linux/include/asm-generic/pgtable.h

827 lines
21 KiB
C
Raw Normal View History

#ifndef _ASM_GENERIC_PGTABLE_H
#define _ASM_GENERIC_PGTABLE_H
#ifndef __ASSEMBLY__
#ifdef CONFIG_MMU
#include <linux/mm_types.h>
#include <linux/bug.h>
/*
* On almost all architectures and configurations, 0 can be used as the
* upper ceiling to free_pgtables(): on many architectures it has the same
* effect as using TASK_SIZE. However, there is one configuration which
* must impose a more careful limit, to avoid freeing kernel pgtables.
*/
#ifndef USER_PGTABLES_CEILING
#define USER_PGTABLES_CEILING 0UL
#endif
#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
extern int ptep_set_access_flags(struct vm_area_struct *vma,
unsigned long address, pte_t *ptep,
pte_t entry, int dirty);
#endif
#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
extern int pmdp_set_access_flags(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp,
pmd_t entry, int dirty);
#endif
#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
unsigned long address,
pte_t *ptep)
{
pte_t pte = *ptep;
int r = 1;
if (!pte_young(pte))
r = 0;
else
set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
return r;
}
#endif
#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
unsigned long address,
pmd_t *pmdp)
{
pmd_t pmd = *pmdp;
int r = 1;
if (!pmd_young(pmd))
r = 0;
else
set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
return r;
}
#else /* CONFIG_TRANSPARENT_HUGEPAGE */
static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
unsigned long address,
pmd_t *pmdp)
{
BUG();
return 0;
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
#endif
#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
int ptep_clear_flush_young(struct vm_area_struct *vma,
unsigned long address, pte_t *ptep);
#endif
#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
int pmdp_clear_flush_young(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp);
#endif
#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
unsigned long address,
pte_t *ptep)
{
pte_t pte = *ptep;
pte_clear(mm, address, ptep);
return pte;
}
#endif
#ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
unsigned long address,
pmd_t *pmdp)
{
pmd_t pmd = *pmdp;
pmd_clear(pmdp);
return pmd;
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
#endif
2005-09-03 22:55:04 +00:00
#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
unsigned long address, pte_t *ptep,
int full)
{
pte_t pte;
pte = ptep_get_and_clear(mm, address, ptep);
return pte;
}
2005-09-03 22:55:04 +00:00
#endif
/*
* Some architectures may be able to avoid expensive synchronization
* primitives when modifications are made to PTE's which are already
* not present, or in the process of an address space destruction.
*/
#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
static inline void pte_clear_not_present_full(struct mm_struct *mm,
unsigned long address,
pte_t *ptep,
int full)
{
pte_clear(mm, address, ptep);
}
2005-09-03 22:55:04 +00:00
#endif
#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
unsigned long address,
pte_t *ptep);
#endif
#ifndef __HAVE_ARCH_PMDP_CLEAR_FLUSH
extern pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
unsigned long address,
pmd_t *pmdp);
#endif
#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
struct mm_struct;
static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
{
pte_t old_pte = *ptep;
set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
}
#endif
#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static inline void pmdp_set_wrprotect(struct mm_struct *mm,
unsigned long address, pmd_t *pmdp)
{
pmd_t old_pmd = *pmdp;
set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
}
#else /* CONFIG_TRANSPARENT_HUGEPAGE */
static inline void pmdp_set_wrprotect(struct mm_struct *mm,
unsigned long address, pmd_t *pmdp)
{
BUG();
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
#endif
#ifndef __HAVE_ARCH_PMDP_SPLITTING_FLUSH
extern void pmdp_splitting_flush(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp);
#endif
#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
pgtable_t pgtable);
#endif
#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
#endif
#ifndef __HAVE_ARCH_PMDP_INVALIDATE
extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
pmd_t *pmdp);
#endif
#ifndef __HAVE_ARCH_PTE_SAME
static inline int pte_same(pte_t pte_a, pte_t pte_b)
{
return pte_val(pte_a) == pte_val(pte_b);
}
#endif
#ifndef __HAVE_ARCH_PTE_UNUSED
/*
* Some architectures provide facilities to virtualization guests
* so that they can flag allocated pages as unused. This allows the
* host to transparently reclaim unused pages. This function returns
* whether the pte's page is unused.
*/
static inline int pte_unused(pte_t pte)
{
return 0;
}
#endif
#ifndef __HAVE_ARCH_PMD_SAME
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
{
return pmd_val(pmd_a) == pmd_val(pmd_b);
}
#else /* CONFIG_TRANSPARENT_HUGEPAGE */
static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
{
BUG();
return 0;
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
#endif
#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
#endif
#ifndef __HAVE_ARCH_MOVE_PTE
#define move_pte(pte, prot, old_addr, new_addr) (pte)
#endif
#ifndef pte_accessible
mm: fix TLB flush race between migration, and change_protection_range There are a few subtle races, between change_protection_range (used by mprotect and change_prot_numa) on one side, and NUMA page migration and compaction on the other side. The basic race is that there is a time window between when the PTE gets made non-present (PROT_NONE or NUMA), and the TLB is flushed. During that time, a CPU may continue writing to the page. This is fine most of the time, however compaction or the NUMA migration code may come in, and migrate the page away. When that happens, the CPU may continue writing, through the cached translation, to what is no longer the current memory location of the process. This only affects x86, which has a somewhat optimistic pte_accessible. All other architectures appear to be safe, and will either always flush, or flush whenever there is a valid mapping, even with no permissions (SPARC). The basic race looks like this: CPU A CPU B CPU C load TLB entry make entry PTE/PMD_NUMA fault on entry read/write old page start migrating page change PTE/PMD to new page read/write old page [*] flush TLB reload TLB from new entry read/write new page lose data [*] the old page may belong to a new user at this point! The obvious fix is to flush remote TLB entries, by making sure that pte_accessible aware of the fact that PROT_NONE and PROT_NUMA memory may still be accessible if there is a TLB flush pending for the mm. This should fix both NUMA migration and compaction. [mgorman@suse.de: fix build] Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: Alex Thorlton <athorlton@sgi.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-12-19 01:08:44 +00:00
# define pte_accessible(mm, pte) ((void)(pte), 1)
#endif
#ifndef flush_tlb_fix_spurious_fault
#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
#endif
#ifndef pgprot_noncached
#define pgprot_noncached(prot) (prot)
#endif
#ifndef pgprot_writecombine
#define pgprot_writecombine pgprot_noncached
#endif
/*
* When walking page tables, get the address of the next boundary,
* or the end address of the range if that comes earlier. Although no
* vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
*/
#define pgd_addr_end(addr, end) \
({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
(__boundary - 1 < (end) - 1)? __boundary: (end); \
})
#ifndef pud_addr_end
#define pud_addr_end(addr, end) \
({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
(__boundary - 1 < (end) - 1)? __boundary: (end); \
})
#endif
#ifndef pmd_addr_end
#define pmd_addr_end(addr, end) \
({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
(__boundary - 1 < (end) - 1)? __boundary: (end); \
})
#endif
/*
* When walking page tables, we usually want to skip any p?d_none entries;
* and any p?d_bad entries - reporting the error before resetting to none.
* Do the tests inline, but report and clear the bad entry in mm/memory.c.
*/
void pgd_clear_bad(pgd_t *);
void pud_clear_bad(pud_t *);
void pmd_clear_bad(pmd_t *);
static inline int pgd_none_or_clear_bad(pgd_t *pgd)
{
if (pgd_none(*pgd))
return 1;
if (unlikely(pgd_bad(*pgd))) {
pgd_clear_bad(pgd);
return 1;
}
return 0;
}
static inline int pud_none_or_clear_bad(pud_t *pud)
{
if (pud_none(*pud))
return 1;
if (unlikely(pud_bad(*pud))) {
pud_clear_bad(pud);
return 1;
}
return 0;
}
static inline int pmd_none_or_clear_bad(pmd_t *pmd)
{
if (pmd_none(*pmd))
return 1;
if (unlikely(pmd_bad(*pmd))) {
pmd_clear_bad(pmd);
return 1;
}
return 0;
}
mm: add a ptep_modify_prot transaction abstraction This patch adds an API for doing read-modify-write updates to a pte's protection bits which may race against hardware updates to the pte. After reading the pte, the hardware may asynchonously set the accessed or dirty bits on a pte, which would be lost when writing back the modified pte value. The existing technique to handle this race is to use ptep_get_and_clear() atomically fetch the old pte value and clear it in memory. This has the effect of marking the pte as non-present, which will prevent the hardware from updating its state. When the new value is written back, the pte will be present again, and the hardware can resume updating the access/dirty flags. When running in a virtualized environment, pagetable updates are relatively expensive, since they generally involve some trap into the hypervisor. To mitigate the cost of these updates, we tend to batch them. However, because of the atomic nature of ptep_get_and_clear(), it is inherently non-batchable. This new interface allows batching by giving the underlying implementation enough information to open a transaction between the read and write phases: ptep_modify_prot_start() returns the current pte value, and puts the pte entry into a state where either the hardware will not update the pte, or if it does, the updates will be preserved on commit. ptep_modify_prot_commit() writes back the updated pte, makes sure that any hardware updates made since ptep_modify_prot_start() are preserved. ptep_modify_prot_start() and _commit() must be exactly paired, and used while holding the appropriate pte lock. They do not protect against other software updates of the pte in any way. The current implementations of ptep_modify_prot_start and _commit are functionally unchanged from before: _start() uses ptep_get_and_clear() fetch the pte and zero the entry, preventing any hardware updates. _commit() simply writes the new pte value back knowing that the hardware has not updated the pte in the meantime. The only current user of this interface is mprotect Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Acked-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-16 11:30:00 +00:00
static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
unsigned long addr,
pte_t *ptep)
{
/*
* Get the current pte state, but zero it out to make it
* non-present, preventing the hardware from asynchronously
* updating it.
*/
return ptep_get_and_clear(mm, addr, ptep);
}
static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
unsigned long addr,
pte_t *ptep, pte_t pte)
{
/*
* The pte is non-present, so there's no hardware state to
* preserve.
*/
set_pte_at(mm, addr, ptep, pte);
}
#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
/*
* Start a pte protection read-modify-write transaction, which
* protects against asynchronous hardware modifications to the pte.
* The intention is not to prevent the hardware from making pte
* updates, but to prevent any updates it may make from being lost.
*
* This does not protect against other software modifications of the
* pte; the appropriate pte lock must be held over the transation.
*
* Note that this interface is intended to be batchable, meaning that
* ptep_modify_prot_commit may not actually update the pte, but merely
* queue the update to be done at some later time. The update must be
* actually committed before the pte lock is released, however.
*/
static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
unsigned long addr,
pte_t *ptep)
{
return __ptep_modify_prot_start(mm, addr, ptep);
}
/*
* Commit an update to a pte, leaving any hardware-controlled bits in
* the PTE unmodified.
*/
static inline void ptep_modify_prot_commit(struct mm_struct *mm,
unsigned long addr,
pte_t *ptep, pte_t pte)
{
__ptep_modify_prot_commit(mm, addr, ptep, pte);
}
#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
#endif /* CONFIG_MMU */
mm: add a ptep_modify_prot transaction abstraction This patch adds an API for doing read-modify-write updates to a pte's protection bits which may race against hardware updates to the pte. After reading the pte, the hardware may asynchonously set the accessed or dirty bits on a pte, which would be lost when writing back the modified pte value. The existing technique to handle this race is to use ptep_get_and_clear() atomically fetch the old pte value and clear it in memory. This has the effect of marking the pte as non-present, which will prevent the hardware from updating its state. When the new value is written back, the pte will be present again, and the hardware can resume updating the access/dirty flags. When running in a virtualized environment, pagetable updates are relatively expensive, since they generally involve some trap into the hypervisor. To mitigate the cost of these updates, we tend to batch them. However, because of the atomic nature of ptep_get_and_clear(), it is inherently non-batchable. This new interface allows batching by giving the underlying implementation enough information to open a transaction between the read and write phases: ptep_modify_prot_start() returns the current pte value, and puts the pte entry into a state where either the hardware will not update the pte, or if it does, the updates will be preserved on commit. ptep_modify_prot_commit() writes back the updated pte, makes sure that any hardware updates made since ptep_modify_prot_start() are preserved. ptep_modify_prot_start() and _commit() must be exactly paired, and used while holding the appropriate pte lock. They do not protect against other software updates of the pte in any way. The current implementations of ptep_modify_prot_start and _commit are functionally unchanged from before: _start() uses ptep_get_and_clear() fetch the pte and zero the entry, preventing any hardware updates. _commit() simply writes the new pte value back knowing that the hardware has not updated the pte in the meantime. The only current user of this interface is mprotect Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Acked-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-16 11:30:00 +00:00
/*
* A facility to provide lazy MMU batching. This allows PTE updates and
* page invalidations to be delayed until a call to leave lazy MMU mode
* is issued. Some architectures may benefit from doing this, and it is
* beneficial for both shadow and direct mode hypervisors, which may batch
* the PTE updates which happen during this window. Note that using this
* interface requires that read hazards be removed from the code. A read
* hazard could result in the direct mode hypervisor case, since the actual
* write to the page tables may not yet have taken place, so reads though
* a raw PTE pointer after it has been modified are not guaranteed to be
* up to date. This mode can only be entered and left under the protection of
* the page table locks for all page tables which may be modified. In the UP
* case, this is required so that preemption is disabled, and in the SMP case,
* it must synchronize the delayed page table writes properly on other CPUs.
*/
#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
#define arch_enter_lazy_mmu_mode() do {} while (0)
#define arch_leave_lazy_mmu_mode() do {} while (0)
#define arch_flush_lazy_mmu_mode() do {} while (0)
#endif
/*
* A facility to provide batching of the reload of page tables and
* other process state with the actual context switch code for
* paravirtualized guests. By convention, only one of the batched
* update (lazy) modes (CPU, MMU) should be active at any given time,
* entry should never be nested, and entry and exits should always be
* paired. This is for sanity of maintaining and reasoning about the
* kernel code. In this case, the exit (end of the context switch) is
* in architecture-specific code, and so doesn't need a generic
* definition.
