR0,r3
|
|
|
|
li r10, -1
|
|
|
|
mtspr SPRN_DBSR,r10
|
|
|
|
b restore
|
|
|
|
#else
|
2016-02-29 06:53:47 +00:00
|
|
|
addi r3,r1,STACK_FRAME_OVERHEAD
|
|
|
|
bl restore_math
|
|
|
|
b restore
|
2013-05-22 04:20:59 +00:00
|
|
|
#endif
|
|
|
|
1: andi. r0,r4,_TIF_NEED_RESCHED
|
|
|
|
beq 2f
|
2014-02-04 05:04:35 +00:00
|
|
|
bl restore_interrupts
|
2013-05-13 16:16:43 +00:00
|
|
|
SCHEDULE_USER
|
2014-02-04 05:04:35 +00:00
|
|
|
b ret_from_except_lite
|
powerpc: Don't corrupt transactional state when using FP/VMX in kernel
Currently, when we have a process using the transactional memory
facilities on POWER8 (that is, the processor is in transactional
or suspended state), and the process enters the kernel and the
kernel then uses the floating-point or vector (VMX/Altivec) facility,
we end up corrupting the user-visible FP/VMX/VSX state. This
happens, for example, if a page fault causes a copy-on-write
operation, because the copy_page function will use VMX to do the
copy on POWER8. The test program below demonstrates the bug.
The bug happens because when FP/VMX state for a transactional process
is stored in the thread_struct, we store the checkpointed state in
.fp_state/.vr_state and the transactional (current) state in
.transact_fp/.transact_vr. However, when the kernel wants to use
FP/VMX, it calls enable_kernel_fp() or enable_kernel_altivec(),
which saves the current state in .fp_state/.vr_state. Furthermore,
when we return to the user process we return with FP/VMX/VSX
disabled. The next time the process uses FP/VMX/VSX, we don't know
which set of state (the current register values, .fp_state/.vr_state,
or .transact_fp/.transact_vr) we should be using, since we have no
way to tell if we are still in the same transaction, and if not,
whether the previous transaction succeeded or failed.
Thus it is necessary to strictly adhere to the rule that if FP has
been enabled at any point in a transaction, we must keep FP enabled
for the user process with the current transactional state in the
FP registers, until we detect that it is no longer in a transaction.
Similarly for VMX; once enabled it must stay enabled until the
process is no longer transactional.
In order to keep this rule, we add a new thread_info flag which we
test when returning from the kernel to userspace, called TIF_RESTORE_TM.
This flag indicates that there is FP/VMX/VSX state to be restored
before entering userspace, and when it is set the .tm_orig_msr field
in the thread_struct indicates what state needs to be restored.
The restoration is done by restore_tm_state(). The TIF_RESTORE_TM
bit is set by new giveup_fpu/altivec_maybe_transactional helpers,
which are called from enable_kernel_fp/altivec, giveup_vsx, and
flush_fp/altivec_to_thread instead of giveup_fpu/altivec.
The other thing to be done is to get the transactional FP/VMX/VSX
state from .fp_state/.vr_state when doing reclaim, if that state
has been saved there by giveup_fpu/altivec_maybe_transactional.
Having done this, we set the FP/VMX bit in the thread's MSR after
reclaim to indicate that that part of the state is now valid
(having been reclaimed from the processor's checkpointed state).
Finally, in the signal handling code, we move the clearing of the
transactional state bits in the thread's MSR a bit earlier, before
calling flush_fp_to_thread(), so that we don't unnecessarily set
the TIF_RESTORE_TM bit.
This is the test program:
/* Michael Neuling 4/12/2013
*
* See if the altivec state is leaked out of an aborted transaction due to
* kernel vmx copy loops.
*
* gcc -m64 htm_vmxcopy.c -o htm_vmxcopy
*
*/
/* We don't use all of these, but for reference: */
int main(int argc, char *argv[])
{
long double vecin = 1.3;
long double vecout;
unsigned long pgsize = getpagesize();
int i;
int fd;
int size = pgsize*16;
char tmpfile[] = "/tmp/page_faultXXXXXX";
char buf[pgsize];
char *a;
uint64_t aborted = 0;
fd = mkstemp(tmpfile);
assert(fd >= 0);
memset(buf, 0, pgsize);
for (i = 0; i < size; i += pgsize)
assert(write(fd, buf, pgsize) == pgsize);
unlink(tmpfile);
a = mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
assert(a != MAP_FAILED);
asm __volatile__(
"lxvd2x 40,0,%[vecinptr] ; " // set 40 to initial value
TBEGIN
"beq 3f ;"
TSUSPEND
"xxlxor 40,40,40 ; " // set 40 to 0
"std 5, 0(%[map]) ;" // cause kernel vmx copy page
TABORT
TRESUME
TEND
"li %[res], 0 ;"
"b 5f ;"
"3: ;" // Abort handler
"li %[res], 1 ;"
"5: ;"
"stxvd2x 40,0,%[vecoutptr] ; "
: [res]"=r"(aborted)
: [vecinptr]"r"(&vecin),
[vecoutptr]"r"(&vecout),
[map]"r"(a)
: "memory", "r0", "r3", "r4", "r5", "r6", "r7");
if (aborted && (vecin != vecout)){
printf("FAILED: vector state leaked on abort %f != %f\n",
(double)vecin, (double)vecout);
exit(1);
}
munmap(a, size);
close(fd);
printf("PASSED!\n");
return 0;
}
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2014-01-13 04:56:29 +00:00
|
|
|
2:
|
|
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
|
|
andi. r0,r4,_TIF_USER_WORK_MASK & ~_TIF_RESTORE_TM
|
|
|
|
bne 3f /* only restore TM if nothing else to do */
|
|
|
|
addi r3,r1,STACK_FRAME_OVERHEAD
|
2014-02-04 05:04:35 +00:00
|
|
|
bl restore_tm_state
|
powerpc: Don't corrupt transactional state when using FP/VMX in kernel
Currently, when we have a process using the transactional memory
facilities on POWER8 (that is, the processor is in transactional
or suspended state), and the process enters the kernel and the
kernel then uses the floating-point or vector (VMX/Altivec) facility,
we end up corrupting the user-visible FP/VMX/VSX state. This
happens, for example, if a page fault causes a copy-on-write
operation, because the copy_page function will use VMX to do the
copy on POWER8. The test program below demonstrates the bug.
The bug happens because when FP/VMX state for a transactional process
is stored in the thread_struct, we store the checkpointed state in
.fp_state/.vr_state and the transactional (current) state in
.transact_fp/.transact_vr. However, when the kernel wants to use
FP/VMX, it calls enable_kernel_fp() or enable_kernel_altivec(),
which saves the current state in .fp_state/.vr_state. Furthermore,
when we return to the user process we return with FP/VMX/VSX
disabled. The next time the process uses FP/VMX/VSX, we don't know
which set of state (the current register values, .fp_state/.vr_state,
or .transact_fp/.transact_vr) we should be using, since we have no
way to tell if we are still in the same transaction, and if not,
whether the previous transaction succeeded or failed.
Thus it is necessary to strictly adhere to the rule that if FP has
been enabled at any point in a transaction, we must keep FP enabled
for the user process with the current transactional state in the
FP registers, until we detect that it is no longer in a transaction.
Similarly for VMX; once enabled it must stay enabled until the
process is no longer transactional.
In order to keep this rule, we add a new thread_info flag which we
test when returning from the kernel to userspace, called TIF_RESTORE_TM.
This flag indicates that there is FP/VMX/VSX state to be restored
before entering userspace, and when it is set the .tm_orig_msr field
in the thread_struct indicates what state needs to be restored.
The restoration is done by restore_tm_state(). The TIF_RESTORE_TM
bit is set by new giveup_fpu/altivec_maybe_transactional helpers,
which are called from enable_kernel_fp/altivec, giveup_vsx, and
flush_fp/altivec_to_thread instead of giveup_fpu/altivec.
The other thing to be done is to get the transactional FP/VMX/VSX
state from .fp_state/.vr_state when doing reclaim, if that state
has been saved there by giveup_fpu/altivec_maybe_transactional.
Having done this, we set the FP/VMX bit in the thread's MSR after
reclaim to indicate that that part of the state is now valid
(having been reclaimed from the processor's checkpointed state).
Finally, in the signal handling code, we move the clearing of the
transactional state bits in the thread's MSR a bit earlier, before
calling flush_fp_to_thread(), so that we don't unnecessarily set
the TIF_RESTORE_TM bit.
This is the test program:
/* Michael Neuling 4/12/2013
*
* See if the altivec state is leaked out of an aborted transaction due to
* kernel vmx copy loops.
*
* gcc -m64 htm_vmxcopy.c -o htm_vmxcopy
*
*/
/* We don't use all of these, but for reference: */
int main(int argc, char *argv[])
{
long double vecin = 1.3;
long double vecout;
unsigned long pgsize = getpagesize();
int i;
int fd;
int size = pgsize*16;
char tmpfile[] = "/tmp/page_faultXXXXXX";
char buf[pgsize];
char *a;
uint64_t aborted = 0;
fd = mkstemp(tmpfile);
assert(fd >= 0);
memset(buf, 0, pgsize);
for (i = 0; i < size; i += pgsize)
assert(write(fd, buf, pgsize) == pgsize);
unlink(tmpfile);
a = mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
assert(a != MAP_FAILED);
asm __volatile__(
"lxvd2x 40,0,%[vecinptr] ; " // set 40 to initial value
TBEGIN
"beq 3f ;"
TSUSPEND
"xxlxor 40,40,40 ; " // set 40 to 0
"std 5, 0(%[map]) ;" // cause kernel vmx copy page
TABORT
TRESUME
TEND
"li %[res], 0 ;"
"b 5f ;"
"3: ;" // Abort handler
"li %[res], 1 ;"
"5: ;"
"stxvd2x 40,0,%[vecoutptr] ; "
: [res]"=r"(aborted)
: [vecinptr]"r"(&vecin),
[vecoutptr]"r"(&vecout),
[map]"r"(a)
: "memory", "r0", "r3", "r4", "r5", "r6", "r7");
if (aborted && (vecin != vecout)){
printf("FAILED: vector state leaked on abort %f != %f\n",
(double)vecin, (double)vecout);
exit(1);
}
munmap(a, size);
close(fd);
printf("PASSED!\n");
return 0;
}
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2014-01-13 04:56:29 +00:00
|
|
|
b restore
|
|
|
|
3:
|
|
|
|
#endif
|
2014-02-04 05:04:35 +00:00
|
|
|
bl save_nvgprs
|
2014-10-31 05:50:57 +00:00
|
|
|
/*
|
|
|
|
* Use a non volatile GPR to save and restore our thread_info flags
|
|
|
|
* across the call to restore_interrupts.
|
|
|
|
*/
|
|
|
|
mr r30,r4
|
2014-02-04 05:04:35 +00:00
|
|
|
bl restore_interrupts
|
2014-10-31 05:50:57 +00:00
|
|
|
mr r4,r30
|
ppc64: fix missing to check all bits of _TIF_USER_WORK_MASK in preempt
In entry_64.S version of ret_from_except_lite, you'll notice that
in the !preempt case, after we've checked MSR_PR we test for any
TIF flag in _TIF_USER_WORK_MASK to decide whether to go to do_work
or not. However, in the preempt case, we do a convoluted trick to
test SIGPENDING only if PR was set and always test NEED_RESCHED ...
but we forget to test any other bit of _TIF_USER_WORK_MASK !!! So
that means that with preempt, we completely fail to test for things
like single step, syscall tracing, etc...
This should be fixed as the following path:
- Test PR. If not set, go to resume_kernel, else continue.
- If go resume_kernel, to do that original do_work.
- If else, then always test for _TIF_USER_WORK_MASK to decide to do
that original user_work, else restore directly.
Signed-off-by: Tiejun Chen <tiejun.chen@windriver.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2012-06-06 20:56:43 +00:00
|
|
|
addi r3,r1,STACK_FRAME_OVERHEAD
|
2014-02-04 05:04:35 +00:00
|
|
|
bl do_notify_resume
|
|
|
|
b ret_from_except
|
ppc64: fix missing to check all bits of _TIF_USER_WORK_MASK in preempt
In entry_64.S version of ret_from_except_lite, you'll notice that
in the !preempt case, after we've checked MSR_PR we test for any
TIF flag in _TIF_USER_WORK_MASK to decide whether to go to do_work
or not. However, in the preempt case, we do a convoluted trick to
test SIGPENDING only if PR was set and always test NEED_RESCHED ...
but we forget to test any other bit of _TIF_USER_WORK_MASK !!! So
that means that with preempt, we completely fail to test for things
like single step, syscall tracing, etc...
This should be fixed as the following path:
- Test PR. If not set, go to resume_kernel, else continue.
- If go resume_kernel, to do that original do_work.
- If else, then always test for _TIF_USER_WORK_MASK to decide to do
that original user_work, else restore directly.
Signed-off-by: Tiejun Chen <tiejun.chen@windriver.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2012-06-06 20:56:43 +00:00
|
|
|
|
|
|
|
resume_kernel:
|
2012-09-16 23:54:30 +00:00
|
|
|
/* check current_thread_info, _TIF_EMULATE_STACK_STORE */
|
2013-09-26 08:41:34 +00:00
|
|
|
andis. r8,r4,_TIF_EMULATE_STACK_STORE@h
|
2012-09-16 23:54:30 +00:00
|
|
|
beq+ 1f
|
|
|
|
|
|
|
|
addi r8,r1,INT_FRAME_SIZE /* Get the kprobed function entry */
|
|
|
|
|
2017-04-11 05:08:13 +00:00
|
|
|
ld r3,GPR1(r1)
|
2012-09-16 23:54:30 +00:00
|
|
|
subi r3,r3,INT_FRAME_SIZE /* dst: Allocate a trampoline exception frame */
|
|
|
|
mr r4,r1 /* src: current exception frame */
|
|
|
|
mr r1,r3 /* Reroute the trampoline frame to r1 */
|
|
|
|
|
|
|
|
/* Copy from the original to the trampoline. */
|
|
|
|
li r5,INT_FRAME_SIZE/8 /* size: INT_FRAME_SIZE */
|
|
|
|
li r6,0 /* start offset: 0 */
|
|
|
|
mtctr r5
|
|
|
|
2: ldx r0,r6,r4
|
|
|
|
stdx r0,r6,r3
|
|
|
|
addi r6,r6,8
|
|
|
|
bdnz 2b
|
|
|
|
|
2017-04-11 05:08:13 +00:00
|
|
|
/* Do real store operation to complete stdu */
|
|
|
|
ld r5,GPR1(r1)
|
2012-09-16 23:54:30 +00:00
|
|
|
std r8,0(r5)
|
|
|
|
|
|
|
|
/* Clear _TIF_EMULATE_STACK_STORE flag */
|
|
|
|
lis r11,_TIF_EMULATE_STACK_STORE@h
|
|
|
|
addi r5,r9,TI_FLAGS
|
2013-04-09 22:31:24 +00:00
|
|
|
0: ldarx r4,0,r5
|
2012-09-16 23:54:30 +00:00
|
|
|
andc r4,r4,r11
|
|
|
|
stdcx. r4,0,r5
|
|
|
|
bne- 0b
|
|
|
|
1:
|
|
|
|
|
ppc64: fix missing to check all bits of _TIF_USER_WORK_MASK in preempt
In entry_64.S version of ret_from_except_lite, you'll notice that
in the !preempt case, after we've checked MSR_PR we test for any
TIF flag in _TIF_USER_WORK_MASK to decide whether to go to do_work
or not. However, in the preempt case, we do a convoluted trick to
test SIGPENDING only if PR was set and always test NEED_RESCHED ...
but we forget to test any other bit of _TIF_USER_WORK_MASK !!! So
that means that with preempt, we completely fail to test for things
like single step, syscall tracing, etc...
This should be fixed as the following path:
- Test PR. If not set, go to resume_kernel, else continue.
- If go resume_kernel, to do that original do_work.
- If else, then always test for _TIF_USER_WORK_MASK to decide to do
that original user_work, else restore directly.
