linux/fs/udf/super.c

2491 lines
66 KiB
C
Raw Normal View History

/*
* super.c
*
* PURPOSE
* Super block routines for the OSTA-UDF(tm) filesystem.
*
* DESCRIPTION
* OSTA-UDF(tm) = Optical Storage Technology Association
* Universal Disk Format.
*
* This code is based on version 2.00 of the UDF specification,
* and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
* http://www.osta.org/
* http://www.ecma.ch/
* http://www.iso.org/
*
* COPYRIGHT
* This file is distributed under the terms of the GNU General Public
* License (GPL). Copies of the GPL can be obtained from:
* ftp://prep.ai.mit.edu/pub/gnu/GPL
* Each contributing author retains all rights to their own work.
*
* (C) 1998 Dave Boynton
* (C) 1998-2004 Ben Fennema
* (C) 2000 Stelias Computing Inc
*
* HISTORY
*
* 09/24/98 dgb changed to allow compiling outside of kernel, and
* added some debugging.
* 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
* 10/16/98 attempting some multi-session support
* 10/17/98 added freespace count for "df"
* 11/11/98 gr added novrs option
* 11/26/98 dgb added fileset,anchor mount options
* 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
* vol descs. rewrote option handling based on isofs
* 12/20/98 find the free space bitmap (if it exists)
*/
#include "udfdecl.h"
#include <linux/blkdev.h>
#include <linux/slab.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/parser.h>
#include <linux/stat.h>
#include <linux/cdrom.h>
#include <linux/nls.h>
#include <linux/vfs.h>
#include <linux/vmalloc.h>
#include <linux/errno.h>
#include <linux/mount.h>
#include <linux/seq_file.h>
#include <linux/bitmap.h>
#include <linux/crc-itu-t.h>
#include <linux/log2.h>
#include <asm/byteorder.h>
#include "udf_sb.h"
#include "udf_i.h"
#include <linux/init.h>
#include <linux/uaccess.h>
enum {
VDS_POS_PRIMARY_VOL_DESC,
VDS_POS_UNALLOC_SPACE_DESC,
VDS_POS_LOGICAL_VOL_DESC,
VDS_POS_IMP_USE_VOL_DESC,
VDS_POS_LENGTH
};
#define VSD_FIRST_SECTOR_OFFSET 32768
#define VSD_MAX_SECTOR_OFFSET 0x800000
/*
* Maximum number of Terminating Descriptor / Logical Volume Integrity
* Descriptor redirections. The chosen numbers are arbitrary - just that we
* hopefully don't limit any real use of rewritten inode on write-once media
* but avoid looping for too long on corrupted media.
*/
#define UDF_MAX_TD_NESTING 64
#define UDF_MAX_LVID_NESTING 1000
enum { UDF_MAX_LINKS = 0xffff };
/* These are the "meat" - everything else is stuffing */
static int udf_fill_super(struct super_block *, void *, int);
static void udf_put_super(struct super_block *);
static int udf_sync_fs(struct super_block *, int);
static int udf_remount_fs(struct super_block *, int *, char *);
static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
struct kernel_lb_addr *);
static void udf_load_fileset(struct super_block *, struct buffer_head *,
struct kernel_lb_addr *);
static void udf_open_lvid(struct super_block *);
static void udf_close_lvid(struct super_block *);
static unsigned int udf_count_free(struct super_block *);
static int udf_statfs(struct dentry *, struct kstatfs *);
static int udf_show_options(struct seq_file *, struct dentry *);
struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
{
struct logicalVolIntegrityDesc *lvid;
unsigned int partnum;
unsigned int offset;
if (!UDF_SB(sb)->s_lvid_bh)
return NULL;
lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
partnum = le32_to_cpu(lvid->numOfPartitions);
if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
offsetof(struct logicalVolIntegrityDesc, impUse)) /
(2 * sizeof(uint32_t)) < partnum) {
udf_err(sb, "Logical volume integrity descriptor corrupted "
"(numOfPartitions = %u)!\n", partnum);
return NULL;
}
/* The offset is to skip freeSpaceTable and sizeTable arrays */
offset = partnum * 2 * sizeof(uint32_t);
return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
}
/* UDF filesystem type */
static struct dentry *udf_mount(struct file_system_type *fs_type,
int flags, const char *dev_name, void *data)
{
return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
}
static struct file_system_type udf_fstype = {
.owner = THIS_MODULE,
.name = "udf",
.mount = udf_mount,
.kill_sb = kill_block_super,
.fs_flags = FS_REQUIRES_DEV,
};
MODULE_ALIAS_FS("udf");
static struct kmem_cache *udf_inode_cachep;
static struct inode *udf_alloc_inode(struct super_block *sb)
{
struct udf_inode_info *ei;
ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
if (!ei)
return NULL;
ei->i_unique = 0;
ei->i_lenExtents = 0;
ei->i_next_alloc_block = 0;
ei->i_next_alloc_goal = 0;
ei->i_strat4096 = 0;
init_rwsem(&ei->i_data_sem);
ei->cached_extent.lstart = -1;
spin_lock_init(&ei->i_extent_cache_lock);
return &ei->vfs_inode;
}
static void udf_free_in_core_inode(struct inode *inode)
{
kmem_cache_free(udf_inode_cachep, UDF_I(inode));
}
static void init_once(void *foo)
{
struct udf_inode_info *ei = (struct udf_inode_info *)foo;
ei->i_ext.i_data = NULL;
inode_init_once(&ei->vfs_inode);
}
static int __init init_inodecache(void)
{
udf_inode_cachep = kmem_cache_create("udf_inode_cache",
sizeof(struct udf_inode_info),
0, (SLAB_RECLAIM_ACCOUNT |
2016-01-14 23:18:21 +00:00
SLAB_MEM_SPREAD |
SLAB_ACCOUNT),
init_once);
if (!udf_inode_cachep)
return -ENOMEM;
return 0;
}
static void destroy_inodecache(void)
{
/*
* Make sure all delayed rcu free inodes are flushed before we
* destroy cache.
*/
rcu_barrier();
kmem_cache_destroy(udf_inode_cachep);
}
/* Superblock operations */
static const struct super_operations udf_sb_ops = {
.alloc_inode = udf_alloc_inode,
.free_inode = udf_free_in_core_inode,
.write_inode = udf_write_inode,
.evict_inode = udf_evict_inode,
.put_super = udf_put_super,
.sync_fs = udf_sync_fs,
.statfs = udf_statfs,
.remount_fs = udf_remount_fs,
.show_options = udf_show_options,
};
struct udf_options {
unsigned char novrs;
unsigned int blocksize;
unsigned int session;
unsigned int lastblock;
unsigned int anchor;
unsigned int flags;
umode_t umask;
kgid_t gid;
kuid_t uid;
umode_t fmode;
umode_t dmode;
struct nls_table *nls_map;
};
static int __init init_udf_fs(void)
{
int err;
err = init_inodecache();
if (err)
goto out1;
err = register_filesystem(&udf_fstype);
if (err)
goto out;
return 0;
out:
destroy_inodecache();
out1:
return err;
}
static void __exit exit_udf_fs(void)
{
unregister_filesystem(&udf_fstype);
destroy_inodecache();
}
static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
{
struct udf_sb_info *sbi = UDF_SB(sb);
sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
if (!sbi->s_partmaps) {
sbi->s_partitions = 0;
return -ENOMEM;
}
sbi->s_partitions = count;
return 0;
}
static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
{
int i;
int nr_groups = bitmap->s_nr_groups;
for (i = 0; i < nr_groups; i++)
if (bitmap->s_block_bitmap[i])
brelse(bitmap->s_block_bitmap[i]);
kvfree(bitmap);
}
static void udf_free_partition(struct udf_part_map *map)
{
int i;
struct udf_meta_data *mdata;
if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
iput(map->s_uspace.s_table);
if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
udf_sb_free_bitmap(map->s_uspace.s_bitmap);
if (map->s_partition_type == UDF_SPARABLE_MAP15)
for (i = 0; i < 4; i++)
brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
else if (map->s_partition_type == UDF_METADATA_MAP25) {
mdata = &map->s_type_specific.s_metadata;
iput(mdata->s_metadata_fe);
mdata->s_metadata_fe = NULL;
iput(mdata->s_mirror_fe);
mdata->s_mirror_fe = NULL;
iput(mdata->s_bitmap_fe);
mdata->s_bitmap_fe = NULL;
}
}
static void udf_sb_free_partitions(struct super_block *sb)
{
struct udf_sb_info *sbi = UDF_SB(sb);
int i;
if (!sbi->s_partmaps)
return;
for (i = 0; i < sbi->s_partitions; i++)
udf_free_partition(&sbi->s_partmaps[i]);
kfree(sbi->s_partmaps);
sbi->s_partmaps = NULL;
}
static int udf_show_options(struct seq_file *seq, struct dentry *root)
{
struct super_block *sb = root->d_sb;
struct udf_sb_info *sbi = UDF_SB(sb);
if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
seq_puts(seq, ",nostrict");
if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
seq_printf(seq, ",bs=%lu", sb->s_blocksize);
if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
seq_puts(seq, ",unhide");
if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
seq_puts(seq, ",undelete");
if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
seq_puts(seq, ",noadinicb");
if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
seq_puts(seq, ",shortad");
if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
seq_puts(seq, ",uid=forget");
if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
seq_puts(seq, ",gid=forget");
if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
if (sbi->s_umask != 0)
seq_printf(seq, ",umask=%ho", sbi->s_umask);
if (sbi->s_fmode != UDF_INVALID_MODE)
seq_printf(seq, ",mode=%ho", sbi->s_fmode);
if (sbi->s_dmode != UDF_INVALID_MODE)
seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
seq_printf(seq, ",session=%d", sbi->s_session);
if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
if (sbi->s_anchor != 0)
seq_printf(seq, ",anchor=%u", sbi->s_anchor);
if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
seq_puts(seq, ",utf8");
if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
return 0;
}
/*
* udf_parse_options
*
* PURPOSE
* Parse mount options.
