linux/drivers/input/keyboard/matrix_keypad.c

578 lines
14 KiB
C
Raw Normal View History

/*
* GPIO driven matrix keyboard driver
*
* Copyright (c) 2008 Marek Vasut <marek.vasut@gmail.com>
*
* Based on corgikbd.c
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#include <linux/types.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/input.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/jiffies.h>
#include <linux/module.h>
#include <linux/gpio.h>
#include <linux/input/matrix_keypad.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/of_gpio.h>
#include <linux/of_platform.h>
struct matrix_keypad {
const struct matrix_keypad_platform_data *pdata;
struct input_dev *input_dev;
unsigned int row_shift;
DECLARE_BITMAP(disabled_gpios, MATRIX_MAX_ROWS);
uint32_t last_key_state[MATRIX_MAX_COLS];
struct delayed_work work;
spinlock_t lock;
bool scan_pending;
bool stopped;
bool gpio_all_disabled;
};
/*
* NOTE: normally the GPIO has to be put into HiZ when de-activated to cause
* minmal side effect when scanning other columns, here it is configured to
* be input, and it should work on most platforms.
*/
static void __activate_col(const struct matrix_keypad_platform_data *pdata,
int col, bool on)
{
bool level_on = !pdata->active_low;
if (on) {
gpio_direction_output(pdata->col_gpios[col], level_on);
} else {
gpio_set_value_cansleep(pdata->col_gpios[col], !level_on);
gpio_direction_input(pdata->col_gpios[col]);
}
}
static void activate_col(const struct matrix_keypad_platform_data *pdata,
int col, bool on)
{
__activate_col(pdata, col, on);
if (on && pdata->col_scan_delay_us)
udelay(pdata->col_scan_delay_us);
}
static void activate_all_cols(const struct matrix_keypad_platform_data *pdata,
bool on)
{
int col;
for (col = 0; col < pdata->num_col_gpios; col++)
__activate_col(pdata, col, on);
}
static bool row_asserted(const struct matrix_keypad_platform_data *pdata,
int row)
{
return gpio_get_value_cansleep(pdata->row_gpios[row]) ?
!pdata->active_low : pdata->active_low;
}
static void enable_row_irqs(struct matrix_keypad *keypad)
{
const struct matrix_keypad_platform_data *pdata = keypad->pdata;
int i;
if (pdata->clustered_irq > 0)
enable_irq(pdata->clustered_irq);
else {
for (i = 0; i < pdata->num_row_gpios; i++)
enable_irq(gpio_to_irq(pdata->row_gpios[i]));
}
}
static void disable_row_irqs(struct matrix_keypad *keypad)
{
const struct matrix_keypad_platform_data *pdata = keypad->pdata;
int i;
if (pdata->clustered_irq > 0)
disable_irq_nosync(pdata->clustered_irq);
else {
for (i = 0; i < pdata->num_row_gpios; i++)
disable_irq_nosync(gpio_to_irq(pdata->row_gpios[i]));
}
}
/*
* This gets the keys from keyboard and reports it to input subsystem
*/
static void matrix_keypad_scan(struct work_struct *work)
{
struct matrix_keypad *keypad =
container_of(work, struct matrix_keypad, work.work);
struct input_dev *input_dev = keypad->input_dev;
const unsigned short *keycodes = input_dev->keycode;
const struct matrix_keypad_platform_data *pdata = keypad->pdata;
uint32_t new_state[MATRIX_MAX_COLS];
int row, col, code;
/* de-activate all columns for scanning */
activate_all_cols(pdata, false);
memset(new_state, 0, sizeof(new_state));
/* assert each column and read the row status out */
for (col = 0; col < pdata->num_col_gpios; col++) {
activate_col(pdata, col, true);
for (row = 0; row < pdata->num_row_gpios; row++)
new_state[col] |=
row_asserted(pdata, row) ? (1 << row) : 0;
activate_col(pdata, col, false);
}
for (col = 0; col < pdata->num_col_gpios; col++) {
uint32_t bits_changed;
bits_changed = keypad->last_key_state[col] ^ new_state[col];
if (bits_changed == 0)
continue;
for (row = 0; row < pdata->num_row_gpios; row++) {
if ((bits_changed & (1 << row)) == 0)
continue;
code = MATRIX_SCAN_CODE(row, col, keypad->row_shift);
input_event(input_dev, EV_MSC, MSC_SCAN, code);
input_report_key(input_dev,
keycodes[code],
new_state[col] & (1 << row));
}
}
input_sync(input_dev);
memcpy(keypad->last_key_state, new_state, sizeof(new_state));
activate_all_cols(pdata, true);
/* Enable IRQs again */
spin_lock_irq(&keypad->lock);
keypad->scan_pending = false;
enable_row_irqs(keypad);
spin_unlock_irq(&keypad->lock);
}
static irqreturn_t matrix_keypad_interrupt(int irq, void *id)
{
struct matrix_keypad *keypad = id;
unsigned long flags;
spin_lock_irqsave(&keypad->lock, flags);
/*
* See if another IRQ beaten us to it and scheduled the
* scan already. In that case we should not try to
* disable IRQs again.