Signed-off-by: Tiejun Chen <tiejun.chen@windriver.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2012-06-06 20:56:43 +00:00
|
|
|
#ifdef CONFIG_PREEMPT
|
|
|
|
/* Check if we need to preempt */
|
|
|
|
andi. r0,r4,_TIF_NEED_RESCHED
|
|
|
|
beq+ restore
|
|
|
|
/* Check that preempt_count() == 0 and interrupts are enabled */
|
|
|
|
lwz r8,TI_PREEMPT(r9)
|
powerpc/64: Change soft_enabled from flag to bitmask
"paca->soft_enabled" is used as a flag to mask some of interrupts.
Currently supported flags values and their details:
soft_enabled MSR[EE]
0 0 Disabled (PMI and HMI not masked)
1 1 Enabled
"paca->soft_enabled" is initialized to 1 to make the interripts as
enabled. arch_local_irq_disable() will toggle the value when
interrupts needs to disbled. At this point, the interrupts are not
actually disabled, instead, interrupt vector has code to check for the
flag and mask it when it occurs. By "mask it", it update interrupt
paca->irq_happened and return. arch_local_irq_restore() is called to
re-enable interrupts, which checks and replays interrupts if any
occured.
Now, as mentioned, current logic doesnot mask "performance monitoring
interrupts" and PMIs are implemented as NMI. But this patchset depends
on local_irq_* for a successful local_* update. Meaning, mask all
possible interrupts during local_* update and replay them after the
update.
So the idea here is to reserve the "paca->soft_enabled" logic. New
values and details:
soft_enabled MSR[EE]
1 0 Disabled (PMI and HMI not masked)
0 1 Enabled
Reason for the this change is to create foundation for a third mask
value "0x2" for "soft_enabled" to add support to mask PMIs. When
->soft_enabled is set to a value "3", PMI interrupts are mask and when
set to a value of "1", PMI are not mask. With this patch also extends
soft_enabled as interrupt disable mask.
Current flags are renamed from IRQ_[EN?DIS}ABLED to
IRQS_ENABLED and IRQS_DISABLED.
Patch also fixes the ptrace call to force the user to see the softe
value to be alway 1. Reason being, even though userspace has no
business knowing about softe, it is part of pt_regs. Like-wise in
signal context.
Signed-off-by: Madhavan Srinivasan <maddy@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-12-20 03:55:49 +00:00
|
|
|
cmpwi cr0,r8,0
|
|
|
|
bne restore
|
ppc64: fix missing to check all bits of _TIF_USER_WORK_MASK in preempt
In entry_64.S version of ret_from_except_lite, you'll notice that
in the !preempt case, after we've checked MSR_PR we test for any
TIF flag in _TIF_USER_WORK_MASK to decide whether to go to do_work
or not. However, in the preempt case, we do a convoluted trick to
test SIGPENDING only if PR was set and always test NEED_RESCHED ...
but we forget to test any other bit of _TIF_USER_WORK_MASK !!! So
that means that with preempt, we completely fail to test for things
like single step, syscall tracing, etc...
This should be fixed as the following path:
- Test PR. If not set, go to resume_kernel, else continue.
- If go resume_kernel, to do that original do_work.
- If else, then always test for _TIF_USER_WORK_MASK to decide to do
that original user_work, else restore directly.
Signed-off-by: Tiejun Chen <tiejun.chen@windriver.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2012-06-06 20:56:43 +00:00
|
|
|
ld r0,SOFTE(r1)
|
powerpc/64: Change soft_enabled from flag to bitmask
"paca->soft_enabled" is used as a flag to mask some of interrupts.
Currently supported flags values and their details:
soft_enabled MSR[EE]
0 0 Disabled (PMI and HMI not masked)
1 1 Enabled
"paca->soft_enabled" is initialized to 1 to make the interripts as
enabled. arch_local_irq_disable() will toggle the value when
interrupts needs to disbled. At this point, the interrupts are not
actually disabled, instead, interrupt vector has code to check for the
flag and mask it when it occurs. By "mask it", it update interrupt
paca->irq_happened and return. arch_local_irq_restore() is called to
re-enable interrupts, which checks and replays interrupts if any
occured.
Now, as mentioned, current logic doesnot mask "performance monitoring
interrupts" and PMIs are implemented as NMI. But this patchset depends
on local_irq_* for a successful local_* update. Meaning, mask all
possible interrupts during local_* update and replay them after the
update.
So the idea here is to reserve the "paca->soft_enabled" logic. New
values and details:
soft_enabled MSR[EE]
1 0 Disabled (PMI and HMI not masked)
0 1 Enabled
Reason for the this change is to create foundation for a third mask
value "0x2" for "soft_enabled" to add support to mask PMIs. When
->soft_enabled is set to a value "3", PMI interrupts are mask and when
set to a value of "1", PMI are not mask. With this patch also extends
soft_enabled as interrupt disable mask.
Current flags are renamed from IRQ_[EN?DIS}ABLED to
IRQS_ENABLED and IRQS_DISABLED.
Patch also fixes the ptrace call to force the user to see the softe
value to be alway 1. Reason being, even though userspace has no
business knowing about softe, it is part of pt_regs. Like-wise in
signal context.
Signed-off-by: Madhavan Srinivasan <maddy@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-12-20 03:55:49 +00:00
|
|
|
andi. r0,r0,IRQS_DISABLED
|
ppc64: fix missing to check all bits of _TIF_USER_WORK_MASK in preempt
In entry_64.S version of ret_from_except_lite, you'll notice that
in the !preempt case, after we've checked MSR_PR we test for any
TIF flag in _TIF_USER_WORK_MASK to decide whether to go to do_work
or not. However, in the preempt case, we do a convoluted trick to
test SIGPENDING only if PR was set and always test NEED_RESCHED ...
but we forget to test any other bit of _TIF_USER_WORK_MASK !!! So
that means that with preempt, we completely fail to test for things
like single step, syscall tracing, etc...
This should be fixed as the following path:
- Test PR. If not set, go to resume_kernel, else continue.
- If go resume_kernel, to do that original do_work.
- If else, then always test for _TIF_USER_WORK_MASK to decide to do
that original user_work, else restore directly.
Signed-off-by: Tiejun Chen <tiejun.chen@windriver.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2012-06-06 20:56:43 +00:00
|
|
|
bne restore
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Here we are preempting the current task. We want to make
|
2013-07-16 03:09:30 +00:00
|
|
|
* sure we are soft-disabled first and reconcile irq state.
|
ppc64: fix missing to check all bits of _TIF_USER_WORK_MASK in preempt
In entry_64.S version of ret_from_except_lite, you'll notice that
in the !preempt case, after we've checked MSR_PR we test for any
TIF flag in _TIF_USER_WORK_MASK to decide whether to go to do_work
or not. However, in the preempt case, we do a convoluted trick to
test SIGPENDING only if PR was set and always test NEED_RESCHED ...
but we forget to test any other bit of _TIF_USER_WORK_MASK !!! So
that means that with preempt, we completely fail to test for things
like single step, syscall tracing, etc...
This should be fixed as the following path:
- Test PR. If not set, go to resume_kernel, else continue.
- If go resume_kernel, to do that original do_work.
- If else, then always test for _TIF_USER_WORK_MASK to decide to do
that original user_work, else restore directly.
Signed-off-by: Tiejun Chen <tiejun.chen@windriver.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2012-06-06 20:56:43 +00:00
|
|
|
*/
|
2013-07-16 03:09:30 +00:00
|
|
|
RECONCILE_IRQ_STATE(r3,r4)
|
2014-02-04 05:04:35 +00:00
|
|
|
1: bl preempt_schedule_irq
|
ppc64: fix missing to check all bits of _TIF_USER_WORK_MASK in preempt
In entry_64.S version of ret_from_except_lite, you'll notice that
in the !preempt case, after we've checked MSR_PR we test for any
TIF flag in _TIF_USER_WORK_MASK to decide whether to go to do_work
or not. However, in the preempt case, we do a convoluted trick to
test SIGPENDING only if PR was set and always test NEED_RESCHED ...
but we forget to test any other bit of _TIF_USER_WORK_MASK !!! So
that means that with preempt, we completely fail to test for things
like single step, syscall tracing, etc...
This should be fixed as the following path:
- Test PR. If not set, go to resume_kernel, else continue.
- If go resume_kernel, to do that original do_work.
- If else, then always test for _TIF_USER_WORK_MASK to decide to do
that original user_work, else restore directly.
Signed-off-by: Tiejun Chen <tiejun.chen@windriver.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2012-06-06 20:56:43 +00:00
|
|
|
|
|
|
|
/* Re-test flags and eventually loop */
|
2019-01-12 09:55:50 +00:00
|
|
|
ld r9, PACA_THREAD_INFO(r13)
|
2005-10-10 12:36:14 +00:00
|
|
|
ld r4,TI_FLAGS(r9)
|
ppc64: fix missing to check all bits of _TIF_USER_WORK_MASK in preempt
In entry_64.S version of ret_from_except_lite, you'll notice that
in the !preempt case, after we've checked MSR_PR we test for any
TIF flag in _TIF_USER_WORK_MASK to decide whether to go to do_work
or not. However, in the preempt case, we do a convoluted trick to
test SIGPENDING only if PR was set and always test NEED_RESCHED ...
but we forget to test any other bit of _TIF_USER_WORK_MASK !!! So
that means that with preempt, we completely fail to test for things
like single step, syscall tracing, etc...
This should be fixed as the following path:
- Test PR. If not set, go to resume_kernel, else continue.
- If go resume_kernel, to do that original do_work.
- If else, then always test for _TIF_USER_WORK_MASK to decide to do
that original user_work, else restore directly.
Signed-off-by: Tiejun Chen <tiejun.chen@windriver.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2012-06-06 20:56:43 +00:00
|
|
|
andi. r0,r4,_TIF_NEED_RESCHED
|
|
|
|
bne 1b
|
2013-01-06 00:49:34 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* arch_local_irq_restore() from preempt_schedule_irq above may
|
|
|
|
* enable hard interrupt but we really should disable interrupts
|
|
|
|
* when we return from the interrupt, and so that we don't get
|
|
|
|
* interrupted after loading SRR0/1.
|
|
|
|
*/
|
|
|
|
#ifdef CONFIG_PPC_BOOK3E
|
|
|
|
wrteei 0
|
|
|
|
#else
|
2016-09-15 09:04:46 +00:00
|
|
|
li r10,MSR_RI
|
2013-01-06 00:49:34 +00:00
|
|
|
mtmsrd r10,1 /* Update machine state */
|
|
|
|
#endif /* CONFIG_PPC_BOOK3E */
|
ppc64: fix missing to check all bits of _TIF_USER_WORK_MASK in preempt
In entry_64.S version of ret_from_except_lite, you'll notice that
in the !preempt case, after we've checked MSR_PR we test for any
TIF flag in _TIF_USER_WORK_MASK to decide whether to go to do_work
or not. However, in the preempt case, we do a convoluted trick to
test SIGPENDING only if PR was set and always test NEED_RESCHED ...
but we forget to test any other bit of _TIF_USER_WORK_MASK !!! So
that means that with preempt, we completely fail to test for things
like single step, syscall tracing, etc...
This should be fixed as the following path:
- Test PR. If not set, go to resume_kernel, else continue.
- If go resume_kernel, to do that original do_work.
- If else, then always test for _TIF_USER_WORK_MASK to decide to do
that original user_work, else restore directly.
Signed-off-by: Tiejun Chen <tiejun.chen@windriver.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2012-06-06 20:56:43 +00:00
|
|
|
#endif /* CONFIG_PREEMPT */
|
2005-10-10 12:36:14 +00:00
|
|
|
|
powerpc: Rework lazy-interrupt handling
The current implementation of lazy interrupts handling has some
issues that this tries to address.
We don't do the various workarounds we need to do when re-enabling
interrupts in some cases such as when returning from an interrupt
and thus we may still lose or get delayed decrementer or doorbell
interrupts.
The current scheme also makes it much harder to handle the external
"edge" interrupts provided by some BookE processors when using the
EPR facility (External Proxy) and the Freescale Hypervisor.
Additionally, we tend to keep interrupts hard disabled in a number
of cases, such as decrementer interrupts, external interrupts, or
when a masked decrementer interrupt is pending. This is sub-optimal.
This is an attempt at fixing it all in one go by reworking the way
we do the lazy interrupt disabling from the ground up.
The base idea is to replace the "hard_enabled" field with a
"irq_happened" field in which we store a bit mask of what interrupt
occurred while soft-disabled.
When re-enabling, either via arch_local_irq_restore() or when returning
from an interrupt, we can now decide what to do by testing bits in that
field.
We then implement replaying of the missed interrupts either by
re-using the existing exception frame (in exception exit case) or via
the creation of a new one from an assembly trampoline (in the
arch_local_irq_enable case).
This removes the need to play with the decrementer to try to create
fake interrupts, among others.
In addition, this adds a few refinements:
- We no longer hard disable decrementer interrupts that occur
while soft-disabled. We now simply bump the decrementer back to max
(on BookS) or leave it stopped (on BookE) and continue with hard interrupts
enabled, which means that we'll potentially get better sample quality from
performance monitor interrupts.
- Timer, decrementer and doorbell interrupts now hard-enable
shortly after removing the source of the interrupt, which means
they no longer run entirely hard disabled. Again, this will improve
perf sample quality.
- On Book3E 64-bit, we now make the performance monitor interrupt
act as an NMI like Book3S (the necessary C code for that to work
appear to already be present in the FSL perf code, notably calling
nmi_enter instead of irq_enter). (This also fixes a bug where BookE
perfmon interrupts could clobber r14 ... oops)
- We could make "masked" decrementer interrupts act as NMIs when doing
timer-based perf sampling to improve the sample quality.
Signed-off-by-yet: Benjamin Herrenschmidt <benh@kernel.crashing.org>
---
v2:
- Add hard-enable to decrementer, timer and doorbells
- Fix CR clobber in masked irq handling on BookE
- Make embedded perf interrupt act as an NMI
- Add a PACA_HAPPENED_EE_EDGE for use by FSL if they want
to retrigger an interrupt without preventing hard-enable
v3:
- Fix or vs. ori bug on Book3E
- Fix enabling of interrupts for some exceptions on Book3E
v4:
- Fix resend of doorbells on return from interrupt on Book3E
v5:
- Rebased on top of my latest series, which involves some significant
rework of some aspects of the patch.
v6:
- 32-bit compile fix
- more compile fixes with various .config combos
- factor out the asm code to soft-disable interrupts
- remove the C wrapper around preempt_schedule_irq
v7:
- Fix a bug with hard irq state tracking on native power7
2012-03-06 07:27:59 +00:00
|
|
|
.globl fast_exc_return_irq
|
|
|
|
fast_exc_return_irq:
|
2005-10-10 12:36:14 +00:00
|
|
|
restore:
|
powerpc: Rework lazy-interrupt handling
The current implementation of lazy interrupts handling has some
issues that this tries to address.
We don't do the various workarounds we need to do when re-enabling
interrupts in some cases such as when returning from an interrupt
and thus we may still lose or get delayed decrementer or doorbell
interrupts.
The current scheme also makes it much harder to handle the external
"edge" interrupts provided by some BookE processors when using the
EPR facility (External Proxy) and the Freescale Hypervisor.
Additionally, we tend to keep interrupts hard disabled in a number
of cases, such as decrementer interrupts, external interrupts, or
when a masked decrementer interrupt is pending. This is sub-optimal.
This is an attempt at fixing it all in one go by reworking the way
we do the lazy interrupt disabling from the ground up.
The base idea is to replace the "hard_enabled" field with a
"irq_happened" field in which we store a bit mask of what interrupt
occurred while soft-disabled.
When re-enabling, either via arch_local_irq_restore() or when returning
from an interrupt, we can now decide what to do by testing bits in that
field.
We then implement replaying of the missed interrupts either by
re-using the existing exception frame (in exception exit case) or via
the creation of a new one from an assembly trampoline (in the
arch_local_irq_enable case).
This removes the need to play with the decrementer to try to create
fake interrupts, among others.