*
* DESCRIPTION
* The following mount options are supported:
*
* gid= Set the default group.
* umask= Set the default umask.
* mode= Set the default file permissions.
* dmode= Set the default directory permissions.
* uid= Set the default user.
* bs= Set the block size.
* unhide Show otherwise hidden files.
* undelete Show deleted files in lists.
* adinicb Embed data in the inode (default)
* noadinicb Don't embed data in the inode
* shortad Use short ad's
* longad Use long ad's (default)
* nostrict Unset strict conformance
* iocharset= Set the NLS character set
*
* The remaining are for debugging and disaster recovery:
*
* novrs Skip volume sequence recognition
*
* The following expect a offset from 0.
*
* session= Set the CDROM session (default= last session)
* anchor= Override standard anchor location. (default= 256)
* volume= Override the VolumeDesc location. (unused)
* partition= Override the PartitionDesc location. (unused)
* lastblock= Set the last block of the filesystem/
*
* The following expect a offset from the partition root.
*
* fileset= Override the fileset block location. (unused)
* rootdir= Override the root directory location. (unused)
* WARNING: overriding the rootdir to a non-directory may
* yield highly unpredictable results.
*
* PRE-CONDITIONS
* options Pointer to mount options string.
* uopts Pointer to mount options variable.
*
* POST-CONDITIONS
* <return> 1 Mount options parsed okay.
* <return> 0 Error parsing mount options.
*
* HISTORY
* July 1, 1997 - Andrew E. Mileski
* Written, tested, and released.
*/
enum {
Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
Opt_rootdir, Opt_utf8, Opt_iocharset,
Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
Opt_fmode, Opt_dmode
};
static const match_table_t tokens = {
{Opt_novrs, "novrs"},
{Opt_nostrict, "nostrict"},
{Opt_bs, "bs=%u"},
{Opt_unhide, "unhide"},
{Opt_undelete, "undelete"},
{Opt_noadinicb, "noadinicb"},
{Opt_adinicb, "adinicb"},
{Opt_shortad, "shortad"},
{Opt_longad, "longad"},
{Opt_uforget, "uid=forget"},
{Opt_uignore, "uid=ignore"},
{Opt_gforget, "gid=forget"},
{Opt_gignore, "gid=ignore"},
{Opt_gid, "gid=%u"},
{Opt_uid, "uid=%u"},
{Opt_umask, "umask=%o"},
{Opt_session, "session=%u"},
{Opt_lastblock, "lastblock=%u"},
{Opt_anchor, "anchor=%u"},
{Opt_volume, "volume=%u"},
{Opt_partition, "partition=%u"},
{Opt_fileset, "fileset=%u"},
{Opt_rootdir, "rootdir=%u"},
{Opt_utf8, "utf8"},
{Opt_iocharset, "iocharset=%s"},
{Opt_fmode, "mode=%o"},
{Opt_dmode, "dmode=%o"},
{Opt_err, NULL}
};
static int udf_parse_options(char *options, struct udf_options *uopt,
bool remount)
{
char *p;
int option;
uopt->novrs = 0;
uopt->session = 0xFFFFFFFF;
uopt->lastblock = 0;
uopt->anchor = 0;
if (!options)
return 1;
while ((p = strsep(&options, ",")) != NULL) {
substring_t args[MAX_OPT_ARGS];
int token;
unsigned n;
if (!*p)
continue;
token = match_token(p, tokens, args);
switch (token) {
case Opt_novrs:
uopt->novrs = 1;
break;
case Opt_bs:
if (match_int(&args[0], &option))
return 0;
n = option;
if (n != 512 && n != 1024 && n != 2048 && n != 4096)
return 0;
uopt->blocksize = n;
uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
break;
case Opt_unhide:
uopt->flags |= (1 << UDF_FLAG_UNHIDE);
break;
case Opt_undelete:
uopt->flags |= (1 << UDF_FLAG_UNDELETE);
break;
case Opt_noadinicb:
uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
break;
case Opt_adinicb:
uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
break;
case Opt_shortad:
uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
break;
case Opt_longad:
uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
break;
case Opt_gid:
if (match_int(args, &option))
return 0;
uopt->gid = make_kgid(current_user_ns(), option);
if (!gid_valid(uopt->gid))
return 0;
uopt->flags |= (1 << UDF_FLAG_GID_SET);
break;
case Opt_uid:
if (match_int(args, &option))
return 0;
uopt->uid = make_kuid(current_user_ns(), option);
if (!uid_valid(uopt->uid))
return 0;
uopt->flags |= (1 << UDF_FLAG_UID_SET);
break;
case Opt_umask:
if (match_octal(args, &option))
return 0;
uopt->umask = option;
break;
case Opt_nostrict:
uopt->flags &= ~(1 << UDF_FLAG_STRICT);
break;
case Opt_session:
if (match_int(args, &option))
return 0;
uopt->session = option;
if (!remount)
uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
break;
case Opt_lastblock:
if (match_int(args, &option))
return 0;
uopt->lastblock = option;
if (!remount)
uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
break;
case Opt_anchor:
if (match_int(args, &option))
return 0;
uopt->anchor = option;
break;
case Opt_volume:
case Opt_partition:
case Opt_fileset:
case Opt_rootdir:
/* Ignored (never implemented properly) */
break;
case Opt_utf8:
uopt->flags |= (1 << UDF_FLAG_UTF8);
break;
case Opt_iocharset:
if (!remount) {
if (uopt->nls_map)
unload_nls(uopt->nls_map);
/*
* load_nls() failure is handled later in
* udf_fill_super() after all options are
* parsed.
