linux/arch/powerpc/kvm/booke.c

2200 lines
56 KiB
C
Raw Normal View History

/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Copyright IBM Corp. 2007
* Copyright 2010-2011 Freescale Semiconductor, Inc.
*
* Authors: Hollis Blanchard <hollisb@us.ibm.com>
* Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
* Scott Wood <scottwood@freescale.com>
* Varun Sethi <varun.sethi@freescale.com>
*/
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/gfp.h>
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <asm/cputable.h>
#include <linux/uaccess.h>
#include <asm/kvm_ppc.h>
#include <asm/cacheflush.h>
#include <asm/dbell.h>
#include <asm/hw_irq.h>
#include <asm/irq.h>
#include <asm/time.h>
#include "timing.h"
#include "booke.h"
#define CREATE_TRACE_POINTS
#include "trace_booke.h"
unsigned long kvmppc_booke_handlers;
#define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
struct kvm_stats_debugfs_item debugfs_entries[] = {
{ "mmio", VCPU_STAT(mmio_exits) },
{ "sig", VCPU_STAT(signal_exits) },
{ "itlb_r", VCPU_STAT(itlb_real_miss_exits) },
{ "itlb_v", VCPU_STAT(itlb_virt_miss_exits) },
{ "dtlb_r", VCPU_STAT(dtlb_real_miss_exits) },
{ "dtlb_v", VCPU_STAT(dtlb_virt_miss_exits) },
{ "sysc", VCPU_STAT(syscall_exits) },
{ "isi", VCPU_STAT(isi_exits) },
{ "dsi", VCPU_STAT(dsi_exits) },
{ "inst_emu", VCPU_STAT(emulated_inst_exits) },
{ "dec", VCPU_STAT(dec_exits) },
{ "ext_intr", VCPU_STAT(ext_intr_exits) },
kvm: add halt_poll_ns module parameter This patch introduces a new module parameter for the KVM module; when it is present, KVM attempts a bit of polling on every HLT before scheduling itself out via kvm_vcpu_block. This parameter helps a lot for latency-bound workloads---in particular I tested it with O_DSYNC writes with a battery-backed disk in the host. In this case, writes are fast (because the data doesn't have to go all the way to the platters) but they cannot be merged by either the host or the guest. KVM's performance here is usually around 30% of bare metal, or 50% if you use cache=directsync or cache=writethrough (these parameters avoid that the guest sends pointless flush requests, and at the same time they are not slow because of the battery-backed cache). The bad performance happens because on every halt the host CPU decides to halt itself too. When the interrupt comes, the vCPU thread is then migrated to a new physical CPU, and in general the latency is horrible because the vCPU thread has to be scheduled back in. With this patch performance reaches 60-65% of bare metal and, more important, 99% of what you get if you use idle=poll in the guest. This means that the tunable gets rid of this particular bottleneck, and more work can be done to improve performance in the kernel or QEMU. Of course there is some price to pay; every time an otherwise idle vCPUs is interrupted by an interrupt, it will poll unnecessarily and thus impose a little load on the host. The above results were obtained with a mostly random value of the parameter (500000), and the load was around 1.5-2.5% CPU usage on one of the host's core for each idle guest vCPU. The patch also adds a new stat, /sys/kernel/debug/kvm/halt_successful_poll, that can be used to tune the parameter. It counts how many HLT instructions received an interrupt during the polling period; each successful poll avoids that Linux schedules the VCPU thread out and back in, and may also avoid a likely trip to C1 and back for the physical CPU. While the VM is idle, a Linux 4 VCPU VM halts around 10 times per second. Of these halts, almost all are failed polls. During the benchmark, instead, basically all halts end within the polling period, except a more or less constant stream of 50 per second coming from vCPUs that are not running the benchmark. The wasted time is thus very low. Things may be slightly different for Windows VMs, which have a ~10 ms timer tick. The effect is also visible on Marcelo's recently-introduced latency test for the TSC deadline timer. Though of course a non-RT kernel has awful latency bounds, the latency of the timer is around 8000-10000 clock cycles compared to 20000-120000 without setting halt_poll_ns. For the TSC deadline timer, thus, the effect is both a smaller average latency and a smaller variance. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-02-04 17:20:58 +00:00
{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
KVM: halt_polling: provide a way to qualify wakeups during poll Some wakeups should not be considered a sucessful poll. For example on s390 I/O interrupts are usually floating, which means that _ALL_ CPUs would be considered runnable - letting all vCPUs poll all the time for transactional like workload, even if one vCPU would be enough. This can result in huge CPU usage for large guests. This patch lets architectures provide a way to qualify wakeups if they should be considered a good/bad wakeups in regard to polls. For s390 the implementation will fence of halt polling for anything but known good, single vCPU events. The s390 implementation for floating interrupts does a wakeup for one vCPU, but the interrupt will be delivered by whatever CPU checks first for a pending interrupt. We prefer the woken up CPU by marking the poll of this CPU as "good" poll. This code will also mark several other wakeup reasons like IPI or expired timers as "good". This will of course also mark some events as not sucessful. As KVM on z runs always as a 2nd level hypervisor, we prefer to not poll, unless we are really sure, though. This patch successfully limits the CPU usage for cases like uperf 1byte transactional ping pong workload or wakeup heavy workload like OLTP while still providing a proper speedup. This also introduced a new vcpu stat "halt_poll_no_tuning" that marks wakeups that are considered not good for polling. Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Acked-by: Radim Krčmář <rkrcmar@redhat.com> (for an earlier version) Cc: David Matlack <dmatlack@google.com> Cc: Wanpeng Li <kernellwp@gmail.com> [Rename config symbol. - Paolo] Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-05-13 10:16:35 +00:00
{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
{ "doorbell", VCPU_STAT(dbell_exits) },
{ "guest doorbell", VCPU_STAT(gdbell_exits) },
{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
{ NULL }
};
/* TODO: use vcpu_printf() */
void kvmppc_dump_vcpu(struct kvm_vcpu *vcpu)
{
int i;
printk("pc: %08lx msr: %08llx\n", vcpu->arch.pc, vcpu->arch.shared->msr);
printk("lr: %08lx ctr: %08lx\n", vcpu->arch.lr, vcpu->arch.ctr);
printk("srr0: %08llx srr1: %08llx\n", vcpu->arch.shared->srr0,
vcpu->arch.shared->srr1);
printk("exceptions: %08lx\n", vcpu->arch.pending_exceptions);
for (i = 0; i < 32; i += 4) {
printk("gpr%02d: %08lx %08lx %08lx %08lx\n", i,
kvmppc_get_gpr(vcpu, i),
kvmppc_get_gpr(vcpu, i+1),
kvmppc_get_gpr(vcpu, i+2),
kvmppc_get_gpr(vcpu, i+3));
}
}
#ifdef CONFIG_SPE
void kvmppc_vcpu_disable_spe(struct kvm_vcpu *vcpu)
{
preempt_disable();
enable_kernel_spe();
kvmppc_save_guest_spe(vcpu);
disable_kernel_spe();
vcpu->arch.shadow_msr &= ~MSR_SPE;
preempt_enable();
}
static void kvmppc_vcpu_enable_spe(struct kvm_vcpu *vcpu)
{
preempt_disable();
enable_kernel_spe();
kvmppc_load_guest_spe(vcpu);
disable_kernel_spe();
vcpu->arch.shadow_msr |= MSR_SPE;
preempt_enable();
}
static void kvmppc_vcpu_sync_spe(struct kvm_vcpu *vcpu)
{
if (vcpu->arch.shared->msr & MSR_SPE) {
if (!(vcpu->arch.shadow_msr & MSR_SPE))
kvmppc_vcpu_enable_spe(vcpu);
} else if (vcpu->arch.shadow_msr & MSR_SPE) {
kvmppc_vcpu_disable_spe(vcpu);
}
}
#else
static void kvmppc_vcpu_sync_spe(struct kvm_vcpu *vcpu)
{
}
#endif
/*
* Load up guest vcpu FP state if it's needed.