*/
#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
#define arch_start_context_switch(prev) do {} while (0)
#endif
mm: soft-dirty bits for user memory changes tracking The soft-dirty is a bit on a PTE which helps to track which pages a task writes to. In order to do this tracking one should 1. Clear soft-dirty bits from PTEs ("echo 4 > /proc/PID/clear_refs) 2. Wait some time. 3. Read soft-dirty bits (55'th in /proc/PID/pagemap2 entries) To do this tracking, the writable bit is cleared from PTEs when the soft-dirty bit is. Thus, after this, when the task tries to modify a page at some virtual address the #PF occurs and the kernel sets the soft-dirty bit on the respective PTE. Note, that although all the task's address space is marked as r/o after the soft-dirty bits clear, the #PF-s that occur after that are processed fast. This is so, since the pages are still mapped to physical memory, and thus all the kernel does is finds this fact out and puts back writable, dirty and soft-dirty bits on the PTE. Another thing to note, is that when mremap moves PTEs they are marked with soft-dirty as well, since from the user perspective mremap modifies the virtual memory at mremap's new address. Signed-off-by: Pavel Emelyanov <xemul@parallels.com> Cc: Matt Mackall <mpm@selenic.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Glauber Costa <glommer@parallels.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-03 22:01:20 +00:00
#ifndef CONFIG_HAVE_ARCH_SOFT_DIRTY
static inline int pte_soft_dirty(pte_t pte)
{
return 0;
}
static inline int pmd_soft_dirty(pmd_t pmd)
{
return 0;
}
static inline pte_t pte_mksoft_dirty(pte_t pte)
{
return pte;
}
static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
{
return pmd;
}
static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
{
return pte;
}
static inline int pte_swp_soft_dirty(pte_t pte)
{
return 0;
}
static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
{
return pte;
}
static inline pte_t pte_file_clear_soft_dirty(pte_t pte)
{
return pte;
}
static inline pte_t pte_file_mksoft_dirty(pte_t pte)
{
return pte;
}
static inline int pte_file_soft_dirty(pte_t pte)
{
return 0;
}
mm: soft-dirty bits for user memory changes tracking The soft-dirty is a bit on a PTE which helps to track which pages a task writes to. In order to do this tracking one should 1. Clear soft-dirty bits from PTEs ("echo 4 > /proc/PID/clear_refs) 2. Wait some time. 3. Read soft-dirty bits (55'th in /proc/PID/pagemap2 entries) To do this tracking, the writable bit is cleared from PTEs when the soft-dirty bit is. Thus, after this, when the task tries to modify a page at some virtual address the #PF occurs and the kernel sets the soft-dirty bit on the respective PTE. Note, that although all the task's address space is marked as r/o after the soft-dirty bits clear, the #PF-s that occur after that are processed fast. This is so, since the pages are still mapped to physical memory, and thus all the kernel does is finds this fact out and puts back writable, dirty and soft-dirty bits on the PTE. Another thing to note, is that when mremap moves PTEs they are marked with soft-dirty as well, since from the user perspective mremap modifies the virtual memory at mremap's new address. Signed-off-by: Pavel Emelyanov <xemul@parallels.com> Cc: Matt Mackall <mpm@selenic.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Glauber Costa <glommer@parallels.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-03 22:01:20 +00:00
#endif
#ifndef __HAVE_PFNMAP_TRACKING
/*
x86, pat: separate the pfn attribute tracking for remap_pfn_range and vm_insert_pfn With PAT enabled, vm_insert_pfn() looks up the existing pfn memory attribute and uses it. Expectation is that the driver reserves the memory attributes for the pfn before calling vm_insert_pfn(). remap_pfn_range() (when called for the whole vma) will setup a new attribute (based on the prot argument) for the specified pfn range. This addresses the legacy usage which typically calls remap_pfn_range() with a desired memory attribute. For ranges smaller than the vma size (which is typically not the case), remap_pfn_range() will use the existing memory attribute for the pfn range. Expose two different API's for these different behaviors. track_pfn_insert() for tracking the pfn attribute set by vm_insert_pfn() and track_pfn_remap() for the remap_pfn_range(). This cleanup also prepares the ground for the track/untrack pfn vma routines to take over the ownership of setting PAT specific vm_flag in the 'vma'. [khlebnikov@openvz.org: Clear checks in track_pfn_remap()] [akpm@linux-foundation.org: tweak a few comments] Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Venkatesh Pallipadi <venki@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Ingo Molnar <mingo@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Carsten Otte <cotte@de.ibm.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Eric Paris <eparis@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Morris <james.l.morris@oracle.com> Cc: Jason Baron <jbaron@redhat.com> Cc: Kentaro Takeda <takedakn@nttdata.co.jp> Cc: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Matt Helsley <matthltc@us.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Robert Richter <robert.richter@amd.com> Cc: Suresh Siddha <suresh.b.siddha@intel.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-08 23:28:29 +00:00
* Interfaces that can be used by architecture code to keep track of
* memory type of pfn mappings specified by the remap_pfn_range,
* vm_insert_pfn.
*/
/*
* track_pfn_remap is called when a _new_ pfn mapping is being established
* by remap_pfn_range() for physical range indicated by pfn and size.
*/
x86, pat: separate the pfn attribute tracking for remap_pfn_range and vm_insert_pfn With PAT enabled, vm_insert_pfn() looks up the existing pfn memory attribute and uses it. Expectation is that the driver reserves the memory attributes for the pfn before calling vm_insert_pfn(). remap_pfn_range() (when called for the whole vma) will setup a new attribute (based on the prot argument) for the specified pfn range. This addresses the legacy usage which typically calls remap_pfn_range() with a desired memory attribute. For ranges smaller than the vma size (which is typically not the case), remap_pfn_range() will use the existing memory attribute for the pfn range. Expose two different API's for these different behaviors. track_pfn_insert() for tracking the pfn attribute set by vm_insert_pfn() and track_pfn_remap() for the remap_pfn_range(). This cleanup also prepares the ground for the track/untrack pfn vma routines to take over the ownership of setting PAT specific vm_flag in the 'vma'. [khlebnikov@openvz.org: Clear checks in track_pfn_remap()] [akpm@linux-foundation.org: tweak a few comments] Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Venkatesh Pallipadi <venki@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Ingo Molnar <mingo@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Carsten Otte <cotte@de.ibm.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Eric Paris <eparis@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Morris <james.l.morris@oracle.com> Cc: Jason Baron <jbaron@redhat.com> Cc: Kentaro Takeda <takedakn@nttdata.co.jp> Cc: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Matt Helsley <matthltc@us.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Robert Richter <robert.richter@amd.com> Cc: Suresh Siddha <suresh.b.siddha@intel.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-08 23:28:29 +00:00
static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
mm, x86, pat: rework linear pfn-mmap tracking Replace the generic vma-flag VM_PFN_AT_MMAP with x86-only VM_PAT. We can toss mapping address from remap_pfn_range() into track_pfn_vma_new(), and collect all PAT-related logic together in arch/x86/. This patch also restores orignal frustration-free is_cow_mapping() check in remap_pfn_range(), as it was before commit v2.6.28-rc8-88-g3c8bb73 ("x86: PAT: store vm_pgoff for all linear_over_vma_region mappings - v3") is_linear_pfn_mapping() checks can be removed from mm/huge_memory.c, because it already handled by VM_PFNMAP in VM_NO_THP bit-mask. [suresh.b.siddha@intel.com: Reset the VM_PAT flag as part of untrack_pfn_vma()] Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Cc: Venkatesh Pallipadi <venki@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Ingo Molnar <mingo@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Carsten Otte <cotte@de.ibm.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Eric Paris <eparis@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Morris <james.l.morris@oracle.com> Cc: Jason Baron <jbaron@redhat.com> Cc: Kentaro Takeda <takedakn@nttdata.co.jp> Cc: Matt Helsley <matthltc@us.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Robert Richter <robert.richter@amd.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Venkatesh Pallipadi <venki@google.com> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-08 23:28:34 +00:00
unsigned long pfn, unsigned long addr,
unsigned long size)
{
return 0;
}
/*
x86, pat: separate the pfn attribute tracking for remap_pfn_range and vm_insert_pfn With PAT enabled, vm_insert_pfn() looks up the existing pfn memory attribute and uses it. Expectation is that the driver reserves the memory attributes for the pfn before calling vm_insert_pfn(). remap_pfn_range() (when called for the whole vma) will setup a new attribute (based on the prot argument) for the specified pfn range. This addresses the legacy usage which typically calls remap_pfn_range() with a desired memory attribute. For ranges smaller than the vma size (which is typically not the case), remap_pfn_range() will use the existing memory attribute for the pfn range. Expose two different API's for these different behaviors. track_pfn_insert() for tracking the pfn attribute set by vm_insert_pfn() and track_pfn_remap() for the remap_pfn_range(). This cleanup also prepares the ground for the track/untrack pfn vma routines to take over the ownership of setting PAT specific vm_flag in the 'vma'. [khlebnikov@openvz.org: Clear checks in track_pfn_remap()] [akpm@linux-foundation.org: tweak a few comments] Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Venkatesh Pallipadi <venki@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Ingo Molnar <mingo@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Carsten Otte <cotte@de.ibm.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Eric Paris <eparis@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Morris <james.l.morris@oracle.com> Cc: Jason Baron <jbaron@redhat.com> Cc: Kentaro Takeda <takedakn@nttdata.co.jp> Cc: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Matt Helsley <matthltc@us.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Robert Richter <robert.richter@amd.com> Cc: Suresh Siddha <suresh.b.siddha@intel.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-08 23:28:29 +00:00
* track_pfn_insert is called when a _new_ single pfn is established
* by vm_insert_pfn().
*/
static inline int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
unsigned long pfn)
{
return 0;
}
/*
* track_pfn_copy is called when vma that is covering the pfnmap gets
* copied through copy_page_range().
*/
x86, pat: separate the pfn attribute tracking for remap_pfn_range and vm_insert_pfn With PAT enabled, vm_insert_pfn() looks up the existing pfn memory attribute and uses it. Expectation is that the driver reserves the memory attributes for the pfn before calling vm_insert_pfn(). remap_pfn_range() (when called for the whole vma) will setup a new attribute (based on the prot argument) for the specified pfn range. This addresses the legacy usage which typically calls remap_pfn_range() with a desired memory attribute. For ranges smaller than the vma size (which is typically not the case), remap_pfn_range() will use the existing memory attribute for the pfn range. Expose two different API's for these different behaviors. track_pfn_insert() for tracking the pfn attribute set by vm_insert_pfn() and track_pfn_remap() for the remap_pfn_range(). This cleanup also prepares the ground for the track/untrack pfn vma routines to take over the ownership of setting PAT specific vm_flag in the 'vma'. [khlebnikov@openvz.org: Clear checks in track_pfn_remap()] [akpm@linux-foundation.org: tweak a few comments] Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Venkatesh Pallipadi <venki@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Ingo Molnar <mingo@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Carsten Otte <cotte@de.ibm.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Eric Paris <eparis@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Morris <james.l.morris@oracle.com> Cc: Jason Baron <jbaron@redhat.com> Cc: Kentaro Takeda <takedakn@nttdata.co.jp> Cc: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Matt Helsley <matthltc@us.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Robert Richter <robert.richter@amd.com> Cc: Suresh Siddha <suresh.b.siddha@intel.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-08 23:28:29 +00:00
static inline int track_pfn_copy(struct vm_area_struct *vma)
{
return 0;
}
/*
* untrack_pfn_vma is called while unmapping a pfnmap for a region.
* untrack can be called for a specific region indicated by pfn and size or
x86, pat: separate the pfn attribute tracking for remap_pfn_range and vm_insert_pfn With PAT enabled, vm_insert_pfn() looks up the existing pfn memory attribute and uses it. Expectation is that the driver reserves the memory attributes for the pfn before calling vm_insert_pfn(). remap_pfn_range() (when called for the whole vma) will setup a new attribute (based on the prot argument) for the specified pfn range. This addresses the legacy usage which typically calls remap_pfn_range() with a desired memory attribute. For ranges smaller than the vma size (which is typically not the case), remap_pfn_range() will use the existing memory attribute for the pfn range. Expose two different API's for these different behaviors. track_pfn_insert() for tracking the pfn attribute set by vm_insert_pfn() and track_pfn_remap() for the remap_pfn_range(). This cleanup also prepares the ground for the track/untrack pfn vma routines to take over the ownership of setting PAT specific vm_flag in the 'vma'. [khlebnikov@openvz.org: Clear checks in track_pfn_remap()] [akpm@linux-foundation.org: tweak a few comments] Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Venkatesh Pallipadi <venki@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Ingo Molnar <mingo@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Carsten Otte <cotte@de.ibm.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Eric Paris <eparis@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Morris <james.l.morris@oracle.com> Cc: Jason Baron <jbaron@redhat.com> Cc: Kentaro Takeda <takedakn@nttdata.co.jp> Cc: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Matt Helsley <matthltc@us.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Robert Richter <robert.richter@amd.com> Cc: Suresh Siddha <suresh.b.siddha@intel.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-08 23:28:29 +00:00
* can be for the entire vma (in which case pfn, size are zero).