In addition, this adds a few refinements:
- We no longer hard disable decrementer interrupts that occur
while soft-disabled. We now simply bump the decrementer back to max
(on BookS) or leave it stopped (on BookE) and continue with hard interrupts
enabled, which means that we'll potentially get better sample quality from
performance monitor interrupts.
- Timer, decrementer and doorbell interrupts now hard-enable
shortly after removing the source of the interrupt, which means
they no longer run entirely hard disabled. Again, this will improve
perf sample quality.
- On Book3E 64-bit, we now make the performance monitor interrupt
act as an NMI like Book3S (the necessary C code for that to work
appear to already be present in the FSL perf code, notably calling
nmi_enter instead of irq_enter). (This also fixes a bug where BookE
perfmon interrupts could clobber r14 ... oops)
- We could make "masked" decrementer interrupts act as NMIs when doing
timer-based perf sampling to improve the sample quality.
Signed-off-by-yet: Benjamin Herrenschmidt <benh@kernel.crashing.org>
---
v2:
- Add hard-enable to decrementer, timer and doorbells
- Fix CR clobber in masked irq handling on BookE
- Make embedded perf interrupt act as an NMI
- Add a PACA_HAPPENED_EE_EDGE for use by FSL if they want
to retrigger an interrupt without preventing hard-enable
v3:
- Fix or vs. ori bug on Book3E
- Fix enabling of interrupts for some exceptions on Book3E
v4:
- Fix resend of doorbells on return from interrupt on Book3E
v5:
- Rebased on top of my latest series, which involves some significant
rework of some aspects of the patch.
v6:
- 32-bit compile fix
- more compile fixes with various .config combos
- factor out the asm code to soft-disable interrupts
- remove the C wrapper around preempt_schedule_irq
v7:
- Fix a bug with hard irq state tracking on native power7
2012-03-06 07:27:59 +00:00
|
|
|
/*
|
2012-05-10 16:12:38 +00:00
|
|
|
* This is the main kernel exit path. First we check if we
|
|
|
|
* are about to re-enable interrupts
|
powerpc: Rework lazy-interrupt handling
The current implementation of lazy interrupts handling has some
issues that this tries to address.
We don't do the various workarounds we need to do when re-enabling
interrupts in some cases such as when returning from an interrupt
and thus we may still lose or get delayed decrementer or doorbell
interrupts.
The current scheme also makes it much harder to handle the external
"edge" interrupts provided by some BookE processors when using the
EPR facility (External Proxy) and the Freescale Hypervisor.
Additionally, we tend to keep interrupts hard disabled in a number
of cases, such as decrementer interrupts, external interrupts, or
when a masked decrementer interrupt is pending. This is sub-optimal.
This is an attempt at fixing it all in one go by reworking the way
we do the lazy interrupt disabling from the ground up.
The base idea is to replace the "hard_enabled" field with a
"irq_happened" field in which we store a bit mask of what interrupt
occurred while soft-disabled.
When re-enabling, either via arch_local_irq_restore() or when returning
from an interrupt, we can now decide what to do by testing bits in that
field.
We then implement replaying of the missed interrupts either by
re-using the existing exception frame (in exception exit case) or via
the creation of a new one from an assembly trampoline (in the
arch_local_irq_enable case).
This removes the need to play with the decrementer to try to create
fake interrupts, among others.
In addition, this adds a few refinements:
- We no longer hard disable decrementer interrupts that occur
while soft-disabled. We now simply bump the decrementer back to max
(on BookS) or leave it stopped (on BookE) and continue with hard interrupts
enabled, which means that we'll potentially get better sample quality from
performance monitor interrupts.
- Timer, decrementer and doorbell interrupts now hard-enable
shortly after removing the source of the interrupt, which means
they no longer run entirely hard disabled. Again, this will improve
perf sample quality.
- On Book3E 64-bit, we now make the performance monitor interrupt
act as an NMI like Book3S (the necessary C code for that to work
appear to already be present in the FSL perf code, notably calling
nmi_enter instead of irq_enter). (This also fixes a bug where BookE
perfmon interrupts could clobber r14 ... oops)
- We could make "masked" decrementer interrupts act as NMIs when doing
timer-based perf sampling to improve the sample quality.
Signed-off-by-yet: Benjamin Herrenschmidt <benh@kernel.crashing.org>
---
v2:
- Add hard-enable to decrementer, timer and doorbells
- Fix CR clobber in masked irq handling on BookE
- Make embedded perf interrupt act as an NMI
- Add a PACA_HAPPENED_EE_EDGE for use by FSL if they want
to retrigger an interrupt without preventing hard-enable
v3:
- Fix or vs. ori bug on Book3E
- Fix enabling of interrupts for some exceptions on Book3E
v4:
- Fix resend of doorbells on return from interrupt on Book3E
v5:
- Rebased on top of my latest series, which involves some significant
rework of some aspects of the patch.
v6:
- 32-bit compile fix
- more compile fixes with various .config combos
- factor out the asm code to soft-disable interrupts
- remove the C wrapper around preempt_schedule_irq
v7:
- Fix a bug with hard irq state tracking on native power7
2012-03-06 07:27:59 +00:00
|
|
|
*/
|
2008-07-16 04:21:34 +00:00
|
|
|
ld r5,SOFTE(r1)
|
2017-12-20 03:55:50 +00:00
|
|
|
lbz r6,PACAIRQSOFTMASK(r13)
|
powerpc/64: Change soft_enabled from flag to bitmask
"paca->soft_enabled" is used as a flag to mask some of interrupts.
Currently supported flags values and their details:
soft_enabled MSR[EE]
0 0 Disabled (PMI and HMI not masked)
1 1 Enabled
"paca->soft_enabled" is initialized to 1 to make the interripts as
enabled. arch_local_irq_disable() will toggle the value when
interrupts needs to disbled. At this point, the interrupts are not
actually disabled, instead, interrupt vector has code to check for the
flag and mask it when it occurs. By "mask it", it update interrupt
paca->irq_happened and return. arch_local_irq_restore() is called to
re-enable interrupts, which checks and replays interrupts if any
occured.
Now, as mentioned, current logic doesnot mask "performance monitoring
interrupts" and PMIs are implemented as NMI. But this patchset depends
on local_irq_* for a successful local_* update. Meaning, mask all
possible interrupts during local_* update and replay them after the
update.
So the idea here is to reserve the "paca->soft_enabled" logic. New
values and details:
soft_enabled MSR[EE]
1 0 Disabled (PMI and HMI not masked)
0 1 Enabled
Reason for the this change is to create foundation for a third mask
value "0x2" for "soft_enabled" to add support to mask PMIs. When
->soft_enabled is set to a value "3", PMI interrupts are mask and when
set to a value of "1", PMI are not mask. With this patch also extends
soft_enabled as interrupt disable mask.
Current flags are renamed from IRQ_[EN?DIS}ABLED to
IRQS_ENABLED and IRQS_DISABLED.
Patch also fixes the ptrace call to force the user to see the softe
value to be alway 1. Reason being, even though userspace has no
business knowing about softe, it is part of pt_regs. Like-wise in
signal context.
Signed-off-by: Madhavan Srinivasan <maddy@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-12-20 03:55:49 +00:00
|
|
|
andi. r5,r5,IRQS_DISABLED
|
|
|
|
bne .Lrestore_irq_off
|
powerpc: Rework lazy-interrupt handling
The current implementation of lazy interrupts handling has some
issues that this tries to address.
We don't do the various workarounds we need to do when re-enabling
interrupts in some cases such as when returning from an interrupt
and thus we may still lose or get delayed decrementer or doorbell
interrupts.
The current scheme also makes it much harder to handle the external
"edge" interrupts provided by some BookE processors when using the
EPR facility (External Proxy) and the Freescale Hypervisor.
Additionally, we tend to keep interrupts hard disabled in a number
of cases, such as decrementer interrupts, external interrupts, or
when a masked decrementer interrupt is pending. This is sub-optimal.
This is an attempt at fixing it all in one go by reworking the way
we do the lazy interrupt disabling from the ground up.
The base idea is to replace the "hard_enabled" field with a
"irq_happened" field in which we store a bit mask of what interrupt
occurred while soft-disabled.
When re-enabling, either via arch_local_irq_restore() or when returning
from an interrupt, we can now decide what to do by testing bits in that
field.
We then implement replaying of the missed interrupts either by
re-using the existing exception frame (in exception exit case) or via
the creation of a new one from an assembly trampoline (in the
arch_local_irq_enable case).
This removes the need to play with the decrementer to try to create
fake interrupts, among others.
In addition, this adds a few refinements:
- We no longer hard disable decrementer interrupts that occur
while soft-disabled. We now simply bump the decrementer back to max
(on BookS) or leave it stopped (on BookE) and continue with hard interrupts
enabled, which means that we'll potentially get better sample quality from
performance monitor interrupts.
- Timer, decrementer and doorbell interrupts now hard-enable
shortly after removing the source of the interrupt, which means
they no longer run entirely hard disabled. Again, this will improve
perf sample quality.
- On Book3E 64-bit, we now make the performance monitor interrupt
act as an NMI like Book3S (the necessary C code for that to work
appear to already be present in the FSL perf code, notably calling
nmi_enter instead of irq_enter). (This also fixes a bug where BookE
perfmon interrupts could clobber r14 ... oops)
- We could make "masked" decrementer interrupts act as NMIs when doing
timer-based perf sampling to improve the sample quality.
Signed-off-by-yet: Benjamin Herrenschmidt <benh@kernel.crashing.org>
---
v2:
- Add hard-enable to decrementer, timer and doorbells
- Fix CR clobber in masked irq handling on BookE
- Make embedded perf interrupt act as an NMI
- Add a PACA_HAPPENED_EE_EDGE for use by FSL if they want
to retrigger an interrupt without preventing hard-enable
v3:
- Fix or vs. ori bug on Book3E
- Fix enabling of interrupts for some exceptions on Book3E
v4:
- Fix resend of doorbells on return from interrupt on Book3E
v5:
- Rebased on top of my latest series, which involves some significant
rework of some aspects of the patch.
v6:
- 32-bit compile fix
- more compile fixes with various .config combos
- factor out the asm code to soft-disable interrupts
- remove the C wrapper around preempt_schedule_irq
v7:
- Fix a bug with hard irq state tracking on native power7
2012-03-06 07:27:59 +00:00
|
|
|
|
2012-05-10 16:12:38 +00:00
|
|
|
/* We are enabling, were we already enabled ? Yes, just return */
|
powerpc/64: Change soft_enabled from flag to bitmask
"paca->soft_enabled" is used as a flag to mask some of interrupts.
Currently supported flags values and their details:
soft_enabled MSR[EE]
0 0 Disabled (PMI and HMI not masked)
1 1 Enabled
"paca->soft_enabled" is initialized to 1 to make the interripts as
enabled. arch_local_irq_disable() will toggle the value when
interrupts needs to disbled. At this point, the interrupts are not
actually disabled, instead, interrupt vector has code to check for the
flag and mask it when it occurs. By "mask it", it update interrupt
paca->irq_happened and return. arch_local_irq_restore() is called to
re-enable interrupts, which checks and replays interrupts if any
occured.
Now, as mentioned, current logic doesnot mask "performance monitoring
interrupts" and PMIs are implemented as NMI. But this patchset depends
on local_irq_* for a successful local_* update. Meaning, mask all
possible interrupts during local_* update and replay them after the
update.
So the idea here is to reserve the "paca->soft_enabled" logic. New
values and details:
soft_enabled MSR[EE]
1 0 Disabled (PMI and HMI not masked)
0 1 Enabled
Reason for the this change is to create foundation for a third mask
value "0x2" for "soft_enabled" to add support to mask PMIs. When
->soft_enabled is set to a value "3", PMI interrupts are mask and when
set to a value of "1", PMI are not mask. With this patch also extends
soft_enabled as interrupt disable mask.
Current flags are renamed from IRQ_[EN?DIS}ABLED to
IRQS_ENABLED and IRQS_DISABLED.
Patch also fixes the ptrace call to force the user to see the softe
value to be alway 1. Reason being, even though userspace has no
business knowing about softe, it is part of pt_regs. Like-wise in
signal context.
Signed-off-by: Madhavan Srinivasan <maddy@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-12-20 03:55:49 +00:00
|
|
|
andi. r6,r6,IRQS_DISABLED
|
2017-06-29 17:49:19 +00:00
|
|
|
beq cr0,.Ldo_restore
|
2005-10-10 12:36:14 +00:00
|
|
|
|
2012-05-10 16:12:38 +00:00
|
|
|
/*
|
powerpc: Rework lazy-interrupt handling
The current implementation of lazy interrupts handling has some
issues that this tries to address.
We don't do the various workarounds we need to do when re-enabling
interrupts in some cases such as when returning from an interrupt
and thus we may still lose or get delayed decrementer or doorbell
interrupts.
The current scheme also makes it much harder to handle the external
"edge" interrupts provided by some BookE processors when using the
EPR facility (External Proxy) and the Freescale Hypervisor.
Additionally, we tend to keep interrupts hard disabled in a number
of cases, such as decrementer interrupts, external interrupts, or
when a masked decrementer interrupt is pending. This is sub-optimal.
This is an attempt at fixing it all in one go by reworking the way
we do the lazy interrupt disabling from the ground up.
The base idea is to replace the "hard_enabled" field with a
"irq_happened" field in which we store a bit mask of what interrupt
occurred while soft-disabled.
When re-enabling, either via arch_local_irq_restore() or when returning
from an interrupt, we can now decide what to do by testing bits in that
field.
We then implement replaying of the missed interrupts either by
re-using the existing exception frame (in exception exit case) or via
the creation of a new one from an assembly trampoline (in the
arch_local_irq_enable case).
This removes the need to play with the decrementer to try to create
fake interrupts, among others.
In addition, this adds a few refinements:
- We no longer hard disable decrementer interrupts that occur
while soft-disabled. We now simply bump the decrementer back to max
(on BookS) or leave it stopped (on BookE) and continue with hard interrupts
enabled, which means that we'll potentially get better sample quality from
performance monitor interrupts.
- Timer, decrementer and doorbell interrupts now hard-enable
shortly after removing the source of the interrupt, which means
they no longer run entirely hard disabled. Again, this will improve
perf sample quality.
- On Book3E 64-bit, we now make the performance monitor interrupt
act as an NMI like Book3S (the necessary C code for that to work
appear to already be present in the FSL perf code, notably calling
nmi_enter instead of irq_enter). (This also fixes a bug where BookE
perfmon interrupts could clobber r14 ... oops)
- We could make "masked" decrementer interrupts act as NMIs when doing
timer-based perf sampling to improve the sample quality.
Signed-off-by-yet: Benjamin Herrenschmidt <benh@kernel.crashing.org>
---
v2:
- Add hard-enable to decrementer, timer and doorbells
- Fix CR clobber in masked irq handling on BookE
- Make embedded perf interrupt act as an NMI
- Add a PACA_HAPPENED_EE_EDGE for use by FSL if they want
to retrigger an interrupt without preventing hard-enable
v3:
- Fix or vs. ori bug on Book3E
- Fix enabling of interrupts for some exceptions on Book3E
v4:
- Fix resend of doorbells on return from interrupt on Book3E
v5:
- Rebased on top of my latest series, which involves some significant
rework of some aspects of the patch.
v6:
- 32-bit compile fix
- more compile fixes with various .config combos
- factor out the asm code to soft-disable interrupts
- remove the C wrapper around preempt_schedule_irq
v7:
- Fix a bug with hard irq state tracking on native power7
2012-03-06 07:27:59 +00:00
|
|
|
* We are about to soft-enable interrupts (we are hard disabled
|
|
|
|
* at this point). We check if there's anything that needs to
|
|
|
|
* be replayed first.
|
|
|
|
*/
|
|
|
|
lbz r0,PACAIRQHAPPENED(r13)
|
|
|
|
cmpwi cr0,r0,0
|
2017-06-29 17:49:19 +00:00
|
|
|
bne- .Lrestore_check_irq_replay
|
2007-02-07 02:13:26 +00:00
|
|
|
|
powerpc: Rework lazy-interrupt handling
The current implementation of lazy interrupts handling has some
issues that this tries to address.