*/
uopt->nls_map = load_nls(args[0].from);
uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
}
break;
case Opt_uforget:
uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
break;
case Opt_uignore:
case Opt_gignore:
/* These options are superseeded by uid=<number> */
break;
case Opt_gforget:
uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
break;
case Opt_fmode:
if (match_octal(args, &option))
return 0;
uopt->fmode = option & 0777;
break;
case Opt_dmode:
if (match_octal(args, &option))
return 0;
uopt->dmode = option & 0777;
break;
default:
pr_err("bad mount option \"%s\" or missing value\n", p);
return 0;
}
}
return 1;
}
static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
{
struct udf_options uopt;
struct udf_sb_info *sbi = UDF_SB(sb);
int error = 0;
if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
return -EACCES;
fs: push sync_filesystem() down to the file system's remount_fs() Previously, the no-op "mount -o mount /dev/xxx" operation when the file system is already mounted read-write causes an implied, unconditional syncfs(). This seems pretty stupid, and it's certainly documented or guaraunteed to do this, nor is it particularly useful, except in the case where the file system was mounted rw and is getting remounted read-only. However, it's possible that there might be some file systems that are actually depending on this behavior. In most file systems, it's probably fine to only call sync_filesystem() when transitioning from read-write to read-only, and there are some file systems where this is not needed at all (for example, for a pseudo-filesystem or something like romfs). Signed-off-by: "Theodore Ts'o" <tytso@mit.edu> Cc: linux-fsdevel@vger.kernel.org Cc: Christoph Hellwig <hch@infradead.org> Cc: Artem Bityutskiy <dedekind1@gmail.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Evgeniy Dushistov <dushistov@mail.ru> Cc: Jan Kara <jack@suse.cz> Cc: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp> Cc: Anders Larsen <al@alarsen.net> Cc: Phillip Lougher <phillip@squashfs.org.uk> Cc: Kees Cook <keescook@chromium.org> Cc: Mikulas Patocka <mikulas@artax.karlin.mff.cuni.cz> Cc: Petr Vandrovec <petr@vandrovec.name> Cc: xfs@oss.sgi.com Cc: linux-btrfs@vger.kernel.org Cc: linux-cifs@vger.kernel.org Cc: samba-technical@lists.samba.org Cc: codalist@coda.cs.cmu.edu Cc: linux-ext4@vger.kernel.org Cc: linux-f2fs-devel@lists.sourceforge.net Cc: fuse-devel@lists.sourceforge.net Cc: cluster-devel@redhat.com Cc: linux-mtd@lists.infradead.org Cc: jfs-discussion@lists.sourceforge.net Cc: linux-nfs@vger.kernel.org Cc: linux-nilfs@vger.kernel.org Cc: linux-ntfs-dev@lists.sourceforge.net Cc: ocfs2-devel@oss.oracle.com Cc: reiserfs-devel@vger.kernel.org
2014-03-13 14:14:33 +00:00
sync_filesystem(sb);
uopt.flags = sbi->s_flags;
uopt.uid = sbi->s_uid;
uopt.gid = sbi->s_gid;
uopt.umask = sbi->s_umask;
uopt.fmode = sbi->s_fmode;
uopt.dmode = sbi->s_dmode;
uopt.nls_map = NULL;
if (!udf_parse_options(options, &uopt, true))
return -EINVAL;
write_lock(&sbi->s_cred_lock);
sbi->s_flags = uopt.flags;
sbi->s_uid = uopt.uid;
sbi->s_gid = uopt.gid;
sbi->s_umask = uopt.umask;
sbi->s_fmode = uopt.fmode;
sbi->s_dmode = uopt.dmode;
write_unlock(&sbi->s_cred_lock);
Rename superblock flags (MS_xyz -> SB_xyz) This is a pure automated search-and-replace of the internal kernel superblock flags. The s_flags are now called SB_*, with the names and the values for the moment mirroring the MS_* flags that they're equivalent to. Note how the MS_xyz flags are the ones passed to the mount system call, while the SB_xyz flags are what we then use in sb->s_flags. The script to do this was: # places to look in; re security/*: it generally should *not* be # touched (that stuff parses mount(2) arguments directly), but # there are two places where we really deal with superblock flags. FILES="drivers/mtd drivers/staging/lustre fs ipc mm \ include/linux/fs.h include/uapi/linux/bfs_fs.h \ security/apparmor/apparmorfs.c security/apparmor/include/lib.h" # the list of MS_... constants SYMS="RDONLY NOSUID NODEV NOEXEC SYNCHRONOUS REMOUNT MANDLOCK \ DIRSYNC NOATIME NODIRATIME BIND MOVE REC VERBOSE SILENT \ POSIXACL UNBINDABLE PRIVATE SLAVE SHARED RELATIME KERNMOUNT \ I_VERSION STRICTATIME LAZYTIME SUBMOUNT NOREMOTELOCK NOSEC BORN \ ACTIVE NOUSER" SED_PROG= for i in $SYMS; do SED_PROG="$SED_PROG -e s/MS_$i/SB_$i/g"; done # we want files that contain at least one of MS_..., # with fs/namespace.c and fs/pnode.c excluded. L=$(for i in $SYMS; do git grep -w -l MS_$i $FILES; done| sort|uniq|grep -v '^fs/namespace.c'|grep -v '^fs/pnode.c') for f in $L; do sed -i $f $SED_PROG; done Requested-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-27 21:05:09 +00:00
if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
goto out_unlock;
Rename superblock flags (MS_xyz -> SB_xyz) This is a pure automated search-and-replace of the internal kernel superblock flags. The s_flags are now called SB_*, with the names and the values for the moment mirroring the MS_* flags that they're equivalent to. Note how the MS_xyz flags are the ones passed to the mount system call, while the SB_xyz flags are what we then use in sb->s_flags. The script to do this was: # places to look in; re security/*: it generally should *not* be # touched (that stuff parses mount(2) arguments directly), but # there are two places where we really deal with superblock flags. FILES="drivers/mtd drivers/staging/lustre fs ipc mm \ include/linux/fs.h include/uapi/linux/bfs_fs.h \ security/apparmor/apparmorfs.c security/apparmor/include/lib.h" # the list of MS_... constants SYMS="RDONLY NOSUID NODEV NOEXEC SYNCHRONOUS REMOUNT MANDLOCK \ DIRSYNC NOATIME NODIRATIME BIND MOVE REC VERBOSE SILENT \ POSIXACL UNBINDABLE PRIVATE SLAVE SHARED RELATIME KERNMOUNT \ I_VERSION STRICTATIME LAZYTIME SUBMOUNT NOREMOTELOCK NOSEC BORN \ ACTIVE NOUSER" SED_PROG= for i in $SYMS; do SED_PROG="$SED_PROG -e s/MS_$i/SB_$i/g"; done # we want files that contain at least one of MS_..., # with fs/namespace.c and fs/pnode.c excluded. L=$(for i in $SYMS; do git grep -w -l MS_$i $FILES; done| sort|uniq|grep -v '^fs/namespace.c'|grep -v '^fs/pnode.c') for f in $L; do sed -i $f $SED_PROG; done Requested-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-27 21:05:09 +00:00
if (*flags & SB_RDONLY)
udf_close_lvid(sb);
else
udf_open_lvid(sb);
out_unlock:
return error;
}
/* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
/* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
static loff_t udf_check_vsd(struct super_block *sb)
{
struct volStructDesc *vsd = NULL;
loff_t sector = VSD_FIRST_SECTOR_OFFSET;
int sectorsize;
struct buffer_head *bh = NULL;
int nsr02 = 0;
int nsr03 = 0;
struct udf_sb_info *sbi;
sbi = UDF_SB(sb);
if (sb->s_blocksize < sizeof(struct volStructDesc))
sectorsize = sizeof(struct volStructDesc);
else
sectorsize = sb->s_blocksize;
sector += (((loff_t)sbi->s_session) << sb->s_blocksize_bits);
udf_debug("Starting at sector %u (%lu byte sectors)\n",
(unsigned int)(sector >> sb->s_blocksize_bits),
sb->s_blocksize);
/* Process the sequence (if applicable). The hard limit on the sector
* offset is arbitrary, hopefully large enough so that all valid UDF
* filesystems will be recognised. There is no mention of an upper
* bound to the size of the volume recognition area in the standard.
* The limit will prevent the code to read all the sectors of a
* specially crafted image (like a bluray disc full of CD001 sectors),
* potentially causing minutes or even hours of uninterruptible I/O
* activity. This actually happened with uninitialised SSD partitions
* (all 0xFF) before the check for the limit and all valid IDs were
* added */
for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
sector += sectorsize) {
/* Read a block */
bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
if (!bh)
break;
/* Look for ISO descriptors */
vsd = (struct volStructDesc *)(bh->b_data +
(sector & (sb->s_blocksize - 1)));
if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
VSD_STD_ID_LEN)) {
switch (vsd->structType) {
case 0:
udf_debug("ISO9660 Boot Record found\n");
break;
case 1:
udf_debug("ISO9660 Primary Volume Descriptor found\n");
break;
case 2:
udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
break;
case 3:
udf_debug("ISO9660 Volume Partition Descriptor found\n");
break;
case 255:
udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
break;
default:
udf_debug("ISO9660 VRS (%u) found\n",
vsd->structType);
break;
}
} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
VSD_STD_ID_LEN))
; /* nothing */
else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
VSD_STD_ID_LEN)) {
brelse(bh);
break;
} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
VSD_STD_ID_LEN))
nsr02 = sector;
else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
VSD_STD_ID_LEN))
nsr03 = sector;
else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
VSD_STD_ID_LEN))
; /* nothing */
else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
VSD_STD_ID_LEN))
; /* nothing */
else {
/* invalid id : end of volume recognition area */
brelse(bh);
break;
}
brelse(bh);
}
if (nsr03)
return nsr03;
else if (nsr02)
return nsr02;
else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
VSD_FIRST_SECTOR_OFFSET)
return -1;
else
return 0;
}
static int udf_find_fileset(struct super_block *sb,
struct kernel_lb_addr *fileset,
struct kernel_lb_addr *root)
{
struct buffer_head *bh = NULL;
uint16_t ident;
if (fileset->logicalBlockNum != 0xFFFFFFFF ||
fileset->partitionReferenceNum != 0xFFFF) {
bh = udf_read_ptagged(sb, fileset, 0, &ident);
if (!bh) {
return 1;
} else if (ident != TAG_IDENT_FSD) {
brelse(bh);
return 1;
}
udf_debug("Fileset at block=%u, partition=%u\n",
fileset->logicalBlockNum,
fileset->partitionReferenceNum);
UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
udf_load_fileset(sb, bh, root);
brelse(bh);
return 0;
}
return 1;
}
/*
* Load primary Volume Descriptor Sequence
*
* Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
* should be tried.