*/
x86, pat: separate the pfn attribute tracking for remap_pfn_range and vm_insert_pfn With PAT enabled, vm_insert_pfn() looks up the existing pfn memory attribute and uses it. Expectation is that the driver reserves the memory attributes for the pfn before calling vm_insert_pfn(). remap_pfn_range() (when called for the whole vma) will setup a new attribute (based on the prot argument) for the specified pfn range. This addresses the legacy usage which typically calls remap_pfn_range() with a desired memory attribute. For ranges smaller than the vma size (which is typically not the case), remap_pfn_range() will use the existing memory attribute for the pfn range. Expose two different API's for these different behaviors. track_pfn_insert() for tracking the pfn attribute set by vm_insert_pfn() and track_pfn_remap() for the remap_pfn_range(). This cleanup also prepares the ground for the track/untrack pfn vma routines to take over the ownership of setting PAT specific vm_flag in the 'vma'. [khlebnikov@openvz.org: Clear checks in track_pfn_remap()] [akpm@linux-foundation.org: tweak a few comments] Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Venkatesh Pallipadi <venki@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Ingo Molnar <mingo@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Carsten Otte <cotte@de.ibm.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Eric Paris <eparis@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Morris <james.l.morris@oracle.com> Cc: Jason Baron <jbaron@redhat.com> Cc: Kentaro Takeda <takedakn@nttdata.co.jp> Cc: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Matt Helsley <matthltc@us.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Robert Richter <robert.richter@amd.com> Cc: Suresh Siddha <suresh.b.siddha@intel.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-08 23:28:29 +00:00
static inline void untrack_pfn(struct vm_area_struct *vma,
unsigned long pfn, unsigned long size)
{
}
#else
x86, pat: separate the pfn attribute tracking for remap_pfn_range and vm_insert_pfn With PAT enabled, vm_insert_pfn() looks up the existing pfn memory attribute and uses it. Expectation is that the driver reserves the memory attributes for the pfn before calling vm_insert_pfn(). remap_pfn_range() (when called for the whole vma) will setup a new attribute (based on the prot argument) for the specified pfn range. This addresses the legacy usage which typically calls remap_pfn_range() with a desired memory attribute. For ranges smaller than the vma size (which is typically not the case), remap_pfn_range() will use the existing memory attribute for the pfn range. Expose two different API's for these different behaviors. track_pfn_insert() for tracking the pfn attribute set by vm_insert_pfn() and track_pfn_remap() for the remap_pfn_range(). This cleanup also prepares the ground for the track/untrack pfn vma routines to take over the ownership of setting PAT specific vm_flag in the 'vma'. [khlebnikov@openvz.org: Clear checks in track_pfn_remap()] [akpm@linux-foundation.org: tweak a few comments] Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Venkatesh Pallipadi <venki@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Ingo Molnar <mingo@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Carsten Otte <cotte@de.ibm.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Eric Paris <eparis@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Morris <james.l.morris@oracle.com> Cc: Jason Baron <jbaron@redhat.com> Cc: Kentaro Takeda <takedakn@nttdata.co.jp> Cc: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Matt Helsley <matthltc@us.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Robert Richter <robert.richter@amd.com> Cc: Suresh Siddha <suresh.b.siddha@intel.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-08 23:28:29 +00:00
extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
mm, x86, pat: rework linear pfn-mmap tracking Replace the generic vma-flag VM_PFN_AT_MMAP with x86-only VM_PAT. We can toss mapping address from remap_pfn_range() into track_pfn_vma_new(), and collect all PAT-related logic together in arch/x86/. This patch also restores orignal frustration-free is_cow_mapping() check in remap_pfn_range(), as it was before commit v2.6.28-rc8-88-g3c8bb73 ("x86: PAT: store vm_pgoff for all linear_over_vma_region mappings - v3") is_linear_pfn_mapping() checks can be removed from mm/huge_memory.c, because it already handled by VM_PFNMAP in VM_NO_THP bit-mask. [suresh.b.siddha@intel.com: Reset the VM_PAT flag as part of untrack_pfn_vma()] Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Cc: Venkatesh Pallipadi <venki@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Ingo Molnar <mingo@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Carsten Otte <cotte@de.ibm.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Eric Paris <eparis@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Morris <james.l.morris@oracle.com> Cc: Jason Baron <jbaron@redhat.com> Cc: Kentaro Takeda <takedakn@nttdata.co.jp> Cc: Matt Helsley <matthltc@us.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Robert Richter <robert.richter@amd.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Venkatesh Pallipadi <venki@google.com> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-08 23:28:34 +00:00
unsigned long pfn, unsigned long addr,
unsigned long size);
x86, pat: separate the pfn attribute tracking for remap_pfn_range and vm_insert_pfn With PAT enabled, vm_insert_pfn() looks up the existing pfn memory attribute and uses it. Expectation is that the driver reserves the memory attributes for the pfn before calling vm_insert_pfn(). remap_pfn_range() (when called for the whole vma) will setup a new attribute (based on the prot argument) for the specified pfn range. This addresses the legacy usage which typically calls remap_pfn_range() with a desired memory attribute. For ranges smaller than the vma size (which is typically not the case), remap_pfn_range() will use the existing memory attribute for the pfn range. Expose two different API's for these different behaviors. track_pfn_insert() for tracking the pfn attribute set by vm_insert_pfn() and track_pfn_remap() for the remap_pfn_range(). This cleanup also prepares the ground for the track/untrack pfn vma routines to take over the ownership of setting PAT specific vm_flag in the 'vma'. [khlebnikov@openvz.org: Clear checks in track_pfn_remap()] [akpm@linux-foundation.org: tweak a few comments] Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Venkatesh Pallipadi <venki@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Ingo Molnar <mingo@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Carsten Otte <cotte@de.ibm.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Eric Paris <eparis@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Morris <james.l.morris@oracle.com> Cc: Jason Baron <jbaron@redhat.com> Cc: Kentaro Takeda <takedakn@nttdata.co.jp> Cc: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Matt Helsley <matthltc@us.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Robert Richter <robert.richter@amd.com> Cc: Suresh Siddha <suresh.b.siddha@intel.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-08 23:28:29 +00:00
extern int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
unsigned long pfn);
extern int track_pfn_copy(struct vm_area_struct *vma);
extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
unsigned long size);
#endif
#ifdef __HAVE_COLOR_ZERO_PAGE
static inline int is_zero_pfn(unsigned long pfn)
{
extern unsigned long zero_pfn;
unsigned long offset_from_zero_pfn = pfn - zero_pfn;
return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
}
#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
#else
static inline int is_zero_pfn(unsigned long pfn)
{
extern unsigned long zero_pfn;
return pfn == zero_pfn;
}
static inline unsigned long my_zero_pfn(unsigned long addr)
{
extern unsigned long zero_pfn;
return zero_pfn;
}
#endif
mm: thp: fix pmd_bad() triggering in code paths holding mmap_sem read mode In some cases it may happen that pmd_none_or_clear_bad() is called with the mmap_sem hold in read mode. In those cases the huge page faults can allocate hugepmds under pmd_none_or_clear_bad() and that can trigger a false positive from pmd_bad() that will not like to see a pmd materializing as trans huge. It's not khugepaged causing the problem, khugepaged holds the mmap_sem in write mode (and all those sites must hold the mmap_sem in read mode to prevent pagetables to go away from under them, during code review it seems vm86 mode on 32bit kernels requires that too unless it's restricted to 1 thread per process or UP builds). The race is only with the huge pagefaults that can convert a pmd_none() into a pmd_trans_huge(). Effectively all these pmd_none_or_clear_bad() sites running with mmap_sem in read mode are somewhat speculative with the page faults, and the result is always undefined when they run simultaneously. This is probably why it wasn't common to run into this. For example if the madvise(MADV_DONTNEED) runs zap_page_range() shortly before the page fault, the hugepage will not be zapped, if the page fault runs first it will be zapped. Altering pmd_bad() not to error out if it finds hugepmds won't be enough to fix this, because zap_pmd_range would then proceed to call zap_pte_range (which would be incorrect if the pmd become a pmd_trans_huge()). The simplest way to fix this is to read the pmd in the local stack (regardless of what we read, no need of actual CPU barriers, only compiler barrier needed), and be sure it is not changing under the code that computes its value. Even if the real pmd is changing under the value we hold on the stack, we don't care. If we actually end up in zap_pte_range it means the pmd was not none already and it was not huge, and it can't become huge from under us (khugepaged locking explained above). All we need is to enforce that there is no way anymore that in a code path like below, pmd_trans_huge can be false, but pmd_none_or_clear_bad can run into a hugepmd. The overhead of a barrier() is just a compiler tweak and should not be measurable (I only added it for THP builds). I don't exclude different compiler versions may have prevented the race too by caching the value of *pmd on the stack (that hasn't been verified, but it wouldn't be impossible considering pmd_none_or_clear_bad, pmd_bad, pmd_trans_huge, pmd_none are all inlines and there's no external function called in between pmd_trans_huge and pmd_none_or_clear_bad). if (pmd_trans_huge(*pmd)) { if (next-addr != HPAGE_PMD_SIZE) { VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem)); split_huge_page_pmd(vma->vm_mm, pmd); } else if (zap_huge_pmd(tlb, vma, pmd, addr)) continue; /* fall through */ } if (pmd_none_or_clear_bad(pmd)) Because this race condition could be exercised without special privileges this was reported in CVE-2012-1179. The race was identified and fully explained by Ulrich who debugged it. I'm quoting his accurate explanation below, for reference. ====== start quote ======= mapcount 0 page_mapcount 1 kernel BUG at mm/huge_memory.c:1384! At some point prior to the panic, a "bad pmd ..." message similar to the following is logged on the console: mm/memory.c:145: bad pmd ffff8800376e1f98(80000000314000e7). The "bad pmd ..." message is logged by pmd_clear_bad() before it clears the page's PMD table entry. 143 void pmd_clear_bad(pmd_t *pmd) 144 { -> 145 pmd_ERROR(*pmd); 146 pmd_clear(pmd); 147 } After the PMD table entry has been cleared, there is an inconsistency between the actual number of PMD table entries that are mapping the page and the page's map count (_mapcount field in struct page). When the page is subsequently reclaimed, __split_huge_page() detects this inconsistency. 1381 if (mapcount != page_mapcount(page)) 1382 printk(KERN_ERR "mapcount %d page_mapcount %d\n", 1383 mapcount, page_mapcount(page)); -> 1384 BUG_ON(mapcount != page_mapcount(page)); The root cause of the problem is a race of two threads in a multithreaded process. Thread B incurs a page fault on a virtual address that has never been accessed (PMD entry is zero) while Thread A is executing an madvise() system call on a virtual address within the same 2 MB (huge page) range. virtual address space .---------------------. | | | | .-|---------------------| | | | | | |<-- B(fault) | | | 2 MB | |/////////////////////|-. huge < |/////////////////////| > A(range) page | |/////////////////////|-' | | | | | | '-|---------------------| | | | | '---------------------' - Thread A is executing an madvise(..., MADV_DONTNEED) system call on the virtual address range "A(range)" shown in the picture. sys_madvise // Acquire the semaphore in shared mode. down_read(&current->mm->mmap_sem) ... madvise_vma switch (behavior) case MADV_DONTNEED: madvise_dontneed zap_page_range unmap_vmas unmap_page_range zap_pud_range zap_pmd_range // // Assume that this huge page has never been accessed. // I.e. content of the PMD entry is zero (not mapped). // if (pmd_trans_huge(*pmd)) { // We don't get here due to the above assumption. } // // Assume that Thread B incurred a page fault and .---------> // sneaks in here as shown below. | // | if (pmd_none_or_clear_bad(pmd)) | { | if (unlikely(pmd_bad(*pmd))) | pmd_clear_bad | { | pmd_ERROR | // Log "bad pmd ..." message here. | pmd_clear | // Clear the page's PMD entry. | // Thread B incremented the map count | // in page_add_new_anon_rmap(), but | // now the page is no longer mapped | // by a PMD entry (-> inconsistency). | } | } | v - Thread B is handling a page fault on virtual address "B(fault)" shown in the picture. ... do_page_fault __do_page_fault // Acquire the semaphore in shared mode. down_read_trylock(&mm->mmap_sem) ... handle_mm_fault if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) // We get here due to the above assumption (PMD entry is zero). do_huge_pmd_anonymous_page alloc_hugepage_vma // Allocate a new transparent huge page here. ... __do_huge_pmd_anonymous_page ... spin_lock(&mm->page_table_lock) ... page_add_new_anon_rmap // Here we increment the page's map count (starts at -1). atomic_set(&page->_mapcount, 0) set_pmd_at // Here we set the page's PMD entry which will be cleared // when Thread A calls pmd_clear_bad(). ... spin_unlock(&mm->page_table_lock) The mmap_sem does not prevent the race because both threads are acquiring it in shared mode (down_read). Thread B holds the page_table_lock while the page's map count and PMD table entry are updated. However, Thread A does not synchronize on that lock. ====== end quote ======= [akpm@linux-foundation.org: checkpatch fixes] Reported-by: Ulrich Obergfell <uobergfe@redhat.com> Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Jones <davej@redhat.com> Acked-by: Larry Woodman <lwoodman@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Cc: <stable@vger.kernel.org> [2.6.38+] Cc: Mark Salter <msalter@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 23:33:42 +00:00
#ifdef CONFIG_MMU
#ifndef CONFIG_TRANSPARENT_HUGEPAGE
static inline int pmd_trans_huge(pmd_t pmd)
{
return 0;
}
static inline int pmd_trans_splitting(pmd_t pmd)
{
return 0;
}
#ifndef __HAVE_ARCH_PMD_WRITE
static inline int pmd_write(pmd_t pmd)
{
BUG();
return 0;
}
#endif /* __HAVE_ARCH_PMD_WRITE */
mm: thp: fix pmd_bad() triggering in code paths holding mmap_sem read mode In some cases it may happen that pmd_none_or_clear_bad() is called with the mmap_sem hold in read mode. In those cases the huge page faults can allocate hugepmds under pmd_none_or_clear_bad() and that can trigger a false positive from pmd_bad() that will not like to see a pmd materializing as trans huge. It's not khugepaged causing the problem, khugepaged holds the mmap_sem in write mode (and all those sites must hold the mmap_sem in read mode to prevent pagetables to go away from under them, during code review it seems vm86 mode on 32bit kernels requires that too unless it's restricted to 1 thread per process or UP builds). The race is only with the huge pagefaults that can convert a pmd_none() into a pmd_trans_huge(). Effectively all these pmd_none_or_clear_bad() sites running with mmap_sem in read mode are somewhat speculative with the page faults, and the result is always undefined when they run simultaneously. This is probably why it wasn't common to run into this. For example if the madvise(MADV_DONTNEED) runs zap_page_range() shortly before the page fault, the hugepage will not be zapped, if the page fault runs first it will be zapped. Altering pmd_bad() not to error out if it finds hugepmds won't be enough to fix this, because zap_pmd_range would then proceed to call zap_pte_range (which would be incorrect if the pmd become a pmd_trans_huge()). The simplest way to fix this is to read the pmd in the local stack (regardless of what we read, no need of actual CPU barriers, only compiler barrier needed), and be sure it is not changing under the code that computes its value. Even if the real pmd is changing under the value we hold on the stack, we don't care. If we actually end up in zap_pte_range it means the pmd was not none already and it was not huge, and it can't become huge from under us (khugepaged locking explained above). All we need is to enforce that there is no way anymore that in a code path like below, pmd_trans_huge can be false, but pmd_none_or_clear_bad can run into a hugepmd. The overhead of a barrier() is just a compiler tweak and should not be measurable (I only added it for THP builds). I don't exclude different compiler versions may have prevented the race too by caching the value of *pmd on the stack (that hasn't been verified, but it wouldn't be impossible considering pmd_none_or_clear_bad, pmd_bad, pmd_trans_huge, pmd_none are all inlines and there's no external function called in between pmd_trans_huge and pmd_none_or_clear_bad). if (pmd_trans_huge(*pmd)) { if (next-addr != HPAGE_PMD_SIZE) { VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem)); split_huge_page_pmd(vma->vm_mm, pmd); } else if (zap_huge_pmd(tlb, vma, pmd, addr)) continue; /* fall through */ } if (pmd_none_or_clear_bad(pmd)) Because this race condition could be exercised without special privileges this was reported in CVE-2012-1179. The race was identified and fully explained by Ulrich who debugged it. I'm quoting his accurate explanation below, for reference. ====== start quote ======= mapcount 0 page_mapcount 1 kernel BUG at mm/huge_memory.c:1384! At some point prior to the panic, a "bad pmd ..." message similar to the following is logged on the console: mm/memory.c:145: bad pmd ffff8800376e1f98(80000000314000e7). The "bad pmd ..." message is logged by pmd_clear_bad() before it clears the page's PMD table entry. 143 void pmd_clear_bad(pmd_t *pmd) 144 { -> 145 pmd_ERROR(*pmd); 146 pmd_clear(pmd); 147 } After the PMD table entry has been cleared, there is an inconsistency between the actual number of PMD table entries that are mapping the page and the page's map count (_mapcount field in struct page). When the page is subsequently reclaimed, __split_huge_page() detects this inconsistency. 1381 if (mapcount != page_mapcount(page)) 1382 printk(KERN_ERR "mapcount %d page_mapcount %d\n", 1383 mapcount, page_mapcount(page)); -> 1384 BUG_ON(mapcount != page_mapcount(page)); The root cause of the problem is a race of two threads in a multithreaded process. Thread B incurs a page fault on a virtual address that has never been accessed (PMD entry is zero) while Thread A is executing an madvise() system call on a virtual address within the same 2 MB (huge page) range. virtual address space .---------------------. | | | | .-|---------------------| | | | | | |<-- B(fault) | | | 2 MB | |/////////////////////|-. huge < |/////////////////////| > A(range) page | |/////////////////////|-' | | | | | | '-|---------------------| | | | | '---------------------' - Thread A is executing an madvise(..., MADV_DONTNEED) system call on the virtual address range "A(range)" shown in the picture. sys_madvise // Acquire the semaphore in shared mode. down_read(&current->mm->mmap_sem) ... madvise_vma switch (behavior) case MADV_DONTNEED: madvise_dontneed zap_page_range unmap_vmas unmap_page_range zap_pud_range zap_pmd_range // // Assume that this huge page has never been accessed. // I.e. content of the PMD entry is zero (not mapped). // if (pmd_trans_huge(*pmd)) { // We don't get here due to the above assumption. } // // Assume that Thread B incurred a page fault and .---------> // sneaks in here as shown below. | // | if (pmd_none_or_clear_bad(pmd)) | { | if (unlikely(pmd_bad(*pmd))) | pmd_clear_bad | { | pmd_ERROR | // Log "bad pmd ..." message here. | pmd_clear | // Clear the page's PMD entry. | // Thread B incremented the map count | // in page_add_new_anon_rmap(), but | // now the page is no longer mapped | // by a PMD entry (-> inconsistency). | } | } | v - Thread B is handling a page fault on virtual address "B(fault)" shown in the picture. ... do_page_fault __do_page_fault // Acquire the semaphore in shared mode. down_read_trylock(&mm->mmap_sem) ... handle_mm_fault if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) // We get here due to the above assumption (PMD entry is zero). do_huge_pmd_anonymous_page alloc_hugepage_vma // Allocate a new transparent huge page here. ... __do_huge_pmd_anonymous_page ... spin_lock(&mm->page_table_lock) ... page_add_new_anon_rmap // Here we increment the page's map count (starts at -1). atomic_set(&page->_mapcount, 0) set_pmd_at // Here we set the page's PMD entry which will be cleared // when Thread A calls pmd_clear_bad(). ... spin_unlock(&mm->page_table_lock) The mmap_sem does not prevent the race because both threads are acquiring it in shared mode (down_read). Thread B holds the page_table_lock while the page's map count and PMD table entry are updated. However, Thread A does not synchronize on that lock. ====== end quote ======= [akpm@linux-foundation.org: checkpatch fixes] Reported-by: Ulrich Obergfell <uobergfe@redhat.com> Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Jones <davej@redhat.com> Acked-by: Larry Woodman <lwoodman@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Cc: <stable@vger.kernel.org> [2.6.38+] Cc: Mark Salter <msalter@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 23:33:42 +00:00
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
mm: pmd_read_atomic: fix 32bit PAE pmd walk vs pmd_populate SMP race condition When holding the mmap_sem for reading, pmd_offset_map_lock should only run on a pmd_t that has been read atomically from the pmdp pointer, otherwise we may read only half of it leading to this crash. PID: 11679 TASK: f06e8000 CPU: 3 COMMAND: "do_race_2_panic" #0 [f06a9dd8] crash_kexec at c049b5ec #1 [f06a9e2c] oops_end at c083d1c2 #2 [f06a9e40] no_context at c0433ded #3 [f06a9e64] bad_area_nosemaphore at c043401a #4 [f06a9e6c] __do_page_fault at c0434493 #5 [f06a9eec] do_page_fault at c083eb45 #6 [f06a9f04] error_code (via page_fault) at c083c5d5 EAX: 01fb470c EBX: fff35000 ECX: 00000003 EDX: 00000100 EBP: 00000000 DS: 007b ESI: 9e201000 ES: 007b EDI: 01fb4700 GS: 00e0 CS: 0060 EIP: c083bc14 ERR: ffffffff EFLAGS: 00010246 #7 [f06a9f38] _spin_lock at c083bc14 #8 [f06a9f44] sys_mincore at c0507b7d #9 [f06a9fb0] system_call at c083becd start len EAX: ffffffda EBX: 9e200000 ECX: 00001000 EDX: 6228537f DS: 007b ESI: 00000000 ES: 007b EDI: 003d0f00 SS: 007b ESP: 62285354 EBP: 62285388 GS: 0033 CS: 0073 EIP: 00291416 ERR: 000000da EFLAGS: 00000286 This should be a longstanding bug affecting x86 32bit PAE without THP. Only archs with 64bit large pmd_t and 32bit unsigned long should be affected. With THP enabled the barrier() in pmd_none_or_trans_huge_or_clear_bad() would partly hide the bug when the pmd transition from none to stable, by forcing a re-read of the *pmd in pmd_offset_map_lock, but when THP is enabled a new set of problem arises by the fact could then transition freely in any of the none, pmd_trans_huge or pmd_trans_stable states. So making the barrier in pmd_none_or_trans_huge_or_clear_bad() unconditional isn't good idea and it would be a flakey solution. This should be fully fixed by introducing a pmd_read_atomic that reads the pmd in order with THP disabled, or by reading the pmd atomically with cmpxchg8b with THP enabled. Luckily this new race condition only triggers in the places that must already be covered by pmd_none_or_trans_huge_or_clear_bad() so the fix is localized there but this bug is not related to THP. NOTE: this can trigger on x86 32bit systems with PAE enabled with more than 4G of ram, otherwise the high part of the pmd will never risk to be truncated because it would be zero at all times, in turn so hiding the SMP race. This bug was discovered and fully debugged by Ulrich, quote: ---- [..] pmd_none_or_trans_huge_or_clear_bad() loads the content of edx and eax. 496 static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd) 497 { 498 /* depend on compiler for an atomic pmd read */ 499 pmd_t pmdval = *pmd; // edi = pmd pointer 0xc0507a74 <sys_mincore+548>: mov 0x8(%esp),%edi ... // edx = PTE page table high address 0xc0507a84 <sys_mincore+564>: mov 0x4(%edi),%edx ... // eax = PTE page table low address 0xc0507a8e <sys_mincore+574>: mov (%edi),%eax [..] Please note that the PMD is not read atomically. These are two "mov" instructions where the high order bits of the PMD entry are fetched first. Hence, the above machine code is prone to the following race. - The PMD entry {high|low} is 0x0000000000000000. The "mov" at 0xc0507a84 loads 0x00000000 into edx. - A page fault (on another CPU) sneaks in between the two "mov" instructions and instantiates the PMD. - The PMD entry {high|low} is now 0x00000003fda38067. The "mov" at 0xc0507a8e loads 0xfda38067 into eax. ---- Reported-by: Ulrich Obergfell <uobergfe@redhat.com> Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Petr Matousek <pmatouse@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29 22:06:49 +00:00
#ifndef pmd_read_atomic
static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
{
/*
* Depend on compiler for an atomic pmd read. NOTE: this is
* only going to work, if the pmdval_t isn't larger than
* an unsigned long.