* It also set the MSR_FP in thread so that host know
* we're holding FPU, and then host can help to save
* guest vcpu FP state if other threads require to use FPU.
* This simulates an FP unavailable fault.
*
* It requires to be called with preemption disabled.
*/
static inline void kvmppc_load_guest_fp(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_PPC_FPU
if (!(current->thread.regs->msr & MSR_FP)) {
enable_kernel_fp();
load_fp_state(&vcpu->arch.fp);
disable_kernel_fp();
current->thread.fp_save_area = &vcpu->arch.fp;
current->thread.regs->msr |= MSR_FP;
}
#endif
}
/*
* Save guest vcpu FP state into thread.
* It requires to be called with preemption disabled.
*/
static inline void kvmppc_save_guest_fp(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_PPC_FPU
if (current->thread.regs->msr & MSR_FP)
giveup_fpu(current);
current->thread.fp_save_area = NULL;
#endif
}
static void kvmppc_vcpu_sync_fpu(struct kvm_vcpu *vcpu)
{
#if defined(CONFIG_PPC_FPU) && !defined(CONFIG_KVM_BOOKE_HV)
/* We always treat the FP bit as enabled from the host
perspective, so only need to adjust the shadow MSR */
vcpu->arch.shadow_msr &= ~MSR_FP;
vcpu->arch.shadow_msr |= vcpu->arch.shared->msr & MSR_FP;
#endif
}
/*
* Simulate AltiVec unavailable fault to load guest state
* from thread to AltiVec unit.
* It requires to be called with preemption disabled.
*/
static inline void kvmppc_load_guest_altivec(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_ALTIVEC
if (cpu_has_feature(CPU_FTR_ALTIVEC)) {
if (!(current->thread.regs->msr & MSR_VEC)) {
enable_kernel_altivec();
load_vr_state(&vcpu->arch.vr);
disable_kernel_altivec();
current->thread.vr_save_area = &vcpu->arch.vr;
current->thread.regs->msr |= MSR_VEC;
}
}
#endif
}
/*
* Save guest vcpu AltiVec state into thread.
* It requires to be called with preemption disabled.
*/
static inline void kvmppc_save_guest_altivec(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_ALTIVEC
if (cpu_has_feature(CPU_FTR_ALTIVEC)) {
if (current->thread.regs->msr & MSR_VEC)
giveup_altivec(current);
current->thread.vr_save_area = NULL;
}
#endif
}
KVM: PPC: E500: Add userspace debug stub support This patch adds the debug stub support on booke/bookehv. Now QEMU debug stub can use hw breakpoint, watchpoint and software breakpoint to debug guest. This is how we save/restore debug register context when switching between guest, userspace and kernel user-process: When QEMU is running -> thread->debug_reg == QEMU debug register context. -> Kernel will handle switching the debug register on context switch. -> no vcpu_load() called QEMU makes ioctls (except RUN) -> This will call vcpu_load() -> should not change context. -> Some ioctls can change vcpu debug register, context saved in vcpu->debug_regs QEMU Makes RUN ioctl -> Save thread->debug_reg on STACK -> Store thread->debug_reg == vcpu->debug_reg -> load thread->debug_reg -> RUN VCPU ( So thread points to vcpu context ) Context switch happens When VCPU running -> makes vcpu_load() should not load any context -> kernel loads the vcpu context as thread->debug_regs points to vcpu context. On heavyweight_exit -> Load the context saved on stack in thread->debug_reg Currently we do not support debug resource emulation to guest, On debug exception, always exit to user space irrespective of user space is expecting the debug exception or not. If this is unexpected exception (breakpoint/watchpoint event not set by userspace) then let us leave the action on user space. This is similar to what it was before, only thing is that now we have proper exit state available to user space. Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-07-04 06:57:47 +00:00
static void kvmppc_vcpu_sync_debug(struct kvm_vcpu *vcpu)
{
/* Synchronize guest's desire to get debug interrupts into shadow MSR */
#ifndef CONFIG_KVM_BOOKE_HV
vcpu->arch.shadow_msr &= ~MSR_DE;
vcpu->arch.shadow_msr |= vcpu->arch.shared->msr & MSR_DE;
#endif
/* Force enable debug interrupts when user space wants to debug */
if (vcpu->guest_debug) {
#ifdef CONFIG_KVM_BOOKE_HV
/*
* Since there is no shadow MSR, sync MSR_DE into the guest
* visible MSR.
*/
vcpu->arch.shared->msr |= MSR_DE;
#else
vcpu->arch.shadow_msr |= MSR_DE;
vcpu->arch.shared->msr &= ~MSR_DE;
#endif
}
}
/*
* Helper function for "full" MSR writes. No need to call this if only
* EE/CE/ME/DE/RI are changing.
*/
void kvmppc_set_msr(struct kvm_vcpu *vcpu, u32 new_msr)
{
u32 old_msr = vcpu->arch.shared->msr;
#ifdef CONFIG_KVM_BOOKE_HV
new_msr |= MSR_GS;
#endif
vcpu->arch.shared->msr = new_msr;
kvmppc_mmu_msr_notify(vcpu, old_msr);
kvmppc_vcpu_sync_spe(vcpu);
kvmppc_vcpu_sync_fpu(vcpu);
KVM: PPC: E500: Add userspace debug stub support This patch adds the debug stub support on booke/bookehv. Now QEMU debug stub can use hw breakpoint, watchpoint and software breakpoint to debug guest. This is how we save/restore debug register context when switching between guest, userspace and kernel user-process: When QEMU is running -> thread->debug_reg == QEMU debug register context. -> Kernel will handle switching the debug register on context switch. -> no vcpu_load() called QEMU makes ioctls (except RUN) -> This will call vcpu_load() -> should not change context. -> Some ioctls can change vcpu debug register, context saved in vcpu->debug_regs QEMU Makes RUN ioctl -> Save thread->debug_reg on STACK -> Store thread->debug_reg == vcpu->debug_reg -> load thread->debug_reg -> RUN VCPU ( So thread points to vcpu context ) Context switch happens When VCPU running -> makes vcpu_load() should not load any context -> kernel loads the vcpu context as thread->debug_regs points to vcpu context. On heavyweight_exit -> Load the context saved on stack in thread->debug_reg Currently we do not support debug resource emulation to guest, On debug exception, always exit to user space irrespective of user space is expecting the debug exception or not. If this is unexpected exception (breakpoint/watchpoint event not set by userspace) then let us leave the action on user space. This is similar to what it was before, only thing is that now we have proper exit state available to user space. Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-07-04 06:57:47 +00:00
kvmppc_vcpu_sync_debug(vcpu);
}
2008-11-05 15:36:23 +00:00
static void kvmppc_booke_queue_irqprio(struct kvm_vcpu *vcpu,
unsigned int priority)
{
trace_kvm_booke_queue_irqprio(vcpu, priority);
set_bit(priority, &vcpu->arch.pending_exceptions);
}
void kvmppc_core_queue_dtlb_miss(struct kvm_vcpu *vcpu,
ulong dear_flags, ulong esr_flags)