*/
static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
{
struct primaryVolDesc *pvoldesc;
uint8_t *outstr;
struct buffer_head *bh;
uint16_t ident;
int ret = -ENOMEM;
#ifdef UDFFS_DEBUG
struct timestamp *ts;
#endif
outstr = kmalloc(128, GFP_NOFS);
if (!outstr)
return -ENOMEM;
bh = udf_read_tagged(sb, block, block, &ident);
if (!bh) {
ret = -EAGAIN;
goto out2;
}
if (ident != TAG_IDENT_PVD) {
ret = -EIO;
goto out_bh;
}
pvoldesc = (struct primaryVolDesc *)bh->b_data;
udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
pvoldesc->recordingDateAndTime);
#ifdef UDFFS_DEBUG
ts = &pvoldesc->recordingDateAndTime;
udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
ts->minute, le16_to_cpu(ts->typeAndTimezone));
#endif
ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
if (ret < 0) {
strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
pr_warn("incorrect volume identification, setting to "
"'InvalidName'\n");
} else {
strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
}
udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
if (ret < 0) {
ret = 0;
goto out_bh;
}
outstr[ret] = 0;
udf_debug("volSetIdent[] = '%s'\n", outstr);
ret = 0;
out_bh:
brelse(bh);
out2:
kfree(outstr);
return ret;
}
struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
u32 meta_file_loc, u32 partition_ref)
{
struct kernel_lb_addr addr;
struct inode *metadata_fe;
addr.logicalBlockNum = meta_file_loc;
addr.partitionReferenceNum = partition_ref;
metadata_fe = udf_iget_special(sb, &addr);
if (IS_ERR(metadata_fe)) {
udf_warn(sb, "metadata inode efe not found\n");
return metadata_fe;
}
if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
iput(metadata_fe);
return ERR_PTR(-EIO);
}
return metadata_fe;
}
static int udf_load_metadata_files(struct super_block *sb, int partition,
int type1_index)
{
struct udf_sb_info *sbi = UDF_SB(sb);
struct udf_part_map *map;
struct udf_meta_data *mdata;
struct kernel_lb_addr addr;
struct inode *fe;
map = &sbi->s_partmaps[partition];
mdata = &map->s_type_specific.s_metadata;
mdata->s_phys_partition_ref = type1_index;
/* metadata address */
udf_debug("Metadata file location: block = %u part = %u\n",
mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
mdata->s_phys_partition_ref);
if (IS_ERR(fe)) {
/* mirror file entry */
udf_debug("Mirror metadata file location: block = %u part = %u\n",
mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
mdata->s_phys_partition_ref);
if (IS_ERR(fe)) {
udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
return PTR_ERR(fe);
}
mdata->s_mirror_fe = fe;
} else
mdata->s_metadata_fe = fe;
/*
* bitmap file entry
* Note:
* Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
*/
if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
addr.logicalBlockNum = mdata->s_bitmap_file_loc;
addr.partitionReferenceNum = mdata->s_phys_partition_ref;
udf_debug("Bitmap file location: block = %u part = %u\n",
addr.logicalBlockNum, addr.partitionReferenceNum);
fe = udf_iget_special(sb, &addr);
if (IS_ERR(fe)) {
if (sb_rdonly(sb))
udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
else {
udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
return PTR_ERR(fe);
}
} else
mdata->s_bitmap_fe = fe;
}
udf_debug("udf_load_metadata_files Ok\n");
return 0;
}
static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
struct kernel_lb_addr *root)
{
struct fileSetDesc *fset;
fset = (struct fileSetDesc *)bh->b_data;
*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
udf_debug("Rootdir at block=%u, partition=%u\n",
root->logicalBlockNum, root->partitionReferenceNum);
}
int udf_compute_nr_groups(struct super_block *sb, u32 partition)
{
struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
return DIV_ROUND_UP(map->s_partition_len +
(sizeof(struct spaceBitmapDesc) << 3),
sb->s_blocksize * 8);
}
static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
{
struct udf_bitmap *bitmap;
int nr_groups;
int size;
nr_groups = udf_compute_nr_groups(sb, index);
size = sizeof(struct udf_bitmap) +
(sizeof(struct buffer_head *) * nr_groups);
if (size <= PAGE_SIZE)
bitmap = kzalloc(size, GFP_KERNEL);
else
bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
if (!bitmap)
return NULL;
bitmap->s_nr_groups = nr_groups;
return bitmap;
}
static int check_partition_desc(struct super_block *sb,
struct partitionDesc *p,
struct udf_part_map *map)
{
bool umap, utable, fmap, ftable;
struct partitionHeaderDesc *phd;
switch (le32_to_cpu(p->accessType)) {
case PD_ACCESS_TYPE_READ_ONLY:
case PD_ACCESS_TYPE_WRITE_ONCE:
case PD_ACCESS_TYPE_REWRITABLE:
case PD_ACCESS_TYPE_NONE:
goto force_ro;
}
/* No Partition Header Descriptor? */
if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
goto force_ro;
phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
utable = phd->unallocSpaceTable.extLength;
umap = phd->unallocSpaceBitmap.extLength;
ftable = phd->freedSpaceTable.extLength;
fmap = phd->freedSpaceBitmap.extLength;
/* No allocation info? */
if (!utable && !umap && !ftable && !fmap)
goto force_ro;
/* We don't support blocks that require erasing before overwrite */
if (ftable || fmap)
goto force_ro;
/* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
if (utable && umap)
goto force_ro;
if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
map->s_partition_type == UDF_VIRTUAL_MAP20)
goto force_ro;
return 0;
force_ro:
if (!sb_rdonly(sb))
return -EACCES;
UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
return 0;
}
static int udf_fill_partdesc_info(struct super_block *sb,
struct partitionDesc *p, int p_index)
{
struct udf_part_map *map;
struct udf_sb_info *sbi = UDF_SB(sb);
struct partitionHeaderDesc *phd;
int err;
map = &sbi->s_partmaps[p_index];
map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
p_index, map->s_partition_type,
map->s_partition_root, map->s_partition_len);
err = check_partition_desc(sb, p, map);
if (err)
return err;
/*
* Skip loading allocation info it we cannot ever write to the fs.
* This is a correctness thing as we may have decided to force ro mount
* to avoid allocation info we don't support.
*/
if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
return 0;
phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
if (phd->unallocSpaceTable.extLength) {
struct kernel_lb_addr loc = {
.logicalBlockNum = le32_to_cpu(
phd->unallocSpaceTable.extPosition),
.partitionReferenceNum = p_index,
};
struct inode *inode;
inode = udf_iget_special(sb, &loc);
if (IS_ERR(inode)) {
udf_debug("cannot load unallocSpaceTable (part %d)\n",
p_index);
return PTR_ERR(inode);
}
map->s_uspace.s_table = inode;
map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
udf_debug("unallocSpaceTable (part %d) @ %lu\n",
p_index, map->s_uspace.s_table->i_ino);
}
if (phd->unallocSpaceBitmap.extLength) {
struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
if (!bitmap)
return -ENOMEM;
map->s_uspace.s_bitmap = bitmap;
bitmap->s_extPosition = le32_to_cpu(
phd->unallocSpaceBitmap.extPosition);
map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
p_index, bitmap->s_extPosition);
}
return 0;
}
static void udf_find_vat_block(struct super_block *sb, int p_index,
int type1_index, sector_t start_block)
{
struct udf_sb_info *sbi = UDF_SB(sb);
struct udf_part_map *map = &sbi->s_partmaps[p_index];
sector_t vat_block;
struct kernel_lb_addr ino;
struct inode *inode;
/*
* VAT file entry is in the last recorded block. Some broken disks have
* it a few blocks before so try a bit harder...
*/
ino.partitionReferenceNum = type1_index;
for (vat_block = start_block;
vat_block >= map->s_partition_root &&
vat_block >= start_block - 3; vat_block--) {
ino.logicalBlockNum = vat_block - map->s_partition_root;
inode = udf_iget_special(sb, &ino);
if (!IS_ERR(inode)) {
sbi->s_vat_inode = inode;
break;
}
}
}
static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
{
struct udf_sb_info *sbi = UDF_SB(sb);
struct udf_part_map *map = &sbi->s_partmaps[p_index];
struct buffer_head *bh = NULL;
struct udf_inode_info *vati;
uint32_t pos;
struct virtualAllocationTable20 *vat20;
sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
sb->s_blocksize_bits;
udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
if (!sbi->s_vat_inode &&
sbi->s_last_block != blocks - 1) {
pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
(unsigned long)sbi->s_last_block,
(unsigned long)blocks - 1);
udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
}
if (!sbi->s_vat_inode)
return -EIO;
if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
map->s_type_specific.s_virtual.s_start_offset = 0;
map->s_type_specific.s_virtual.s_num_entries =
(sbi->s_vat_inode->i_size - 36) >> 2;
} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
vati = UDF_I(sbi->s_vat_inode);
if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
pos = udf_block_map(sbi->s_vat_inode, 0);
bh = sb_bread(sb, pos);
if (!bh)
return -EIO;
vat20 = (struct virtualAllocationTable20 *)bh->b_data;
} else {
vat20 = (struct virtualAllocationTable20 *)
vati->i_ext.i_data;
}
map->s_type_specific.s_virtual.s_start_offset =
le16_to_cpu(vat20->lengthHeader);
map->s_type_specific.s_virtual.s_num_entries =
(sbi->s_vat_inode->i_size -
map->s_type_specific.s_virtual.
s_start_offset) >> 2;
brelse(bh);
}
return 0;
}
/*
* Load partition descriptor block
*
* Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
* sequence.