*/
return *pmdp;
}
#endif
#ifndef pmd_move_must_withdraw
static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
spinlock_t *old_pmd_ptl)
{
/*
* With split pmd lock we also need to move preallocated
* PTE page table if new_pmd is on different PMD page table.
*/
return new_pmd_ptl != old_pmd_ptl;
}
#endif
mm: thp: fix pmd_bad() triggering in code paths holding mmap_sem read mode In some cases it may happen that pmd_none_or_clear_bad() is called with the mmap_sem hold in read mode. In those cases the huge page faults can allocate hugepmds under pmd_none_or_clear_bad() and that can trigger a false positive from pmd_bad() that will not like to see a pmd materializing as trans huge. It's not khugepaged causing the problem, khugepaged holds the mmap_sem in write mode (and all those sites must hold the mmap_sem in read mode to prevent pagetables to go away from under them, during code review it seems vm86 mode on 32bit kernels requires that too unless it's restricted to 1 thread per process or UP builds). The race is only with the huge pagefaults that can convert a pmd_none() into a pmd_trans_huge(). Effectively all these pmd_none_or_clear_bad() sites running with mmap_sem in read mode are somewhat speculative with the page faults, and the result is always undefined when they run simultaneously. This is probably why it wasn't common to run into this. For example if the madvise(MADV_DONTNEED) runs zap_page_range() shortly before the page fault, the hugepage will not be zapped, if the page fault runs first it will be zapped. Altering pmd_bad() not to error out if it finds hugepmds won't be enough to fix this, because zap_pmd_range would then proceed to call zap_pte_range (which would be incorrect if the pmd become a pmd_trans_huge()). The simplest way to fix this is to read the pmd in the local stack (regardless of what we read, no need of actual CPU barriers, only compiler barrier needed), and be sure it is not changing under the code that computes its value. Even if the real pmd is changing under the value we hold on the stack, we don't care. If we actually end up in zap_pte_range it means the pmd was not none already and it was not huge, and it can't become huge from under us (khugepaged locking explained above). All we need is to enforce that there is no way anymore that in a code path like below, pmd_trans_huge can be false, but pmd_none_or_clear_bad can run into a hugepmd. The overhead of a barrier() is just a compiler tweak and should not be measurable (I only added it for THP builds). I don't exclude different compiler versions may have prevented the race too by caching the value of *pmd on the stack (that hasn't been verified, but it wouldn't be impossible considering pmd_none_or_clear_bad, pmd_bad, pmd_trans_huge, pmd_none are all inlines and there's no external function called in between pmd_trans_huge and pmd_none_or_clear_bad). if (pmd_trans_huge(*pmd)) { if (next-addr != HPAGE_PMD_SIZE) { VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem)); split_huge_page_pmd(vma->vm_mm, pmd); } else if (zap_huge_pmd(tlb, vma, pmd, addr)) continue; /* fall through */ } if (pmd_none_or_clear_bad(pmd)) Because this race condition could be exercised without special privileges this was reported in CVE-2012-1179. The race was identified and fully explained by Ulrich who debugged it. I'm quoting his accurate explanation below, for reference. ====== start quote ======= mapcount 0 page_mapcount 1 kernel BUG at mm/huge_memory.c:1384! At some point prior to the panic, a "bad pmd ..." message similar to the following is logged on the console: mm/memory.c:145: bad pmd ffff8800376e1f98(80000000314000e7). The "bad pmd ..." message is logged by pmd_clear_bad() before it clears the page's PMD table entry. 143 void pmd_clear_bad(pmd_t *pmd) 144 { -> 145 pmd_ERROR(*pmd); 146 pmd_clear(pmd); 147 } After the PMD table entry has been cleared, there is an inconsistency between the actual number of PMD table entries that are mapping the page and the page's map count (_mapcount field in struct page). When the page is subsequently reclaimed, __split_huge_page() detects this inconsistency. 1381 if (mapcount != page_mapcount(page)) 1382 printk(KERN_ERR "mapcount %d page_mapcount %d\n", 1383 mapcount, page_mapcount(page)); -> 1384 BUG_ON(mapcount != page_mapcount(page)); The root cause of the problem is a race of two threads in a multithreaded process. Thread B incurs a page fault on a virtual address that has never been accessed (PMD entry is zero) while Thread A is executing an madvise() system call on a virtual address within the same 2 MB (huge page) range. virtual address space .---------------------. | | | | .-|---------------------| | | | | | |<-- B(fault) | | | 2 MB | |/////////////////////|-. huge < |/////////////////////| > A(range) page | |/////////////////////|-' | | | | | | '-|---------------------| | | | | '---------------------' - Thread A is executing an madvise(..., MADV_DONTNEED) system call on the virtual address range "A(range)" shown in the picture. sys_madvise // Acquire the semaphore in shared mode. down_read(&current->mm->mmap_sem) ... madvise_vma switch (behavior) case MADV_DONTNEED: madvise_dontneed zap_page_range unmap_vmas unmap_page_range zap_pud_range zap_pmd_range // // Assume that this huge page has never been accessed. // I.e. content of the PMD entry is zero (not mapped). // if (pmd_trans_huge(*pmd)) { // We don't get here due to the above assumption. } // // Assume that Thread B incurred a page fault and .---------> // sneaks in here as shown below. | // | if (pmd_none_or_clear_bad(pmd)) | { | if (unlikely(pmd_bad(*pmd))) | pmd_clear_bad | { | pmd_ERROR | // Log "bad pmd ..." message here. | pmd_clear | // Clear the page's PMD entry. | // Thread B incremented the map count | // in page_add_new_anon_rmap(), but | // now the page is no longer mapped | // by a PMD entry (-> inconsistency). | } | } | v - Thread B is handling a page fault on virtual address "B(fault)" shown in the picture. ... do_page_fault __do_page_fault // Acquire the semaphore in shared mode. down_read_trylock(&mm->mmap_sem) ... handle_mm_fault if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) // We get here due to the above assumption (PMD entry is zero). do_huge_pmd_anonymous_page alloc_hugepage_vma // Allocate a new transparent huge page here. ... __do_huge_pmd_anonymous_page ... spin_lock(&mm->page_table_lock) ... page_add_new_anon_rmap // Here we increment the page's map count (starts at -1). atomic_set(&page->_mapcount, 0) set_pmd_at // Here we set the page's PMD entry which will be cleared // when Thread A calls pmd_clear_bad(). ... spin_unlock(&mm->page_table_lock) The mmap_sem does not prevent the race because both threads are acquiring it in shared mode (down_read). Thread B holds the page_table_lock while the page's map count and PMD table entry are updated. However, Thread A does not synchronize on that lock. ====== end quote ======= [akpm@linux-foundation.org: checkpatch fixes] Reported-by: Ulrich Obergfell <uobergfe@redhat.com> Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Jones <davej@redhat.com> Acked-by: Larry Woodman <lwoodman@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Cc: <stable@vger.kernel.org> [2.6.38+] Cc: Mark Salter <msalter@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 23:33:42 +00:00
/*
* This function is meant to be used by sites walking pagetables with
* the mmap_sem hold in read mode to protect against MADV_DONTNEED and
* transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
* into a null pmd and the transhuge page fault can convert a null pmd
* into an hugepmd or into a regular pmd (if the hugepage allocation
* fails). While holding the mmap_sem in read mode the pmd becomes
* stable and stops changing under us only if it's not null and not a
* transhuge pmd. When those races occurs and this function makes a
* difference vs the standard pmd_none_or_clear_bad, the result is
* undefined so behaving like if the pmd was none is safe (because it
* can return none anyway). The compiler level barrier() is critically
* important to compute the two checks atomically on the same pmdval.
mm: pmd_read_atomic: fix 32bit PAE pmd walk vs pmd_populate SMP race condition When holding the mmap_sem for reading, pmd_offset_map_lock should only run on a pmd_t that has been read atomically from the pmdp pointer, otherwise we may read only half of it leading to this crash. PID: 11679 TASK: f06e8000 CPU: 3 COMMAND: "do_race_2_panic" #0 [f06a9dd8] crash_kexec at c049b5ec #1 [f06a9e2c] oops_end at c083d1c2 #2 [f06a9e40] no_context at c0433ded #3 [f06a9e64] bad_area_nosemaphore at c043401a #4 [f06a9e6c] __do_page_fault at c0434493 #5 [f06a9eec] do_page_fault at c083eb45 #6 [f06a9f04] error_code (via page_fault) at c083c5d5 EAX: 01fb470c EBX: fff35000 ECX: 00000003 EDX: 00000100 EBP: 00000000 DS: 007b ESI: 9e201000 ES: 007b EDI: 01fb4700 GS: 00e0 CS: 0060 EIP: c083bc14 ERR: ffffffff EFLAGS: 00010246 #7 [f06a9f38] _spin_lock at c083bc14 #8 [f06a9f44] sys_mincore at c0507b7d #9 [f06a9fb0] system_call at c083becd start len EAX: ffffffda EBX: 9e200000 ECX: 00001000 EDX: 6228537f DS: 007b ESI: 00000000 ES: 007b EDI: 003d0f00 SS: 007b ESP: 62285354 EBP: 62285388 GS: 0033 CS: 0073 EIP: 00291416 ERR: 000000da EFLAGS: 00000286 This should be a longstanding bug affecting x86 32bit PAE without THP. Only archs with 64bit large pmd_t and 32bit unsigned long should be affected. With THP enabled the barrier() in pmd_none_or_trans_huge_or_clear_bad() would partly hide the bug when the pmd transition from none to stable, by forcing a re-read of the *pmd in pmd_offset_map_lock, but when THP is enabled a new set of problem arises by the fact could then transition freely in any of the none, pmd_trans_huge or pmd_trans_stable states. So making the barrier in pmd_none_or_trans_huge_or_clear_bad() unconditional isn't good idea and it would be a flakey solution. This should be fully fixed by introducing a pmd_read_atomic that reads the pmd in order with THP disabled, or by reading the pmd atomically with cmpxchg8b with THP enabled. Luckily this new race condition only triggers in the places that must already be covered by pmd_none_or_trans_huge_or_clear_bad() so the fix is localized there but this bug is not related to THP. NOTE: this can trigger on x86 32bit systems with PAE enabled with more than 4G of ram, otherwise the high part of the pmd will never risk to be truncated because it would be zero at all times, in turn so hiding the SMP race. This bug was discovered and fully debugged by Ulrich, quote: ---- [..] pmd_none_or_trans_huge_or_clear_bad() loads the content of edx and eax. 496 static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd) 497 { 498 /* depend on compiler for an atomic pmd read */ 499 pmd_t pmdval = *pmd; // edi = pmd pointer 0xc0507a74 <sys_mincore+548>: mov 0x8(%esp),%edi ... // edx = PTE page table high address 0xc0507a84 <sys_mincore+564>: mov 0x4(%edi),%edx ... // eax = PTE page table low address 0xc0507a8e <sys_mincore+574>: mov (%edi),%eax [..] Please note that the PMD is not read atomically. These are two "mov" instructions where the high order bits of the PMD entry are fetched first. Hence, the above machine code is prone to the following race. - The PMD entry {high|low} is 0x0000000000000000. The "mov" at 0xc0507a84 loads 0x00000000 into edx. - A page fault (on another CPU) sneaks in between the two "mov" instructions and instantiates the PMD. - The PMD entry {high|low} is now 0x00000003fda38067. The "mov" at 0xc0507a8e loads 0xfda38067 into eax. ---- Reported-by: Ulrich Obergfell <uobergfe@redhat.com> Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Petr Matousek <pmatouse@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29 22:06:49 +00:00
*
* For 32bit kernels with a 64bit large pmd_t this automatically takes
* care of reading the pmd atomically to avoid SMP race conditions
* against pmd_populate() when the mmap_sem is hold for reading by the
* caller (a special atomic read not done by "gcc" as in the generic
* version above, is also needed when THP is disabled because the page
* fault can populate the pmd from under us).