We don't do the various workarounds we need to do when re-enabling
interrupts in some cases such as when returning from an interrupt
and thus we may still lose or get delayed decrementer or doorbell
interrupts.
The current scheme also makes it much harder to handle the external
"edge" interrupts provided by some BookE processors when using the
EPR facility (External Proxy) and the Freescale Hypervisor.
Additionally, we tend to keep interrupts hard disabled in a number
of cases, such as decrementer interrupts, external interrupts, or
when a masked decrementer interrupt is pending. This is sub-optimal.
This is an attempt at fixing it all in one go by reworking the way
we do the lazy interrupt disabling from the ground up.
The base idea is to replace the "hard_enabled" field with a
"irq_happened" field in which we store a bit mask of what interrupt
occurred while soft-disabled.
When re-enabling, either via arch_local_irq_restore() or when returning
from an interrupt, we can now decide what to do by testing bits in that
field.
We then implement replaying of the missed interrupts either by
re-using the existing exception frame (in exception exit case) or via
the creation of a new one from an assembly trampoline (in the
arch_local_irq_enable case).
This removes the need to play with the decrementer to try to create
fake interrupts, among others.
In addition, this adds a few refinements:
- We no longer hard disable decrementer interrupts that occur
while soft-disabled. We now simply bump the decrementer back to max
(on BookS) or leave it stopped (on BookE) and continue with hard interrupts
enabled, which means that we'll potentially get better sample quality from
performance monitor interrupts.
- Timer, decrementer and doorbell interrupts now hard-enable
shortly after removing the source of the interrupt, which means
they no longer run entirely hard disabled. Again, this will improve
perf sample quality.
- On Book3E 64-bit, we now make the performance monitor interrupt
act as an NMI like Book3S (the necessary C code for that to work
appear to already be present in the FSL perf code, notably calling
nmi_enter instead of irq_enter). (This also fixes a bug where BookE
perfmon interrupts could clobber r14 ... oops)
- We could make "masked" decrementer interrupts act as NMIs when doing
timer-based perf sampling to improve the sample quality.
Signed-off-by-yet: Benjamin Herrenschmidt <benh@kernel.crashing.org>
---
v2:
- Add hard-enable to decrementer, timer and doorbells
- Fix CR clobber in masked irq handling on BookE
- Make embedded perf interrupt act as an NMI
- Add a PACA_HAPPENED_EE_EDGE for use by FSL if they want
to retrigger an interrupt without preventing hard-enable
v3:
- Fix or vs. ori bug on Book3E
- Fix enabling of interrupts for some exceptions on Book3E
v4:
- Fix resend of doorbells on return from interrupt on Book3E
v5:
- Rebased on top of my latest series, which involves some significant
rework of some aspects of the patch.
v6:
- 32-bit compile fix
- more compile fixes with various .config combos
- factor out the asm code to soft-disable interrupts
- remove the C wrapper around preempt_schedule_irq
v7:
- Fix a bug with hard irq state tracking on native power7
2012-03-06 07:27:59 +00:00
|
|
|
/*
|
|
|
|
* Get here when nothing happened while soft-disabled, just
|
|
|
|
* soft-enable and move-on. We will hard-enable as a side
|
|
|
|
* effect of rfi
|
|
|
|
*/
|
2017-06-29 17:49:19 +00:00
|
|
|
.Lrestore_no_replay:
|
powerpc: Rework lazy-interrupt handling
The current implementation of lazy interrupts handling has some
issues that this tries to address.
We don't do the various workarounds we need to do when re-enabling
interrupts in some cases such as when returning from an interrupt
and thus we may still lose or get delayed decrementer or doorbell
interrupts.
The current scheme also makes it much harder to handle the external
"edge" interrupts provided by some BookE processors when using the
EPR facility (External Proxy) and the Freescale Hypervisor.
Additionally, we tend to keep interrupts hard disabled in a number
of cases, such as decrementer interrupts, external interrupts, or
when a masked decrementer interrupt is pending. This is sub-optimal.
This is an attempt at fixing it all in one go by reworking the way
we do the lazy interrupt disabling from the ground up.
The base idea is to replace the "hard_enabled" field with a
"irq_happened" field in which we store a bit mask of what interrupt
occurred while soft-disabled.
When re-enabling, either via arch_local_irq_restore() or when returning
from an interrupt, we can now decide what to do by testing bits in that
field.
We then implement replaying of the missed interrupts either by
re-using the existing exception frame (in exception exit case) or via
the creation of a new one from an assembly trampoline (in the
arch_local_irq_enable case).
This removes the need to play with the decrementer to try to create
fake interrupts, among others.
In addition, this adds a few refinements:
- We no longer hard disable decrementer interrupts that occur
while soft-disabled. We now simply bump the decrementer back to max
(on BookS) or leave it stopped (on BookE) and continue with hard interrupts
enabled, which means that we'll potentially get better sample quality from
performance monitor interrupts.
- Timer, decrementer and doorbell interrupts now hard-enable
shortly after removing the source of the interrupt, which means
they no longer run entirely hard disabled. Again, this will improve
perf sample quality.
- On Book3E 64-bit, we now make the performance monitor interrupt
act as an NMI like Book3S (the necessary C code for that to work
appear to already be present in the FSL perf code, notably calling
nmi_enter instead of irq_enter). (This also fixes a bug where BookE
perfmon interrupts could clobber r14 ... oops)
- We could make "masked" decrementer interrupts act as NMIs when doing
timer-based perf sampling to improve the sample quality.
Signed-off-by-yet: Benjamin Herrenschmidt <benh@kernel.crashing.org>
---
v2:
- Add hard-enable to decrementer, timer and doorbells
- Fix CR clobber in masked irq handling on BookE
- Make embedded perf interrupt act as an NMI
- Add a PACA_HAPPENED_EE_EDGE for use by FSL if they want
to retrigger an interrupt without preventing hard-enable
v3:
- Fix or vs. ori bug on Book3E
- Fix enabling of interrupts for some exceptions on Book3E
v4:
- Fix resend of doorbells on return from interrupt on Book3E
v5:
- Rebased on top of my latest series, which involves some significant
rework of some aspects of the patch.
v6:
- 32-bit compile fix
- more compile fixes with various .config combos
- factor out the asm code to soft-disable interrupts
- remove the C wrapper around preempt_schedule_irq
v7:
- Fix a bug with hard irq state tracking on native power7
2012-03-06 07:27:59 +00:00
|
|
|
TRACE_ENABLE_INTS
|
2017-12-20 03:55:42 +00:00
|
|
|
li r0,IRQS_ENABLED
|
2017-12-20 03:55:50 +00:00
|
|
|
stb r0,PACAIRQSOFTMASK(r13);
|
powerpc: Rework lazy-interrupt handling
The current implementation of lazy interrupts handling has some
issues that this tries to address.
We don't do the various workarounds we need to do when re-enabling
interrupts in some cases such as when returning from an interrupt
and thus we may still lose or get delayed decrementer or doorbell
interrupts.
The current scheme also makes it much harder to handle the external
"edge" interrupts provided by some BookE processors when using the
EPR facility (External Proxy) and the Freescale Hypervisor.
Additionally, we tend to keep interrupts hard disabled in a number
of cases, such as decrementer interrupts, external interrupts, or
when a masked decrementer interrupt is pending. This is sub-optimal.
This is an attempt at fixing it all in one go by reworking the way
we do the lazy interrupt disabling from the ground up.
The base idea is to replace the "hard_enabled" field with a
"irq_happened" field in which we store a bit mask of what interrupt
occurred while soft-disabled.
When re-enabling, either via arch_local_irq_restore() or when returning
from an interrupt, we can now decide what to do by testing bits in that
field.
We then implement replaying of the missed interrupts either by
re-using the existing exception frame (in exception exit case) or via
the creation of a new one from an assembly trampoline (in the
arch_local_irq_enable case).
This removes the need to play with the decrementer to try to create
fake interrupts, among others.
In addition, this adds a few refinements:
- We no longer hard disable decrementer interrupts that occur
while soft-disabled. We now simply bump the decrementer back to max
(on BookS) or leave it stopped (on BookE) and continue with hard interrupts
enabled, which means that we'll potentially get better sample quality from
performance monitor interrupts.
- Timer, decrementer and doorbell interrupts now hard-enable
shortly after removing the source of the interrupt, which means
they no longer run entirely hard disabled. Again, this will improve
perf sample quality.
- On Book3E 64-bit, we now make the performance monitor interrupt
act as an NMI like Book3S (the necessary C code for that to work
appear to already be present in the FSL perf code, notably calling
nmi_enter instead of irq_enter). (This also fixes a bug where BookE
perfmon interrupts could clobber r14 ... oops)
- We could make "masked" decrementer interrupts act as NMIs when doing
timer-based perf sampling to improve the sample quality.
Signed-off-by-yet: Benjamin Herrenschmidt <benh@kernel.crashing.org>
---
v2:
- Add hard-enable to decrementer, timer and doorbells
- Fix CR clobber in masked irq handling on BookE
- Make embedded perf interrupt act as an NMI
- Add a PACA_HAPPENED_EE_EDGE for use by FSL if they want
to retrigger an interrupt without preventing hard-enable
v3:
- Fix or vs. ori bug on Book3E
- Fix enabling of interrupts for some exceptions on Book3E
v4:
- Fix resend of doorbells on return from interrupt on Book3E
v5:
- Rebased on top of my latest series, which involves some significant
rework of some aspects of the patch.
v6:
- 32-bit compile fix
- more compile fixes with various .config combos
- factor out the asm code to soft-disable interrupts
- remove the C wrapper around preempt_schedule_irq
v7:
- Fix a bug with hard irq state tracking on native power7
2012-03-06 07:27:59 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Final return path. BookE is handled in a different file
|
|
|
|
*/
|
2017-06-29 17:49:19 +00:00
|
|
|
.Ldo_restore:
|
2009-07-23 23:15:59 +00:00
|
|
|
#ifdef CONFIG_PPC_BOOK3E
|
2014-02-04 05:04:35 +00:00
|
|
|
b exception_return_book3e
|
2009-07-23 23:15:59 +00:00
|
|
|
#else
|
powerpc: Rework lazy-interrupt handling
The current implementation of lazy interrupts handling has some
issues that this tries to address.
We don't do the various workarounds we need to do when re-enabling
interrupts in some cases such as when returning from an interrupt
and thus we may still lose or get delayed decrementer or doorbell
interrupts.
The current scheme also makes it much harder to handle the external
"edge" interrupts provided by some BookE processors when using the
EPR facility (External Proxy) and the Freescale Hypervisor.
Additionally, we tend to keep interrupts hard disabled in a number
of cases, such as decrementer interrupts, external interrupts, or
when a masked decrementer interrupt is pending. This is sub-optimal.
This is an attempt at fixing it all in one go by reworking the way
we do the lazy interrupt disabling from the ground up.
The base idea is to replace the "hard_enabled" field with a
"irq_happened" field in which we store a bit mask of what interrupt
occurred while soft-disabled.
When re-enabling, either via arch_local_irq_restore() or when returning
from an interrupt, we can now decide what to do by testing bits in that
field.
We then implement replaying of the missed interrupts either by
re-using the existing exception frame (in exception exit case) or via
the creation of a new one from an assembly trampoline (in the
arch_local_irq_enable case).
This removes the need to play with the decrementer to try to create
fake interrupts, among others.
In addition, this adds a few refinements:
- We no longer hard disable decrementer interrupts that occur
while soft-disabled. We now simply bump the decrementer back to max
(on BookS) or leave it stopped (on BookE) and continue with hard interrupts
enabled, which means that we'll potentially get better sample quality from
performance monitor interrupts.
- Timer, decrementer and doorbell interrupts now hard-enable
shortly after removing the source of the interrupt, which means
they no longer run entirely hard disabled. Again, this will improve
perf sample quality.
- On Book3E 64-bit, we now make the performance monitor interrupt
act as an NMI like Book3S (the necessary C code for that to work
appear to already be present in the FSL perf code, notably calling
nmi_enter instead of irq_enter). (This also fixes a bug where BookE
perfmon interrupts could clobber r14 ... oops)
- We could make "masked" decrementer interrupts act as NMIs when doing
timer-based perf sampling to improve the sample quality.
Signed-off-by-yet: Benjamin Herrenschmidt <benh@kernel.crashing.org>
---
v2:
- Add hard-enable to decrementer, timer and doorbells
- Fix CR clobber in masked irq handling on BookE
- Make embedded perf interrupt act as an NMI
- Add a PACA_HAPPENED_EE_EDGE for use by FSL if they want
to retrigger an interrupt without preventing hard-enable
v3:
- Fix or vs. ori bug on Book3E
- Fix enabling of interrupts for some exceptions on Book3E
v4:
- Fix resend of doorbells on return from interrupt on Book3E
v5:
- Rebased on top of my latest series, which involves some significant
rework of some aspects of the patch.
v6:
- 32-bit compile fix
- more compile fixes with various .config combos
- factor out the asm code to soft-disable interrupts
- remove the C wrapper around preempt_schedule_irq
v7:
- Fix a bug with hard irq state tracking on native power7
2012-03-06 07:27:59 +00:00
|
|
|
/*
|
|
|
|
* Clear the reservation. If we know the CPU tracks the address of
|
|
|
|
* the reservation then we can potentially save some cycles and use
|
|
|
|
* a larx. On POWER6 and POWER7 this is significantly faster.
|
|
|
|
*/
|
|
|
|
BEGIN_FTR_SECTION
|
|
|
|
stdcx. r0,0,r1 /* to clear the reservation */
|
|
|
|
FTR_SECTION_ELSE
|
|
|
|
ldarx r4,0,r1
|
|
|
|
ALT_FTR_SECTION_END_IFCLR(CPU_FTR_STCX_CHECKS_ADDRESS)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Some code path such as load_up_fpu or altivec return directly
|
|
|
|
* here. They run entirely hard disabled and do not alter the
|
|
|
|
* interrupt state. They also don't use lwarx/stwcx. and thus
|
|
|
|
* are known not to leave dangling reservations.
|
|
|
|
*/
|
|
|
|
.globl fast_exception_return
|
|
|
|
fast_exception_return:
|
|
|
|
ld r3,_MSR(r1)
|
2007-02-07 02:13:26 +00:00
|
|
|
ld r4,_CTR(r1)
|
|
|
|
ld r0,_LINK(r1)
|
|
|
|
mtctr r4
|
|
|
|
mtlr r0
|
|
|
|
ld r4,_XER(r1)
|
|
|
|
mtspr SPRN_XER,r4
|
|
|
|
|
2019-04-18 06:51:24 +00:00
|
|
|
kuap_check_amr r5, r6
|
|
|
|
|
2007-02-07 02:13:26 +00:00
|
|
|
REST_8GPRS(5, r1)
|
|
|
|
|
2005-10-10 12:36:14 +00:00
|
|
|
andi. r0,r3,MSR_RI
|
2017-06-29 17:49:19 +00:00
|
|
|
beq- .Lunrecov_restore
|
2005-10-10 12:36:14 +00:00
|
|
|
|
2007-02-07 02:13:26 +00:00
|
|
|
/*
|
|
|
|
* Clear RI before restoring r13. If we are returning to
|
|
|
|
* userspace and we take an exception after restoring r13,
|
|
|
|
* we end up corrupting the userspace r13 value.
|
|
|
|
*/
|
2016-09-15 09:04:46 +00:00
|
|
|
li r4,0
|
2007-02-07 02:13:26 +00:00
|
|
|
mtmsrd r4,1
|
2005-10-10 12:36:14 +00:00
|
|
|
|
2013-02-13 16:21:34 +00:00
|
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
|
|
/* TM debug */
|
|
|
|
std r3, PACATMSCRATCH(r13) /* Stash returned-to MSR */
|
|
|
|
#endif
|
2005-10-10 12:36:14 +00:00
|
|
|
/*
|
|
|
|
* r13 is our per cpu area, only restore it if we are returning to
|
powerpc: Rework lazy-interrupt handling
The current implementation of lazy interrupts handling has some
issues that this tries to address.