{
vcpu->arch.queued_dear = dear_flags;
vcpu->arch.queued_esr = esr_flags;
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_DTLB_MISS);
}
void kvmppc_core_queue_data_storage(struct kvm_vcpu *vcpu,
ulong dear_flags, ulong esr_flags)
{
vcpu->arch.queued_dear = dear_flags;
vcpu->arch.queued_esr = esr_flags;
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_DATA_STORAGE);
}
void kvmppc_core_queue_itlb_miss(struct kvm_vcpu *vcpu)
{
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_ITLB_MISS);
}
void kvmppc_core_queue_inst_storage(struct kvm_vcpu *vcpu, ulong esr_flags)
{
vcpu->arch.queued_esr = esr_flags;
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_INST_STORAGE);
}
static void kvmppc_core_queue_alignment(struct kvm_vcpu *vcpu, ulong dear_flags,
ulong esr_flags)
{
vcpu->arch.queued_dear = dear_flags;
vcpu->arch.queued_esr = esr_flags;
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_ALIGNMENT);
}
void kvmppc_core_queue_program(struct kvm_vcpu *vcpu, ulong esr_flags)
{
vcpu->arch.queued_esr = esr_flags;
2008-11-05 15:36:23 +00:00
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_PROGRAM);
}
void kvmppc_core_queue_fpunavail(struct kvm_vcpu *vcpu)
{
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_FP_UNAVAIL);
}
void kvmppc_core_queue_dec(struct kvm_vcpu *vcpu)
{
2008-11-05 15:36:23 +00:00
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_DECREMENTER);
}
int kvmppc_core_pending_dec(struct kvm_vcpu *vcpu)
{
2008-11-05 15:36:23 +00:00
return test_bit(BOOKE_IRQPRIO_DECREMENTER, &vcpu->arch.pending_exceptions);
}
void kvmppc_core_dequeue_dec(struct kvm_vcpu *vcpu)
{
clear_bit(BOOKE_IRQPRIO_DECREMENTER, &vcpu->arch.pending_exceptions);
}
void kvmppc_core_queue_external(struct kvm_vcpu *vcpu,
struct kvm_interrupt *irq)
{
unsigned int prio = BOOKE_IRQPRIO_EXTERNAL;
if (irq->irq == KVM_INTERRUPT_SET_LEVEL)
prio = BOOKE_IRQPRIO_EXTERNAL_LEVEL;
kvmppc_booke_queue_irqprio(vcpu, prio);
}
void kvmppc_core_dequeue_external(struct kvm_vcpu *vcpu)
{
clear_bit(BOOKE_IRQPRIO_EXTERNAL, &vcpu->arch.pending_exceptions);
clear_bit(BOOKE_IRQPRIO_EXTERNAL_LEVEL, &vcpu->arch.pending_exceptions);
}
static void kvmppc_core_queue_watchdog(struct kvm_vcpu *vcpu)
{
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_WATCHDOG);
}
static void kvmppc_core_dequeue_watchdog(struct kvm_vcpu *vcpu)
{
clear_bit(BOOKE_IRQPRIO_WATCHDOG, &vcpu->arch.pending_exceptions);
}
void kvmppc_core_queue_debug(struct kvm_vcpu *vcpu)
{
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_DEBUG);
}
void kvmppc_core_dequeue_debug(struct kvm_vcpu *vcpu)
{
clear_bit(BOOKE_IRQPRIO_DEBUG, &vcpu->arch.pending_exceptions);
}
static void set_guest_srr(struct kvm_vcpu *vcpu, unsigned long srr0, u32 srr1)
{
kvmppc_set_srr0(vcpu, srr0);
kvmppc_set_srr1(vcpu, srr1);
}
static void set_guest_csrr(struct kvm_vcpu *vcpu, unsigned long srr0, u32 srr1)
{
vcpu->arch.csrr0 = srr0;
vcpu->arch.csrr1 = srr1;
}
static void set_guest_dsrr(struct kvm_vcpu *vcpu, unsigned long srr0, u32 srr1)
{
if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC)) {
vcpu->arch.dsrr0 = srr0;
vcpu->arch.dsrr1 = srr1;
} else {
set_guest_csrr(vcpu, srr0, srr1);
}
}
static void set_guest_mcsrr(struct kvm_vcpu *vcpu, unsigned long srr0, u32 srr1)
{
vcpu->arch.mcsrr0 = srr0;
vcpu->arch.mcsrr1 = srr1;
}
2008-11-05 15:36:23 +00:00
/* Deliver the interrupt of the corresponding priority, if possible. */
static int kvmppc_booke_irqprio_deliver(struct kvm_vcpu *vcpu,
unsigned int priority)
{
2008-11-05 15:36:23 +00:00
int allowed = 0;
ulong msr_mask = 0;
bool update_esr = false, update_dear = false, update_epr = false;
ulong crit_raw = vcpu->arch.shared->critical;
ulong crit_r1 = kvmppc_get_gpr(vcpu, 1);
bool crit;
bool keep_irq = false;
enum int_class int_class;
ulong new_msr = vcpu->arch.shared->msr;
/* Truncate crit indicators in 32 bit mode */
if (!(vcpu->arch.shared->msr & MSR_SF)) {
crit_raw &= 0xffffffff;
crit_r1 &= 0xffffffff;
}
/* Critical section when crit == r1 */
crit = (crit_raw == crit_r1);
/* ... and we're in supervisor mode */
crit = crit && !(vcpu->arch.shared->msr & MSR_PR);
2008-11-05 15:36:23 +00:00
if (priority == BOOKE_IRQPRIO_EXTERNAL_LEVEL) {
priority = BOOKE_IRQPRIO_EXTERNAL;
keep_irq = true;
}
if ((priority == BOOKE_IRQPRIO_EXTERNAL) && vcpu->arch.epr_flags)
update_epr = true;
2008-11-05 15:36:23 +00:00
switch (priority) {
case BOOKE_IRQPRIO_DTLB_MISS:
case BOOKE_IRQPRIO_DATA_STORAGE:
case BOOKE_IRQPRIO_ALIGNMENT:
update_dear = true;
/* fall through */
2008-11-05 15:36:23 +00:00
case BOOKE_IRQPRIO_INST_STORAGE:
case BOOKE_IRQPRIO_PROGRAM:
update_esr = true;
/* fall through */
case BOOKE_IRQPRIO_ITLB_MISS:
case BOOKE_IRQPRIO_SYSCALL:
2008-11-05 15:36:23 +00:00
case BOOKE_IRQPRIO_FP_UNAVAIL:
#ifdef CONFIG_SPE_POSSIBLE
case BOOKE_IRQPRIO_SPE_UNAVAIL:
case BOOKE_IRQPRIO_SPE_FP_DATA:
case BOOKE_IRQPRIO_SPE_FP_ROUND:
#endif
#ifdef CONFIG_ALTIVEC
case BOOKE_IRQPRIO_ALTIVEC_UNAVAIL:
case BOOKE_IRQPRIO_ALTIVEC_ASSIST:
#endif
2008-11-05 15:36:23 +00:00
case BOOKE_IRQPRIO_AP_UNAVAIL:
allowed = 1;
msr_mask = MSR_CE | MSR_ME | MSR_DE;
int_class = INT_CLASS_NONCRIT;
break;
case BOOKE_IRQPRIO_WATCHDOG:
2008-11-05 15:36:23 +00:00
case BOOKE_IRQPRIO_CRITICAL:
case BOOKE_IRQPRIO_DBELL_CRIT:
allowed = vcpu->arch.shared->msr & MSR_CE;
allowed = allowed && !crit;
msr_mask = MSR_ME;
int_class = INT_CLASS_CRIT;
break;
2008-11-05 15:36:23 +00:00
case BOOKE_IRQPRIO_MACHINE_CHECK:
allowed = vcpu->arch.shared->msr & MSR_ME;
allowed = allowed && !crit;
int_class = INT_CLASS_MC;
break;
2008-11-05 15:36:23 +00:00
case BOOKE_IRQPRIO_DECREMENTER:
case BOOKE_IRQPRIO_FIT:
keep_irq = true;
/* fall through */
case BOOKE_IRQPRIO_EXTERNAL:
case BOOKE_IRQPRIO_DBELL:
allowed = vcpu->arch.shared->msr & MSR_EE;
allowed = allowed && !crit;
msr_mask = MSR_CE | MSR_ME | MSR_DE;
int_class = INT_CLASS_NONCRIT;
break;
2008-11-05 15:36:23 +00:00
case BOOKE_IRQPRIO_DEBUG:
allowed = vcpu->arch.shared->msr & MSR_DE;
allowed = allowed && !crit;
msr_mask = MSR_ME;
if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
int_class = INT_CLASS_DBG;
else
int_class = INT_CLASS_CRIT;
break;
}
2008-11-05 15:36:23 +00:00
if (allowed) {
switch (int_class) {
case INT_CLASS_NONCRIT:
set_guest_srr(vcpu, vcpu->arch.pc,
vcpu->arch.shared->msr);
break;
case INT_CLASS_CRIT:
set_guest_csrr(vcpu, vcpu->arch.pc,
vcpu->arch.shared->msr);
break;
case INT_CLASS_DBG:
set_guest_dsrr(vcpu, vcpu->arch.pc,
vcpu->arch.shared->msr);
break;
case INT_CLASS_MC:
set_guest_mcsrr(vcpu, vcpu->arch.pc,
vcpu->arch.shared->msr);
break;
}