mm: thp: fix pmd_bad() triggering in code paths holding mmap_sem read mode In some cases it may happen that pmd_none_or_clear_bad() is called with the mmap_sem hold in read mode. In those cases the huge page faults can allocate hugepmds under pmd_none_or_clear_bad() and that can trigger a false positive from pmd_bad() that will not like to see a pmd materializing as trans huge. It's not khugepaged causing the problem, khugepaged holds the mmap_sem in write mode (and all those sites must hold the mmap_sem in read mode to prevent pagetables to go away from under them, during code review it seems vm86 mode on 32bit kernels requires that too unless it's restricted to 1 thread per process or UP builds). The race is only with the huge pagefaults that can convert a pmd_none() into a pmd_trans_huge(). Effectively all these pmd_none_or_clear_bad() sites running with mmap_sem in read mode are somewhat speculative with the page faults, and the result is always undefined when they run simultaneously. This is probably why it wasn't common to run into this. For example if the madvise(MADV_DONTNEED) runs zap_page_range() shortly before the page fault, the hugepage will not be zapped, if the page fault runs first it will be zapped. Altering pmd_bad() not to error out if it finds hugepmds won't be enough to fix this, because zap_pmd_range would then proceed to call zap_pte_range (which would be incorrect if the pmd become a pmd_trans_huge()). The simplest way to fix this is to read the pmd in the local stack (regardless of what we read, no need of actual CPU barriers, only compiler barrier needed), and be sure it is not changing under the code that computes its value. Even if the real pmd is changing under the value we hold on the stack, we don't care. If we actually end up in zap_pte_range it means the pmd was not none already and it was not huge, and it can't become huge from under us (khugepaged locking explained above). All we need is to enforce that there is no way anymore that in a code path like below, pmd_trans_huge can be false, but pmd_none_or_clear_bad can run into a hugepmd. The overhead of a barrier() is just a compiler tweak and should not be measurable (I only added it for THP builds). I don't exclude different compiler versions may have prevented the race too by caching the value of *pmd on the stack (that hasn't been verified, but it wouldn't be impossible considering pmd_none_or_clear_bad, pmd_bad, pmd_trans_huge, pmd_none are all inlines and there's no external function called in between pmd_trans_huge and pmd_none_or_clear_bad). if (pmd_trans_huge(*pmd)) { if (next-addr != HPAGE_PMD_SIZE) { VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem)); split_huge_page_pmd(vma->vm_mm, pmd); } else if (zap_huge_pmd(tlb, vma, pmd, addr)) continue; /* fall through */ } if (pmd_none_or_clear_bad(pmd)) Because this race condition could be exercised without special privileges this was reported in CVE-2012-1179. The race was identified and fully explained by Ulrich who debugged it. I'm quoting his accurate explanation below, for reference. ====== start quote ======= mapcount 0 page_mapcount 1 kernel BUG at mm/huge_memory.c:1384! At some point prior to the panic, a "bad pmd ..." message similar to the following is logged on the console: mm/memory.c:145: bad pmd ffff8800376e1f98(80000000314000e7). The "bad pmd ..." message is logged by pmd_clear_bad() before it clears the page's PMD table entry. 143 void pmd_clear_bad(pmd_t *pmd) 144 { -> 145 pmd_ERROR(*pmd); 146 pmd_clear(pmd); 147 } After the PMD table entry has been cleared, there is an inconsistency between the actual number of PMD table entries that are mapping the page and the page's map count (_mapcount field in struct page). When the page is subsequently reclaimed, __split_huge_page() detects this inconsistency. 1381 if (mapcount != page_mapcount(page)) 1382 printk(KERN_ERR "mapcount %d page_mapcount %d\n", 1383 mapcount, page_mapcount(page)); -> 1384 BUG_ON(mapcount != page_mapcount(page)); The root cause of the problem is a race of two threads in a multithreaded process. Thread B incurs a page fault on a virtual address that has never been accessed (PMD entry is zero) while Thread A is executing an madvise() system call on a virtual address within the same 2 MB (huge page) range. virtual address space .---------------------. | | | | .-|---------------------| | | | | | |<-- B(fault) | | | 2 MB | |/////////////////////|-. huge < |/////////////////////| > A(range) page | |/////////////////////|-' | | | | | | '-|---------------------| | | | | '---------------------' - Thread A is executing an madvise(..., MADV_DONTNEED) system call on the virtual address range "A(range)" shown in the picture. sys_madvise // Acquire the semaphore in shared mode. down_read(&current->mm->mmap_sem) ... madvise_vma switch (behavior) case MADV_DONTNEED: madvise_dontneed zap_page_range unmap_vmas unmap_page_range zap_pud_range zap_pmd_range // // Assume that this huge page has never been accessed. // I.e. content of the PMD entry is zero (not mapped). // if (pmd_trans_huge(*pmd)) { // We don't get here due to the above assumption. } // // Assume that Thread B incurred a page fault and .---------> // sneaks in here as shown below. | // | if (pmd_none_or_clear_bad(pmd)) | { | if (unlikely(pmd_bad(*pmd))) | pmd_clear_bad | { | pmd_ERROR | // Log "bad pmd ..." message here. | pmd_clear | // Clear the page's PMD entry. | // Thread B incremented the map count | // in page_add_new_anon_rmap(), but | // now the page is no longer mapped | // by a PMD entry (-> inconsistency). | } | } | v - Thread B is handling a page fault on virtual address "B(fault)" shown in the picture. ... do_page_fault __do_page_fault // Acquire the semaphore in shared mode. down_read_trylock(&mm->mmap_sem) ... handle_mm_fault if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) // We get here due to the above assumption (PMD entry is zero). do_huge_pmd_anonymous_page alloc_hugepage_vma // Allocate a new transparent huge page here. ... __do_huge_pmd_anonymous_page ... spin_lock(&mm->page_table_lock) ... page_add_new_anon_rmap // Here we increment the page's map count (starts at -1). atomic_set(&page->_mapcount, 0) set_pmd_at // Here we set the page's PMD entry which will be cleared // when Thread A calls pmd_clear_bad(). ... spin_unlock(&mm->page_table_lock) The mmap_sem does not prevent the race because both threads are acquiring it in shared mode (down_read). Thread B holds the page_table_lock while the page's map count and PMD table entry are updated. However, Thread A does not synchronize on that lock. ====== end quote ======= [akpm@linux-foundation.org: checkpatch fixes] Reported-by: Ulrich Obergfell <uobergfe@redhat.com> Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Jones <davej@redhat.com> Acked-by: Larry Woodman <lwoodman@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Cc: <stable@vger.kernel.org> [2.6.38+] Cc: Mark Salter <msalter@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 23:33:42 +00:00
*/
static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
{
mm: pmd_read_atomic: fix 32bit PAE pmd walk vs pmd_populate SMP race condition When holding the mmap_sem for reading, pmd_offset_map_lock should only run on a pmd_t that has been read atomically from the pmdp pointer, otherwise we may read only half of it leading to this crash. PID: 11679 TASK: f06e8000 CPU: 3 COMMAND: "do_race_2_panic" #0 [f06a9dd8] crash_kexec at c049b5ec #1 [f06a9e2c] oops_end at c083d1c2 #2 [f06a9e40] no_context at c0433ded #3 [f06a9e64] bad_area_nosemaphore at c043401a #4 [f06a9e6c] __do_page_fault at c0434493 #5 [f06a9eec] do_page_fault at c083eb45 #6 [f06a9f04] error_code (via page_fault) at c083c5d5 EAX: 01fb470c EBX: fff35000 ECX: 00000003 EDX: 00000100 EBP: 00000000 DS: 007b ESI: 9e201000 ES: 007b EDI: 01fb4700 GS: 00e0 CS: 0060 EIP: c083bc14 ERR: ffffffff EFLAGS: 00010246 #7 [f06a9f38] _spin_lock at c083bc14 #8 [f06a9f44] sys_mincore at c0507b7d #9 [f06a9fb0] system_call at c083becd start len EAX: ffffffda EBX: 9e200000 ECX: 00001000 EDX: 6228537f DS: 007b ESI: 00000000 ES: 007b EDI: 003d0f00 SS: 007b ESP: 62285354 EBP: 62285388 GS: 0033 CS: 0073 EIP: 00291416 ERR: 000000da EFLAGS: 00000286 This should be a longstanding bug affecting x86 32bit PAE without THP. Only archs with 64bit large pmd_t and 32bit unsigned long should be affected. With THP enabled the barrier() in pmd_none_or_trans_huge_or_clear_bad() would partly hide the bug when the pmd transition from none to stable, by forcing a re-read of the *pmd in pmd_offset_map_lock, but when THP is enabled a new set of problem arises by the fact could then transition freely in any of the none, pmd_trans_huge or pmd_trans_stable states. So making the barrier in pmd_none_or_trans_huge_or_clear_bad() unconditional isn't good idea and it would be a flakey solution. This should be fully fixed by introducing a pmd_read_atomic that reads the pmd in order with THP disabled, or by reading the pmd atomically with cmpxchg8b with THP enabled. Luckily this new race condition only triggers in the places that must already be covered by pmd_none_or_trans_huge_or_clear_bad() so the fix is localized there but this bug is not related to THP. NOTE: this can trigger on x86 32bit systems with PAE enabled with more than 4G of ram, otherwise the high part of the pmd will never risk to be truncated because it would be zero at all times, in turn so hiding the SMP race. This bug was discovered and fully debugged by Ulrich, quote: ---- [..] pmd_none_or_trans_huge_or_clear_bad() loads the content of edx and eax. 496 static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd) 497 { 498 /* depend on compiler for an atomic pmd read */ 499 pmd_t pmdval = *pmd; // edi = pmd pointer 0xc0507a74 <sys_mincore+548>: mov 0x8(%esp),%edi ... // edx = PTE page table high address 0xc0507a84 <sys_mincore+564>: mov 0x4(%edi),%edx ... // eax = PTE page table low address 0xc0507a8e <sys_mincore+574>: mov (%edi),%eax [..] Please note that the PMD is not read atomically. These are two "mov" instructions where the high order bits of the PMD entry are fetched first. Hence, the above machine code is prone to the following race. - The PMD entry {high|low} is 0x0000000000000000. The "mov" at 0xc0507a84 loads 0x00000000 into edx. - A page fault (on another CPU) sneaks in between the two "mov" instructions and instantiates the PMD. - The PMD entry {high|low} is now 0x00000003fda38067. The "mov" at 0xc0507a8e loads 0xfda38067 into eax. ---- Reported-by: Ulrich Obergfell <uobergfe@redhat.com> Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Petr Matousek <pmatouse@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29 22:06:49 +00:00
pmd_t pmdval = pmd_read_atomic(pmd);
mm: thp: fix pmd_bad() triggering in code paths holding mmap_sem read mode In some cases it may happen that pmd_none_or_clear_bad() is called with the mmap_sem hold in read mode. In those cases the huge page faults can allocate hugepmds under pmd_none_or_clear_bad() and that can trigger a false positive from pmd_bad() that will not like to see a pmd materializing as trans huge. It's not khugepaged causing the problem, khugepaged holds the mmap_sem in write mode (and all those sites must hold the mmap_sem in read mode to prevent pagetables to go away from under them, during code review it seems vm86 mode on 32bit kernels requires that too unless it's restricted to 1 thread per process or UP builds). The race is only with the huge pagefaults that can convert a pmd_none() into a pmd_trans_huge(). Effectively all these pmd_none_or_clear_bad() sites running with mmap_sem in read mode are somewhat speculative with the page faults, and the result is always undefined when they run simultaneously. This is probably why it wasn't common to run into this. For example if the madvise(MADV_DONTNEED) runs zap_page_range() shortly before the page fault, the hugepage will not be zapped, if the page fault runs first it will be zapped. Altering pmd_bad() not to error out if it finds hugepmds won't be enough to fix this, because zap_pmd_range would then proceed to call zap_pte_range (which would be incorrect if the pmd become a pmd_trans_huge()). The simplest way to fix this is to read the pmd in the local stack (regardless of what we read, no need of actual CPU barriers, only compiler barrier needed), and be sure it is not changing under the code that computes its value. Even if the real pmd is changing under the value we hold on the stack, we don't care. If we actually end up in zap_pte_range it means the pmd was not none already and it was not huge, and it can't become huge from under us (khugepaged locking explained above). All we need is to enforce that there is no way anymore that in a code path like below, pmd_trans_huge can be false, but pmd_none_or_clear_bad can run into a hugepmd. The overhead of a barrier() is just a compiler tweak and should not be measurable (I only added it for THP builds). I don't exclude different compiler versions may have prevented the race too by caching the value of *pmd on the stack (that hasn't been verified, but it wouldn't be impossible considering pmd_none_or_clear_bad, pmd_bad, pmd_trans_huge, pmd_none are all inlines and there's no external function called in between pmd_trans_huge and pmd_none_or_clear_bad). if (pmd_trans_huge(*pmd)) { if (next-addr != HPAGE_PMD_SIZE) { VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem)); split_huge_page_pmd(vma->vm_mm, pmd); } else if (zap_huge_pmd(tlb, vma, pmd, addr)) continue; /* fall through */ } if (pmd_none_or_clear_bad(pmd)) Because this race condition could be exercised without special privileges this was reported in CVE-2012-1179. The race was identified and fully explained by Ulrich who debugged it. I'm quoting his accurate explanation below, for reference. ====== start quote ======= mapcount 0 page_mapcount 1 kernel BUG at mm/huge_memory.c:1384! At some point prior to the panic, a "bad pmd ..." message similar to the following is logged on the console: mm/memory.c:145: bad pmd ffff8800376e1f98(80000000314000e7). The "bad pmd ..." message is logged by pmd_clear_bad() before it clears the page's PMD table entry. 143 void pmd_clear_bad(pmd_t *pmd) 144 { -> 145 pmd_ERROR(*pmd); 146 pmd_clear(pmd); 147 } After the PMD table entry has been cleared, there is an inconsistency between the actual number of PMD table entries that are mapping the page and the page's map count (_mapcount field in struct page). When the page is subsequently reclaimed, __split_huge_page() detects this inconsistency. 1381 if (mapcount != page_mapcount(page)) 1382 printk(KERN_ERR "mapcount %d page_mapcount %d\n", 1383 mapcount, page_mapcount(page)); -> 1384 BUG_ON(mapcount != page_mapcount(page)); The root cause of the problem is a race of two threads in a multithreaded process. Thread B incurs a page fault on a virtual address that has never been accessed (PMD entry is zero) while Thread A is executing an madvise() system call on a virtual address within the same 2 MB (huge page) range. virtual address space .---------------------. | | | | .-|---------------------| | | | | | |<-- B(fault) | | | 2 MB | |/////////////////////|-. huge < |/////////////////////| > A(range) page | |/////////////////////|-' | | | | | | '-|---------------------| | | | | '---------------------' - Thread A is executing an madvise(..., MADV_DONTNEED) system call on the virtual address range "A(range)" shown in the picture. sys_madvise // Acquire the semaphore in shared mode. down_read(&current->mm->mmap_sem) ... madvise_vma switch (behavior) case MADV_DONTNEED: madvise_dontneed zap_page_range unmap_vmas unmap_page_range zap_pud_range zap_pmd_range // // Assume that this huge page has never been accessed. // I.e. content of the PMD entry is zero (not mapped). // if (pmd_trans_huge(*pmd)) { // We don't get here due to the above assumption. } // // Assume that Thread B incurred a page fault and .---------> // sneaks in here as shown below. | // | if (pmd_none_or_clear_bad(pmd)) | { | if (unlikely(pmd_bad(*pmd))) | pmd_clear_bad | { | pmd_ERROR | // Log "bad pmd ..." message here. | pmd_clear | // Clear the page's PMD entry. | // Thread B incremented the map count | // in page_add_new_anon_rmap(), but | // now the page is no longer mapped | // by a PMD entry (-> inconsistency). | } | } | v - Thread B is handling a page fault on virtual address "B(fault)" shown in the picture. ... do_page_fault __do_page_fault // Acquire the semaphore in shared mode. down_read_trylock(&mm->mmap_sem) ... handle_mm_fault if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) // We get here due to the above assumption (PMD entry is zero). do_huge_pmd_anonymous_page alloc_hugepage_vma // Allocate a new transparent huge page here. ... __do_huge_pmd_anonymous_page ... spin_lock(&mm->page_table_lock) ... page_add_new_anon_rmap // Here we increment the page's map count (starts at -1). atomic_set(&page->_mapcount, 0) set_pmd_at // Here we set the page's PMD entry which will be cleared // when Thread A calls pmd_clear_bad(). ... spin_unlock(&mm->page_table_lock) The mmap_sem does not prevent the race because both threads are acquiring it in shared mode (down_read). Thread B holds the page_table_lock while the page's map count and PMD table entry are updated. However, Thread A does not synchronize on that lock. ====== end quote ======= [akpm@linux-foundation.org: checkpatch fixes] Reported-by: Ulrich Obergfell <uobergfe@redhat.com> Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Jones <davej@redhat.com> Acked-by: Larry Woodman <lwoodman@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Cc: <stable@vger.kernel.org> [2.6.38+] Cc: Mark Salter <msalter@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 23:33:42 +00:00
/*
* The barrier will stabilize the pmdval in a register or on
* the stack so that it will stop changing under the code.