*/
static int udf_load_partdesc(struct super_block *sb, sector_t block)
{
struct buffer_head *bh;
struct partitionDesc *p;
struct udf_part_map *map;
struct udf_sb_info *sbi = UDF_SB(sb);
int i, type1_idx;
uint16_t partitionNumber;
uint16_t ident;
int ret;
bh = udf_read_tagged(sb, block, block, &ident);
if (!bh)
return -EAGAIN;
if (ident != TAG_IDENT_PD) {
ret = 0;
goto out_bh;
}
p = (struct partitionDesc *)bh->b_data;
partitionNumber = le16_to_cpu(p->partitionNumber);
/* First scan for TYPE1 and SPARABLE partitions */
for (i = 0; i < sbi->s_partitions; i++) {
map = &sbi->s_partmaps[i];
udf_debug("Searching map: (%u == %u)\n",
map->s_partition_num, partitionNumber);
if (map->s_partition_num == partitionNumber &&
(map->s_partition_type == UDF_TYPE1_MAP15 ||
map->s_partition_type == UDF_SPARABLE_MAP15))
break;
}
if (i >= sbi->s_partitions) {
udf_debug("Partition (%u) not found in partition map\n",
partitionNumber);
ret = 0;
goto out_bh;
}
ret = udf_fill_partdesc_info(sb, p, i);
if (ret < 0)
goto out_bh;
/*
* Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
* PHYSICAL partitions are already set up
*/
type1_idx = i;
#ifdef UDFFS_DEBUG
map = NULL; /* supress 'maybe used uninitialized' warning */
#endif
for (i = 0; i < sbi->s_partitions; i++) {
map = &sbi->s_partmaps[i];
if (map->s_partition_num == partitionNumber &&
(map->s_partition_type == UDF_VIRTUAL_MAP15 ||
map->s_partition_type == UDF_VIRTUAL_MAP20 ||
map->s_partition_type == UDF_METADATA_MAP25))
break;
}
if (i >= sbi->s_partitions) {
ret = 0;
goto out_bh;
}
ret = udf_fill_partdesc_info(sb, p, i);
if (ret < 0)
goto out_bh;
if (map->s_partition_type == UDF_METADATA_MAP25) {
ret = udf_load_metadata_files(sb, i, type1_idx);
if (ret < 0) {
udf_err(sb, "error loading MetaData partition map %d\n",
i);
goto out_bh;
}
} else {
/*
* If we have a partition with virtual map, we don't handle
* writing to it (we overwrite blocks instead of relocating
* them).
*/
if (!sb_rdonly(sb)) {
ret = -EACCES;
goto out_bh;
}
UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
ret = udf_load_vat(sb, i, type1_idx);
if (ret < 0)
goto out_bh;
}
ret = 0;
out_bh:
/* In case loading failed, we handle cleanup in udf_fill_super */
brelse(bh);
return ret;
}
static int udf_load_sparable_map(struct super_block *sb,
struct udf_part_map *map,
struct sparablePartitionMap *spm)
{
uint32_t loc;
uint16_t ident;
struct sparingTable *st;
struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
int i;
struct buffer_head *bh;
map->s_partition_type = UDF_SPARABLE_MAP15;
sdata->s_packet_len = le16_to_cpu(spm->packetLength);
if (!is_power_of_2(sdata->s_packet_len)) {
udf_err(sb, "error loading logical volume descriptor: "
"Invalid packet length %u\n",
(unsigned)sdata->s_packet_len);
return -EIO;
}
if (spm->numSparingTables > 4) {
udf_err(sb, "error loading logical volume descriptor: "
"Too many sparing tables (%d)\n",
(int)spm->numSparingTables);
return -EIO;
}
for (i = 0; i < spm->numSparingTables; i++) {
loc = le32_to_cpu(spm->locSparingTable[i]);
bh = udf_read_tagged(sb, loc, loc, &ident);
if (!bh)
continue;
st = (struct sparingTable *)bh->b_data;
if (ident != 0 ||
strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
strlen(UDF_ID_SPARING)) ||
sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
sb->s_blocksize) {
brelse(bh);
continue;
}
sdata->s_spar_map[i] = bh;
}
map->s_partition_func = udf_get_pblock_spar15;
return 0;
}
static int udf_load_logicalvol(struct super_block *sb, sector_t block,
struct kernel_lb_addr *fileset)
{
struct logicalVolDesc *lvd;
int i, offset;
uint8_t type;
struct udf_sb_info *sbi = UDF_SB(sb);
struct genericPartitionMap *gpm;
uint16_t ident;
struct buffer_head *bh;
unsigned int table_len;
int ret;
bh = udf_read_tagged(sb, block, block, &ident);
if (!bh)
return -EAGAIN;
BUG_ON(ident != TAG_IDENT_LVD);
lvd = (struct logicalVolDesc *)bh->b_data;
table_len = le32_to_cpu(lvd->mapTableLength);
if (table_len > sb->s_blocksize - sizeof(*lvd)) {
udf_err(sb, "error loading logical volume descriptor: "
"Partition table too long (%u > %lu)\n", table_len,
sb->s_blocksize - sizeof(*lvd));
ret = -EIO;
goto out_bh;
}
ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
if (ret)
goto out_bh;
for (i = 0, offset = 0;
i < sbi->s_partitions && offset < table_len;
i++, offset += gpm->partitionMapLength) {
struct udf_part_map *map = &sbi->s_partmaps[i];
gpm = (struct genericPartitionMap *)
&(lvd->partitionMaps[offset]);
type = gpm->partitionMapType;
if (type == 1) {
struct genericPartitionMap1 *gpm1 =
(struct genericPartitionMap1 *)gpm;
map->s_partition_type = UDF_TYPE1_MAP15;
map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
map->s_partition_func = NULL;
} else if (type == 2) {
struct udfPartitionMap2 *upm2 =
(struct udfPartitionMap2 *)gpm;
if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
strlen(UDF_ID_VIRTUAL))) {
u16 suf =
le16_to_cpu(((__le16 *)upm2->partIdent.
identSuffix)[0]);
if (suf < 0x0200) {
map->s_partition_type =
UDF_VIRTUAL_MAP15;
map->s_partition_func =
udf_get_pblock_virt15;
} else {
map->s_partition_type =
UDF_VIRTUAL_MAP20;
map->s_partition_func =
udf_get_pblock_virt20;
}
} else if (!strncmp(upm2->partIdent.ident,
UDF_ID_SPARABLE,
strlen(UDF_ID_SPARABLE))) {
ret = udf_load_sparable_map(sb, map,
(struct sparablePartitionMap *)gpm);
if (ret < 0)
goto out_bh;
} else if (!strncmp(upm2->partIdent.ident,
UDF_ID_METADATA,
strlen(UDF_ID_METADATA))) {
struct udf_meta_data *mdata =
&map->s_type_specific.s_metadata;
struct metadataPartitionMap *mdm =
(struct metadataPartitionMap *)
&(lvd->partitionMaps[offset]);
udf_debug("Parsing Logical vol part %d type %u id=%s\n",
i, type, UDF_ID_METADATA);
map->s_partition_type = UDF_METADATA_MAP25;
map->s_partition_func = udf_get_pblock_meta25;
mdata->s_meta_file_loc =
le32_to_cpu(mdm->metadataFileLoc);
mdata->s_mirror_file_loc =
le32_to_cpu(mdm->metadataMirrorFileLoc);
mdata->s_bitmap_file_loc =
le32_to_cpu(mdm->metadataBitmapFileLoc);
mdata->s_alloc_unit_size =
le32_to_cpu(mdm->allocUnitSize);
mdata->s_align_unit_size =
le16_to_cpu(mdm->alignUnitSize);
if (mdm->flags & 0x01)
mdata->s_flags |= MF_DUPLICATE_MD;
udf_debug("Metadata Ident suffix=0x%x\n",
le16_to_cpu(*(__le16 *)
mdm->partIdent.identSuffix));
udf_debug("Metadata part num=%u\n",
le16_to_cpu(mdm->partitionNum));
udf_debug("Metadata part alloc unit size=%u\n",
le32_to_cpu(mdm->allocUnitSize));
udf_debug("Metadata file loc=%u\n",
le32_to_cpu(mdm->metadataFileLoc));
udf_debug("Mirror file loc=%u\n",
le32_to_cpu(mdm->metadataMirrorFileLoc));
udf_debug("Bitmap file loc=%u\n",
le32_to_cpu(mdm->metadataBitmapFileLoc));
udf_debug("Flags: %d %u\n",
mdata->s_flags, mdm->flags);
} else {
udf_debug("Unknown ident: %s\n",
upm2->partIdent.ident);
continue;
}
map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
map->s_partition_num = le16_to_cpu(upm2->partitionNum);
}
udf_debug("Partition (%d:%u) type %u on volume %u\n",
i, map->s_partition_num, type, map->s_volumeseqnum);
}
if (fileset) {
struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
*fileset = lelb_to_cpu(la->extLocation);
udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
fileset->logicalBlockNum,
fileset->partitionReferenceNum);
}
if (lvd->integritySeqExt.extLength)
udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
ret = 0;
if (!sbi->s_lvid_bh) {
/* We can't generate unique IDs without a valid LVID */
if (sb_rdonly(sb)) {
UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
} else {
udf_warn(sb, "Damaged or missing LVID, forcing "
"readonly mount\n");
ret = -EACCES;
}
}
out_bh:
brelse(bh);
return ret;
}
/*
* Find the prevailing Logical Volume Integrity Descriptor.