*/
if (unlikely(keypad->scan_pending || keypad->stopped))
goto out;
disable_row_irqs(keypad);
keypad->scan_pending = true;
schedule_delayed_work(&keypad->work,
msecs_to_jiffies(keypad->pdata->debounce_ms));
out:
spin_unlock_irqrestore(&keypad->lock, flags);
return IRQ_HANDLED;
}
static int matrix_keypad_start(struct input_dev *dev)
{
struct matrix_keypad *keypad = input_get_drvdata(dev);
keypad->stopped = false;
mb();
/*
* Schedule an immediate key scan to capture current key state;
* columns will be activated and IRQs be enabled after the scan.
*/
schedule_delayed_work(&keypad->work, 0);
return 0;
}
static void matrix_keypad_stop(struct input_dev *dev)
{
struct matrix_keypad *keypad = input_get_drvdata(dev);
keypad->stopped = true;
mb();
flush_work(&keypad->work.work);
/*
* matrix_keypad_scan() will leave IRQs enabled;
* we should disable them now.
*/
disable_row_irqs(keypad);
}
#ifdef CONFIG_PM_SLEEP
static void matrix_keypad_enable_wakeup(struct matrix_keypad *keypad)
{
const struct matrix_keypad_platform_data *pdata = keypad->pdata;
unsigned int gpio;
int i;
if (pdata->clustered_irq > 0) {
if (enable_irq_wake(pdata->clustered_irq) == 0)
keypad->gpio_all_disabled = true;
} else {
for (i = 0; i < pdata->num_row_gpios; i++) {
if (!test_bit(i, keypad->disabled_gpios)) {
gpio = pdata->row_gpios[i];
if (enable_irq_wake(gpio_to_irq(gpio)) == 0)
__set_bit(i, keypad->disabled_gpios);
}
}
}
}
static void matrix_keypad_disable_wakeup(struct matrix_keypad *keypad)
{
const struct matrix_keypad_platform_data *pdata = keypad->pdata;
unsigned int gpio;
int i;
if (pdata->clustered_irq > 0) {
if (keypad->gpio_all_disabled) {
disable_irq_wake(pdata->clustered_irq);
keypad->gpio_all_disabled = false;
}
} else {
for (i = 0; i < pdata->num_row_gpios; i++) {
if (test_and_clear_bit(i, keypad->disabled_gpios)) {
gpio = pdata->row_gpios[i];
disable_irq_wake(gpio_to_irq(gpio));
}
}
}
}
static int matrix_keypad_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct matrix_keypad *keypad = platform_get_drvdata(pdev);
matrix_keypad_stop(keypad->input_dev);
if (device_may_wakeup(&pdev->dev))
matrix_keypad_enable_wakeup(keypad);
return 0;
}
static int matrix_keypad_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct matrix_keypad *keypad = platform_get_drvdata(pdev);
if (device_may_wakeup(&pdev->dev))
matrix_keypad_disable_wakeup(keypad);
matrix_keypad_start(keypad->input_dev);
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(matrix_keypad_pm_ops,
matrix_keypad_suspend, matrix_keypad_resume);
static int matrix_keypad_init_gpio(struct platform_device *pdev,
struct matrix_keypad *keypad)
{
const struct matrix_keypad_platform_data *pdata = keypad->pdata;
int i, err;
/* initialized strobe lines as outputs, activated */
for (i = 0; i < pdata->num_col_gpios; i++) {
err = gpio_request(pdata->col_gpios[i], "matrix_kbd_col");
if (err) {
dev_err(&pdev->dev,
"failed to request GPIO%d for COL%d\n",
pdata->col_gpios[i], i);
goto err_free_cols;
}
gpio_direction_output(pdata->col_gpios[i], !pdata->active_low);
}
for (i = 0; i < pdata->num_row_gpios; i++) {