thp: avoid atomic64_read in pmd_read_atomic for 32bit PAE In the x86 32bit PAE CONFIG_TRANSPARENT_HUGEPAGE=y case while holding the mmap_sem for reading, cmpxchg8b cannot be used to read pmd contents under Xen. So instead of dealing only with "consistent" pmdvals in pmd_none_or_trans_huge_or_clear_bad() (which would be conceptually simpler) we let pmd_none_or_trans_huge_or_clear_bad() deal with pmdvals where the low 32bit and high 32bit could be inconsistent (to avoid having to use cmpxchg8b). The only guarantee we get from pmd_read_atomic is that if the low part of the pmd was found null, the high part will be null too (so the pmd will be considered unstable). And if the low part of the pmd is found "stable" later, then it means the whole pmd was read atomically (because after a pmd is stable, neither MADV_DONTNEED nor page faults can alter it anymore, and we read the high part after the low part). In the 32bit PAE x86 case, it is enough to read the low part of the pmdval atomically to declare the pmd as "stable" and that's true for THP and no THP, furthermore in the THP case we also have a barrier() that will prevent any inconsistent pmdvals to be cached by a later re-read of the *pmd. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Jonathan Nieder <jrnieder@gmail.com> Cc: Ulrich Obergfell <uobergfe@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Petr Matousek <pmatouse@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Jan Beulich <jbeulich@suse.com> Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com> Tested-by: Andrew Jones <drjones@redhat.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-06-20 19:52:57 +00:00
*
* When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
* pmd_read_atomic is allowed to return a not atomic pmdval
* (for example pointing to an hugepage that has never been
* mapped in the pmd). The below checks will only care about
* the low part of the pmd with 32bit PAE x86 anyway, with the
* exception of pmd_none(). So the important thing is that if
* the low part of the pmd is found null, the high part will
* be also null or the pmd_none() check below would be
* confused.
mm: thp: fix pmd_bad() triggering in code paths holding mmap_sem read mode In some cases it may happen that pmd_none_or_clear_bad() is called with the mmap_sem hold in read mode. In those cases the huge page faults can allocate hugepmds under pmd_none_or_clear_bad() and that can trigger a false positive from pmd_bad() that will not like to see a pmd materializing as trans huge. It's not khugepaged causing the problem, khugepaged holds the mmap_sem in write mode (and all those sites must hold the mmap_sem in read mode to prevent pagetables to go away from under them, during code review it seems vm86 mode on 32bit kernels requires that too unless it's restricted to 1 thread per process or UP builds). The race is only with the huge pagefaults that can convert a pmd_none() into a pmd_trans_huge(). Effectively all these pmd_none_or_clear_bad() sites running with mmap_sem in read mode are somewhat speculative with the page faults, and the result is always undefined when they run simultaneously. This is probably why it wasn't common to run into this. For example if the madvise(MADV_DONTNEED) runs zap_page_range() shortly before the page fault, the hugepage will not be zapped, if the page fault runs first it will be zapped. Altering pmd_bad() not to error out if it finds hugepmds won't be enough to fix this, because zap_pmd_range would then proceed to call zap_pte_range (which would be incorrect if the pmd become a pmd_trans_huge()). The simplest way to fix this is to read the pmd in the local stack (regardless of what we read, no need of actual CPU barriers, only compiler barrier needed), and be sure it is not changing under the code that computes its value. Even if the real pmd is changing under the value we hold on the stack, we don't care. If we actually end up in zap_pte_range it means the pmd was not none already and it was not huge, and it can't become huge from under us (khugepaged locking explained above). All we need is to enforce that there is no way anymore that in a code path like below, pmd_trans_huge can be false, but pmd_none_or_clear_bad can run into a hugepmd. The overhead of a barrier() is just a compiler tweak and should not be measurable (I only added it for THP builds). I don't exclude different compiler versions may have prevented the race too by caching the value of *pmd on the stack (that hasn't been verified, but it wouldn't be impossible considering pmd_none_or_clear_bad, pmd_bad, pmd_trans_huge, pmd_none are all inlines and there's no external function called in between pmd_trans_huge and pmd_none_or_clear_bad). if (pmd_trans_huge(*pmd)) { if (next-addr != HPAGE_PMD_SIZE) { VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem)); split_huge_page_pmd(vma->vm_mm, pmd); } else if (zap_huge_pmd(tlb, vma, pmd, addr)) continue; /* fall through */ } if (pmd_none_or_clear_bad(pmd)) Because this race condition could be exercised without special privileges this was reported in CVE-2012-1179. The race was identified and fully explained by Ulrich who debugged it. I'm quoting his accurate explanation below, for reference. ====== start quote ======= mapcount 0 page_mapcount 1 kernel BUG at mm/huge_memory.c:1384! At some point prior to the panic, a "bad pmd ..." message similar to the following is logged on the console: mm/memory.c:145: bad pmd ffff8800376e1f98(80000000314000e7). The "bad pmd ..." message is logged by pmd_clear_bad() before it clears the page's PMD table entry. 143 void pmd_clear_bad(pmd_t *pmd) 144 { -> 145 pmd_ERROR(*pmd); 146 pmd_clear(pmd); 147 } After the PMD table entry has been cleared, there is an inconsistency between the actual number of PMD table entries that are mapping the page and the page's map count (_mapcount field in struct page). When the page is subsequently reclaimed, __split_huge_page() detects this inconsistency. 1381 if (mapcount != page_mapcount(page)) 1382 printk(KERN_ERR "mapcount %d page_mapcount %d\n", 1383 mapcount, page_mapcount(page)); -> 1384 BUG_ON(mapcount != page_mapcount(page)); The root cause of the problem is a race of two threads in a multithreaded process. Thread B incurs a page fault on a virtual address that has never been accessed (PMD entry is zero) while Thread A is executing an madvise() system call on a virtual address within the same 2 MB (huge page) range. virtual address space .---------------------. | | | | .-|---------------------| | | | | | |<-- B(fault) | | | 2 MB | |/////////////////////|-. huge < |/////////////////////| > A(range) page | |/////////////////////|-' | | | | | | '-|---------------------| | | | | '---------------------' - Thread A is executing an madvise(..., MADV_DONTNEED) system call on the virtual address range "A(range)" shown in the picture. sys_madvise // Acquire the semaphore in shared mode. down_read(&current->mm->mmap_sem) ... madvise_vma switch (behavior) case MADV_DONTNEED: madvise_dontneed zap_page_range unmap_vmas unmap_page_range zap_pud_range zap_pmd_range // // Assume that this huge page has never been accessed. // I.e. content of the PMD entry is zero (not mapped). // if (pmd_trans_huge(*pmd)) { // We don't get here due to the above assumption. } // // Assume that Thread B incurred a page fault and .---------> // sneaks in here as shown below. | // | if (pmd_none_or_clear_bad(pmd)) | { | if (unlikely(pmd_bad(*pmd))) | pmd_clear_bad | { | pmd_ERROR | // Log "bad pmd ..." message here. | pmd_clear | // Clear the page's PMD entry. | // Thread B incremented the map count | // in page_add_new_anon_rmap(), but | // now the page is no longer mapped | // by a PMD entry (-> inconsistency). | } | } | v - Thread B is handling a page fault on virtual address "B(fault)" shown in the picture. ... do_page_fault __do_page_fault // Acquire the semaphore in shared mode. down_read_trylock(&mm->mmap_sem) ... handle_mm_fault if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) // We get here due to the above assumption (PMD entry is zero). do_huge_pmd_anonymous_page alloc_hugepage_vma // Allocate a new transparent huge page here. ... __do_huge_pmd_anonymous_page ... spin_lock(&mm->page_table_lock) ... page_add_new_anon_rmap // Here we increment the page's map count (starts at -1). atomic_set(&page->_mapcount, 0) set_pmd_at // Here we set the page's PMD entry which will be cleared // when Thread A calls pmd_clear_bad(). ... spin_unlock(&mm->page_table_lock) The mmap_sem does not prevent the race because both threads are acquiring it in shared mode (down_read). Thread B holds the page_table_lock while the page's map count and PMD table entry are updated. However, Thread A does not synchronize on that lock. ====== end quote ======= [akpm@linux-foundation.org: checkpatch fixes] Reported-by: Ulrich Obergfell <uobergfe@redhat.com> Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Jones <davej@redhat.com> Acked-by: Larry Woodman <lwoodman@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Cc: <stable@vger.kernel.org> [2.6.38+] Cc: Mark Salter <msalter@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 23:33:42 +00:00
*/
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
barrier();
#endif
if (pmd_none(pmdval) || pmd_trans_huge(pmdval))
mm: thp: fix pmd_bad() triggering in code paths holding mmap_sem read mode In some cases it may happen that pmd_none_or_clear_bad() is called with the mmap_sem hold in read mode. In those cases the huge page faults can allocate hugepmds under pmd_none_or_clear_bad() and that can trigger a false positive from pmd_bad() that will not like to see a pmd materializing as trans huge. It's not khugepaged causing the problem, khugepaged holds the mmap_sem in write mode (and all those sites must hold the mmap_sem in read mode to prevent pagetables to go away from under them, during code review it seems vm86 mode on 32bit kernels requires that too unless it's restricted to 1 thread per process or UP builds). The race is only with the huge pagefaults that can convert a pmd_none() into a pmd_trans_huge(). Effectively all these pmd_none_or_clear_bad() sites running with mmap_sem in read mode are somewhat speculative with the page faults, and the result is always undefined when they run simultaneously. This is probably why it wasn't common to run into this. For example if the madvise(MADV_DONTNEED) runs zap_page_range() shortly before the page fault, the hugepage will not be zapped, if the page fault runs first it will be zapped. Altering pmd_bad() not to error out if it finds hugepmds won't be enough to fix this, because zap_pmd_range would then proceed to call zap_pte_range (which would be incorrect if the pmd become a pmd_trans_huge()). The simplest way to fix this is to read the pmd in the local stack (regardless of what we read, no need of actual CPU barriers, only compiler barrier needed), and be sure it is not changing under the code that computes its value. Even if the real pmd is changing under the value we hold on the stack, we don't care. If we actually end up in zap_pte_range it means the pmd was not none already and it was not huge, and it can't become huge from under us (khugepaged locking explained above). All we need is to enforce that there is no way anymore that in a code path like below, pmd_trans_huge can be false, but pmd_none_or_clear_bad can run into a hugepmd. The overhead of a barrier() is just a compiler tweak and should not be measurable (I only added it for THP builds). I don't exclude different compiler versions may have prevented the race too by caching the value of *pmd on the stack (that hasn't been verified, but it wouldn't be impossible considering pmd_none_or_clear_bad, pmd_bad, pmd_trans_huge, pmd_none are all inlines and there's no external function called in between pmd_trans_huge and pmd_none_or_clear_bad). if (pmd_trans_huge(*pmd)) { if (next-addr != HPAGE_PMD_SIZE) { VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem)); split_huge_page_pmd(vma->vm_mm, pmd); } else if (zap_huge_pmd(tlb, vma, pmd, addr)) continue; /* fall through */ } if (pmd_none_or_clear_bad(pmd)) Because this race condition could be exercised without special privileges this was reported in CVE-2012-1179. The race was identified and fully explained by Ulrich who debugged it. I'm quoting his accurate explanation below, for reference. ====== start quote ======= mapcount 0 page_mapcount 1 kernel BUG at mm/huge_memory.c:1384! At some point prior to the panic, a "bad pmd ..." message similar to the following is logged on the console: mm/memory.c:145: bad pmd ffff8800376e1f98(80000000314000e7). The "bad pmd ..." message is logged by pmd_clear_bad() before it clears the page's PMD table entry. 143 void pmd_clear_bad(pmd_t *pmd) 144 { -> 145 pmd_ERROR(*pmd); 146 pmd_clear(pmd); 147 } After the PMD table entry has been cleared, there is an inconsistency between the actual number of PMD table entries that are mapping the page and the page's map count (_mapcount field in struct page). When the page is subsequently reclaimed, __split_huge_page() detects this inconsistency. 1381 if (mapcount != page_mapcount(page)) 1382 printk(KERN_ERR "mapcount %d page_mapcount %d\n", 1383 mapcount, page_mapcount(page)); -> 1384 BUG_ON(mapcount != page_mapcount(page)); The root cause of the problem is a race of two threads in a multithreaded process. Thread B incurs a page fault on a virtual address that has never been accessed (PMD entry is zero) while Thread A is executing an madvise() system call on a virtual address within the same 2 MB (huge page) range. virtual address space .---------------------. | | | | .-|---------------------| | | | | | |<-- B(fault) | | | 2 MB | |/////////////////////|-. huge < |/////////////////////| > A(range) page | |/////////////////////|-' | | | | | | '-|---------------------| | | | | '---------------------' - Thread A is executing an madvise(..., MADV_DONTNEED) system call on the virtual address range "A(range)" shown in the picture. sys_madvise // Acquire the semaphore in shared mode. down_read(&current->mm->mmap_sem) ... madvise_vma switch (behavior) case MADV_DONTNEED: madvise_dontneed zap_page_range unmap_vmas unmap_page_range zap_pud_range zap_pmd_range // // Assume that this huge page has never been accessed. // I.e. content of the PMD entry is zero (not mapped). // if (pmd_trans_huge(*pmd)) { // We don't get here due to the above assumption. } // // Assume that Thread B incurred a page fault and .---------> // sneaks in here as shown below. | // | if (pmd_none_or_clear_bad(pmd)) | { | if (unlikely(pmd_bad(*pmd))) | pmd_clear_bad | { | pmd_ERROR | // Log "bad pmd ..." message here. | pmd_clear | // Clear the page's PMD entry. | // Thread B incremented the map count | // in page_add_new_anon_rmap(), but | // now the page is no longer mapped | // by a PMD entry (-> inconsistency). | } | } | v - Thread B is handling a page fault on virtual address "B(fault)" shown in the picture. ... do_page_fault __do_page_fault // Acquire the semaphore in shared mode. down_read_trylock(&mm->mmap_sem) ... handle_mm_fault if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) // We get here due to the above assumption (PMD entry is zero). do_huge_pmd_anonymous_page alloc_hugepage_vma // Allocate a new transparent huge page here. ... __do_huge_pmd_anonymous_page ... spin_lock(&mm->page_table_lock) ... page_add_new_anon_rmap // Here we increment the page's map count (starts at -1). atomic_set(&page->_mapcount, 0) set_pmd_at // Here we set the page's PMD entry which will be cleared // when Thread A calls pmd_clear_bad(). ... spin_unlock(&mm->page_table_lock) The mmap_sem does not prevent the race because both threads are acquiring it in shared mode (down_read). Thread B holds the page_table_lock while the page's map count and PMD table entry are updated. However, Thread A does not synchronize on that lock. ====== end quote ======= [akpm@linux-foundation.org: checkpatch fixes] Reported-by: Ulrich Obergfell <uobergfe@redhat.com> Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Jones <davej@redhat.com> Acked-by: Larry Woodman <lwoodman@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Cc: <stable@vger.kernel.org> [2.6.38+] Cc: Mark Salter <msalter@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 23:33:42 +00:00