*/
static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
{
struct buffer_head *bh, *final_bh;
uint16_t ident;
struct udf_sb_info *sbi = UDF_SB(sb);
struct logicalVolIntegrityDesc *lvid;
int indirections = 0;
while (++indirections <= UDF_MAX_LVID_NESTING) {
final_bh = NULL;
while (loc.extLength > 0 &&
(bh = udf_read_tagged(sb, loc.extLocation,
loc.extLocation, &ident))) {
if (ident != TAG_IDENT_LVID) {
brelse(bh);
break;
}
brelse(final_bh);
final_bh = bh;
loc.extLength -= sb->s_blocksize;
loc.extLocation++;
}
if (!final_bh)
return;
brelse(sbi->s_lvid_bh);
sbi->s_lvid_bh = final_bh;
lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
if (lvid->nextIntegrityExt.extLength == 0)
return;
loc = leea_to_cpu(lvid->nextIntegrityExt);
}
udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
UDF_MAX_LVID_NESTING);
brelse(sbi->s_lvid_bh);
sbi->s_lvid_bh = NULL;
}
/*
* Step for reallocation of table of partition descriptor sequence numbers.
* Must be power of 2.
*/
#define PART_DESC_ALLOC_STEP 32
struct part_desc_seq_scan_data {
struct udf_vds_record rec;
u32 partnum;
};
struct desc_seq_scan_data {
struct udf_vds_record vds[VDS_POS_LENGTH];
unsigned int size_part_descs;
unsigned int num_part_descs;
struct part_desc_seq_scan_data *part_descs_loc;
};
static struct udf_vds_record *handle_partition_descriptor(
struct buffer_head *bh,
struct desc_seq_scan_data *data)
{
struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
int partnum;
int i;
partnum = le16_to_cpu(desc->partitionNumber);
for (i = 0; i < data->num_part_descs; i++)
if (partnum == data->part_descs_loc[i].partnum)
return &(data->part_descs_loc[i].rec);
if (data->num_part_descs >= data->size_part_descs) {
struct part_desc_seq_scan_data *new_loc;
unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
treewide: kzalloc() -> kcalloc() The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 21:03:40 +00:00
new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
if (!new_loc)
return ERR_PTR(-ENOMEM);
memcpy(new_loc, data->part_descs_loc,
data->size_part_descs * sizeof(*new_loc));
kfree(data->part_descs_loc);
data->part_descs_loc = new_loc;
data->size_part_descs = new_size;
}
return &(data->part_descs_loc[data->num_part_descs++].rec);
}
static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
struct buffer_head *bh, struct desc_seq_scan_data *data)
{
switch (ident) {
case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
return handle_partition_descriptor(bh, data);
}
return NULL;
}
/*
* Process a main/reserve volume descriptor sequence.
* @block First block of first extent of the sequence.
* @lastblock Lastblock of first extent of the sequence.
* @fileset There we store extent containing root fileset
*
* Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
* sequence
*/
static noinline int udf_process_sequence(
struct super_block *sb,
sector_t block, sector_t lastblock,
struct kernel_lb_addr *fileset)
{
struct buffer_head *bh = NULL;
struct udf_vds_record *curr;
struct generic_desc *gd;
struct volDescPtr *vdp;
bool done = false;
uint32_t vdsn;
uint16_t ident;
int ret;
unsigned int indirections = 0;
struct desc_seq_scan_data data;
unsigned int i;
memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
data.size_part_descs = PART_DESC_ALLOC_STEP;
data.num_part_descs = 0;
treewide: kzalloc() -> kcalloc() The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 21:03:40 +00:00
data.part_descs_loc = kcalloc(data.size_part_descs,
sizeof(*data.part_descs_loc),
GFP_KERNEL);
if (!data.part_descs_loc)
return -ENOMEM;
/*
* Read the main descriptor sequence and find which descriptors
* are in it.
*/
for (; (!done && block <= lastblock); block++) {
bh = udf_read_tagged(sb, block, block, &ident);
if (!bh)
break;
/* Process each descriptor (ISO 13346 3/8.3-8.4) */
gd = (struct generic_desc *)bh->b_data;
vdsn = le32_to_cpu(gd->volDescSeqNum);
switch (ident) {
case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
if (++indirections > UDF_MAX_TD_NESTING) {
udf_err(sb, "too many Volume Descriptor "
"Pointers (max %u supported)\n",
UDF_MAX_TD_NESTING);
brelse(bh);
return -EIO;
}
vdp = (struct volDescPtr *)bh->b_data;
block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
lastblock = le32_to_cpu(
vdp->nextVolDescSeqExt.extLength) >>
sb->s_blocksize_bits;
lastblock += block - 1;
/* For loop is going to increment 'block' again */
block--;
break;
case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
curr = get_volume_descriptor_record(ident, bh, &data);
if (IS_ERR(curr)) {
brelse(bh);
return PTR_ERR(curr);
}
/* Descriptor we don't care about? */
if (!curr)
break;
if (vdsn >= curr->volDescSeqNum) {
curr->volDescSeqNum = vdsn;
curr->block = block;
}
break;
case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
done = true;
break;
}
brelse(bh);
}
/*
* Now read interesting descriptors again and process them
* in a suitable order
*/
if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
udf_err(sb, "Primary Volume Descriptor not found!\n");
return -EAGAIN;
}
ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
if (ret < 0)
return ret;
if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
ret = udf_load_logicalvol(sb,
data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
fileset);
if (ret < 0)
return ret;
}
/* Now handle prevailing Partition Descriptors */
for (i = 0; i < data.num_part_descs; i++) {
ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
if (ret < 0)
return ret;
}
return 0;
}
/*
* Load Volume Descriptor Sequence described by anchor in bh
*
* Returns <0 on error, 0 on success
*/
static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
struct kernel_lb_addr *fileset)
{
struct anchorVolDescPtr *anchor;
sector_t main_s, main_e, reserve_s, reserve_e;
int ret;
anchor = (struct anchorVolDescPtr *)bh->b_data;
/* Locate the main sequence */
main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
main_e = main_e >> sb->s_blocksize_bits;
main_e += main_s - 1;
/* Locate the reserve sequence */
reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
reserve_e = reserve_e >> sb->s_blocksize_bits;
reserve_e += reserve_s - 1;
/* Process the main & reserve sequences */
/* responsible for finding the PartitionDesc(s) */
ret = udf_process_sequence(sb, main_s, main_e, fileset);
if (ret != -EAGAIN)
return ret;
udf_sb_free_partitions(sb);
ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
if (ret < 0) {
udf_sb_free_partitions(sb);
/* No sequence was OK, return -EIO */
if (ret == -EAGAIN)
ret = -EIO;
}
return ret;
}
/*
* Check whether there is an anchor block in the given block and
* load Volume Descriptor Sequence if so.
*
* Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
* block
*/
static int udf_check_anchor_block(struct super_block *sb, sector_t block,
struct kernel_lb_addr *fileset)
{
struct buffer_head *bh;
uint16_t ident;
int ret;
if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
udf_fixed_to_variable(block) >=
i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
return -EAGAIN;
bh = udf_read_tagged(sb, block, block, &ident);
if (!bh)
return -EAGAIN;
if (ident != TAG_IDENT_AVDP) {
brelse(bh);
return -EAGAIN;
}
ret = udf_load_sequence(sb, bh, fileset);
brelse(bh);
return ret;
}
/*
* Search for an anchor volume descriptor pointer.