We don't do the various workarounds we need to do when re-enabling
interrupts in some cases such as when returning from an interrupt
and thus we may still lose or get delayed decrementer or doorbell
interrupts.
The current scheme also makes it much harder to handle the external
"edge" interrupts provided by some BookE processors when using the
EPR facility (External Proxy) and the Freescale Hypervisor.
Additionally, we tend to keep interrupts hard disabled in a number
of cases, such as decrementer interrupts, external interrupts, or
when a masked decrementer interrupt is pending. This is sub-optimal.
This is an attempt at fixing it all in one go by reworking the way
we do the lazy interrupt disabling from the ground up.
The base idea is to replace the "hard_enabled" field with a
"irq_happened" field in which we store a bit mask of what interrupt
occurred while soft-disabled.
When re-enabling, either via arch_local_irq_restore() or when returning
from an interrupt, we can now decide what to do by testing bits in that
field.
We then implement replaying of the missed interrupts either by
re-using the existing exception frame (in exception exit case) or via
the creation of a new one from an assembly trampoline (in the
arch_local_irq_enable case).
This removes the need to play with the decrementer to try to create
fake interrupts, among others.
In addition, this adds a few refinements:
- We no longer hard disable decrementer interrupts that occur
while soft-disabled. We now simply bump the decrementer back to max
(on BookS) or leave it stopped (on BookE) and continue with hard interrupts
enabled, which means that we'll potentially get better sample quality from
performance monitor interrupts.
- Timer, decrementer and doorbell interrupts now hard-enable
shortly after removing the source of the interrupt, which means
they no longer run entirely hard disabled. Again, this will improve
perf sample quality.
- On Book3E 64-bit, we now make the performance monitor interrupt
act as an NMI like Book3S (the necessary C code for that to work
appear to already be present in the FSL perf code, notably calling
nmi_enter instead of irq_enter). (This also fixes a bug where BookE
perfmon interrupts could clobber r14 ... oops)
- We could make "masked" decrementer interrupts act as NMIs when doing
timer-based perf sampling to improve the sample quality.
Signed-off-by-yet: Benjamin Herrenschmidt <benh@kernel.crashing.org>
---
v2:
- Add hard-enable to decrementer, timer and doorbells
- Fix CR clobber in masked irq handling on BookE
- Make embedded perf interrupt act as an NMI
- Add a PACA_HAPPENED_EE_EDGE for use by FSL if they want
to retrigger an interrupt without preventing hard-enable
v3:
- Fix or vs. ori bug on Book3E
- Fix enabling of interrupts for some exceptions on Book3E
v4:
- Fix resend of doorbells on return from interrupt on Book3E
v5:
- Rebased on top of my latest series, which involves some significant
rework of some aspects of the patch.
v6:
- 32-bit compile fix
- more compile fixes with various .config combos
- factor out the asm code to soft-disable interrupts
- remove the C wrapper around preempt_schedule_irq
v7:
- Fix a bug with hard irq state tracking on native power7
2012-03-06 07:27:59 +00:00
|
|
|
* userspace the value stored in the stack frame may belong to
|
|
|
|
* another CPU.
|
2005-10-10 12:36:14 +00:00
|
|
|
*/
|
2007-02-07 02:13:26 +00:00
|
|
|
andi. r0,r3,MSR_PR
|
2005-10-10 12:36:14 +00:00
|
|
|
beq 1f
|
2013-11-05 05:33:22 +00:00
|
|
|
BEGIN_FTR_SECTION
|
2018-10-12 13:15:16 +00:00
|
|
|
/* Restore PPR */
|
|
|
|
ld r2,_PPR(r1)
|
|
|
|
mtspr SPRN_PPR,r2
|
2013-11-05 05:33:22 +00:00
|
|
|
END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
|
2016-05-17 06:33:46 +00:00
|
|
|
ACCOUNT_CPU_USER_EXIT(r13, r2, r4)
|
2005-10-10 12:36:14 +00:00
|
|
|
REST_GPR(13, r1)
|
2018-01-09 16:07:15 +00:00
|
|
|
|
2019-04-18 06:51:24 +00:00
|
|
|
/*
|
|
|
|
* We don't need to restore AMR on the way back to userspace for KUAP.
|
|
|
|
* The value of AMR only matters while we're in the kernel.
|
|
|
|
*/
|
2007-02-07 02:13:26 +00:00
|
|
|
mtspr SPRN_SRR1,r3
|
2005-10-10 12:36:14 +00:00
|
|
|
|
|
|
|
ld r2,_CCR(r1)
|
|
|
|
mtcrf 0xFF,r2
|
|
|
|
ld r2,_NIP(r1)
|
|
|
|
mtspr SPRN_SRR0,r2
|
|
|
|
|
|
|
|
ld r0,GPR0(r1)
|
|
|
|
ld r2,GPR2(r1)
|
|
|
|
ld r3,GPR3(r1)
|
|
|
|
ld r4,GPR4(r1)
|
|
|
|
ld r1,GPR1(r1)
|
2018-01-09 16:07:15 +00:00
|
|
|
RFI_TO_USER
|
|
|
|
b . /* prevent speculative execution */
|
2005-10-10 12:36:14 +00:00
|
|
|
|
2018-01-09 16:07:15 +00:00
|
|
|
1: mtspr SPRN_SRR1,r3
|
|
|
|
|
|
|
|
ld r2,_CCR(r1)
|
|
|
|
mtcrf 0xFF,r2
|
|
|
|
ld r2,_NIP(r1)
|
|
|
|
mtspr SPRN_SRR0,r2
|
2005-10-10 12:36:14 +00:00
|
|
|
|
powerpc/64s: Clear on-stack exception marker upon exception return
The ppc64 specific implementation of the reliable stacktracer,
save_stack_trace_tsk_reliable(), bails out and reports an "unreliable
trace" whenever it finds an exception frame on the stack. Stack frames
are classified as exception frames if the STACK_FRAME_REGS_MARKER
magic, as written by exception prologues, is found at a particular
location.
However, as observed by Joe Lawrence, it is possible in practice that
non-exception stack frames can alias with prior exception frames and
thus, that the reliable stacktracer can find a stale
STACK_FRAME_REGS_MARKER on the stack. It in turn falsely reports an
unreliable stacktrace and blocks any live patching transition to
finish. Said condition lasts until the stack frame is
overwritten/initialized by function call or other means.
In principle, we could mitigate this by making the exception frame
classification condition in save_stack_trace_tsk_reliable() stronger:
in addition to testing for STACK_FRAME_REGS_MARKER, we could also take
into account that for all exceptions executing on the kernel stack
- their stack frames's backlink pointers always match what is saved
in their pt_regs instance's ->gpr[1] slot and that
- their exception frame size equals STACK_INT_FRAME_SIZE, a value
uncommonly large for non-exception frames.
However, while these are currently true, relying on them would make
the reliable stacktrace implementation more sensitive towards future
changes in the exception entry code. Note that false negatives, i.e.
not detecting exception frames, would silently break the live patching
consistency model.
Furthermore, certain other places (diagnostic stacktraces, perf, xmon)
rely on STACK_FRAME_REGS_MARKER as well.
Make the exception exit code clear the on-stack
STACK_FRAME_REGS_MARKER for those exceptions running on the "normal"
kernel stack and returning to kernelspace: because the topmost frame
is ignored by the reliable stack tracer anyway, returns to userspace
don't need to take care of clearing the marker.
Furthermore, as I don't have the ability to test this on Book 3E or 32
bits, limit the change to Book 3S and 64 bits.
Fixes: df78d3f61480 ("powerpc/livepatch: Implement reliable stack tracing for the consistency model")
Reported-by: Joe Lawrence <joe.lawrence@redhat.com>
Signed-off-by: Nicolai Stange <nstange@suse.de>
Signed-off-by: Joe Lawrence <joe.lawrence@redhat.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-01-22 15:57:21 +00:00
|
|
|
/*
|
|
|
|
* Leaving a stale exception_marker on the stack can confuse
|
|
|
|
* the reliable stack unwinder later on. Clear it.
|
|
|
|
*/
|
|
|
|
li r2,0
|
|
|
|
std r2,STACK_FRAME_OVERHEAD-16(r1)
|
|
|
|
|
2018-01-09 16:07:15 +00:00
|
|
|
ld r0,GPR0(r1)
|
|
|
|
ld r2,GPR2(r1)
|
|
|
|
ld r3,GPR3(r1)
|
2019-04-18 06:51:24 +00:00
|
|
|
|
|
|
|
kuap_restore_amr r4
|
|
|
|
|
2018-01-09 16:07:15 +00:00
|
|
|
ld r4,GPR4(r1)
|
|
|
|
ld r1,GPR1(r1)
|
|
|
|
RFI_TO_KERNEL
|
2005-10-10 12:36:14 +00:00
|
|
|
b . /* prevent speculative execution */
|
|
|
|
|
2009-07-23 23:15:59 +00:00
|
|
|
#endif /* CONFIG_PPC_BOOK3E */
|
|
|
|
|
2012-05-10 16:12:38 +00:00
|
|
|
/*
|
|
|
|
* We are returning to a context with interrupts soft disabled.
|
|
|
|
*
|
|
|
|
* However, we may also about to hard enable, so we need to
|
|
|
|
* make sure that in this case, we also clear PACA_IRQ_HARD_DIS
|
|
|
|
* or that bit can get out of sync and bad things will happen
|
|
|
|
*/
|
2017-06-29 17:49:19 +00:00
|
|
|
.Lrestore_irq_off:
|
2012-05-10 16:12:38 +00:00
|
|
|
ld r3,_MSR(r1)
|
|
|
|
lbz r7,PACAIRQHAPPENED(r13)
|
|
|
|
andi. r0,r3,MSR_EE
|
|
|
|
beq 1f
|
|
|
|
rlwinm r7,r7,0,~PACA_IRQ_HARD_DIS
|
|
|
|
stb r7,PACAIRQHAPPENED(r13)
|
2017-11-16 16:00:50 +00:00
|
|
|
1:
|
2017-12-20 03:55:54 +00:00
|
|
|
#if defined(CONFIG_PPC_IRQ_SOFT_MASK_DEBUG) && defined(CONFIG_BUG)
|
2017-11-16 16:00:50 +00:00
|
|
|
/* The interrupt should not have soft enabled. */
|
2017-12-20 03:55:50 +00:00
|
|
|
lbz r7,PACAIRQSOFTMASK(r13)
|
|
|
|
1: tdeqi r7,IRQS_ENABLED
|
2017-11-16 16:00:50 +00:00
|
|
|
EMIT_BUG_ENTRY 1b,__FILE__,__LINE__,BUGFLAG_WARNING
|
|
|
|
#endif
|
2017-06-29 17:49:19 +00:00
|
|
|
b .Ldo_restore
|
2012-05-10 16:12:38 +00:00
|
|
|
|
powerpc: Rework lazy-interrupt handling
The current implementation of lazy interrupts handling has some
issues that this tries to address.
We don't do the various workarounds we need to do when re-enabling
interrupts in some cases such as when returning from an interrupt
and thus we may still lose or get delayed decrementer or doorbell
interrupts.
The current scheme also makes it much harder to handle the external
"edge" interrupts provided by some BookE processors when using the
EPR facility (External Proxy) and the Freescale Hypervisor.
Additionally, we tend to keep interrupts hard disabled in a number
of cases, such as decrementer interrupts, external interrupts, or
when a masked decrementer interrupt is pending. This is sub-optimal.
This is an attempt at fixing it all in one go by reworking the way
we do the lazy interrupt disabling from the ground up.
The base idea is to replace the "hard_enabled" field with a
"irq_happened" field in which we store a bit mask of what interrupt
occurred while soft-disabled.
When re-enabling, either via arch_local_irq_restore() or when returning
from an interrupt, we can now decide what to do by testing bits in that
field.
We then implement replaying of the missed interrupts either by
re-using the existing exception frame (in exception exit case) or via
the creation of a new one from an assembly trampoline (in the
arch_local_irq_enable case).
This removes the need to play with the decrementer to try to create
fake interrupts, among others.
In addition, this adds a few refinements:
- We no longer hard disable decrementer interrupts that occur
while soft-disabled. We now simply bump the decrementer back to max
(on BookS) or leave it stopped (on BookE) and continue with hard interrupts
enabled, which means that we'll potentially get better sample quality from
performance monitor interrupts.
- Timer, decrementer and doorbell interrupts now hard-enable
shortly after removing the source of the interrupt, which means
they no longer run entirely hard disabled. Again, this will improve
perf sample quality.
- On Book3E 64-bit, we now make the performance monitor interrupt
act as an NMI like Book3S (the necessary C code for that to work
appear to already be present in the FSL perf code, notably calling
nmi_enter instead of irq_enter). (This also fixes a bug where BookE
perfmon interrupts could clobber r14 ... oops)
- We could make "masked" decrementer interrupts act as NMIs when doing
timer-based perf sampling to improve the sample quality.
Signed-off-by-yet: Benjamin Herrenschmidt <benh@kernel.crashing.org>
---
v2:
- Add hard-enable to decrementer, timer and doorbells
- Fix CR clobber in masked irq handling on BookE
- Make embedded perf interrupt act as an NMI
- Add a PACA_HAPPENED_EE_EDGE for use by FSL if they want
to retrigger an interrupt without preventing hard-enable
v3:
- Fix or vs. ori bug on Book3E
- Fix enabling of interrupts for some exceptions on Book3E
v4:
- Fix resend of doorbells on return from interrupt on Book3E
v5:
- Rebased on top of my latest series, which involves some significant
rework of some aspects of the patch.
v6:
- 32-bit compile fix
- more compile fixes with various .config combos
- factor out the asm code to soft-disable interrupts
- remove the C wrapper around preempt_schedule_irq
v7:
- Fix a bug with hard irq state tracking on native power7
2012-03-06 07:27:59 +00:00
|
|
|
/*
|
|
|
|
* Something did happen, check if a re-emit is needed
|
|
|
|
* (this also clears paca->irq_happened)
|
|
|
|
*/
|
2017-06-29 17:49:19 +00:00
|
|
|
.Lrestore_check_irq_replay:
|
powerpc: Rework lazy-interrupt handling
The current implementation of lazy interrupts handling has some
issues that this tries to address.
We don't do the various workarounds we need to do when re-enabling
interrupts in some cases such as when returning from an interrupt
and thus we may still lose or get delayed decrementer or doorbell
interrupts.
The current scheme also makes it much harder to handle the external
"edge" interrupts provided by some BookE processors when using the
EPR facility (External Proxy) and the Freescale Hypervisor.
Additionally, we tend to keep interrupts hard disabled in a number
of cases, such as decrementer interrupts, external interrupts, or
when a masked decrementer interrupt is pending. This is sub-optimal.
This is an attempt at fixing it all in one go by reworking the way
we do the lazy interrupt disabling from the ground up.
The base idea is to replace the "hard_enabled" field with a
"irq_happened" field in which we store a bit mask of what interrupt
occurred while soft-disabled.
When re-enabling, either via arch_local_irq_restore() or when returning
from an interrupt, we can now decide what to do by testing bits in that
field.
We then implement replaying of the missed interrupts either by
re-using the existing exception frame (in exception exit case) or via
the creation of a new one from an assembly trampoline (in the
arch_local_irq_enable case).
This removes the need to play with the decrementer to try to create
fake interrupts, among others.
In addition, this adds a few refinements:
- We no longer hard disable decrementer interrupts that occur
while soft-disabled. We now simply bump the decrementer back to max
(on BookS) or leave it stopped (on BookE) and continue with hard interrupts
enabled, which means that we'll potentially get better sample quality from
performance monitor interrupts.
- Timer, decrementer and doorbell interrupts now hard-enable
shortly after removing the source of the interrupt, which means
they no longer run entirely hard disabled. Again, this will improve
perf sample quality.
- On Book3E 64-bit, we now make the performance monitor interrupt
act as an NMI like Book3S (the necessary C code for that to work
appear to already be present in the FSL perf code, notably calling
nmi_enter instead of irq_enter). (This also fixes a bug where BookE
perfmon interrupts could clobber r14 ... oops)
- We could make "masked" decrementer interrupts act as NMIs when doing
timer-based perf sampling to improve the sample quality.