return 1;
if (unlikely(pmd_bad(pmdval))) {
pmd_clear_bad(pmd);
mm: thp: fix pmd_bad() triggering in code paths holding mmap_sem read mode In some cases it may happen that pmd_none_or_clear_bad() is called with the mmap_sem hold in read mode. In those cases the huge page faults can allocate hugepmds under pmd_none_or_clear_bad() and that can trigger a false positive from pmd_bad() that will not like to see a pmd materializing as trans huge. It's not khugepaged causing the problem, khugepaged holds the mmap_sem in write mode (and all those sites must hold the mmap_sem in read mode to prevent pagetables to go away from under them, during code review it seems vm86 mode on 32bit kernels requires that too unless it's restricted to 1 thread per process or UP builds). The race is only with the huge pagefaults that can convert a pmd_none() into a pmd_trans_huge(). Effectively all these pmd_none_or_clear_bad() sites running with mmap_sem in read mode are somewhat speculative with the page faults, and the result is always undefined when they run simultaneously. This is probably why it wasn't common to run into this. For example if the madvise(MADV_DONTNEED) runs zap_page_range() shortly before the page fault, the hugepage will not be zapped, if the page fault runs first it will be zapped. Altering pmd_bad() not to error out if it finds hugepmds won't be enough to fix this, because zap_pmd_range would then proceed to call zap_pte_range (which would be incorrect if the pmd become a pmd_trans_huge()). The simplest way to fix this is to read the pmd in the local stack (regardless of what we read, no need of actual CPU barriers, only compiler barrier needed), and be sure it is not changing under the code that computes its value. Even if the real pmd is changing under the value we hold on the stack, we don't care. If we actually end up in zap_pte_range it means the pmd was not none already and it was not huge, and it can't become huge from under us (khugepaged locking explained above). All we need is to enforce that there is no way anymore that in a code path like below, pmd_trans_huge can be false, but pmd_none_or_clear_bad can run into a hugepmd. The overhead of a barrier() is just a compiler tweak and should not be measurable (I only added it for THP builds). I don't exclude different compiler versions may have prevented the race too by caching the value of *pmd on the stack (that hasn't been verified, but it wouldn't be impossible considering pmd_none_or_clear_bad, pmd_bad, pmd_trans_huge, pmd_none are all inlines and there's no external function called in between pmd_trans_huge and pmd_none_or_clear_bad). if (pmd_trans_huge(*pmd)) { if (next-addr != HPAGE_PMD_SIZE) { VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem)); split_huge_page_pmd(vma->vm_mm, pmd); } else if (zap_huge_pmd(tlb, vma, pmd, addr)) continue; /* fall through */ } if (pmd_none_or_clear_bad(pmd)) Because this race condition could be exercised without special privileges this was reported in CVE-2012-1179. The race was identified and fully explained by Ulrich who debugged it. I'm quoting his accurate explanation below, for reference. ====== start quote ======= mapcount 0 page_mapcount 1 kernel BUG at mm/huge_memory.c:1384! At some point prior to the panic, a "bad pmd ..." message similar to the following is logged on the console: mm/memory.c:145: bad pmd ffff8800376e1f98(80000000314000e7). The "bad pmd ..." message is logged by pmd_clear_bad() before it clears the page's PMD table entry. 143 void pmd_clear_bad(pmd_t *pmd) 144 { -> 145 pmd_ERROR(*pmd); 146 pmd_clear(pmd); 147 } After the PMD table entry has been cleared, there is an inconsistency between the actual number of PMD table entries that are mapping the page and the page's map count (_mapcount field in struct page). When the page is subsequently reclaimed, __split_huge_page() detects this inconsistency. 1381 if (mapcount != page_mapcount(page)) 1382 printk(KERN_ERR "mapcount %d page_mapcount %d\n", 1383 mapcount, page_mapcount(page)); -> 1384 BUG_ON(mapcount != page_mapcount(page)); The root cause of the problem is a race of two threads in a multithreaded process. Thread B incurs a page fault on a virtual address that has never been accessed (PMD entry is zero) while Thread A is executing an madvise() system call on a virtual address within the same 2 MB (huge page) range. virtual address space .---------------------. | | | | .-|---------------------| | | | | | |<-- B(fault) | | | 2 MB | |/////////////////////|-. huge < |/////////////////////| > A(range) page | |/////////////////////|-' | | | | | | '-|---------------------| | | | | '---------------------' - Thread A is executing an madvise(..., MADV_DONTNEED) system call on the virtual address range "A(range)" shown in the picture. sys_madvise // Acquire the semaphore in shared mode. down_read(&current->mm->mmap_sem) ... madvise_vma switch (behavior) case MADV_DONTNEED: madvise_dontneed zap_page_range unmap_vmas unmap_page_range zap_pud_range zap_pmd_range // // Assume that this huge page has never been accessed. // I.e. content of the PMD entry is zero (not mapped). // if (pmd_trans_huge(*pmd)) { // We don't get here due to the above assumption. } // // Assume that Thread B incurred a page fault and .---------> // sneaks in here as shown below. | // | if (pmd_none_or_clear_bad(pmd)) | { | if (unlikely(pmd_bad(*pmd))) | pmd_clear_bad | { | pmd_ERROR | // Log "bad pmd ..." message here. | pmd_clear | // Clear the page's PMD entry. | // Thread B incremented the map count | // in page_add_new_anon_rmap(), but | // now the page is no longer mapped | // by a PMD entry (-> inconsistency). | } | } | v - Thread B is handling a page fault on virtual address "B(fault)" shown in the picture. ... do_page_fault __do_page_fault // Acquire the semaphore in shared mode. down_read_trylock(&mm->mmap_sem) ... handle_mm_fault if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) // We get here due to the above assumption (PMD entry is zero). do_huge_pmd_anonymous_page alloc_hugepage_vma // Allocate a new transparent huge page here. ... __do_huge_pmd_anonymous_page ... spin_lock(&mm->page_table_lock) ... page_add_new_anon_rmap // Here we increment the page's map count (starts at -1). atomic_set(&page->_mapcount, 0) set_pmd_at // Here we set the page's PMD entry which will be cleared // when Thread A calls pmd_clear_bad(). ... spin_unlock(&mm->page_table_lock) The mmap_sem does not prevent the race because both threads are acquiring it in shared mode (down_read). Thread B holds the page_table_lock while the page's map count and PMD table entry are updated. However, Thread A does not synchronize on that lock. ====== end quote ======= [akpm@linux-foundation.org: checkpatch fixes] Reported-by: Ulrich Obergfell <uobergfe@redhat.com> Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Jones <davej@redhat.com> Acked-by: Larry Woodman <lwoodman@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Cc: <stable@vger.kernel.org> [2.6.38+] Cc: Mark Salter <msalter@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 23:33:42 +00:00
return 1;
}
return 0;
}
/*
* This is a noop if Transparent Hugepage Support is not built into
* the kernel. Otherwise it is equivalent to
* pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
* places that already verified the pmd is not none and they want to
* walk ptes while holding the mmap sem in read mode (write mode don't
* need this). If THP is not enabled, the pmd can't go away under the
* code even if MADV_DONTNEED runs, but if THP is enabled we need to
* run a pmd_trans_unstable before walking the ptes after
* split_huge_page_pmd returns (because it may have run when the pmd
* become null, but then a page fault can map in a THP and not a
* regular page).
*/
static inline int pmd_trans_unstable(pmd_t *pmd)
{
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
return pmd_none_or_trans_huge_or_clear_bad(pmd);
#else
return 0;
#endif
mm: thp: fix pmd_bad() triggering in code paths holding mmap_sem read mode In some cases it may happen that pmd_none_or_clear_bad() is called with the mmap_sem hold in read mode. In those cases the huge page faults can allocate hugepmds under pmd_none_or_clear_bad() and that can trigger a false positive from pmd_bad() that will not like to see a pmd materializing as trans huge. It's not khugepaged causing the problem, khugepaged holds the mmap_sem in write mode (and all those sites must hold the mmap_sem in read mode to prevent pagetables to go away from under them, during code review it seems vm86 mode on 32bit kernels requires that too unless it's restricted to 1 thread per process or UP builds). The race is only with the huge pagefaults that can convert a pmd_none() into a pmd_trans_huge(). Effectively all these pmd_none_or_clear_bad() sites running with mmap_sem in read mode are somewhat speculative with the page faults, and the result is always undefined when they run simultaneously. This is probably why it wasn't common to run into this. For example if the madvise(MADV_DONTNEED) runs zap_page_range() shortly before the page fault, the hugepage will not be zapped, if the page fault runs first it will be zapped. Altering pmd_bad() not to error out if it finds hugepmds won't be enough to fix this, because zap_pmd_range would then proceed to call zap_pte_range (which would be incorrect if the pmd become a pmd_trans_huge()). The simplest way to fix this is to read the pmd in the local stack (regardless of what we read, no need of actual CPU barriers, only compiler barrier needed), and be sure it is not changing under the code that computes its value. Even if the real pmd is changing under the value we hold on the stack, we don't care. If we actually end up in zap_pte_range it means the pmd was not none already and it was not huge, and it can't become huge from under us (khugepaged locking explained above). All we need is to enforce that there is no way anymore that in a code path like below, pmd_trans_huge can be false, but pmd_none_or_clear_bad can run into a hugepmd. The overhead of a barrier() is just a compiler tweak and should not be measurable (I only added it for THP builds). I don't exclude different compiler versions may have prevented the race too by caching the value of *pmd on the stack (that hasn't been verified, but it wouldn't be impossible considering pmd_none_or_clear_bad, pmd_bad, pmd_trans_huge, pmd_none are all inlines and there's no external function called in between pmd_trans_huge and pmd_none_or_clear_bad). if (pmd_trans_huge(*pmd)) { if (next-addr != HPAGE_PMD_SIZE) { VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem)); split_huge_page_pmd(vma->vm_mm, pmd); } else if (zap_huge_pmd(tlb, vma, pmd, addr)) continue; /* fall through */ } if (pmd_none_or_clear_bad(pmd)) Because this race condition could be exercised without special privileges this was reported in CVE-2012-1179. The race was identified and fully explained by Ulrich who debugged it. I'm quoting his accurate explanation below, for reference. ====== start quote ======= mapcount 0 page_mapcount 1 kernel BUG at mm/huge_memory.c:1384! At some point prior to the panic, a "bad pmd ..." message similar to the following is logged on the console: mm/memory.c:145: bad pmd ffff8800376e1f98(80000000314000e7). The "bad pmd ..." message is logged by pmd_clear_bad() before it clears the page's PMD table entry. 143 void pmd_clear_bad(pmd_t *pmd) 144 { -> 145 pmd_ERROR(*pmd); 146 pmd_clear(pmd); 147 } After the PMD table entry has been cleared, there is an inconsistency between the actual number of PMD table entries that are mapping the page and the page's map count (_mapcount field in struct page). When the page is subsequently reclaimed, __split_huge_page() detects this inconsistency. 1381 if (mapcount != page_mapcount(page)) 1382 printk(KERN_ERR "mapcount %d page_mapcount %d\n", 1383 mapcount, page_mapcount(page)); -> 1384 BUG_ON(mapcount != page_mapcount(page)); The root cause of the problem is a race of two threads in a multithreaded process. Thread B incurs a page fault on a virtual address that has never been accessed (PMD entry is zero) while Thread A is executing an madvise() system call on a virtual address within the same 2 MB (huge page) range. virtual address space .---------------------. | | | | .-|---------------------| | | | | | |<-- B(fault) | | | 2 MB | |/////////////////////|-. huge < |/////////////////////| > A(range) page | |/////////////////////|-' | | | | | | '-|---------------------| | | | | '---------------------' - Thread A is executing an madvise(..., MADV_DONTNEED) system call on the virtual address range "A(range)" shown in the picture. sys_madvise // Acquire the semaphore in shared mode. down_read(&current->mm->mmap_sem) ... madvise_vma switch (behavior) case MADV_DONTNEED: madvise_dontneed zap_page_range unmap_vmas unmap_page_range zap_pud_range zap_pmd_range // // Assume that this huge page has never been accessed. // I.e. content of the PMD entry is zero (not mapped). // if (pmd_trans_huge(*pmd)) { // We don't get here due to the above assumption. } // // Assume that Thread B incurred a page fault and .---------> // sneaks in here as shown below. | // | if (pmd_none_or_clear_bad(pmd)) | { | if (unlikely(pmd_bad(*pmd))) | pmd_clear_bad | { | pmd_ERROR | // Log "bad pmd ..." message here. | pmd_clear | // Clear the page's PMD entry. | // Thread B incremented the map count | // in page_add_new_anon_rmap(), but | // now the page is no longer mapped | // by a PMD entry (-> inconsistency). | } | } | v - Thread B is handling a page fault on virtual address "B(fault)" shown in the picture. ... do_page_fault __do_page_fault // Acquire the semaphore in shared mode. down_read_trylock(&mm->mmap_sem) ... handle_mm_fault if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) // We get here due to the above assumption (PMD entry is zero). do_huge_pmd_anonymous_page alloc_hugepage_vma // Allocate a new transparent huge page here. ... __do_huge_pmd_anonymous_page ... spin_lock(&mm->page_table_lock) ... page_add_new_anon_rmap // Here we increment the page's map count (starts at -1). atomic_set(&page->_mapcount, 0) set_pmd_at // Here we set the page's PMD entry which will be cleared // when Thread A calls pmd_clear_bad(). ... spin_unlock(&mm->page_table_lock) The mmap_sem does not prevent the race because both threads are acquiring it in shared mode (down_read). Thread B holds the page_table_lock while the page's map count and PMD table entry are updated. However, Thread A does not synchronize on that lock. ====== end quote ======= [akpm@linux-foundation.org: checkpatch fixes] Reported-by: Ulrich Obergfell <uobergfe@redhat.com> Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Jones <davej@redhat.com> Acked-by: Larry Woodman <lwoodman@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Cc: <stable@vger.kernel.org> [2.6.38+] Cc: Mark Salter <msalter@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 23:33:42 +00:00
}
#ifdef CONFIG_NUMA_BALANCING
#ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
/*
* _PAGE_NUMA works identical to _PAGE_PROTNONE (it's actually the
* same bit too). It's set only when _PAGE_PRESET is not set and it's
* never set if _PAGE_PRESENT is set.
*
* pte/pmd_present() returns true if pte/pmd_numa returns true. Page
* fault triggers on those regions if pte/pmd_numa returns true
* (because _PAGE_PRESENT is not set).
*/
#ifndef pte_numa
static inline int pte_numa(pte_t pte)
{
return (pte_flags(pte) &
(_PAGE_NUMA|_PAGE_PRESENT)) == _PAGE_NUMA;
}
#endif
#ifndef pmd_numa
static inline int pmd_numa(pmd_t pmd)
{
return (pmd_flags(pmd) &
(_PAGE_NUMA|_PAGE_PRESENT)) == _PAGE_NUMA;
}
#endif
/*
* pte/pmd_mknuma sets the _PAGE_ACCESSED bitflag automatically
* because they're called by the NUMA hinting minor page fault. If we
* wouldn't set the _PAGE_ACCESSED bitflag here, the TLB miss handler
* would be forced to set it later while filling the TLB after we
* return to userland. That would trigger a second write to memory
* that we optimize away by setting _PAGE_ACCESSED here.