err = gpio_request(pdata->row_gpios[i], "matrix_kbd_row");
if (err) {
dev_err(&pdev->dev,
"failed to request GPIO%d for ROW%d\n",
pdata->row_gpios[i], i);
goto err_free_rows;
}
gpio_direction_input(pdata->row_gpios[i]);
}
if (pdata->clustered_irq > 0) {
err = request_any_context_irq(pdata->clustered_irq,
matrix_keypad_interrupt,
pdata->clustered_irq_flags,
"matrix-keypad", keypad);
if (err < 0) {
dev_err(&pdev->dev,
"Unable to acquire clustered interrupt\n");
goto err_free_rows;
}
} else {
for (i = 0; i < pdata->num_row_gpios; i++) {
err = request_any_context_irq(
gpio_to_irq(pdata->row_gpios[i]),
matrix_keypad_interrupt,
IRQF_TRIGGER_RISING |
IRQF_TRIGGER_FALLING,
"matrix-keypad", keypad);
if (err < 0) {
dev_err(&pdev->dev,
"Unable to acquire interrupt for GPIO line %i\n",
pdata->row_gpios[i]);
goto err_free_irqs;
}
}
}
/* initialized as disabled - enabled by input->open */
disable_row_irqs(keypad);
return 0;
err_free_irqs:
while (--i >= 0)
free_irq(gpio_to_irq(pdata->row_gpios[i]), keypad);
i = pdata->num_row_gpios;
err_free_rows:
while (--i >= 0)
gpio_free(pdata->row_gpios[i]);
i = pdata->num_col_gpios;
err_free_cols:
while (--i >= 0)
gpio_free(pdata->col_gpios[i]);
return err;
}
static void matrix_keypad_free_gpio(struct matrix_keypad *keypad)
{
const struct matrix_keypad_platform_data *pdata = keypad->pdata;
int i;
if (pdata->clustered_irq > 0) {
free_irq(pdata->clustered_irq, keypad);
} else {
for (i = 0; i < pdata->num_row_gpios; i++)
free_irq(gpio_to_irq(pdata->row_gpios[i]), keypad);
}
for (i = 0; i < pdata->num_row_gpios; i++)
gpio_free(pdata->row_gpios[i]);
for (i = 0; i < pdata->num_col_gpios; i++)
gpio_free(pdata->col_gpios[i]);
}
#ifdef CONFIG_OF
static struct matrix_keypad_platform_data *
matrix_keypad_parse_dt(struct device *dev)
{
struct matrix_keypad_platform_data *pdata;
struct device_node *np = dev->of_node;
unsigned int *gpios;
int i, nrow, ncol;
if (!np) {
dev_err(dev, "device lacks DT data\n");
return ERR_PTR(-ENODEV);
}
pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata) {
dev_err(dev, "could not allocate memory for platform data\n");
return ERR_PTR(-ENOMEM);
}
pdata->num_row_gpios = nrow = of_gpio_named_count(np, "row-gpios");
pdata->num_col_gpios = ncol = of_gpio_named_count(np, "col-gpios");
if (nrow <= 0 || ncol <= 0) {
dev_err(dev, "number of keypad rows/columns not specified\n");
return ERR_PTR(-EINVAL);
}
if (of_get_property(np, "linux,no-autorepeat", NULL))
pdata->no_autorepeat = true;
if (of_get_property(np, "linux,wakeup", NULL))
pdata->wakeup = true;
if (of_get_property(np, "gpio-activelow", NULL))
pdata->active_low = true;
of_property_read_u32(np, "debounce-delay-ms", &pdata->debounce_ms);
of_property_read_u32(np, "col-scan-delay-us",
&pdata->col_scan_delay_us);
gpios = devm_kzalloc(dev,
sizeof(unsigned int) *
(pdata->num_row_gpios + pdata->num_col_gpios),
GFP_KERNEL);
if (!gpios) {
dev_err(dev, "could not allocate memory for gpios\n");
return ERR_PTR(-ENOMEM);
}
for (i = 0; i < pdata->num_row_gpios; i++)
gpios[i] = of_get_named_gpio(np, "row-gpios", i);
