2018-08-20 03:26:36 +00:00
|
|
|
// SPDX-License-Identifier: GPL-2.0
|
2012-09-27 16:58:05 +00:00
|
|
|
/*
|
|
|
|
* NAND Flash Controller Device Driver
|
|
|
|
* Copyright © 2009-2010, Intel Corporation and its suppliers.
|
|
|
|
*/
|
2017-09-22 03:46:40 +00:00
|
|
|
|
|
|
|
#include <linux/errno.h>
|
|
|
|
#include <linux/io.h>
|
2012-09-27 16:58:05 +00:00
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/pci.h>
|
|
|
|
|
|
|
|
#include "denali.h"
|
|
|
|
|
|
|
|
#define DENALI_NAND_NAME "denali-nand-pci"
|
|
|
|
|
mtd: nand: denali: handle timing parameters by setup_data_interface()
Handling timing parameters in a driver's own way should be avoided
because it duplicates efforts of drivers/mtd/nand/nand_timings.c
Besides, this driver hard-codes Intel specific parameters such as
CLK_X=5, CLK_MULTI=4. Taking a certain device (Samsung K9WAG08U1A)
into account by get_samsung_nand_para() is weird as well.
Now, the core framework provides .setup_data_interface() hook, which
handles timing parameters in a generic manner.
While I am working on this, I found even more issues in the current
code, so fixed the following as well:
- In recent IP versions, WE_2_RE and TWHR2 share the same register.
Likewise for ADDR_2_DATA and TCWAW, CS_SETUP_CNT and TWB. When
updating one, the other must be masked. Otherwise, the other will
be set to 0, then timing settings will be broken.
- The recent IP release expanded the ADDR_2_DATA to 7-bit wide.
This register is related to tADL. As commit 74a332e78e8f ("mtd:
nand: timings: Fix tADL_min for ONFI 4.0 chips") addressed, the
ONFi 4.0 increased the minimum of tADL to 400 nsec. This may not
fit in the 6-bit ADDR_2_DATA in older versions. Check the IP
revision and handle this correctly, otherwise the register value
would wrap around.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
2017-06-13 13:45:37 +00:00
|
|
|
#define INTEL_CE4100 1
|
|
|
|
#define INTEL_MRST 2
|
|
|
|
|
2012-09-27 16:58:05 +00:00
|
|
|
/* List of platforms this NAND controller has be integrated into */
|
2013-12-02 23:18:28 +00:00
|
|
|
static const struct pci_device_id denali_pci_ids[] = {
|
2012-09-27 16:58:05 +00:00
|
|
|
{ PCI_VDEVICE(INTEL, 0x0701), INTEL_CE4100 },
|
|
|
|
{ PCI_VDEVICE(INTEL, 0x0809), INTEL_MRST },
|
|
|
|
{ /* end: all zeroes */ }
|
|
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(pci, denali_pci_ids);
|
|
|
|
|
mtd: nand: denali: avoid hard-coding ECC step, strength, bytes
This driver was originally written for the Intel MRST platform with
several platform-specific parameters hard-coded.
Currently, the ECC settings are hard-coded as follows:
#define ECC_SECTOR_SIZE 512
#define ECC_8BITS 14
#define ECC_15BITS 26
Therefore, the driver can only support two cases.
- ecc.size = 512, ecc.strength = 8 --> ecc.bytes = 14
- ecc.size = 512, ecc.strength = 15 --> ecc.bytes = 26
However, these are actually customizable parameters, for example,
UniPhier platform supports the following:
- ecc.size = 1024, ecc.strength = 8 --> ecc.bytes = 14
- ecc.size = 1024, ecc.strength = 16 --> ecc.bytes = 28
- ecc.size = 1024, ecc.strength = 24 --> ecc.bytes = 42
So, we need to handle the ECC parameters in a more generic manner.
Fortunately, the Denali User's Guide explains how to calculate the
ecc.bytes. The formula is:
ecc.bytes = 2 * CEIL(13 * ecc.strength / 16) (for ecc.size = 512)
ecc.bytes = 2 * CEIL(14 * ecc.strength / 16) (for ecc.size = 1024)
For DT platforms, it would be reasonable to allow DT to specify ECC
strength by either "nand-ecc-strength" or "nand-ecc-maximize". If
none of them is specified, the driver will try to meet the chip's ECC
requirement.