Signed-off-by-yet: Benjamin Herrenschmidt <benh@kernel.crashing.org>
---
v2:
- Add hard-enable to decrementer, timer and doorbells
- Fix CR clobber in masked irq handling on BookE
- Make embedded perf interrupt act as an NMI
- Add a PACA_HAPPENED_EE_EDGE for use by FSL if they want
to retrigger an interrupt without preventing hard-enable
v3:
- Fix or vs. ori bug on Book3E
- Fix enabling of interrupts for some exceptions on Book3E
v4:
- Fix resend of doorbells on return from interrupt on Book3E
v5:
- Rebased on top of my latest series, which involves some significant
rework of some aspects of the patch.
v6:
- 32-bit compile fix
- more compile fixes with various .config combos
- factor out the asm code to soft-disable interrupts
- remove the C wrapper around preempt_schedule_irq
v7:
- Fix a bug with hard irq state tracking on native power7
2012-03-06 07:27:59 +00:00
|
|
|
/* XXX: We could implement a fast path here where we check
|
|
|
|
* for irq_happened being just 0x01, in which case we can
|
|
|
|
* clear it and return. That means that we would potentially
|
|
|
|
* miss a decrementer having wrapped all the way around.
|
|
|
|
*
|
|
|
|
* Still, this might be useful for things like hash_page
|
|
|
|
*/
|
2014-02-04 05:04:35 +00:00
|
|
|
bl __check_irq_replay
|
powerpc: Rework lazy-interrupt handling
The current implementation of lazy interrupts handling has some
issues that this tries to address.
We don't do the various workarounds we need to do when re-enabling
interrupts in some cases such as when returning from an interrupt
and thus we may still lose or get delayed decrementer or doorbell
interrupts.
The current scheme also makes it much harder to handle the external
"edge" interrupts provided by some BookE processors when using the
EPR facility (External Proxy) and the Freescale Hypervisor.
Additionally, we tend to keep interrupts hard disabled in a number
of cases, such as decrementer interrupts, external interrupts, or
when a masked decrementer interrupt is pending. This is sub-optimal.
This is an attempt at fixing it all in one go by reworking the way
we do the lazy interrupt disabling from the ground up.
The base idea is to replace the "hard_enabled" field with a
"irq_happened" field in which we store a bit mask of what interrupt
occurred while soft-disabled.
When re-enabling, either via arch_local_irq_restore() or when returning
from an interrupt, we can now decide what to do by testing bits in that
field.
We then implement replaying of the missed interrupts either by
re-using the existing exception frame (in exception exit case) or via
the creation of a new one from an assembly trampoline (in the
arch_local_irq_enable case).
This removes the need to play with the decrementer to try to create
fake interrupts, among others.
In addition, this adds a few refinements:
- We no longer hard disable decrementer interrupts that occur
while soft-disabled. We now simply bump the decrementer back to max
(on BookS) or leave it stopped (on BookE) and continue with hard interrupts
enabled, which means that we'll potentially get better sample quality from
performance monitor interrupts.
- Timer, decrementer and doorbell interrupts now hard-enable
shortly after removing the source of the interrupt, which means
they no longer run entirely hard disabled. Again, this will improve
perf sample quality.
- On Book3E 64-bit, we now make the performance monitor interrupt
act as an NMI like Book3S (the necessary C code for that to work
appear to already be present in the FSL perf code, notably calling
nmi_enter instead of irq_enter). (This also fixes a bug where BookE
perfmon interrupts could clobber r14 ... oops)
- We could make "masked" decrementer interrupts act as NMIs when doing
timer-based perf sampling to improve the sample quality.
Signed-off-by-yet: Benjamin Herrenschmidt <benh@kernel.crashing.org>
---
v2:
- Add hard-enable to decrementer, timer and doorbells
- Fix CR clobber in masked irq handling on BookE
- Make embedded perf interrupt act as an NMI
- Add a PACA_HAPPENED_EE_EDGE for use by FSL if they want
to retrigger an interrupt without preventing hard-enable
v3:
- Fix or vs. ori bug on Book3E
- Fix enabling of interrupts for some exceptions on Book3E
v4:
- Fix resend of doorbells on return from interrupt on Book3E
v5:
- Rebased on top of my latest series, which involves some significant
rework of some aspects of the patch.
v6:
- 32-bit compile fix
- more compile fixes with various .config combos
- factor out the asm code to soft-disable interrupts
- remove the C wrapper around preempt_schedule_irq
v7:
- Fix a bug with hard irq state tracking on native power7
2012-03-06 07:27:59 +00:00
|
|
|
cmpwi cr0,r3,0
|
2017-06-29 17:49:19 +00:00
|
|
|
beq .Lrestore_no_replay
|
powerpc: Rework lazy-interrupt handling
The current implementation of lazy interrupts handling has some
issues that this tries to address.
We don't do the various workarounds we need to do when re-enabling
interrupts in some cases such as when returning from an interrupt
and thus we may still lose or get delayed decrementer or doorbell
interrupts.
The current scheme also makes it much harder to handle the external
"edge" interrupts provided by some BookE processors when using the
EPR facility (External Proxy) and the Freescale Hypervisor.
Additionally, we tend to keep interrupts hard disabled in a number
of cases, such as decrementer interrupts, external interrupts, or
when a masked decrementer interrupt is pending. This is sub-optimal.
This is an attempt at fixing it all in one go by reworking the way
we do the lazy interrupt disabling from the ground up.
The base idea is to replace the "hard_enabled" field with a
"irq_happened" field in which we store a bit mask of what interrupt
occurred while soft-disabled.
When re-enabling, either via arch_local_irq_restore() or when returning
from an interrupt, we can now decide what to do by testing bits in that
field.
We then implement replaying of the missed interrupts either by
re-using the existing exception frame (in exception exit case) or via
the creation of a new one from an assembly trampoline (in the
arch_local_irq_enable case).
This removes the need to play with the decrementer to try to create
fake interrupts, among others.
In addition, this adds a few refinements:
- We no longer hard disable decrementer interrupts that occur
while soft-disabled. We now simply bump the decrementer back to max
(on BookS) or leave it stopped (on BookE) and continue with hard interrupts
enabled, which means that we'll potentially get better sample quality from
performance monitor interrupts.
- Timer, decrementer and doorbell interrupts now hard-enable
shortly after removing the source of the interrupt, which means
they no longer run entirely hard disabled. Again, this will improve
perf sample quality.
- On Book3E 64-bit, we now make the performance monitor interrupt
act as an NMI like Book3S (the necessary C code for that to work
appear to already be present in the FSL perf code, notably calling
nmi_enter instead of irq_enter). (This also fixes a bug where BookE
perfmon interrupts could clobber r14 ... oops)
- We could make "masked" decrementer interrupts act as NMIs when doing
timer-based perf sampling to improve the sample quality.
Signed-off-by-yet: Benjamin Herrenschmidt <benh@kernel.crashing.org>
---
v2:
- Add hard-enable to decrementer, timer and doorbells
- Fix CR clobber in masked irq handling on BookE
- Make embedded perf interrupt act as an NMI
- Add a PACA_HAPPENED_EE_EDGE for use by FSL if they want
to retrigger an interrupt without preventing hard-enable
v3:
- Fix or vs. ori bug on Book3E
- Fix enabling of interrupts for some exceptions on Book3E
v4:
- Fix resend of doorbells on return from interrupt on Book3E
v5:
- Rebased on top of my latest series, which involves some significant
rework of some aspects of the patch.
v6:
- 32-bit compile fix
- more compile fixes with various .config combos
- factor out the asm code to soft-disable interrupts
- remove the C wrapper around preempt_schedule_irq
v7:
- Fix a bug with hard irq state tracking on native power7
2012-03-06 07:27:59 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* We need to re-emit an interrupt. We do so by re-using our
|
|
|
|
* existing exception frame. We first change the trap value,
|
|
|
|
* but we need to ensure we preserve the low nibble of it
|
|
|
|
*/
|
|
|
|
ld r4,_TRAP(r1)
|
|
|
|
clrldi r4,r4,60
|
|
|
|
or r4,r4,r3
|
|
|
|
std r4,_TRAP(r1)
|
|
|
|
|
2018-06-03 12:24:32 +00:00
|
|
|
/*
|
|
|
|
* PACA_IRQ_HARD_DIS won't always be set here, so set it now
|
|
|
|
* to reconcile the IRQ state. Tracing is already accounted for.
|
|
|
|
*/
|
|
|
|
lbz r4,PACAIRQHAPPENED(r13)
|
|
|
|
ori r4,r4,PACA_IRQ_HARD_DIS
|
|
|
|
stb r4,PACAIRQHAPPENED(r13)
|
|
|
|
|
powerpc: Rework lazy-interrupt handling
The current implementation of lazy interrupts handling has some
issues that this tries to address.
We don't do the various workarounds we need to do when re-enabling
interrupts in some cases such as when returning from an interrupt
and thus we may still lose or get delayed decrementer or doorbell
interrupts.
The current scheme also makes it much harder to handle the external
"edge" interrupts provided by some BookE processors when using the
EPR facility (External Proxy) and the Freescale Hypervisor.
Additionally, we tend to keep interrupts hard disabled in a number
of cases, such as decrementer interrupts, external interrupts, or
when a masked decrementer interrupt is pending. This is sub-optimal.
This is an attempt at fixing it all in one go by reworking the way
we do the lazy interrupt disabling from the ground up.
The base idea is to replace the "hard_enabled" field with a
"irq_happened" field in which we store a bit mask of what interrupt
occurred while soft-disabled.
When re-enabling, either via arch_local_irq_restore() or when returning
from an interrupt, we can now decide what to do by testing bits in that
field.
We then implement replaying of the missed interrupts either by
re-using the existing exception frame (in exception exit case) or via
the creation of a new one from an assembly trampoline (in the
arch_local_irq_enable case).
This removes the need to play with the decrementer to try to create
fake interrupts, among others.
In addition, this adds a few refinements:
- We no longer hard disable decrementer interrupts that occur
while soft-disabled. We now simply bump the decrementer back to max
(on BookS) or leave it stopped (on BookE) and continue with hard interrupts
enabled, which means that we'll potentially get better sample quality from
performance monitor interrupts.
- Timer, decrementer and doorbell interrupts now hard-enable
shortly after removing the source of the interrupt, which means
they no longer run entirely hard disabled. Again, this will improve
perf sample quality.
- On Book3E 64-bit, we now make the performance monitor interrupt
act as an NMI like Book3S (the necessary C code for that to work
appear to already be present in the FSL perf code, notably calling
nmi_enter instead of irq_enter). (This also fixes a bug where BookE
perfmon interrupts could clobber r14 ... oops)
- We could make "masked" decrementer interrupts act as NMIs when doing
timer-based perf sampling to improve the sample quality.
Signed-off-by-yet: Benjamin Herrenschmidt <benh@kernel.crashing.org>
---
v2:
- Add hard-enable to decrementer, timer and doorbells
- Fix CR clobber in masked irq handling on BookE
- Make embedded perf interrupt act as an NMI
- Add a PACA_HAPPENED_EE_EDGE for use by FSL if they want
to retrigger an interrupt without preventing hard-enable
v3:
- Fix or vs. ori bug on Book3E
- Fix enabling of interrupts for some exceptions on Book3E
v4:
- Fix resend of doorbells on return from interrupt on Book3E
v5:
- Rebased on top of my latest series, which involves some significant
rework of some aspects of the patch.
v6:
- 32-bit compile fix
- more compile fixes with various .config combos
- factor out the asm code to soft-disable interrupts
- remove the C wrapper around preempt_schedule_irq
v7:
- Fix a bug with hard irq state tracking on native power7
2012-03-06 07:27:59 +00:00
|
|
|
/*
|
|
|
|
* Then find the right handler and call it. Interrupts are
|
|
|
|
* still soft-disabled and we keep them that way.
|
|
|
|
*/
|
|
|
|
cmpwi cr0,r3,0x500
|
|
|
|
bne 1f
|
|
|
|
addi r3,r1,STACK_FRAME_OVERHEAD;
|
2014-02-04 05:04:35 +00:00
|
|
|
bl do_IRQ
|
|
|
|
b ret_from_except
|
2017-12-20 03:55:53 +00:00
|
|
|
1: cmpwi cr0,r3,0xf00
|
|
|
|
bne 1f
|
|
|
|
addi r3,r1,STACK_FRAME_OVERHEAD;
|
|
|
|
bl performance_monitor_exception
|
|
|
|
b ret_from_except
|
2014-07-29 13:10:01 +00:00
|
|
|
1: cmpwi cr0,r3,0xe60
|
|
|
|
bne 1f
|
|
|
|
addi r3,r1,STACK_FRAME_OVERHEAD;
|
|
|
|
bl handle_hmi_exception
|
|
|
|
b ret_from_except
|
powerpc: Rework lazy-interrupt handling
The current implementation of lazy interrupts handling has some
issues that this tries to address.
We don't do the various workarounds we need to do when re-enabling
interrupts in some cases such as when returning from an interrupt
and thus we may still lose or get delayed decrementer or doorbell
interrupts.
The current scheme also makes it much harder to handle the external
"edge" interrupts provided by some BookE processors when using the
EPR facility (External Proxy) and the Freescale Hypervisor.
Additionally, we tend to keep interrupts hard disabled in a number
of cases, such as decrementer interrupts, external interrupts, or
when a masked decrementer interrupt is pending. This is sub-optimal.
This is an attempt at fixing it all in one go by reworking the way
we do the lazy interrupt disabling from the ground up.
The base idea is to replace the "hard_enabled" field with a
"irq_happened" field in which we store a bit mask of what interrupt
occurred while soft-disabled.
When re-enabling, either via arch_local_irq_restore() or when returning
from an interrupt, we can now decide what to do by testing bits in that
field.
We then implement replaying of the missed interrupts either by
re-using the existing exception frame (in exception exit case) or via
the creation of a new one from an assembly trampoline (in the
arch_local_irq_enable case).
This removes the need to play with the decrementer to try to create
fake interrupts, among others.
In addition, this adds a few refinements:
- We no longer hard disable decrementer interrupts that occur
while soft-disabled. We now simply bump the decrementer back to max
(on BookS) or leave it stopped (on BookE) and continue with hard interrupts
enabled, which means that we'll potentially get better sample quality from
performance monitor interrupts.
- Timer, decrementer and doorbell interrupts now hard-enable
shortly after removing the source of the interrupt, which means
they no longer run entirely hard disabled. Again, this will improve
perf sample quality.
- On Book3E 64-bit, we now make the performance monitor interrupt
act as an NMI like Book3S (the necessary C code for that to work
appear to already be present in the FSL perf code, notably calling
nmi_enter instead of irq_enter). (This also fixes a bug where BookE
perfmon interrupts could clobber r14 ... oops)
- We could make "masked" decrementer interrupts act as NMIs when doing
timer-based perf sampling to improve the sample quality.
Signed-off-by-yet: Benjamin Herrenschmidt <benh@kernel.crashing.org>
---
v2:
- Add hard-enable to decrementer, timer and doorbells
- Fix CR clobber in masked irq handling on BookE
- Make embedded perf interrupt act as an NMI
- Add a PACA_HAPPENED_EE_EDGE for use by FSL if they want
to retrigger an interrupt without preventing hard-enable
v3:
- Fix or vs. ori bug on Book3E
- Fix enabling of interrupts for some exceptions on Book3E
v4:
- Fix resend of doorbells on return from interrupt on Book3E
v5:
- Rebased on top of my latest series, which involves some significant
rework of some aspects of the patch.
v6:
- 32-bit compile fix
- more compile fixes with various .config combos
- factor out the asm code to soft-disable interrupts
- remove the C wrapper around preempt_schedule_irq
v7:
- Fix a bug with hard irq state tracking on native power7
2012-03-06 07:27:59 +00:00
|
|
|
1: cmpwi cr0,r3,0x900
|
|
|
|
bne 1f
|
|
|
|
addi r3,r1,STACK_FRAME_OVERHEAD;
|
2014-02-04 05:04:35 +00:00
|
|
|
bl timer_interrupt
|
|
|
|
b ret_from_except
|
2012-11-14 18:49:48 +00:00
|
|
|
#ifdef CONFIG_PPC_DOORBELL
|
|
|
|
1:
|
powerpc: Rework lazy-interrupt handling
The current implementation of lazy interrupts handling has some
issues that this tries to address.