for (i = 0; i < pdata->num_col_gpios; i++)
gpios[pdata->num_row_gpios + i] =
of_get_named_gpio(np, "col-gpios", i);
pdata->row_gpios = gpios;
pdata->col_gpios = &gpios[pdata->num_row_gpios];
return pdata;
}
#else
static inline struct matrix_keypad_platform_data *
matrix_keypad_parse_dt(struct device *dev)
{
dev_err(dev, "no platform data defined\n");
return ERR_PTR(-EINVAL);
}
#endif
static int matrix_keypad_probe(struct platform_device *pdev)
{
const struct matrix_keypad_platform_data *pdata;
struct matrix_keypad *keypad;
struct input_dev *input_dev;
int err;
pdata = dev_get_platdata(&pdev->dev);
if (!pdata) {
pdata = matrix_keypad_parse_dt(&pdev->dev);
if (IS_ERR(pdata)) {
dev_err(&pdev->dev, "no platform data defined\n");
return PTR_ERR(pdata);
}
} else if (!pdata->keymap_data) {
dev_err(&pdev->dev, "no keymap data defined\n");
return -EINVAL;
}
keypad = kzalloc(sizeof(struct matrix_keypad), GFP_KERNEL);
input_dev = input_allocate_device();
if (!keypad || !input_dev) {
err = -ENOMEM;
goto err_free_mem;
}
keypad->input_dev = input_dev;
keypad->pdata = pdata;
keypad->row_shift = get_count_order(pdata->num_col_gpios);
keypad->stopped = true;
INIT_DELAYED_WORK(&keypad->work, matrix_keypad_scan);
spin_lock_init(&keypad->lock);
input_dev->name = pdev->name;
input_dev->id.bustype = BUS_HOST;
input_dev->dev.parent = &pdev->dev;
input_dev->open = matrix_keypad_start;
input_dev->close = matrix_keypad_stop;
err = matrix_keypad_build_keymap(pdata->keymap_data, NULL,
pdata->num_row_gpios,
pdata->num_col_gpios,
NULL, input_dev);
if (err) {
dev_err(&pdev->dev, "failed to build keymap\n");
goto err_free_mem;
}
if (!pdata->no_autorepeat)
__set_bit(EV_REP, input_dev->evbit);
input_set_capability(input_dev, EV_MSC, MSC_SCAN);
input_set_drvdata(input_dev, keypad);
err = matrix_keypad_init_gpio(pdev, keypad);
if (err)
goto err_free_mem;
err = input_register_device(keypad->input_dev);
if (err)
goto err_free_gpio;
device_init_wakeup(&pdev->dev, pdata->wakeup);
platform_set_drvdata(pdev, keypad);
return 0;
err_free_gpio:
matrix_keypad_free_gpio(keypad);
err_free_mem:
input_free_device(input_dev);
kfree(keypad);
return err;
}
static int matrix_keypad_remove(struct platform_device *pdev)
{
struct matrix_keypad *keypad = platform_get_drvdata(pdev);
device_init_wakeup(&pdev->dev, 0);
matrix_keypad_free_gpio(keypad);
input_unregister_device(keypad->input_dev);
kfree(keypad);
return 0;
}
#ifdef CONFIG_OF
static const struct of_device_id matrix_keypad_dt_match[] = {
{ .compatible = "gpio-matrix-keypad" },
{ }
};
MODULE_DEVICE_TABLE(of, matrix_keypad_dt_match);
#endif
static struct platform_driver matrix_keypad_driver = {
.probe = matrix_keypad_probe,
.remove = matrix_keypad_remove,
.driver = {
.name = "matrix-keypad",
.pm = &matrix_keypad_pm_ops,
.of_match_table = of_match_ptr(matrix_keypad_dt_match),
},
};
module_platform_driver(matrix_keypad_driver);
MODULE_AUTHOR("Marek Vasut <marek.vasut@gmail.com>");
MODULE_DESCRIPTION("GPIO Driven Matrix Keypad Driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:matrix-keypad");