For PCI platforms, the max ECC strength is used to keep the original
behavior.
Newer versions of this IP need ecc.size and ecc.steps explicitly
set up via the following registers:
CFG_DATA_BLOCK_SIZE (0x6b0)
CFG_LAST_DATA_BLOCK_SIZE (0x6c0)
CFG_NUM_DATA_BLOCKS (0x6d0)
For older IP versions, write accesses to these registers are just
ignored.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Acked-by: Rob Herring <robh@kernel.org>
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
2017-06-07 11:52:12 +00:00
|
|
|
NAND_ECC_CAPS_SINGLE(denali_pci_ecc_caps, denali_calc_ecc_bytes, 512, 8, 15);
|
|
|
|
|
2012-09-27 16:58:05 +00:00
|
|
|
static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
|
|
|
|
{
|
2015-08-06 13:04:23 +00:00
|
|
|
int ret;
|
2012-09-27 16:58:05 +00:00
|
|
|
resource_size_t csr_base, mem_base;
|
|
|
|
unsigned long csr_len, mem_len;
|
|
|
|
struct denali_nand_info *denali;
|
|
|
|
|
2015-08-06 13:04:23 +00:00
|
|
|
denali = devm_kzalloc(&dev->dev, sizeof(*denali), GFP_KERNEL);
|
2012-09-27 16:58:05 +00:00
|
|
|
if (!denali)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
2015-08-06 13:04:23 +00:00
|
|
|
ret = pcim_enable_device(dev);
|
2012-09-27 16:58:05 +00:00
|
|
|
if (ret) {
|
2015-08-06 13:04:24 +00:00
|
|
|
dev_err(&dev->dev, "Spectra: pci_enable_device failed.\n");
|
2015-08-06 13:04:23 +00:00
|
|
|
return ret;
|
2012-09-27 16:58:05 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
if (id->driver_data == INTEL_CE4100) {
|
|
|
|
mem_base = pci_resource_start(dev, 0);
|
|
|
|
mem_len = pci_resource_len(dev, 1);
|
|
|
|
csr_base = pci_resource_start(dev, 1);
|
|
|
|
csr_len = pci_resource_len(dev, 1);
|
|
|
|
} else {
|
|
|
|
csr_base = pci_resource_start(dev, 0);
|
|
|
|
csr_len = pci_resource_len(dev, 0);
|
|
|
|
mem_base = pci_resource_start(dev, 1);
|
|
|
|
mem_len = pci_resource_len(dev, 1);
|
|
|
|
if (!mem_len) {
|
|
|
|
mem_base = csr_base + csr_len;
|
|
|
|
mem_len = csr_len;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
pci_set_master(dev);
|
|
|
|
denali->dev = &dev->dev;
|
|
|
|
denali->irq = dev->irq;
|
mtd: nand: denali: avoid hard-coding ECC step, strength, bytes
This driver was originally written for the Intel MRST platform with
several platform-specific parameters hard-coded.
Currently, the ECC settings are hard-coded as follows:
#define ECC_SECTOR_SIZE 512
#define ECC_8BITS 14
#define ECC_15BITS 26
Therefore, the driver can only support two cases.
- ecc.size = 512, ecc.strength = 8 --> ecc.bytes = 14
- ecc.size = 512, ecc.strength = 15 --> ecc.bytes = 26
However, these are actually customizable parameters, for example,
UniPhier platform supports the following:
- ecc.size = 1024, ecc.strength = 8 --> ecc.bytes = 14
- ecc.size = 1024, ecc.strength = 16 --> ecc.bytes = 28
- ecc.size = 1024, ecc.strength = 24 --> ecc.bytes = 42
So, we need to handle the ECC parameters in a more generic manner.
Fortunately, the Denali User's Guide explains how to calculate the
ecc.bytes. The formula is:
ecc.bytes = 2 * CEIL(13 * ecc.strength / 16) (for ecc.size = 512)
ecc.bytes = 2 * CEIL(14 * ecc.strength / 16) (for ecc.size = 1024)
For DT platforms, it would be reasonable to allow DT to specify ECC
strength by either "nand-ecc-strength" or "nand-ecc-maximize". If
none of them is specified, the driver will try to meet the chip's ECC
requirement.