We don't do the various workarounds we need to do when re-enabling
interrupts in some cases such as when returning from an interrupt
and thus we may still lose or get delayed decrementer or doorbell
interrupts.
The current scheme also makes it much harder to handle the external
"edge" interrupts provided by some BookE processors when using the
EPR facility (External Proxy) and the Freescale Hypervisor.
Additionally, we tend to keep interrupts hard disabled in a number
of cases, such as decrementer interrupts, external interrupts, or
when a masked decrementer interrupt is pending. This is sub-optimal.
This is an attempt at fixing it all in one go by reworking the way
we do the lazy interrupt disabling from the ground up.
The base idea is to replace the "hard_enabled" field with a
"irq_happened" field in which we store a bit mask of what interrupt
occurred while soft-disabled.
When re-enabling, either via arch_local_irq_restore() or when returning
from an interrupt, we can now decide what to do by testing bits in that
field.
We then implement replaying of the missed interrupts either by
re-using the existing exception frame (in exception exit case) or via
the creation of a new one from an assembly trampoline (in the
arch_local_irq_enable case).
This removes the need to play with the decrementer to try to create
fake interrupts, among others.
In addition, this adds a few refinements:
- We no longer hard disable decrementer interrupts that occur
while soft-disabled. We now simply bump the decrementer back to max
(on BookS) or leave it stopped (on BookE) and continue with hard interrupts
enabled, which means that we'll potentially get better sample quality from
performance monitor interrupts.
- Timer, decrementer and doorbell interrupts now hard-enable
shortly after removing the source of the interrupt, which means
they no longer run entirely hard disabled. Again, this will improve
perf sample quality.
- On Book3E 64-bit, we now make the performance monitor interrupt
act as an NMI like Book3S (the necessary C code for that to work
appear to already be present in the FSL perf code, notably calling
nmi_enter instead of irq_enter). (This also fixes a bug where BookE
perfmon interrupts could clobber r14 ... oops)
- We could make "masked" decrementer interrupts act as NMIs when doing
timer-based perf sampling to improve the sample quality.
Signed-off-by-yet: Benjamin Herrenschmidt <benh@kernel.crashing.org>
---
v2:
- Add hard-enable to decrementer, timer and doorbells
- Fix CR clobber in masked irq handling on BookE
- Make embedded perf interrupt act as an NMI
- Add a PACA_HAPPENED_EE_EDGE for use by FSL if they want
to retrigger an interrupt without preventing hard-enable
v3:
- Fix or vs. ori bug on Book3E
- Fix enabling of interrupts for some exceptions on Book3E
v4:
- Fix resend of doorbells on return from interrupt on Book3E
v5:
- Rebased on top of my latest series, which involves some significant
rework of some aspects of the patch.
v6:
- 32-bit compile fix
- more compile fixes with various .config combos
- factor out the asm code to soft-disable interrupts
- remove the C wrapper around preempt_schedule_irq
v7:
- Fix a bug with hard irq state tracking on native power7
2012-03-06 07:27:59 +00:00
|
|
|
#ifdef CONFIG_PPC_BOOK3E
|
2012-11-14 18:49:48 +00:00
|
|
|
cmpwi cr0,r3,0x280
|
|
|
|
#else
|
2017-08-11 16:39:03 +00:00
|
|
|
cmpwi cr0,r3,0xa00
|
2012-11-14 18:49:48 +00:00
|
|
|
#endif /* CONFIG_PPC_BOOK3E */
|
powerpc: Rework lazy-interrupt handling
The current implementation of lazy interrupts handling has some
issues that this tries to address.
We don't do the various workarounds we need to do when re-enabling
interrupts in some cases such as when returning from an interrupt
and thus we may still lose or get delayed decrementer or doorbell
interrupts.
The current scheme also makes it much harder to handle the external
"edge" interrupts provided by some BookE processors when using the
EPR facility (External Proxy) and the Freescale Hypervisor.
Additionally, we tend to keep interrupts hard disabled in a number
of cases, such as decrementer interrupts, external interrupts, or
when a masked decrementer interrupt is pending. This is sub-optimal.
This is an attempt at fixing it all in one go by reworking the way
we do the lazy interrupt disabling from the ground up.
The base idea is to replace the "hard_enabled" field with a
"irq_happened" field in which we store a bit mask of what interrupt
occurred while soft-disabled.
When re-enabling, either via arch_local_irq_restore() or when returning
from an interrupt, we can now decide what to do by testing bits in that
field.
We then implement replaying of the missed interrupts either by
re-using the existing exception frame (in exception exit case) or via
the creation of a new one from an assembly trampoline (in the
arch_local_irq_enable case).
This removes the need to play with the decrementer to try to create
fake interrupts, among others.
In addition, this adds a few refinements:
- We no longer hard disable decrementer interrupts that occur
while soft-disabled. We now simply bump the decrementer back to max
(on BookS) or leave it stopped (on BookE) and continue with hard interrupts
enabled, which means that we'll potentially get better sample quality from
performance monitor interrupts.
- Timer, decrementer and doorbell interrupts now hard-enable
shortly after removing the source of the interrupt, which means
they no longer run entirely hard disabled. Again, this will improve
perf sample quality.
- On Book3E 64-bit, we now make the performance monitor interrupt
act as an NMI like Book3S (the necessary C code for that to work
appear to already be present in the FSL perf code, notably calling
nmi_enter instead of irq_enter). (This also fixes a bug where BookE
perfmon interrupts could clobber r14 ... oops)
- We could make "masked" decrementer interrupts act as NMIs when doing
timer-based perf sampling to improve the sample quality.
Signed-off-by-yet: Benjamin Herrenschmidt <benh@kernel.crashing.org>
---
v2:
- Add hard-enable to decrementer, timer and doorbells
- Fix CR clobber in masked irq handling on BookE
- Make embedded perf interrupt act as an NMI
- Add a PACA_HAPPENED_EE_EDGE for use by FSL if they want
to retrigger an interrupt without preventing hard-enable
v3:
- Fix or vs. ori bug on Book3E
- Fix enabling of interrupts for some exceptions on Book3E
v4:
- Fix resend of doorbells on return from interrupt on Book3E
v5:
- Rebased on top of my latest series, which involves some significant
rework of some aspects of the patch.
v6:
- 32-bit compile fix
- more compile fixes with various .config combos
- factor out the asm code to soft-disable interrupts
- remove the C wrapper around preempt_schedule_irq
v7:
- Fix a bug with hard irq state tracking on native power7
2012-03-06 07:27:59 +00:00
|
|
|
bne 1f
|
|
|
|
addi r3,r1,STACK_FRAME_OVERHEAD;
|
2014-02-04 05:04:35 +00:00
|
|
|
bl doorbell_exception
|
2012-11-14 18:49:48 +00:00
|
|
|
#endif /* CONFIG_PPC_DOORBELL */
|
2014-02-04 05:04:35 +00:00
|
|
|
1: b ret_from_except /* What else to do here ? */
|
powerpc: Rework lazy-interrupt handling
The current implementation of lazy interrupts handling has some
issues that this tries to address.
We don't do the various workarounds we need to do when re-enabling
interrupts in some cases such as when returning from an interrupt
and thus we may still lose or get delayed decrementer or doorbell
interrupts.
The current scheme also makes it much harder to handle the external
"edge" interrupts provided by some BookE processors when using the
EPR facility (External Proxy) and the Freescale Hypervisor.
Additionally, we tend to keep interrupts hard disabled in a number
of cases, such as decrementer interrupts, external interrupts, or
when a masked decrementer interrupt is pending. This is sub-optimal.
This is an attempt at fixing it all in one go by reworking the way
we do the lazy interrupt disabling from the ground up.
The base idea is to replace the "hard_enabled" field with a
"irq_happened" field in which we store a bit mask of what interrupt
occurred while soft-disabled.
When re-enabling, either via arch_local_irq_restore() or when returning
from an interrupt, we can now decide what to do by testing bits in that
field.
We then implement replaying of the missed interrupts either by
re-using the existing exception frame (in exception exit case) or via
the creation of a new one from an assembly trampoline (in the
arch_local_irq_enable case).
This removes the need to play with the decrementer to try to create
fake interrupts, among others.
In addition, this adds a few refinements:
- We no longer hard disable decrementer interrupts that occur
while soft-disabled. We now simply bump the decrementer back to max
(on BookS) or leave it stopped (on BookE) and continue with hard interrupts
enabled, which means that we'll potentially get better sample quality from
performance monitor interrupts.
- Timer, decrementer and doorbell interrupts now hard-enable
shortly after removing the source of the interrupt, which means
they no longer run entirely hard disabled. Again, this will improve
perf sample quality.
- On Book3E 64-bit, we now make the performance monitor interrupt
act as an NMI like Book3S (the necessary C code for that to work
appear to already be present in the FSL perf code, notably calling
nmi_enter instead of irq_enter). (This also fixes a bug where BookE
perfmon interrupts could clobber r14 ... oops)
- We could make "masked" decrementer interrupts act as NMIs when doing
timer-based perf sampling to improve the sample quality.
Signed-off-by-yet: Benjamin Herrenschmidt <benh@kernel.crashing.org>
---
v2:
- Add hard-enable to decrementer, timer and doorbells
- Fix CR clobber in masked irq handling on BookE
- Make embedded perf interrupt act as an NMI
- Add a PACA_HAPPENED_EE_EDGE for use by FSL if they want
to retrigger an interrupt without preventing hard-enable
v3:
- Fix or vs. ori bug on Book3E
- Fix enabling of interrupts for some exceptions on Book3E
v4:
- Fix resend of doorbells on return from interrupt on Book3E
v5:
- Rebased on top of my latest series, which involves some significant
rework of some aspects of the patch.
v6:
- 32-bit compile fix
- more compile fixes with various .config combos
- factor out the asm code to soft-disable interrupts
- remove the C wrapper around preempt_schedule_irq
v7:
- Fix a bug with hard irq state tracking on native power7
2012-03-06 07:27:59 +00:00
|
|
|
|
2017-06-29 17:49:19 +00:00
|
|
|
.Lunrecov_restore:
|
2005-10-10 12:36:14 +00:00
|
|
|
addi r3,r1,STACK_FRAME_OVERHEAD
|
2014-02-04 05:04:35 +00:00
|
|
|
bl unrecoverable_exception
|
2017-06-29 17:49:19 +00:00
|
|
|
b .Lunrecov_restore
|
|
|
|
|
|
|
|
_ASM_NOKPROBE_SYMBOL(ret_from_except);
|
|
|
|
_ASM_NOKPROBE_SYMBOL(ret_from_except_lite);
|
|
|
|
_ASM_NOKPROBE_SYMBOL(resume_kernel);
|
|
|
|
_ASM_NOKPROBE_SYMBOL(fast_exc_return_irq);
|
|
|
|
_ASM_NOKPROBE_SYMBOL(restore);
|
|
|
|
_ASM_NOKPROBE_SYMBOL(fast_exception_return);
|
|
|
|
|
2005-10-10 12:36:14 +00:00
|
|
|
|
|
|
|
#ifdef CONFIG_PPC_RTAS
|
|
|
|
/*
|
|
|
|
* On CHRP, the Run-Time Abstraction Services (RTAS) have to be
|
|
|
|
* called with the MMU off.
|
|
|
|
*
|
|
|
|
* In addition, we need to be in 32b mode, at least for now.
|
|
|
|
*
|
|
|
|
* Note: r3 is an input parameter to rtas, so don't trash it...
|
|
|
|
*/
|
|
|
|
_GLOBAL(enter_rtas)
|
|
|
|
mflr r0
|
|
|
|
std r0,16(r1)
|
2018-10-12 02:44:06 +00:00
|
|
|
stdu r1,-SWITCH_FRAME_SIZE(r1) /* Save SP and create stack space. */
|
2005-10-10 12:36:14 +00:00
|
|
|
|
|
|
|
/* Because RTAS is running in 32b mode, it clobbers the high order half
|
|
|
|
* of all registers that it saves. We therefore save those registers
|
|
|
|
* RTAS might touch to the stack. (r0, r3-r13 are caller saved)
|
|
|
|
*/
|
|
|
|
SAVE_GPR(2, r1) /* Save the TOC */
|
|
|
|
SAVE_GPR(13, r1) /* Save paca */
|
|
|
|
SAVE_8GPRS(14, r1) /* Save the non-volatiles */
|
|
|
|
SAVE_10GPRS(22, r1) /* ditto */
|
|
|
|
|
|
|
|
mfcr r4
|
|
|
|
std r4,_CCR(r1)
|
|
|
|
mfctr r5
|
|
|
|
std r5,_CTR(r1)
|
|
|
|
mfspr r6,SPRN_XER
|
|
|
|
std r6,_XER(r1)
|
|
|
|
mfdar r7
|
|
|
|
std r7,_DAR(r1)
|
|
|
|
mfdsisr r8
|
|
|
|
std r8,_DSISR(r1)
|
|
|
|
|
2006-03-27 23:20:00 +00:00
|
|
|
/* Temporary workaround to clear CR until RTAS can be modified to
|
|
|
|
* ignore all bits.
|
|
|
|
*/
|
|
|
|
li r0,0
|
|
|
|
mtcr r0
|
|
|
|
|
powerpc/64: Change soft_enabled from flag to bitmask
"paca->soft_enabled" is used as a flag to mask some of interrupts.
Currently supported flags values and their details:
soft_enabled MSR[EE]
0 0 Disabled (PMI and HMI not masked)
1 1 Enabled
"paca->soft_enabled" is initialized to 1 to make the interripts as
enabled. arch_local_irq_disable() will toggle the value when
interrupts needs to disbled. At this point, the interrupts are not
actually disabled, instead, interrupt vector has code to check for the
flag and mask it when it occurs. By "mask it", it update interrupt
paca->irq_happened and return. arch_local_irq_restore() is called to
re-enable interrupts, which checks and replays interrupts if any
occured.
Now, as mentioned, current logic doesnot mask "performance monitoring
interrupts" and PMIs are implemented as NMI. But this patchset depends
on local_irq_* for a successful local_* update. Meaning, mask all
possible interrupts during local_* update and replay them after the
update.
So the idea here is to reserve the "paca->soft_enabled" logic. New
values and details:
soft_enabled MSR[EE]
1 0 Disabled (PMI and HMI not masked)
0 1 Enabled
Reason for the this change is to create foundation for a third mask
value "0x2" for "soft_enabled" to add support to mask PMIs. When
->soft_enabled is set to a value "3", PMI interrupts are mask and when
set to a value of "1", PMI are not mask. With this patch also extends
soft_enabled as interrupt disable mask.
Current flags are renamed from IRQ_[EN?DIS}ABLED to
IRQS_ENABLED and IRQS_DISABLED.
Patch also fixes the ptrace call to force the user to see the softe
value to be alway 1. Reason being, even though userspace has no
business knowing about softe, it is part of pt_regs. Like-wise in
signal context.
Signed-off-by: Madhavan Srinivasan <maddy@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-12-20 03:55:49 +00:00
|
|
|
#ifdef CONFIG_BUG
|
2005-10-10 12:36:14 +00:00
|
|
|
/* There is no way it is acceptable to get here with interrupts enabled,
|
|
|
|
* check it with the asm equivalent of WARN_ON
|
|
|
|
*/
|
2017-12-20 03:55:50 +00:00
|
|
|
lbz r0,PACAIRQSOFTMASK(r13)
|
powerpc/64: Change soft_enabled from flag to bitmask
"paca->soft_enabled" is used as a flag to mask some of interrupts.