*
* Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
* of anchors.
*/
static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
struct kernel_lb_addr *fileset)
{
sector_t last[6];
int i;
struct udf_sb_info *sbi = UDF_SB(sb);
int last_count = 0;
int ret;
/* First try user provided anchor */
if (sbi->s_anchor) {
ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
if (ret != -EAGAIN)
return ret;
}
/*
* according to spec, anchor is in either:
* block 256
* lastblock-256
* lastblock
* however, if the disc isn't closed, it could be 512.
*/
ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
if (ret != -EAGAIN)
return ret;
/*
* The trouble is which block is the last one. Drives often misreport
* this so we try various possibilities.
*/
last[last_count++] = *lastblock;
if (*lastblock >= 1)
last[last_count++] = *lastblock - 1;
last[last_count++] = *lastblock + 1;
if (*lastblock >= 2)
last[last_count++] = *lastblock - 2;
if (*lastblock >= 150)
last[last_count++] = *lastblock - 150;
if (*lastblock >= 152)
last[last_count++] = *lastblock - 152;
for (i = 0; i < last_count; i++) {
if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
sb->s_blocksize_bits)
continue;
ret = udf_check_anchor_block(sb, last[i], fileset);
if (ret != -EAGAIN) {
if (!ret)
*lastblock = last[i];
return ret;
}
if (last[i] < 256)
continue;
ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
if (ret != -EAGAIN) {
if (!ret)
*lastblock = last[i];
return ret;
}
}
/* Finally try block 512 in case media is open */
return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
}
/*
* Find an anchor volume descriptor and load Volume Descriptor Sequence from
* area specified by it. The function expects sbi->s_lastblock to be the last
* block on the media.
*
* Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
* was not found.
*/
static int udf_find_anchor(struct super_block *sb,
struct kernel_lb_addr *fileset)
{
struct udf_sb_info *sbi = UDF_SB(sb);
sector_t lastblock = sbi->s_last_block;
int ret;
ret = udf_scan_anchors(sb, &lastblock, fileset);
if (ret != -EAGAIN)
goto out;
/* No anchor found? Try VARCONV conversion of block numbers */
UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
lastblock = udf_variable_to_fixed(sbi->s_last_block);
/* Firstly, we try to not convert number of the last block */
ret = udf_scan_anchors(sb, &lastblock, fileset);
if (ret != -EAGAIN)
goto out;
lastblock = sbi->s_last_block;
/* Secondly, we try with converted number of the last block */
ret = udf_scan_anchors(sb, &lastblock, fileset);
if (ret < 0) {
/* VARCONV didn't help. Clear it. */
UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
}
out:
if (ret == 0)
sbi->s_last_block = lastblock;
return ret;
}
/*
* Check Volume Structure Descriptor, find Anchor block and load Volume
* Descriptor Sequence.
*
* Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
* block was not found.
*/
static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
int silent, struct kernel_lb_addr *fileset)
{
struct udf_sb_info *sbi = UDF_SB(sb);
loff_t nsr_off;
int ret;
if (!sb_set_blocksize(sb, uopt->blocksize)) {
if (!silent)
udf_warn(sb, "Bad block size\n");
return -EINVAL;
}
sbi->s_last_block = uopt->lastblock;
if (!uopt->novrs) {
/* Check that it is NSR02 compliant */
nsr_off = udf_check_vsd(sb);
if (!nsr_off) {
if (!silent)
udf_warn(sb, "No VRS found\n");
return -EINVAL;
}
if (nsr_off == -1)
udf_debug("Failed to read sector at offset %d. "
"Assuming open disc. Skipping validity "
"check\n", VSD_FIRST_SECTOR_OFFSET);
if (!sbi->s_last_block)
sbi->s_last_block = udf_get_last_block(sb);
} else {
udf_debug("Validity check skipped because of novrs option\n");
}
/* Look for anchor block and load Volume Descriptor Sequence */
sbi->s_anchor = uopt->anchor;
ret = udf_find_anchor(sb, fileset);
if (ret < 0) {
if (!silent && ret == -EAGAIN)
udf_warn(sb, "No anchor found\n");
return ret;
}
return 0;
}
static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
{
struct timespec64 ts;
ktime_get_real_ts64(&ts);
udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
lvid->descTag.descCRC = cpu_to_le16(
crc_itu_t(0, (char *)lvid + sizeof(struct tag),
le16_to_cpu(lvid->descTag.descCRCLength)));
lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
}
static void udf_open_lvid(struct super_block *sb)
{
struct udf_sb_info *sbi = UDF_SB(sb);
struct buffer_head *bh = sbi->s_lvid_bh;
struct logicalVolIntegrityDesc *lvid;
struct logicalVolIntegrityDescImpUse *lvidiu;
if (!bh)
return;
lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
lvidiu = udf_sb_lvidiu(sb);
if (!lvidiu)
return;
mutex_lock(&sbi->s_alloc_mutex);
lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
else
UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
udf_finalize_lvid(lvid);
mark_buffer_dirty(bh);
sbi->s_lvid_dirty = 0;
mutex_unlock(&sbi->s_alloc_mutex);
/* Make opening of filesystem visible on the media immediately */
sync_dirty_buffer(bh);
}
static void udf_close_lvid(struct super_block *sb)
{
struct udf_sb_info *sbi = UDF_SB(sb);
struct buffer_head *bh = sbi->s_lvid_bh;
struct logicalVolIntegrityDesc *lvid;
struct logicalVolIntegrityDescImpUse *lvidiu;
if (!bh)
return;
lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
lvidiu = udf_sb_lvidiu(sb);
if (!lvidiu)
return;
mutex_lock(&sbi->s_alloc_mutex);
lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
/*
* We set buffer uptodate unconditionally here to avoid spurious
* warnings from mark_buffer_dirty() when previous EIO has marked
* the buffer as !uptodate
*/
set_buffer_uptodate(bh);
udf_finalize_lvid(lvid);
mark_buffer_dirty(bh);
sbi->s_lvid_dirty = 0;
mutex_unlock(&sbi->s_alloc_mutex);
/* Make closing of filesystem visible on the media immediately */
sync_dirty_buffer(bh);
}
u64 lvid_get_unique_id(struct super_block *sb)
{
struct buffer_head *bh;
struct udf_sb_info *sbi = UDF_SB(sb);
struct logicalVolIntegrityDesc *lvid;
struct logicalVolHeaderDesc *lvhd;
u64 uniqueID;
u64 ret;
bh = sbi->s_lvid_bh;
if (!bh)
return 0;
lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
mutex_lock(&sbi->s_alloc_mutex);
ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
if (!(++uniqueID & 0xFFFFFFFF))
uniqueID += 16;
lvhd->uniqueID = cpu_to_le64(uniqueID);
udf_updated_lvid(sb);
mutex_unlock(&sbi->s_alloc_mutex);
return ret;
}
static int udf_fill_super(struct super_block *sb, void *options, int silent)
{
int ret = -EINVAL;
struct inode *inode = NULL;
struct udf_options uopt;
struct kernel_lb_addr rootdir, fileset;
struct udf_sb_info *sbi;
bool lvid_open = false;
uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
/* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
uopt.uid = make_kuid(current_user_ns(), overflowuid);
uopt.gid = make_kgid(current_user_ns(), overflowgid);
uopt.umask = 0;
uopt.fmode = UDF_INVALID_MODE;
uopt.dmode = UDF_INVALID_MODE;
uopt.nls_map = NULL;
sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
if (!sbi)
return -ENOMEM;
sb->s_fs_info = sbi;
mutex_init(&sbi->s_alloc_mutex);
if (!udf_parse_options((char *)options, &uopt, false))
goto parse_options_failure;
if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
udf_err(sb, "utf8 cannot be combined with iocharset\n");
goto parse_options_failure;
}
if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
uopt.nls_map = load_nls_default();
if (!uopt.nls_map)
uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
else
udf_debug("Using default NLS map\n");
}
if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
uopt.flags |= (1 << UDF_FLAG_UTF8);
fileset.logicalBlockNum = 0xFFFFFFFF;
fileset.partitionReferenceNum = 0xFFFF;
sbi->s_flags = uopt.flags;
sbi->s_uid = uopt.uid;
sbi->s_gid = uopt.gid;
sbi->s_umask = uopt.umask;
sbi->s_fmode = uopt.fmode;
sbi->s_dmode = uopt.dmode;
sbi->s_nls_map = uopt.nls_map;
rwlock_init(&sbi->s_cred_lock);
if (uopt.session == 0xFFFFFFFF)
sbi->s_session = udf_get_last_session(sb);
else
sbi->s_session = uopt.session;
udf_debug("Multi-session=%d\n", sbi->s_session);
/* Fill in the rest of the superblock */
sb->s_op = &udf_sb_ops;
sb->s_export_op = &udf_export_ops;
sb->s_magic = UDF_SUPER_MAGIC;
sb->s_time_gran = 1000;
if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
ret = udf_load_vrs(sb, &uopt, silent, &fileset);
} else {
uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
while (uopt.blocksize <= 4096) {
ret = udf_load_vrs(sb, &uopt, silent, &fileset);
if (ret < 0) {
if (!silent && ret != -EACCES) {
pr_notice("Scanning with blocksize %u failed\n",
uopt.blocksize);
}
brelse(sbi->s_lvid_bh);
sbi->s_lvid_bh = NULL;
/*
* EACCES is special - we want to propagate to
* upper layers that we cannot handle RW mount.