For PCI platforms, the max ECC strength is used to keep the original
behavior.
Newer versions of this IP need ecc.size and ecc.steps explicitly
set up via the following registers:
CFG_DATA_BLOCK_SIZE (0x6b0)
CFG_LAST_DATA_BLOCK_SIZE (0x6c0)
CFG_NUM_DATA_BLOCKS (0x6d0)
For older IP versions, write accesses to these registers are just
ignored.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Acked-by: Rob Herring <robh@kernel.org>
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
2017-06-07 11:52:12 +00:00
|
|
|
denali->ecc_caps = &denali_pci_ecc_caps;
|
|
|
|
denali->nand.ecc.options |= NAND_ECC_MAXIMIZE;
|
2018-06-22 16:06:38 +00:00
|
|
|
denali->clk_rate = 50000000; /* 50 MHz */
|
mtd: nand: denali: handle timing parameters by setup_data_interface()
Handling timing parameters in a driver's own way should be avoided
because it duplicates efforts of drivers/mtd/nand/nand_timings.c
Besides, this driver hard-codes Intel specific parameters such as
CLK_X=5, CLK_MULTI=4. Taking a certain device (Samsung K9WAG08U1A)
into account by get_samsung_nand_para() is weird as well.
Now, the core framework provides .setup_data_interface() hook, which
handles timing parameters in a generic manner.
While I am working on this, I found even more issues in the current
code, so fixed the following as well:
- In recent IP versions, WE_2_RE and TWHR2 share the same register.
Likewise for ADDR_2_DATA and TCWAW, CS_SETUP_CNT and TWB. When
updating one, the other must be masked. Otherwise, the other will
be set to 0, then timing settings will be broken.
- The recent IP release expanded the ADDR_2_DATA to 7-bit wide.
This register is related to tADL. As commit 74a332e78e8f ("mtd:
nand: timings: Fix tADL_min for ONFI 4.0 chips") addressed, the
ONFi 4.0 increased the minimum of tADL to 400 nsec. This may not
fit in the 6-bit ADDR_2_DATA in older versions. Check the IP
revision and handle this correctly, otherwise the register value
would wrap around.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
2017-06-13 13:45:37 +00:00
|
|
|
denali->clk_x_rate = 200000000; /* 200 MHz */
|
2012-09-27 16:58:05 +00:00
|
|
|
|
|
|
|
ret = pci_request_regions(dev, DENALI_NAND_NAME);
|
|
|
|
if (ret) {
|
2015-08-06 13:04:24 +00:00
|
|
|
dev_err(&dev->dev, "Spectra: Unable to request memory regions\n");
|
2015-08-06 13:04:23 +00:00
|
|
|
return ret;
|
2012-09-27 16:58:05 +00:00
|
|
|
}
|
|
|
|
|
mtd: nand: denali: avoid magic numbers and rename for clarification
Introduce some macros and helpers to avoid magic numbers and
rename macros/functions for clarification.
- We see '| 2' in several places. This means Data Cycle in MAP11 mode.
The Denali User's Guide says bit[1:0] of MAP11 is like follows:
b'00 = Command Cycle
b'01 = Address Cycle
b'10 = Data Cycle
So, this commit added DENALI_MAP11_{CMD,ADDR,DATA} macros.
- We see 'denali->flash_mem + 0x10' in several places, but 0x10 is a
magic number. Actually, this accesses the data port of the Host
Data/Command Interface. So, this commit added DENALI_HOST_DATA.
On the other hand, 'denali->flash_mem' gets access to the address
port, so DENALI_HOST_ADDR was also added.
- We see 'index_addr(denali, cmd, 0x1)' in denali_erase(), but 0x1
is a magic number. 0x1 means the erase operation. Replace 0x1
with DENALI_ERASE.
- Rename index_addr() to denali_host_write() for clarification
- Denali User's Guide says MAP{00,01,10,11} for access mode. Match
the macros with terminology in the IP document.