2008-11-05 15:36:23 +00:00
vcpu->arch.pc = vcpu->arch.ivpr | vcpu->arch.ivor[priority];
if (update_esr == true)
kvmppc_set_esr(vcpu, vcpu->arch.queued_esr);
if (update_dear == true)
kvmppc_set_dar(vcpu, vcpu->arch.queued_dear);
if (update_epr == true) {
if (vcpu->arch.epr_flags & KVMPPC_EPR_USER)
kvm_make_request(KVM_REQ_EPR_EXIT, vcpu);
else if (vcpu->arch.epr_flags & KVMPPC_EPR_KERNEL) {
BUG_ON(vcpu->arch.irq_type != KVMPPC_IRQ_MPIC);
kvmppc_mpic_set_epr(vcpu);
}
}
new_msr &= msr_mask;
#if defined(CONFIG_64BIT)
if (vcpu->arch.epcr & SPRN_EPCR_ICM)
new_msr |= MSR_CM;
#endif
kvmppc_set_msr(vcpu, new_msr);
if (!keep_irq)
clear_bit(priority, &vcpu->arch.pending_exceptions);
}
#ifdef CONFIG_KVM_BOOKE_HV
/*
* If an interrupt is pending but masked, raise a guest doorbell
* so that we are notified when the guest enables the relevant
* MSR bit.
*/
if (vcpu->arch.pending_exceptions & BOOKE_IRQMASK_EE)
kvmppc_set_pending_interrupt(vcpu, INT_CLASS_NONCRIT);
if (vcpu->arch.pending_exceptions & BOOKE_IRQMASK_CE)
kvmppc_set_pending_interrupt(vcpu, INT_CLASS_CRIT);
if (vcpu->arch.pending_exceptions & BOOKE_IRQPRIO_MACHINE_CHECK)
kvmppc_set_pending_interrupt(vcpu, INT_CLASS_MC);
#endif
2008-11-05 15:36:23 +00:00
return allowed;
}
/*
* Return the number of jiffies until the next timeout. If the timeout is
* longer than the NEXT_TIMER_MAX_DELTA, then return NEXT_TIMER_MAX_DELTA
* because the larger value can break the timer APIs.
*/
static unsigned long watchdog_next_timeout(struct kvm_vcpu *vcpu)
{
u64 tb, wdt_tb, wdt_ticks = 0;
u64 nr_jiffies = 0;
u32 period = TCR_GET_WP(vcpu->arch.tcr);
wdt_tb = 1ULL << (63 - period);
tb = get_tb();
/*
* The watchdog timeout will hapeen when TB bit corresponding
* to watchdog will toggle from 0 to 1.
*/
if (tb & wdt_tb)
wdt_ticks = wdt_tb;
wdt_ticks += wdt_tb - (tb & (wdt_tb - 1));
/* Convert timebase ticks to jiffies */
nr_jiffies = wdt_ticks;
if (do_div(nr_jiffies, tb_ticks_per_jiffy))
nr_jiffies++;
return min_t(unsigned long long, nr_jiffies, NEXT_TIMER_MAX_DELTA);
}
static void arm_next_watchdog(struct kvm_vcpu *vcpu)
{
unsigned long nr_jiffies;
unsigned long flags;
/*
* If TSR_ENW and TSR_WIS are not set then no need to exit to
* userspace, so clear the KVM_REQ_WATCHDOG request.
*/
if ((vcpu->arch.tsr & (TSR_ENW | TSR_WIS)) != (TSR_ENW | TSR_WIS))
kvm_clear_request(KVM_REQ_WATCHDOG, vcpu);
spin_lock_irqsave(&vcpu->arch.wdt_lock, flags);
nr_jiffies = watchdog_next_timeout(vcpu);
/*
* If the number of jiffies of watchdog timer >= NEXT_TIMER_MAX_DELTA
* then do not run the watchdog timer as this can break timer APIs.
*/
if (nr_jiffies < NEXT_TIMER_MAX_DELTA)
mod_timer(&vcpu->arch.wdt_timer, jiffies + nr_jiffies);
else
del_timer(&vcpu->arch.wdt_timer);
spin_unlock_irqrestore(&vcpu->arch.wdt_lock, flags);
}
treewide: setup_timer() -> timer_setup() (2 field) This converts all remaining setup_timer() calls that use a nested field to reach a struct timer_list. Coccinelle does not have an easy way to match multiple fields, so a new script is needed to change the matches of "&_E->_timer" into "&_E->_field1._timer" in all the rules. spatch --very-quiet --all-includes --include-headers \ -I ./arch/x86/include -I ./arch/x86/include/generated \ -I ./include -I ./arch/x86/include/uapi \ -I ./arch/x86/include/generated/uapi -I ./include/uapi \ -I ./include/generated/uapi --include ./include/linux/kconfig.h \ --dir . \ --cocci-file ~/src/data/timer_setup-2fields.cocci @fix_address_of depends@ expression e; @@ setup_timer( -&(e) +&e , ...) // Update any raw setup_timer() usages that have a NULL callback, but // would otherwise match change_timer_function_usage, since the latter // will update all function assignments done in the face of a NULL // function initialization in setup_timer(). @change_timer_function_usage_NULL@ expression _E; identifier _field1; identifier _timer; type _cast_data; @@ ( -setup_timer(&_E->_field1._timer, NULL, _E); +timer_setup(&_E->_field1._timer, NULL, 0); | -setup_timer(&_E->_field1._timer, NULL, (_cast_data)_E); +timer_setup(&_E->_field1._timer, NULL, 0); | -setup_timer(&_E._field1._timer, NULL, &_E); +timer_setup(&_E._field1._timer, NULL, 0); | -setup_timer(&_E._field1._timer, NULL, (_cast_data)&_E); +timer_setup(&_E._field1._timer, NULL, 0); ) @change_timer_function_usage@ expression _E; identifier _field1; identifier _timer; struct timer_list _stl; identifier _callback; type _cast_func, _cast_data; @@ ( -setup_timer(&_E->_field1._timer, _callback, _E); +timer_setup(&_E->_field1._timer, _callback, 0); | -setup_timer(&_E->_field1._timer, &_callback, _E); +timer_setup(&_E->_field1._timer, _callback, 0); | -setup_timer(&_E->_field1._timer, _callback, (_cast_data)_E); +timer_setup(&_E->_field1._timer, _callback, 0); | -setup_timer(&_E->_field1._timer, &_callback, (_cast_data)_E); +timer_setup(&_E->_field1._timer, _callback, 0); | -setup_timer(&_E->_field1._timer, (_cast_func)_callback, _E); +timer_setup(&_E->_field1._timer, _callback, 0); | -setup_timer(&_E->_field1._timer, (_cast_func)&_callback, _E); +timer_setup(&_E->_field1._timer, _callback, 0); | -setup_timer(&_E->_field1._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E->_field1._timer, _callback, 0); | -setup_timer(&_E->_field1._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E->_field1._timer, _callback, 0); | -setup_timer(&_E._field1._timer, _callback, (_cast_data)_E); +timer_setup(&_E._field1._timer, _callback, 0); | -setup_timer(&_E._field1._timer, _callback, (_cast_data)&_E); +timer_setup(&_E._field1._timer, _callback, 0); | -setup_timer(&_E._field1._timer, &_callback, (_cast_data)_E); +timer_setup(&_E._field1._timer, _callback, 0); | -setup_timer(&_E._field1._timer, &_callback, (_cast_data)&_E); +timer_setup(&_E._field1._timer, _callback, 0); | -setup_timer(&_E._field1._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E._field1._timer, _callback, 0); | -setup_timer(&_E._field1._timer, (_cast_func)_callback, (_cast_data)&_E); +timer_setup(&_E._field1._timer, _callback, 0); | -setup_timer(&_E._field1._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E._field1._timer, _callback, 0); | -setup_timer(&_E._field1._timer, (_cast_func)&_callback, (_cast_data)&_E); +timer_setup(&_E._field1._timer, _callback, 0); | _E->_field1._timer@_stl.function = _callback; | _E->_field1._timer@_stl.function = &_callback; | _E->_field1._timer@_stl.function = (_cast_func)_callback; | _E->_field1._timer@_stl.function = (_cast_func)&_callback; | _E._field1._timer@_stl.function = _callback; | _E._field1._timer@_stl.function = &_callback; | _E._field1._timer@_stl.function = (_cast_func)_callback; | _E._field1._timer@_stl.function = (_cast_func)&_callback; ) // callback(unsigned long arg) @change_callback_handle_cast depends on change_timer_function_usage@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._field1; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; identifier _handle; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { ( ... when != _origarg _handletype *_handle = -(_handletype *)_origarg; +from_timer(_handle, t, _field1._timer); ... when != _origarg | ... when != _origarg _handletype *_handle = -(void *)_origarg; +from_timer(_handle, t, _field1._timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(_handletype *)_origarg; +from_timer(_handle, t, _field1._timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(void *)_origarg; +from_timer(_handle, t, _field1._timer); ... when != _origarg ) } // callback(unsigned long arg) without existing variable @change_callback_handle_cast_no_arg depends on change_timer_function_usage && !change_callback_handle_cast@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._field1; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { + _handletype *_origarg = from_timer(_origarg, t, _field1._timer); + ... when != _origarg - (_handletype *)_origarg + _origarg ... when != _origarg } // Avoid already converted callbacks. @match_callback_converted depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier t; @@ void _callback(struct timer_list *t) { ... } // callback(struct something *handle) @change_callback_handle_arg depends on change_timer_function_usage && !match_callback_converted && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._field1; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; @@ void _callback( -_handletype *_handle +struct timer_list *t ) { + _handletype *_handle = from_timer(_handle, t, _field1._timer); ... } // If change_callback_handle_arg ran on an empty function, remove // the added handler. @unchange_callback_handle_arg depends on change_timer_function_usage && change_callback_handle_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._field1; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; identifier t; @@ void _callback(struct timer_list *t) { - _handletype *_handle = from_timer(_handle, t, _field1._timer); } // We only want to refactor the setup_timer() data argument if we've found // the matching callback. This undoes changes in change_timer_function_usage. @unchange_timer_function_usage depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg && !change_callback_handle_arg@ expression change_timer_function_usage._E; identifier change_timer_function_usage._field1; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type change_timer_function_usage._cast_data; @@ ( -timer_setup(&_E->_field1._timer, _callback, 0); +setup_timer(&_E->_field1._timer, _callback, (_cast_data)_E); | -timer_setup(&_E._field1._timer, _callback, 0); +setup_timer(&_E._field1._timer, _callback, (_cast_data)&_E); ) // If we fixed a callback from a .function assignment, fix the // assignment cast now. @change_timer_function_assignment depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression change_timer_function_usage._E; identifier change_timer_function_usage._field1; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_func; typedef TIMER_FUNC_TYPE; @@ ( _E->_field1._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_field1._timer.function = -&_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_field1._timer.function = -(_cast_func)_callback; +(TIMER_FUNC_TYPE)_callback ; | _E->_field1._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; | _E._field1._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E._field1._timer.function = -&_callback; +(TIMER_FUNC_TYPE)_callback ; | _E._field1._timer.function = -(_cast_func)_callback +(TIMER_FUNC_TYPE)_callback ; | _E._field1._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; ) // Sometimes timer functions are called directly. Replace matched args. @change_timer_function_calls depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression _E; identifier change_timer_function_usage._field1; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_data; @@ _callback( ( -(_cast_data)_E +&_E->_field1._timer | -(_cast_data)&_E +&_E._field1._timer | -_E +&_E->_field1._timer ) ) // If a timer has been configured without a data argument, it can be // converted without regard to the callback argument, since it is unused. @match_timer_function_unused_data@ expression _E; identifier _field1; identifier _timer; identifier _callback; @@ ( -setup_timer(&_E->_field1._timer, _callback, 0); +timer_setup(&_E->_field1._timer, _callback, 0); | -setup_timer(&_E->_field1._timer, _callback, 0L); +timer_setup(&_E->_field1._timer, _callback, 0); | -setup_timer(&_E->_field1._timer, _callback, 0UL); +timer_setup(&_E->_field1._timer, _callback, 0); | -setup_timer(&_E._field1._timer, _callback, 0); +timer_setup(&_E._field1._timer, _callback, 0); | -setup_timer(&_E._field1._timer, _callback, 0L); +timer_setup(&_E._field1._timer, _callback, 0); | -setup_timer(&_E._field1._timer, _callback, 0UL); +timer_setup(&_E._field1._timer, _callback, 0); | -setup_timer(&_field1._timer, _callback, 0); +timer_setup(&_field1._timer, _callback, 0); | -setup_timer(&_field1._timer, _callback, 0L); +timer_setup(&_field1._timer, _callback, 0); | -setup_timer(&_field1._timer, _callback, 0UL); +timer_setup(&_field1._timer, _callback, 0); | -setup_timer(_field1._timer, _callback, 0); +timer_setup(_field1._timer, _callback, 0); | -setup_timer(_field1._timer, _callback, 0L); +timer_setup(_field1._timer, _callback, 0); | -setup_timer(_field1._timer, _callback, 0UL); +timer_setup(_field1._timer, _callback, 0); ) @change_callback_unused_data depends on match_timer_function_unused_data@ identifier match_timer_function_unused_data._callback; type _origtype; identifier _origarg; @@ void _callback( -_origtype _origarg +struct timer_list *unused ) { ... when != _origarg } Signed-off-by: Kees Cook <keescook@chromium.org>
2017-10-18 03:21:24 +00:00
void kvmppc_watchdog_func(struct timer_list *t)
{