*/
#ifndef pte_mknonnuma
static inline pte_t pte_mknonnuma(pte_t pte)
{
mm: use paravirt friendly ops for NUMA hinting ptes David Vrabel identified a regression when using automatic NUMA balancing under Xen whereby page table entries were getting corrupted due to the use of native PTE operations. Quoting him Xen PV guest page tables require that their entries use machine addresses if the preset bit (_PAGE_PRESENT) is set, and (for successful migration) non-present PTEs must use pseudo-physical addresses. This is because on migration MFNs in present PTEs are translated to PFNs (canonicalised) so they may be translated back to the new MFN in the destination domain (uncanonicalised). pte_mknonnuma(), pmd_mknonnuma(), pte_mknuma() and pmd_mknuma() set and clear the _PAGE_PRESENT bit using pte_set_flags(), pte_clear_flags(), etc. In a Xen PV guest, these functions must translate MFNs to PFNs when clearing _PAGE_PRESENT and translate PFNs to MFNs when setting _PAGE_PRESENT. His suggested fix converted p[te|md]_[set|clear]_flags to using paravirt-friendly ops but this is overkill. He suggested an alternative of using p[te|md]_modify in the NUMA page table operations but this is does more work than necessary and would require looking up a VMA for protections. This patch modifies the NUMA page table operations to use paravirt friendly operations to set/clear the flags of interest. Unfortunately this will take a performance hit when updating the PTEs on CONFIG_PARAVIRT but I do not see a way around it that does not break Xen. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: David Vrabel <david.vrabel@citrix.com> Tested-by: David Vrabel <david.vrabel@citrix.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Peter Anvin <hpa@zytor.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Steven Noonan <steven@uplinklabs.net> Cc: Rik van Riel <riel@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-18 22:07:21 +00:00
pteval_t val = pte_val(pte);
val &= ~_PAGE_NUMA;
val |= (_PAGE_PRESENT|_PAGE_ACCESSED);
return __pte(val);
}
#endif
#ifndef pmd_mknonnuma
static inline pmd_t pmd_mknonnuma(pmd_t pmd)
{
mm: use paravirt friendly ops for NUMA hinting ptes David Vrabel identified a regression when using automatic NUMA balancing under Xen whereby page table entries were getting corrupted due to the use of native PTE operations. Quoting him Xen PV guest page tables require that their entries use machine addresses if the preset bit (_PAGE_PRESENT) is set, and (for successful migration) non-present PTEs must use pseudo-physical addresses. This is because on migration MFNs in present PTEs are translated to PFNs (canonicalised) so they may be translated back to the new MFN in the destination domain (uncanonicalised). pte_mknonnuma(), pmd_mknonnuma(), pte_mknuma() and pmd_mknuma() set and clear the _PAGE_PRESENT bit using pte_set_flags(), pte_clear_flags(), etc. In a Xen PV guest, these functions must translate MFNs to PFNs when clearing _PAGE_PRESENT and translate PFNs to MFNs when setting _PAGE_PRESENT. His suggested fix converted p[te|md]_[set|clear]_flags to using paravirt-friendly ops but this is overkill. He suggested an alternative of using p[te|md]_modify in the NUMA page table operations but this is does more work than necessary and would require looking up a VMA for protections. This patch modifies the NUMA page table operations to use paravirt friendly operations to set/clear the flags of interest. Unfortunately this will take a performance hit when updating the PTEs on CONFIG_PARAVIRT but I do not see a way around it that does not break Xen. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: David Vrabel <david.vrabel@citrix.com> Tested-by: David Vrabel <david.vrabel@citrix.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Peter Anvin <hpa@zytor.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Steven Noonan <steven@uplinklabs.net> Cc: Rik van Riel <riel@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-18 22:07:21 +00:00
pmdval_t val = pmd_val(pmd);
val &= ~_PAGE_NUMA;
val |= (_PAGE_PRESENT|_PAGE_ACCESSED);
return __pmd(val);
}
#endif
#ifndef pte_mknuma
static inline pte_t pte_mknuma(pte_t pte)
{
mm: use paravirt friendly ops for NUMA hinting ptes David Vrabel identified a regression when using automatic NUMA balancing under Xen whereby page table entries were getting corrupted due to the use of native PTE operations. Quoting him Xen PV guest page tables require that their entries use machine addresses if the preset bit (_PAGE_PRESENT) is set, and (for successful migration) non-present PTEs must use pseudo-physical addresses. This is because on migration MFNs in present PTEs are translated to PFNs (canonicalised) so they may be translated back to the new MFN in the destination domain (uncanonicalised). pte_mknonnuma(), pmd_mknonnuma(), pte_mknuma() and pmd_mknuma() set and clear the _PAGE_PRESENT bit using pte_set_flags(), pte_clear_flags(), etc. In a Xen PV guest, these functions must translate MFNs to PFNs when clearing _PAGE_PRESENT and translate PFNs to MFNs when setting _PAGE_PRESENT. His suggested fix converted p[te|md]_[set|clear]_flags to using paravirt-friendly ops but this is overkill. He suggested an alternative of using p[te|md]_modify in the NUMA page table operations but this is does more work than necessary and would require looking up a VMA for protections. This patch modifies the NUMA page table operations to use paravirt friendly operations to set/clear the flags of interest. Unfortunately this will take a performance hit when updating the PTEs on CONFIG_PARAVIRT but I do not see a way around it that does not break Xen. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: David Vrabel <david.vrabel@citrix.com> Tested-by: David Vrabel <david.vrabel@citrix.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Peter Anvin <hpa@zytor.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Steven Noonan <steven@uplinklabs.net> Cc: Rik van Riel <riel@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-18 22:07:21 +00:00
pteval_t val = pte_val(pte);
val &= ~_PAGE_PRESENT;
val |= _PAGE_NUMA;
return __pte(val);
}
#endif
#ifndef ptep_set_numa
static inline void ptep_set_numa(struct mm_struct *mm, unsigned long addr,
pte_t *ptep)
{
pte_t ptent = *ptep;
ptent = pte_mknuma(ptent);
set_pte_at(mm, addr, ptep, ptent);
return;
}
#endif
#ifndef pmd_mknuma
static inline pmd_t pmd_mknuma(pmd_t pmd)
{
mm: use paravirt friendly ops for NUMA hinting ptes David Vrabel identified a regression when using automatic NUMA balancing under Xen whereby page table entries were getting corrupted due to the use of native PTE operations. Quoting him Xen PV guest page tables require that their entries use machine addresses if the preset bit (_PAGE_PRESENT) is set, and (for successful migration) non-present PTEs must use pseudo-physical addresses. This is because on migration MFNs in present PTEs are translated to PFNs (canonicalised) so they may be translated back to the new MFN in the destination domain (uncanonicalised). pte_mknonnuma(), pmd_mknonnuma(), pte_mknuma() and pmd_mknuma() set and clear the _PAGE_PRESENT bit using pte_set_flags(), pte_clear_flags(), etc. In a Xen PV guest, these functions must translate MFNs to PFNs when clearing _PAGE_PRESENT and translate PFNs to MFNs when setting _PAGE_PRESENT. His suggested fix converted p[te|md]_[set|clear]_flags to using paravirt-friendly ops but this is overkill. He suggested an alternative of using p[te|md]_modify in the NUMA page table operations but this is does more work than necessary and would require looking up a VMA for protections. This patch modifies the NUMA page table operations to use paravirt friendly operations to set/clear the flags of interest. Unfortunately this will take a performance hit when updating the PTEs on CONFIG_PARAVIRT but I do not see a way around it that does not break Xen. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: David Vrabel <david.vrabel@citrix.com> Tested-by: David Vrabel <david.vrabel@citrix.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Peter Anvin <hpa@zytor.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Steven Noonan <steven@uplinklabs.net> Cc: Rik van Riel <riel@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-18 22:07:21 +00:00
pmdval_t val = pmd_val(pmd);
val &= ~_PAGE_PRESENT;
val |= _PAGE_NUMA;
return __pmd(val);
}
#endif
#ifndef pmdp_set_numa
static inline void pmdp_set_numa(struct mm_struct *mm, unsigned long addr,
pmd_t *pmdp)
{
pmd_t pmd = *pmdp;
pmd = pmd_mknuma(pmd);
set_pmd_at(mm, addr, pmdp, pmd);
return;
}
#endif
#else
extern int pte_numa(pte_t pte);
extern int pmd_numa(pmd_t pmd);
extern pte_t pte_mknonnuma(pte_t pte);
extern pmd_t pmd_mknonnuma(pmd_t pmd);
extern pte_t pte_mknuma(pte_t pte);
extern pmd_t pmd_mknuma(pmd_t pmd);
extern void ptep_set_numa(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
extern void pmdp_set_numa(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp);
#endif /* CONFIG_ARCH_USES_NUMA_PROT_NONE */
#else
static inline int pmd_numa(pmd_t pmd)
{
return 0;
}
static inline int pte_numa(pte_t pte)
{
return 0;
}
static inline pte_t pte_mknonnuma(pte_t pte)
{
return pte;
}
static inline pmd_t pmd_mknonnuma(pmd_t pmd)
{
return pmd;
}
static inline pte_t pte_mknuma(pte_t pte)
{
return pte;
}
static inline void ptep_set_numa(struct mm_struct *mm, unsigned long addr,
pte_t *ptep)
{
return;
}
static inline pmd_t pmd_mknuma(pmd_t pmd)
{
return pmd;
}
static inline void pmdp_set_numa(struct mm_struct *mm, unsigned long addr,
pmd_t *pmdp)
{
return ;
}
#endif /* CONFIG_NUMA_BALANCING */
mm: thp: fix pmd_bad() triggering in code paths holding mmap_sem read mode In some cases it may happen that pmd_none_or_clear_bad() is called with the mmap_sem hold in read mode. In those cases the huge page faults can allocate hugepmds under pmd_none_or_clear_bad() and that can trigger a false positive from pmd_bad() that will not like to see a pmd materializing as trans huge. It's not khugepaged causing the problem, khugepaged holds the mmap_sem in write mode (and all those sites must hold the mmap_sem in read mode to prevent pagetables to go away from under them, during code review it seems vm86 mode on 32bit kernels requires that too unless it's restricted to 1 thread per process or UP builds). The race is only with the huge pagefaults that can convert a pmd_none() into a pmd_trans_huge(). Effectively all these pmd_none_or_clear_bad() sites running with mmap_sem in read mode are somewhat speculative with the page faults, and the result is always undefined when they run simultaneously. This is probably why it wasn't common to run into this. For example if the madvise(MADV_DONTNEED) runs zap_page_range() shortly before the page fault, the hugepage will not be zapped, if the page fault runs first it will be zapped. Altering pmd_bad() not to error out if it finds hugepmds won't be enough to fix this, because zap_pmd_range would then proceed to call zap_pte_range (which would be incorrect if the pmd become a pmd_trans_huge()). The simplest way to fix this is to read the pmd in the local stack (regardless of what we read, no need of actual CPU barriers, only compiler barrier needed), and be sure it is not changing under the code that computes its value. Even if the real pmd is changing under the value we hold on the stack, we don't care. If we actually end up in zap_pte_range it means the pmd was not none already and it was not huge, and it can't become huge from under us (khugepaged locking explained above). All we need is to enforce that there is no way anymore that in a code path like below, pmd_trans_huge can be false, but pmd_none_or_clear_bad can run into a hugepmd. The overhead of a barrier() is just a compiler tweak and should not be measurable (I only added it for THP builds). I don't exclude different compiler versions may have prevented the race too by caching the value of *pmd on the stack (that hasn't been verified, but it wouldn't be impossible considering pmd_none_or_clear_bad, pmd_bad, pmd_trans_huge, pmd_none are all inlines and there's no external function called in between pmd_trans_huge and pmd_none_or_clear_bad). if (pmd_trans_huge(*pmd)) { if (next-addr != HPAGE_PMD_SIZE) { VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem)); split_huge_page_pmd(vma->vm_mm, pmd); } else if (zap_huge_pmd(tlb, vma, pmd, addr)) continue; /* fall through */ } if (pmd_none_or_clear_bad(pmd)) Because this race condition could be exercised without special privileges this was reported in CVE-2012-1179. The race was identified and fully explained by Ulrich who debugged it. I'm quoting his accurate explanation below, for reference. ====== start quote ======= mapcount 0 page_mapcount 1 kernel BUG at mm/huge_memory.c:1384! At some point prior to the panic, a "bad pmd ..." message similar to the following is logged on the console: mm/memory.c:145: bad pmd ffff8800376e1f98(80000000314000e7). The "bad pmd ..." message is logged by pmd_clear_bad() before it clears the page's PMD table entry. 143 void pmd_clear_bad(pmd_t *pmd) 144 { -> 145 pmd_ERROR(*pmd); 146 pmd_clear(pmd); 147 } After the PMD table entry has been cleared, there is an inconsistency between the actual number of PMD table entries that are mapping the page and the page's map count (_mapcount field in struct page). When the page is subsequently reclaimed, __split_huge_page() detects this inconsistency. 1381 if (mapcount != page_mapcount(page)) 1382 printk(KERN_ERR "mapcount %d page_mapcount %d\n", 1383 mapcount, page_mapcount(page)); -> 1384 BUG_ON(mapcount != page_mapcount(page)); The root cause of the problem is a race of two threads in a multithreaded process. Thread B incurs a page fault on a virtual address that has never been accessed (PMD entry is zero) while Thread A is executing an madvise() system call on a virtual address within the same 2 MB (huge page) range. virtual address space .---------------------. | | | | .-|---------------------| | | | | | |<-- B(fault) | | | 2 MB | |/////////////////////|-. huge < |/////////////////////| > A(range) page | |/////////////////////|-' | | | | | | '-|---------------------| | | | | '---------------------' - Thread A is executing an madvise(..., MADV_DONTNEED) system call on the virtual address range "A(range)" shown in the picture. sys_madvise // Acquire the semaphore in shared mode. down_read(&current->mm->mmap_sem) ... madvise_vma switch (behavior) case MADV_DONTNEED: madvise_dontneed zap_page_range unmap_vmas unmap_page_range zap_pud_range zap_pmd_range // // Assume that this huge page has never been accessed. // I.e. content of the PMD entry is zero (not mapped). // if (pmd_trans_huge(*pmd)) { // We don't get here due to the above assumption. } // // Assume that Thread B incurred a page fault and .---------> // sneaks in here as shown below. | // | if (pmd_none_or_clear_bad(pmd)) | { | if (unlikely(pmd_bad(*pmd))) | pmd_clear_bad | { | pmd_ERROR | // Log "bad pmd ..." message here. | pmd_clear | // Clear the page's PMD entry. | // Thread B incremented the map count | // in page_add_new_anon_rmap(), but | // now the page is no longer mapped | // by a PMD entry (-> inconsistency). | } | } | v - Thread B is handling a page fault on virtual address "B(fault)" shown in the picture. ... do_page_fault __do_page_fault // Acquire the semaphore in shared mode. down_read_trylock(&mm->mmap_sem) ... handle_mm_fault if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) // We get here due to the above assumption (PMD entry is zero). do_huge_pmd_anonymous_page alloc_hugepage_vma // Allocate a new transparent huge page here. ... __do_huge_pmd_anonymous_page ... spin_lock(&mm->page_table_lock) ... page_add_new_anon_rmap // Here we increment the page's map count (starts at -1). atomic_set(&page->_mapcount, 0) set_pmd_at // Here we set the page's PMD entry which will be cleared // when Thread A calls pmd_clear_bad(). ... spin_unlock(&mm->page_table_lock) The mmap_sem does not prevent the race because both threads are acquiring it in shared mode (down_read). Thread B holds the page_table_lock while the page's map count and PMD table entry are updated. However, Thread A does not synchronize on that lock. ====== end quote ======= [akpm@linux-foundation.org: checkpatch fixes] Reported-by: Ulrich Obergfell <uobergfe@redhat.com> Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Jones <davej@redhat.com> Acked-by: Larry Woodman <lwoodman@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Cc: <stable@vger.kernel.org> [2.6.38+] Cc: Mark Salter <msalter@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 23:33:42 +00:00
#endif /* CONFIG_MMU */
#endif /* !__ASSEMBLY__ */
#ifndef io_remap_pfn_range
#define io_remap_pfn_range remap_pfn_range
#endif
#endif /* _ASM_GENERIC_PGTABLE_H */