- Rename struct members as follows:
flash_bank -> active_bank (currently selected bank)
flash_reg -> reg (base address of registers)
flash_mem -> host (base address of host interface)
devnum -> devs_per_cs (devices connected in parallel)
bbtskipbytes -> oob_skip_bytes (number of bytes to skip in OOB)
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
2017-06-16 05:36:39 +00:00
|
|
|
denali->reg = ioremap_nocache(csr_base, csr_len);
|
|
|
|
if (!denali->reg) {
|
2015-08-06 13:04:24 +00:00
|
|
|
dev_err(&dev->dev, "Spectra: Unable to remap memory region\n");
|
2015-08-06 13:04:23 +00:00
|
|
|
return -ENOMEM;
|
2012-09-27 16:58:05 +00:00
|
|
|
}
|
|
|
|
|
mtd: nand: denali: avoid magic numbers and rename for clarification
Introduce some macros and helpers to avoid magic numbers and
rename macros/functions for clarification.
- We see '| 2' in several places. This means Data Cycle in MAP11 mode.
The Denali User's Guide says bit[1:0] of MAP11 is like follows:
b'00 = Command Cycle
b'01 = Address Cycle
b'10 = Data Cycle
So, this commit added DENALI_MAP11_{CMD,ADDR,DATA} macros.
- We see 'denali->flash_mem + 0x10' in several places, but 0x10 is a
magic number. Actually, this accesses the data port of the Host
Data/Command Interface. So, this commit added DENALI_HOST_DATA.
On the other hand, 'denali->flash_mem' gets access to the address
port, so DENALI_HOST_ADDR was also added.
- We see 'index_addr(denali, cmd, 0x1)' in denali_erase(), but 0x1
is a magic number. 0x1 means the erase operation. Replace 0x1
with DENALI_ERASE.
- Rename index_addr() to denali_host_write() for clarification
- Denali User's Guide says MAP{00,01,10,11} for access mode. Match
the macros with terminology in the IP document.
- Rename struct members as follows:
flash_bank -> active_bank (currently selected bank)
flash_reg -> reg (base address of registers)
flash_mem -> host (base address of host interface)
devnum -> devs_per_cs (devices connected in parallel)
bbtskipbytes -> oob_skip_bytes (number of bytes to skip in OOB)
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
2017-06-16 05:36:39 +00:00
|
|
|
denali->host = ioremap_nocache(mem_base, mem_len);
|
|
|
|
if (!denali->host) {
|
2015-08-06 13:04:24 +00:00
|
|
|
dev_err(&dev->dev, "Spectra: ioremap_nocache failed!");
|
2012-09-27 16:58:05 +00:00
|
|
|
ret = -ENOMEM;
|
|
|
|
goto failed_remap_reg;
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = denali_init(denali);
|
|
|
|
if (ret)
|
|
|
|
goto failed_remap_mem;
|
|
|
|
|
|
|
|
pci_set_drvdata(dev, denali);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
failed_remap_mem:
|
mtd: nand: denali: avoid magic numbers and rename for clarification
Introduce some macros and helpers to avoid magic numbers and
rename macros/functions for clarification.
- We see '| 2' in several places. This means Data Cycle in MAP11 mode.
The Denali User's Guide says bit[1:0] of MAP11 is like follows:
b'00 = Command Cycle
b'01 = Address Cycle
b'10 = Data Cycle
So, this commit added DENALI_MAP11_{CMD,ADDR,DATA} macros.
- We see 'denali->flash_mem + 0x10' in several places, but 0x10 is a
magic number. Actually, this accesses the data port of the Host
Data/Command Interface. So, this commit added DENALI_HOST_DATA.
On the other hand, 'denali->flash_mem' gets access to the address
port, so DENALI_HOST_ADDR was also added.
- We see 'index_addr(denali, cmd, 0x1)' in denali_erase(), but 0x1
is a magic number. 0x1 means the erase operation. Replace 0x1
with DENALI_ERASE.
- Rename index_addr() to denali_host_write() for clarification
- Denali User's Guide says MAP{00,01,10,11} for access mode. Match
the macros with terminology in the IP document.
- Rename struct members as follows:
flash_bank -> active_bank (currently selected bank)
flash_reg -> reg (base address of registers)
flash_mem -> host (base address of host interface)
devnum -> devs_per_cs (devices connected in parallel)
bbtskipbytes -> oob_skip_bytes (number of bytes to skip in OOB)
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
2017-06-16 05:36:39 +00:00
|
|
|
iounmap(denali->host);
|
2012-09-27 16:58:05 +00:00
|
|
|
failed_remap_reg:
|
mtd: nand: denali: avoid magic numbers and rename for clarification
Introduce some macros and helpers to avoid magic numbers and
rename macros/functions for clarification.