*/
if (ret == -EACCES)
break;
} else
break;
uopt.blocksize <<= 1;
}
}
if (ret < 0) {
if (ret == -EAGAIN) {
udf_warn(sb, "No partition found (1)\n");
ret = -EINVAL;
}
goto error_out;
}
udf_debug("Lastblock=%u\n", sbi->s_last_block);
if (sbi->s_lvid_bh) {
struct logicalVolIntegrityDescImpUse *lvidiu =
udf_sb_lvidiu(sb);
uint16_t minUDFReadRev;
uint16_t minUDFWriteRev;
if (!lvidiu) {
ret = -EINVAL;
goto error_out;
}
minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
if (minUDFReadRev > UDF_MAX_READ_VERSION) {
udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
minUDFReadRev,
UDF_MAX_READ_VERSION);
ret = -EINVAL;
goto error_out;
} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
if (!sb_rdonly(sb)) {
ret = -EACCES;
goto error_out;
}
UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
}
sbi->s_udfrev = minUDFWriteRev;
if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
}
if (!sbi->s_partitions) {
udf_warn(sb, "No partition found (2)\n");
ret = -EINVAL;
goto error_out;
}
if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
UDF_PART_FLAG_READ_ONLY) {
if (!sb_rdonly(sb)) {
ret = -EACCES;
goto error_out;
}
UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
}
2006-09-29 08:59:41 +00:00
if (udf_find_fileset(sb, &fileset, &rootdir)) {
udf_warn(sb, "No fileset found\n");
ret = -EINVAL;
goto error_out;
}
if (!silent) {
struct timestamp ts;
udf_time_to_disk_stamp(&ts, sbi->s_record_time);
udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
sbi->s_volume_ident,
le16_to_cpu(ts.year), ts.month, ts.day,
ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
}
if (!sb_rdonly(sb)) {
udf_open_lvid(sb);
lvid_open = true;
}
/* Assign the root inode */
/* assign inodes by physical block number */
/* perhaps it's not extensible enough, but for now ... */
inode = udf_iget(sb, &rootdir);
if (IS_ERR(inode)) {
udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
ret = PTR_ERR(inode);
goto error_out;
}
/* Allocate a dentry for the root inode */
sb->s_root = d_make_root(inode);
if (!sb->s_root) {
udf_err(sb, "Couldn't allocate root dentry\n");
ret = -ENOMEM;
goto error_out;
}
sb->s_maxbytes = MAX_LFS_FILESIZE;
sb->s_max_links = UDF_MAX_LINKS;
return 0;
error_out:
iput(sbi->s_vat_inode);
parse_options_failure:
if (uopt.nls_map)
unload_nls(uopt.nls_map);
if (lvid_open)
udf_close_lvid(sb);
brelse(sbi->s_lvid_bh);
udf_sb_free_partitions(sb);
kfree(sbi);
sb->s_fs_info = NULL;
return ret;
}
void _udf_err(struct super_block *sb, const char *function,
const char *fmt, ...)
{
struct va_format vaf;
va_list args;
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
va_end(args);
}
void _udf_warn(struct super_block *sb, const char *function,
const char *fmt, ...)
{
struct va_format vaf;
va_list args;
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
va_end(args);
}
static void udf_put_super(struct super_block *sb)
{
struct udf_sb_info *sbi;
sbi = UDF_SB(sb);
iput(sbi->s_vat_inode);
if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
unload_nls(sbi->s_nls_map);
if (!sb_rdonly(sb))
udf_close_lvid(sb);
brelse(sbi->s_lvid_bh);
udf_sb_free_partitions(sb);
mutex_destroy(&sbi->s_alloc_mutex);
kfree(sb->s_fs_info);
sb->s_fs_info = NULL;
}
static int udf_sync_fs(struct super_block *sb, int wait)
{
struct udf_sb_info *sbi = UDF_SB(sb);
mutex_lock(&sbi->s_alloc_mutex);
if (sbi->s_lvid_dirty) {
struct buffer_head *bh = sbi->s_lvid_bh;
struct logicalVolIntegrityDesc *lvid;
lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
udf_finalize_lvid(lvid);
/*
* Blockdevice will be synced later so we don't have to submit
* the buffer for IO
*/
mark_buffer_dirty(bh);
sbi->s_lvid_dirty = 0;
}
mutex_unlock(&sbi->s_alloc_mutex);
return 0;
}
static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
{
struct super_block *sb = dentry->d_sb;
struct udf_sb_info *sbi = UDF_SB(sb);
struct logicalVolIntegrityDescImpUse *lvidiu;
u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
lvidiu = udf_sb_lvidiu(sb);
buf->f_type = UDF_SUPER_MAGIC;
buf->f_bsize = sb->s_blocksize;
buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
buf->f_bfree = udf_count_free(sb);
buf->f_bavail = buf->f_bfree;
buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
le32_to_cpu(lvidiu->numDirs)) : 0)
+ buf->f_bfree;
buf->f_ffree = buf->f_bfree;
buf->f_namelen = UDF_NAME_LEN;
buf->f_fsid.val[0] = (u32)id;
buf->f_fsid.val[1] = (u32)(id >> 32);
return 0;
}
static unsigned int udf_count_free_bitmap(struct super_block *sb,
struct udf_bitmap *bitmap)
{
struct buffer_head *bh = NULL;
unsigned int accum = 0;
int index;
udf_pblk_t block = 0, newblock;
struct kernel_lb_addr loc;
uint32_t bytes;
uint8_t *ptr;
uint16_t ident;
struct spaceBitmapDesc *bm;
loc.logicalBlockNum = bitmap->s_extPosition;
loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
bh = udf_read_ptagged(sb, &loc, 0, &ident);
if (!bh) {
udf_err(sb, "udf_count_free failed\n");
goto out;
} else if (ident != TAG_IDENT_SBD) {
brelse(bh);
udf_err(sb, "udf_count_free failed\n");
goto out;
}
bm = (struct spaceBitmapDesc *)bh->b_data;
bytes = le32_to_cpu(bm->numOfBytes);
index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
ptr = (uint8_t *)bh->b_data;
while (bytes > 0) {
u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
accum += bitmap_weight((const unsigned long *)(ptr + index),
cur_bytes * 8);
bytes -= cur_bytes;
if (bytes) {
brelse(bh);
newblock = udf_get_lb_pblock(sb, &loc, ++block);
bh = udf_tread(sb, newblock);
if (!bh) {
udf_debug("read failed\n");
goto out;
}
index = 0;
ptr = (uint8_t *)bh->b_data;
}
}
brelse(bh);
out:
return accum;
}
static unsigned int udf_count_free_table(struct super_block *sb,
struct inode *table)
{
unsigned int accum = 0;
uint32_t elen;
struct kernel_lb_addr eloc;
int8_t etype;
struct extent_position epos;
mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
epos.block = UDF_I(table)->i_location;
epos.offset = sizeof(struct unallocSpaceEntry);
epos.bh = NULL;
while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
accum += (elen >> table->i_sb->s_blocksize_bits);
brelse(epos.bh);
mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
return accum;
}
static unsigned int udf_count_free(struct super_block *sb)
{
unsigned int accum = 0;
struct udf_sb_info *sbi;
struct udf_part_map *map;
sbi = UDF_SB(sb);
if (sbi->s_lvid_bh) {
struct logicalVolIntegrityDesc *lvid =
(struct logicalVolIntegrityDesc *)
sbi->s_lvid_bh->b_data;
if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
accum = le32_to_cpu(
lvid->freeSpaceTable[sbi->s_partition]);
if (accum == 0xFFFFFFFF)
accum = 0;
}
}
if (accum)
return accum;
map = &sbi->s_partmaps[sbi->s_partition];
if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
accum += udf_count_free_bitmap(sb,
map->s_uspace.s_bitmap);
}
if (accum)
return accum;
if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
accum += udf_count_free_table(sb,
map->s_uspace.s_table);
}
return accum;
}
MODULE_AUTHOR("Ben Fennema");
MODULE_DESCRIPTION("Universal Disk Format Filesystem");
MODULE_LICENSE("GPL");
module_init(init_udf_fs)
module_exit(exit_udf_fs)