Currently supported flags values and their details:
soft_enabled MSR[EE]
0 0 Disabled (PMI and HMI not masked)
1 1 Enabled
"paca->soft_enabled" is initialized to 1 to make the interripts as
enabled. arch_local_irq_disable() will toggle the value when
interrupts needs to disbled. At this point, the interrupts are not
actually disabled, instead, interrupt vector has code to check for the
flag and mask it when it occurs. By "mask it", it update interrupt
paca->irq_happened and return. arch_local_irq_restore() is called to
re-enable interrupts, which checks and replays interrupts if any
occured.
Now, as mentioned, current logic doesnot mask "performance monitoring
interrupts" and PMIs are implemented as NMI. But this patchset depends
on local_irq_* for a successful local_* update. Meaning, mask all
possible interrupts during local_* update and replay them after the
update.
So the idea here is to reserve the "paca->soft_enabled" logic. New
values and details:
soft_enabled MSR[EE]
1 0 Disabled (PMI and HMI not masked)
0 1 Enabled
Reason for the this change is to create foundation for a third mask
value "0x2" for "soft_enabled" to add support to mask PMIs. When
->soft_enabled is set to a value "3", PMI interrupts are mask and when
set to a value of "1", PMI are not mask. With this patch also extends
soft_enabled as interrupt disable mask.
Current flags are renamed from IRQ_[EN?DIS}ABLED to
IRQS_ENABLED and IRQS_DISABLED.
Patch also fixes the ptrace call to force the user to see the softe
value to be alway 1. Reason being, even though userspace has no
business knowing about softe, it is part of pt_regs. Like-wise in
signal context.
Signed-off-by: Madhavan Srinivasan <maddy@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-12-20 03:55:49 +00:00
|
|
|
1: tdeqi r0,IRQS_ENABLED
|
2007-01-01 18:45:34 +00:00
|
|
|
EMIT_BUG_ENTRY 1b,__FILE__,__LINE__,BUGFLAG_WARNING
|
|
|
|
#endif
|
powerpc/64: Change soft_enabled from flag to bitmask
"paca->soft_enabled" is used as a flag to mask some of interrupts.
Currently supported flags values and their details:
soft_enabled MSR[EE]
0 0 Disabled (PMI and HMI not masked)
1 1 Enabled
"paca->soft_enabled" is initialized to 1 to make the interripts as
enabled. arch_local_irq_disable() will toggle the value when
interrupts needs to disbled. At this point, the interrupts are not
actually disabled, instead, interrupt vector has code to check for the
flag and mask it when it occurs. By "mask it", it update interrupt
paca->irq_happened and return. arch_local_irq_restore() is called to
re-enable interrupts, which checks and replays interrupts if any
occured.
Now, as mentioned, current logic doesnot mask "performance monitoring
interrupts" and PMIs are implemented as NMI. But this patchset depends
on local_irq_* for a successful local_* update. Meaning, mask all
possible interrupts during local_* update and replay them after the
update.
So the idea here is to reserve the "paca->soft_enabled" logic. New
values and details:
soft_enabled MSR[EE]
1 0 Disabled (PMI and HMI not masked)
0 1 Enabled
Reason for the this change is to create foundation for a third mask
value "0x2" for "soft_enabled" to add support to mask PMIs. When
->soft_enabled is set to a value "3", PMI interrupts are mask and when
set to a value of "1", PMI are not mask. With this patch also extends
soft_enabled as interrupt disable mask.
Current flags are renamed from IRQ_[EN?DIS}ABLED to
IRQS_ENABLED and IRQS_DISABLED.
Patch also fixes the ptrace call to force the user to see the softe
value to be alway 1. Reason being, even though userspace has no
business knowing about softe, it is part of pt_regs. Like-wise in
signal context.
Signed-off-by: Madhavan Srinivasan <maddy@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-12-20 03:55:49 +00:00
|
|
|
|
[POWERPC] Lazy interrupt disabling for 64-bit machines
This implements a lazy strategy for disabling interrupts. This means
that local_irq_disable() et al. just clear the 'interrupts are
enabled' flag in the paca. If an interrupt comes along, the interrupt
entry code notices that interrupts are supposed to be disabled, and
clears the EE bit in SRR1, clears the 'interrupts are hard-enabled'
flag in the paca, and returns. This means that interrupts only
actually get disabled in the processor when an interrupt comes along.
When interrupts are enabled by local_irq_enable() et al., the code
sets the interrupts-enabled flag in the paca, and then checks whether
interrupts got hard-disabled. If so, it also sets the EE bit in the
MSR to hard-enable the interrupts.
This has the potential to improve performance, and also makes it
easier to make a kernel that can boot on iSeries and on other 64-bit
machines, since this lazy-disable strategy is very similar to the
soft-disable strategy that iSeries already uses.
This version renames paca->proc_enabled to paca->soft_enabled, and
changes a couple of soft-disables in the kexec code to hard-disables,
which should fix the crash that Michael Ellerman saw. This doesn't
yet use a reserved CR field for the soft_enabled and hard_enabled
flags. This applies on top of Stephen Rothwell's patches to make it
possible to build a combined iSeries/other kernel.
Signed-off-by: Paul Mackerras <paulus@samba.org>
2006-10-04 06:47:49 +00:00
|
|
|
/* Hard-disable interrupts */
|
|
|
|
mfmsr r6
|
|
|
|
rldicl r7,r6,48,1
|
|
|
|
rotldi r7,r7,16
|
|
|
|
mtmsrd r7,1
|
|
|
|
|
2005-10-10 12:36:14 +00:00
|
|
|
/* Unfortunately, the stack pointer and the MSR are also clobbered,
|
|
|
|
* so they are saved in the PACA which allows us to restore
|
|
|
|
* our original state after RTAS returns.
|
|
|
|
*/
|
|
|
|
std r1,PACAR1(r13)
|
|
|
|
std r6,PACASAVEDMSR(r13)
|
|
|
|
|
|
|
|
/* Setup our real return addr */
|
2014-02-04 05:04:52 +00:00
|
|
|
LOAD_REG_ADDR(r4,rtas_return_loc)
|
2006-01-13 03:56:25 +00:00
|
|
|
clrldi r4,r4,2 /* convert to realmode address */
|
2005-10-10 12:36:14 +00:00
|
|
|
mtlr r4
|
|
|
|
|
|
|
|
li r0,0
|
|
|
|
ori r0,r0,MSR_EE|MSR_SE|MSR_BE|MSR_RI
|
|
|
|
andc r0,r6,r0
|
|
|
|
|
|
|
|
li r9,1
|
|
|
|
rldicr r9,r9,MSR_SF_LG,(63-MSR_SF_LG)
|
2013-09-23 02:04:45 +00:00
|
|
|
ori r9,r9,MSR_IR|MSR_DR|MSR_FE0|MSR_FE1|MSR_FP|MSR_RI|MSR_LE
|
2005-10-10 12:36:14 +00:00
|
|
|
andc r6,r0,r9
|
2017-06-29 17:49:20 +00:00
|
|
|
|
|
|
|
__enter_rtas:
|
2005-10-10 12:36:14 +00:00
|
|
|
sync /* disable interrupts so SRR0/1 */
|
|
|
|
mtmsrd r0 /* don't get trashed */
|
|
|
|
|
2006-01-13 03:56:25 +00:00
|
|
|
LOAD_REG_ADDR(r4, rtas)
|
2005-10-10 12:36:14 +00:00
|
|
|
ld r5,RTASENTRY(r4) /* get the rtas->entry value */
|
|
|
|
ld r4,RTASBASE(r4) /* get the rtas->base value */
|
|
|
|
|
|
|
|
mtspr SPRN_SRR0,r5
|
|
|
|
mtspr SPRN_SRR1,r6
|
2018-01-09 16:07:15 +00:00
|
|
|
RFI_TO_KERNEL
|
2005-10-10 12:36:14 +00:00
|
|
|
b . /* prevent speculative execution */
|
|
|
|
|
2014-02-04 05:04:52 +00:00
|
|
|
rtas_return_loc:
|
2013-09-23 02:04:45 +00:00
|
|
|
FIXUP_ENDIAN
|
|
|
|
|
2017-12-22 11:17:10 +00:00
|
|
|
/*
|
|
|
|
* Clear RI and set SF before anything.
|
|
|
|
*/
|
|
|
|
mfmsr r6
|
|
|
|
li r0,MSR_RI
|
|
|
|
andc r6,r6,r0
|
|
|
|
sldi r0,r0,(MSR_SF_LG - MSR_RI_LG)
|
|
|
|
or r6,r6,r0
|
|
|
|
sync
|
|
|
|
mtmsrd r6
|
|
|
|
|
2005-10-10 12:36:14 +00:00
|
|
|
/* relocation is off at this point */
|
2011-01-20 06:50:21 +00:00
|
|
|
GET_PACA(r4)
|
2006-01-13 03:56:25 +00:00
|
|
|
clrldi r4,r4,2 /* convert to realmode address */
|
2005-10-10 12:36:14 +00:00
|
|
|
|
2008-08-30 01:41:12 +00:00
|
|
|
bcl 20,31,$+4
|
|
|
|
0: mflr r3
|
2014-02-04 05:04:52 +00:00
|
|
|
ld r3,(1f-0b)(r3) /* get &rtas_restore_regs */
|
2008-08-30 01:41:12 +00:00
|
|
|
|
2005-10-10 12:36:14 +00:00
|
|
|
ld r1,PACAR1(r4) /* Restore our SP */
|
|
|
|
ld r4,PACASAVEDMSR(r4) /* Restore our MSR */
|
|
|
|
|
|
|
|
mtspr SPRN_SRR0,r3
|
|
|
|
mtspr SPRN_SRR1,r4
|
2018-01-09 16:07:15 +00:00
|
|
|
RFI_TO_KERNEL
|
2005-10-10 12:36:14 +00:00
|
|
|
b . /* prevent speculative execution */
|
2017-06-29 17:49:20 +00:00
|
|
|
_ASM_NOKPROBE_SYMBOL(__enter_rtas)
|
|
|
|
_ASM_NOKPROBE_SYMBOL(rtas_return_loc)
|
2005-10-10 12:36:14 +00:00
|
|
|
|
2008-08-30 01:41:12 +00:00
|
|
|
.align 3
|
2017-03-09 05:42:12 +00:00
|
|
|
1: .8byte rtas_restore_regs
|
2008-08-30 01:41:12 +00:00
|
|
|
|
2014-02-04 05:04:52 +00:00
|
|
|
rtas_restore_regs:
|
2005-10-10 12:36:14 +00:00
|
|
|
/* relocation is on at this point */
|
|
|
|
REST_GPR(2, r1) /* Restore the TOC */
|
|
|
|
REST_GPR(13, r1) /* Restore paca */
|
|
|
|
REST_8GPRS(14, r1) /* Restore the non-volatiles */
|
|
|
|
REST_10GPRS(22, r1) /* ditto */
|
|
|
|
|
2011-01-20 06:50:21 +00:00
|
|
|
GET_PACA(r13)
|
2005-10-10 12:36:14 +00:00
|
|
|
|
|
|
|
ld r4,_CCR(r1)
|
|
|
|
mtcr r4
|
|
|
|
ld r5,_CTR(r1)
|
|
|
|
mtctr r5
|
|
|
|
ld r6,_XER(r1)
|
|
|
|
mtspr SPRN_XER,r6
|
|
|
|
ld r7,_DAR(r1)
|
|
|
|
mtdar r7
|
|
|
|
ld r8,_DSISR(r1)
|
|
|
|
mtdsisr r8
|
|
|
|
|
2018-10-12 02:44:06 +00:00
|
|
|
addi r1,r1,SWITCH_FRAME_SIZE /* Unstack our frame */
|
2005-10-10 12:36:14 +00:00
|
|
|
ld r0,16(r1) /* get return address */
|
|
|
|
|
|
|
|
mtlr r0
|
|
|
|
blr /* return to caller */
|
|
|
|
|
|
|
|
#endif /* CONFIG_PPC_RTAS */
|
|
|
|
|
|
|
|
_GLOBAL(enter_prom)
|
|
|
|
mflr r0
|
|
|
|
std r0,16(r1)
|
2018-10-12 02:44:06 +00:00
|
|
|
stdu r1,-SWITCH_FRAME_SIZE(r1) /* Save SP and create stack space */
|
2005-10-10 12:36:14 +00:00
|
|
|
|
|
|
|
/* Because PROM is running in 32b mode, it clobbers the high order half
|
|
|
|
* of all registers that it saves. We therefore save those registers
|
|
|
|
* PROM might touch to the stack. (r0, r3-r13 are caller saved)
|
|
|
|
*/
|
2009-07-23 23:15:07 +00:00
|
|
|
SAVE_GPR(2, r1)
|
2005-10-10 12:36:14 +00:00
|
|
|
SAVE_GPR(13, r1)
|
|
|
|
SAVE_8GPRS(14, r1)
|
|
|
|
SAVE_10GPRS(22, r1)
|
2009-07-23 23:15:07 +00:00
|
|
|
mfcr r10
|
2005-10-10 12:36:14 +00:00
|
|
|
mfmsr r11
|
2009-07-23 23:15:07 +00:00
|
|
|
std r10,_CCR(r1)
|
2005-10-10 12:36:14 +00:00
|
|
|
std r11,_MSR(r1)
|
|
|
|
|
2013-09-23 02:04:45 +00:00
|
|
|
/* Put PROM address in SRR0 */
|
|
|
|
mtsrr0 r4
|
|
|
|
|
|
|
|
/* Setup our trampoline return addr in LR */
|
|
|
|
bcl 20,31,$+4
|
|
|
|
0: mflr r4
|
|
|
|
addi r4,r4,(1f - 0b)
|
|
|
|
mtlr r4
|
2005-10-10 12:36:14 +00:00
|
|
|
|
2013-09-23 02:04:45 +00:00
|
|
|
/* Prepare a 32-bit mode big endian MSR
|
2005-10-10 12:36:14 +00:00
|
|
|
*/
|
2009-07-23 23:15:59 +00:00
|
|
|
#ifdef CONFIG_PPC_BOOK3E
|
|
|
|
rlwinm r11,r11,0,1,31
|
2013-09-23 02:04:45 +00:00
|
|
|
mtsrr1 r11
|
|
|
|
rfi
|
2009-07-23 23:15:59 +00:00
|
|
|
#else /* CONFIG_PPC_BOOK3E */
|
2013-09-23 02:04:45 +00:00
|
|
|
LOAD_REG_IMMEDIATE(r12, MSR_SF | MSR_ISF | MSR_LE)
|
|
|
|
andc r11,r11,r12
|
|
|
|
mtsrr1 r11
|
2018-01-09 16:07:15 +00:00
|
|
|
RFI_TO_KERNEL
|
2009-07-23 23:15:59 +00:00
|
|
|
#endif /* CONFIG_PPC_BOOK3E */
|
2005-10-10 12:36:14 +00:00
|
|
|
|
2013-09-23 02:04:45 +00:00
|
|
|
1: /* Return from OF */
|
|
|
|
FIXUP_ENDIAN
|
2005-10-10 12:36:14 +00:00
|
|
|
|
|
|
|
/* Just make sure that r1 top 32 bits didn't get
|
|
|
|
* corrupt by OF
|
|
|
|
*/
|
|
|
|
rldicl r1,r1,0,32
|
|
|
|
|
|
|
|
/* Restore the MSR (back to 64 bits) */
|
|
|
|
ld r0,_MSR(r1)
|
2009-07-23 23:15:07 +00:00
|
|
|
MTMSRD(r0)
|
2005-10-10 12:36:14 +00:00
|
|
|
isync
|
|
|
|
|
|
|
|
/* Restore other registers */
|
|
|
|
REST_GPR(2, r1)
|
|
|
|
REST_GPR(13, r1)
|
|
|
|
REST_8GPRS(14, r1)
|
|
|
|
REST_10GPRS(22, r1)
|
|
|
|
ld r4,_CCR(r1)
|
|
|
|
mtcr r4
|
2018-10-12 02:44:06 +00:00
|
|
|
|
|
|
|
addi r1,r1,SWITCH_FRAME_SIZE
|
2005-10-10 12:36:14 +00:00
|
|
|
ld r0,16(r1)
|
|
|
|
mtlr r0
|
|
|
|
blr
|