- We see '| 2' in several places. This means Data Cycle in MAP11 mode.
The Denali User's Guide says bit[1:0] of MAP11 is like follows:
b'00 = Command Cycle
b'01 = Address Cycle
b'10 = Data Cycle
So, this commit added DENALI_MAP11_{CMD,ADDR,DATA} macros.
- We see 'denali->flash_mem + 0x10' in several places, but 0x10 is a
magic number. Actually, this accesses the data port of the Host
Data/Command Interface. So, this commit added DENALI_HOST_DATA.
On the other hand, 'denali->flash_mem' gets access to the address
port, so DENALI_HOST_ADDR was also added.
- We see 'index_addr(denali, cmd, 0x1)' in denali_erase(), but 0x1
is a magic number. 0x1 means the erase operation. Replace 0x1
with DENALI_ERASE.
- Rename index_addr() to denali_host_write() for clarification
- Denali User's Guide says MAP{00,01,10,11} for access mode. Match
the macros with terminology in the IP document.
- Rename struct members as follows:
flash_bank -> active_bank (currently selected bank)
flash_reg -> reg (base address of registers)
flash_mem -> host (base address of host interface)
devnum -> devs_per_cs (devices connected in parallel)
bbtskipbytes -> oob_skip_bytes (number of bytes to skip in OOB)
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
2017-06-16 05:36:39 +00:00
|
|
|
iounmap(denali->reg);
|
2012-09-27 16:58:05 +00:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void denali_pci_remove(struct pci_dev *dev)
|
|
|
|
{
|
|
|
|
struct denali_nand_info *denali = pci_get_drvdata(dev);
|
|
|
|
|
|
|
|
denali_remove(denali);
|
mtd: nand: denali: avoid magic numbers and rename for clarification
Introduce some macros and helpers to avoid magic numbers and
rename macros/functions for clarification.
- We see '| 2' in several places. This means Data Cycle in MAP11 mode.
The Denali User's Guide says bit[1:0] of MAP11 is like follows:
b'00 = Command Cycle
b'01 = Address Cycle
b'10 = Data Cycle
So, this commit added DENALI_MAP11_{CMD,ADDR,DATA} macros.
- We see 'denali->flash_mem + 0x10' in several places, but 0x10 is a
magic number. Actually, this accesses the data port of the Host
Data/Command Interface. So, this commit added DENALI_HOST_DATA.
On the other hand, 'denali->flash_mem' gets access to the address
port, so DENALI_HOST_ADDR was also added.
- We see 'index_addr(denali, cmd, 0x1)' in denali_erase(), but 0x1
is a magic number. 0x1 means the erase operation. Replace 0x1
with DENALI_ERASE.
- Rename index_addr() to denali_host_write() for clarification
- Denali User's Guide says MAP{00,01,10,11} for access mode. Match
the macros with terminology in the IP document.
- Rename struct members as follows:
flash_bank -> active_bank (currently selected bank)
flash_reg -> reg (base address of registers)
flash_mem -> host (base address of host interface)
devnum -> devs_per_cs (devices connected in parallel)
bbtskipbytes -> oob_skip_bytes (number of bytes to skip in OOB)
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
2017-06-16 05:36:39 +00:00
|
|
|
iounmap(denali->reg);
|
|
|
|
iounmap(denali->host);
|
2012-09-27 16:58:05 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static struct pci_driver denali_pci_driver = {
|
|
|
|
.name = DENALI_NAND_NAME,
|
|
|
|
.id_table = denali_pci_ids,
|
|
|
|
.probe = denali_pci_probe,
|
|
|
|
.remove = denali_pci_remove,
|
|
|
|
};
|
2015-08-06 13:04:22 +00:00
|
|
|
module_pci_driver(denali_pci_driver);
|
2017-11-20 20:57:13 +00:00
|
|
|
|
|
|
|
MODULE_DESCRIPTION("PCI driver for Denali NAND controller");
|
|
|
|
MODULE_AUTHOR("Intel Corporation and its suppliers");
|
|
|
|
MODULE_LICENSE("GPL v2");
|