treewide: setup_timer() -> timer_setup() (2 field) This converts all remaining setup_timer() calls that use a nested field to reach a struct timer_list. Coccinelle does not have an easy way to match multiple fields, so a new script is needed to change the matches of "&_E->_timer" into "&_E->_field1._timer" in all the rules. spatch --very-quiet --all-includes --include-headers \ -I ./arch/x86/include -I ./arch/x86/include/generated \ -I ./include -I ./arch/x86/include/uapi \ -I ./arch/x86/include/generated/uapi -I ./include/uapi \ -I ./include/generated/uapi --include ./include/linux/kconfig.h \ --dir . \ --cocci-file ~/src/data/timer_setup-2fields.cocci @fix_address_of depends@ expression e; @@ setup_timer( -&(e) +&e , ...) // Update any raw setup_timer() usages that have a NULL callback, but // would otherwise match change_timer_function_usage, since the latter // will update all function assignments done in the face of a NULL // function initialization in setup_timer(). @change_timer_function_usage_NULL@ expression _E; identifier _field1; identifier _timer; type _cast_data; @@ ( -setup_timer(&_E->_field1._timer, NULL, _E); +timer_setup(&_E->_field1._timer, NULL, 0); | -setup_timer(&_E->_field1._timer, NULL, (_cast_data)_E); +timer_setup(&_E->_field1._timer, NULL, 0); | -setup_timer(&_E._field1._timer, NULL, &_E); +timer_setup(&_E._field1._timer, NULL, 0); | -setup_timer(&_E._field1._timer, NULL, (_cast_data)&_E); +timer_setup(&_E._field1._timer, NULL, 0); ) @change_timer_function_usage@ expression _E; identifier _field1; identifier _timer; struct timer_list _stl; identifier _callback; type _cast_func, _cast_data; @@ ( -setup_timer(&_E->_field1._timer, _callback, _E); +timer_setup(&_E->_field1._timer, _callback, 0); | -setup_timer(&_E->_field1._timer, &_callback, _E); +timer_setup(&_E->_field1._timer, _callback, 0); | -setup_timer(&_E->_field1._timer, _callback, (_cast_data)_E); +timer_setup(&_E->_field1._timer, _callback, 0); | -setup_timer(&_E->_field1._timer, &_callback, (_cast_data)_E); +timer_setup(&_E->_field1._timer, _callback, 0); | -setup_timer(&_E->_field1._timer, (_cast_func)_callback, _E); +timer_setup(&_E->_field1._timer, _callback, 0); | -setup_timer(&_E->_field1._timer, (_cast_func)&_callback, _E); +timer_setup(&_E->_field1._timer, _callback, 0); | -setup_timer(&_E->_field1._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E->_field1._timer, _callback, 0); | -setup_timer(&_E->_field1._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E->_field1._timer, _callback, 0); | -setup_timer(&_E._field1._timer, _callback, (_cast_data)_E); +timer_setup(&_E._field1._timer, _callback, 0); | -setup_timer(&_E._field1._timer, _callback, (_cast_data)&_E); +timer_setup(&_E._field1._timer, _callback, 0); | -setup_timer(&_E._field1._timer, &_callback, (_cast_data)_E); +timer_setup(&_E._field1._timer, _callback, 0); | -setup_timer(&_E._field1._timer, &_callback, (_cast_data)&_E); +timer_setup(&_E._field1._timer, _callback, 0); | -setup_timer(&_E._field1._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E._field1._timer, _callback, 0); | -setup_timer(&_E._field1._timer, (_cast_func)_callback, (_cast_data)&_E); +timer_setup(&_E._field1._timer, _callback, 0); | -setup_timer(&_E._field1._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E._field1._timer, _callback, 0); | -setup_timer(&_E._field1._timer, (_cast_func)&_callback, (_cast_data)&_E); +timer_setup(&_E._field1._timer, _callback, 0); | _E->_field1._timer@_stl.function = _callback; | _E->_field1._timer@_stl.function = &_callback; | _E->_field1._timer@_stl.function = (_cast_func)_callback; | _E->_field1._timer@_stl.function = (_cast_func)&_callback; | _E._field1._timer@_stl.function = _callback; | _E._field1._timer@_stl.function = &_callback; | _E._field1._timer@_stl.function = (_cast_func)_callback; | _E._field1._timer@_stl.function = (_cast_func)&_callback; ) // callback(unsigned long arg) @change_callback_handle_cast depends on change_timer_function_usage@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._field1; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; identifier _handle; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { ( ... when != _origarg _handletype *_handle = -(_handletype *)_origarg; +from_timer(_handle, t, _field1._timer); ... when != _origarg | ... when != _origarg _handletype *_handle = -(void *)_origarg; +from_timer(_handle, t, _field1._timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(_handletype *)_origarg; +from_timer(_handle, t, _field1._timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(void *)_origarg; +from_timer(_handle, t, _field1._timer); ... when != _origarg ) } // callback(unsigned long arg) without existing variable @change_callback_handle_cast_no_arg depends on change_timer_function_usage && !change_callback_handle_cast@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._field1; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { + _handletype *_origarg = from_timer(_origarg, t, _field1._timer); + ... when != _origarg - (_handletype *)_origarg + _origarg ... when != _origarg } // Avoid already converted callbacks. @match_callback_converted depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier t; @@ void _callback(struct timer_list *t) { ... } // callback(struct something *handle) @change_callback_handle_arg depends on change_timer_function_usage && !match_callback_converted && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._field1; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; @@ void _callback( -_handletype *_handle +struct timer_list *t ) { + _handletype *_handle = from_timer(_handle, t, _field1._timer); ... } // If change_callback_handle_arg ran on an empty function, remove // the added handler. @unchange_callback_handle_arg depends on change_timer_function_usage && change_callback_handle_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._field1; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; identifier t; @@ void _callback(struct timer_list *t) { - _handletype *_handle = from_timer(_handle, t, _field1._timer); } // We only want to refactor the setup_timer() data argument if we've found // the matching callback. This undoes changes in change_timer_function_usage. @unchange_timer_function_usage depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg && !change_callback_handle_arg@ expression change_timer_function_usage._E; identifier change_timer_function_usage._field1; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type change_timer_function_usage._cast_data; @@ ( -timer_setup(&_E->_field1._timer, _callback, 0); +setup_timer(&_E->_field1._timer, _callback, (_cast_data)_E); | -timer_setup(&_E._field1._timer, _callback, 0); +setup_timer(&_E._field1._timer, _callback, (_cast_data)&_E); ) // If we fixed a callback from a .function assignment, fix the // assignment cast now. @change_timer_function_assignment depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression change_timer_function_usage._E; identifier change_timer_function_usage._field1; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_func; typedef TIMER_FUNC_TYPE; @@ ( _E->_field1._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_field1._timer.function = -&_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_field1._timer.function = -(_cast_func)_callback; +(TIMER_FUNC_TYPE)_callback ; | _E->_field1._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; | _E._field1._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E._field1._timer.function = -&_callback; +(TIMER_FUNC_TYPE)_callback ; | _E._field1._timer.function = -(_cast_func)_callback +(TIMER_FUNC_TYPE)_callback ; | _E._field1._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; ) // Sometimes timer functions are called directly. Replace matched args. @change_timer_function_calls depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression _E; identifier change_timer_function_usage._field1; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_data; @@ _callback( ( -(_cast_data)_E +&_E->_field1._timer | -(_cast_data)&_E +&_E._field1._timer | -_E +&_E->_field1._timer ) ) // If a timer has been configured without a data argument, it can be // converted without regard to the callback argument, since it is unused. @match_timer_function_unused_data@ expression _E; identifier _field1; identifier _timer; identifier _callback; @@ ( -setup_timer(&_E->_field1._timer, _callback, 0); +timer_setup(&_E->_field1._timer, _callback, 0); | -setup_timer(&_E->_field1._timer, _callback, 0L); +timer_setup(&_E->_field1._timer, _callback, 0); | -setup_timer(&_E->_field1._timer, _callback, 0UL); +timer_setup(&_E->_field1._timer, _callback, 0); | -setup_timer(&_E._field1._timer, _callback, 0); +timer_setup(&_E._field1._timer, _callback, 0); | -setup_timer(&_E._field1._timer, _callback, 0L); +timer_setup(&_E._field1._timer, _callback, 0); | -setup_timer(&_E._field1._timer, _callback, 0UL); +timer_setup(&_E._field1._timer, _callback, 0); | -setup_timer(&_field1._timer, _callback, 0); +timer_setup(&_field1._timer, _callback, 0); | -setup_timer(&_field1._timer, _callback, 0L); +timer_setup(&_field1._timer, _callback, 0); | -setup_timer(&_field1._timer, _callback, 0UL); +timer_setup(&_field1._timer, _callback, 0); | -setup_timer(_field1._timer, _callback, 0); +timer_setup(_field1._timer, _callback, 0); | -setup_timer(_field1._timer, _callback, 0L); +timer_setup(_field1._timer, _callback, 0); | -setup_timer(_field1._timer, _callback, 0UL); +timer_setup(_field1._timer, _callback, 0); ) @change_callback_unused_data depends on match_timer_function_unused_data@ identifier match_timer_function_unused_data._callback; type _origtype; identifier _origarg; @@ void _callback( -_origtype _origarg +struct timer_list *unused ) { ... when != _origarg } Signed-off-by: Kees Cook <keescook@chromium.org>
2017-10-18 03:21:24 +00:00
struct kvm_vcpu *vcpu = from_timer(vcpu, t, arch.wdt_timer);
u32 tsr, new_tsr;
int final;
do {
new_tsr = tsr = vcpu->arch.tsr;
final = 0;
/* Time out event */
if (tsr & TSR_ENW) {
if (tsr & TSR_WIS)
final = 1;
else
new_tsr = tsr | TSR_WIS;
} else {
new_tsr = tsr | TSR_ENW;
}
} while (cmpxchg(&vcpu->arch.tsr, tsr, new_tsr) != tsr);
if (new_tsr & TSR_WIS) {
smp_wmb();
kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
kvm_vcpu_kick(vcpu);
}
/*
* If this is final watchdog expiry and some action is required
* then exit to userspace.
*/
if (final && (vcpu->arch.tcr & TCR_WRC_MASK) &&
vcpu->arch.watchdog_enabled) {
smp_wmb();
kvm_make_request(KVM_REQ_WATCHDOG, vcpu);
kvm_vcpu_kick(vcpu);
}
/*
* Stop running the watchdog timer after final expiration to
* prevent the host from being flooded with timers if the
* guest sets a short period.
* Timers will resume when TSR/TCR is updated next time.
*/
if (!final)
arm_next_watchdog(vcpu);
}
static void update_timer_ints(struct kvm_vcpu *vcpu)
{
if ((vcpu->arch.tcr & TCR_DIE) && (vcpu->arch.tsr & TSR_DIS))
kvmppc_core_queue_dec(vcpu);
else
kvmppc_core_dequeue_dec(vcpu);
if ((vcpu->arch.tcr & TCR_WIE) && (vcpu->arch.tsr & TSR_WIS))
kvmppc_core_queue_watchdog(vcpu);
else
kvmppc_core_dequeue_watchdog(vcpu);
}
static void kvmppc_core_check_exceptions(struct kvm_vcpu *vcpu)
{
unsigned long *pending = &vcpu->arch.pending_exceptions;
unsigned int priority;
priority = __ffs(*pending);
while (priority < BOOKE_IRQPRIO_MAX) {
2008-11-05 15:36:23 +00:00
if (kvmppc_booke_irqprio_deliver(vcpu, priority))
break;
priority = find_next_bit(pending,
BITS_PER_BYTE * sizeof(*pending),
priority + 1);
}
/* Tell the guest about our interrupt status */
vcpu->arch.shared->int_pending = !!*pending;
}
/* Check pending exceptions and deliver one, if possible. */
int kvmppc_core_prepare_to_enter(struct kvm_vcpu *vcpu)
{
int r = 0;
WARN_ON_ONCE(!irqs_disabled());
kvmppc_core_check_exceptions(vcpu);
if (kvm_request_pending(vcpu)) {
/* Exception delivery raised request; start over */
return 1;
}
if (vcpu->arch.shared->msr & MSR_WE) {
local_irq_enable();
kvm_vcpu_block(vcpu);
kvm_clear_request(KVM_REQ_UNHALT, vcpu);
hard_irq_disable();
kvmppc_set_exit_type(vcpu, EMULATED_MTMSRWE_EXITS);
r = 1;
};
return r;
}
int kvmppc_core_check_requests(struct kvm_vcpu *vcpu)
{
int r = 1; /* Indicate we want to get back into the guest */
if (kvm_check_request(KVM_REQ_PENDING_TIMER, vcpu))
update_timer_ints(vcpu);
#if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
kvmppc_core_flush_tlb(vcpu);
#endif
if (kvm_check_request(KVM_REQ_WATCHDOG, vcpu)) {
vcpu->run->exit_reason = KVM_EXIT_WATCHDOG;
r = 0;
}
if (kvm_check_request(KVM_REQ_EPR_EXIT, vcpu)) {
vcpu->run->epr.epr = 0;
vcpu->arch.epr_needed = true;
vcpu->run->exit_reason = KVM_EXIT_EPR;
r = 0;
}
return r;
}
int kvmppc_vcpu_run(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
int ret, s;
struct debug_reg debug;
if (!vcpu->arch.sane) {
kvm_run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
return -EINVAL;
}
s = kvmppc_prepare_to_enter(vcpu);
if (s <= 0) {
ret = s;
goto out;
}
/* interrupts now hard-disabled */
#ifdef CONFIG_PPC_FPU
/* Save userspace FPU state in stack */
enable_kernel_fp();
/*
* Since we can't trap on MSR_FP in GS-mode, we consider the guest
* as always using the FPU.
*/
kvmppc_load_guest_fp(vcpu);
#endif
#ifdef CONFIG_ALTIVEC
/* Save userspace AltiVec state in stack */
if (cpu_has_feature(CPU_FTR_ALTIVEC))
enable_kernel_altivec();
/*
* Since we can't trap on MSR_VEC in GS-mode, we consider the guest
* as always using the AltiVec.
*/
kvmppc_load_guest_altivec(vcpu);
#endif
KVM: PPC: E500: Add userspace debug stub support This patch adds the debug stub support on booke/bookehv. Now QEMU debug stub can use hw breakpoint, watchpoint and software breakpoint to debug guest. This is how we save/restore debug register context when switching between guest, userspace and kernel user-process: When QEMU is running -> thread->debug_reg == QEMU debug register context. -> Kernel will handle switching the debug register on context switch. -> no vcpu_load() called QEMU makes ioctls (except RUN) -> This will call vcpu_load() -> should not change context. -> Some ioctls can change vcpu debug register, context saved in vcpu->debug_regs QEMU Makes RUN ioctl -> Save thread->debug_reg on STACK -> Store thread->debug_reg == vcpu->debug_reg -> load thread->debug_reg -> RUN VCPU ( So thread points to vcpu context ) Context switch happens When VCPU running -> makes vcpu_load() should not load any context -> kernel loads the vcpu context as thread->debug_regs points to vcpu context. On heavyweight_exit -> Load the context saved on stack in thread->debug_reg Currently we do not support debug resource emulation to guest, On debug exception, always exit to user space irrespective of user space is expecting the debug exception or not. If this is unexpected exception (breakpoint/watchpoint event not set by userspace) then let us leave the action on user space. This is similar to what it was before, only thing is that now we have proper exit state available to user space. Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-07-04 06:57:47 +00:00
/* Switch to guest debug context */
debug = vcpu->arch.dbg_reg;
switch_booke_debug_regs(&debug);
debug = current->thread.debug;
current->thread.debug = vcpu->arch.dbg_reg;
KVM: PPC: E500: Add userspace debug stub support This patch adds the debug stub support on booke/bookehv. Now QEMU debug stub can use hw breakpoint, watchpoint and software breakpoint to debug guest. This is how we save/restore debug register context when switching between guest, userspace and kernel user-process: When QEMU is running -> thread->debug_reg == QEMU debug register context. -> Kernel will handle switching the debug register on context switch. -> no vcpu_load() called QEMU makes ioctls (except RUN) -> This will call vcpu_load() -> should not change context. -> Some ioctls can change vcpu debug register, context saved in vcpu->debug_regs QEMU Makes RUN ioctl -> Save thread->debug_reg on STACK -> Store thread->debug_reg == vcpu->debug_reg -> load thread->debug_reg -> RUN VCPU ( So thread points to vcpu context ) Context switch happens When VCPU running -> makes vcpu_load() should not load any context -> kernel loads the vcpu context as thread->debug_regs points to vcpu context. On heavyweight_exit -> Load the context saved on stack in thread->debug_reg Currently we do not support debug resource emulation to guest, On debug exception, always exit to user space irrespective of user space is expecting the debug exception or not. If this is unexpected exception (breakpoint/watchpoint event not set by userspace) then let us leave the action on user space. This is similar to what it was before, only thing is that now we have proper exit state available to user space. Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-07-04 06:57:47 +00:00
vcpu->arch.pgdir = current->mm->pgd;
kvmppc_fix_ee_before_entry();
ret = __kvmppc_vcpu_run(kvm_run, vcpu);
/* No need for guest_exit. It's done in handle_exit.
We also get here with interrupts enabled. */
KVM: PPC: E500: Add userspace debug stub support This patch adds the debug stub support on booke/bookehv. Now QEMU debug stub can use hw breakpoint, watchpoint and software breakpoint to debug guest. This is how we save/restore debug register context when switching between guest, userspace and kernel user-process: When QEMU is running -> thread->debug_reg == QEMU debug register context. -> Kernel will handle switching the debug register on context switch. -> no vcpu_load() called QEMU makes ioctls (except RUN) -> This will call vcpu_load() -> should not change context. -> Some ioctls can change vcpu debug register, context saved in vcpu->debug_regs QEMU Makes RUN ioctl -> Save thread->debug_reg on STACK -> Store thread->debug_reg == vcpu->debug_reg -> load thread->debug_reg -> RUN VCPU ( So thread points to vcpu context ) Context switch happens When VCPU running -> makes vcpu_load() should not load any context -> kernel loads the vcpu context as thread->debug_regs points to vcpu context. On heavyweight_exit -> Load the context saved on stack in thread->debug_reg Currently we do not support debug resource emulation to guest, On debug exception, always exit to user space irrespective of user space is expecting the debug exception or not. If this is unexpected exception (breakpoint/watchpoint event not set by userspace) then let us leave the action on user space. This is similar to what it was before, only thing is that now we have proper exit state available to user space. Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-07-04 06:57:47 +00:00
/* Switch back to user space debug context */
switch_booke_debug_regs(&debug);
current->thread.debug = debug;
KVM: PPC: E500: Add userspace debug stub support This patch adds the debug stub support on booke/bookehv. Now QEMU debug stub can use hw breakpoint, watchpoint and software breakpoint to debug guest. This is how we save/restore debug register context when switching between guest, userspace and kernel user-process: When QEMU is running -> thread->debug_reg == QEMU debug register context. -> Kernel will handle switching the debug register on context switch. -> no vcpu_load() called QEMU makes ioctls (except RUN) -> This will call vcpu_load() -> should not change context. -> Some ioctls can change vcpu debug register, context saved in vcpu->debug_regs QEMU Makes RUN ioctl -> Save thread->debug_reg on STACK -> Store thread->debug_reg == vcpu->debug_reg -> load thread->debug_reg -> RUN VCPU ( So thread points to vcpu context ) Context switch happens When VCPU running -> makes vcpu_load() should not load any context -> kernel loads the vcpu context as thread->debug_regs points to vcpu context. On heavyweight_exit -> Load the context saved on stack in thread->debug_reg Currently we do not support debug resource emulation to guest, On debug exception, always exit to user space irrespective of user space is expecting the debug exception or not. If this is unexpected exception (breakpoint/watchpoint event not set by userspace) then let us leave the action on user space. This is similar to what it was before, only thing is that now we have proper exit state available to user space. Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-07-04 06:57:47 +00:00
#ifdef CONFIG_PPC_FPU
kvmppc_save_guest_fp(vcpu);
#endif
#ifdef CONFIG_ALTIVEC
kvmppc_save_guest_altivec(vcpu);
#endif
out:
vcpu->mode = OUTSIDE_GUEST_MODE;
return ret;
}
static int emulation_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
{
enum emulation_result er;
er = kvmppc_emulate_instruction(run, vcpu);
switch (er) {
case EMULATE_DONE:
/* don't overwrite subtypes, just account kvm_stats */
kvmppc_account_exit_stat(vcpu, EMULATED_INST_EXITS);
/* Future optimization: only reload non-volatiles if
* they were actually modified by emulation. */
return RESUME_GUEST_NV;
case EMULATE_AGAIN:
return RESUME_GUEST;
case EMULATE_FAIL:
printk(KERN_CRIT "%s: emulation at %lx failed (%08x)\n",
__func__, vcpu->arch.pc, vcpu->arch.last_inst);
/* For debugging, encode the failing instruction and
* report it to userspace. */
run->hw.hardware_exit_reason = ~0ULL << 32;
run->hw.hardware_exit_reason |= vcpu->arch.last_inst;
kvmppc_core_queue_program(vcpu, ESR_PIL);
return RESUME_HOST;
case EMULATE_EXIT_USER:
return RESUME_HOST;
default:
BUG();
}
}
KVM: PPC: E500: Add userspace debug stub support This patch adds the debug stub support on booke/bookehv. Now QEMU debug stub can use hw breakpoint, watchpoint and software breakpoint to debug guest. This is how we save/restore debug register context when switching between guest, userspace and kernel user-process: When QEMU is running -> thread->debug_reg == QEMU debug register context. -> Kernel will handle switching the debug register on context switch. -> no vcpu_load() called QEMU makes ioctls (except RUN) -> This will call vcpu_load() -> should not change context. -> Some ioctls can change vcpu debug register, context saved in vcpu->debug_regs QEMU Makes RUN ioctl -> Save thread->debug_reg on STACK -> Store thread->debug_reg == vcpu->debug_reg -> load thread->debug_reg -> RUN VCPU ( So thread points to vcpu context ) Context switch happens When VCPU running -> makes vcpu_load() should not load any context -> kernel loads the vcpu context as thread->debug_regs points to vcpu context. On heavyweight_exit -> Load the context saved on stack in thread->debug_reg Currently we do not support debug resource emulation to guest, On debug exception, always exit to user space irrespective of user space is expecting the debug exception or not. If this is unexpected exception (breakpoint/watchpoint event not set by userspace) then let us leave the action on user space. This is similar to what it was before, only thing is that now we have proper exit state available to user space. Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-07-04 06:57:47 +00:00
static int kvmppc_handle_debug(struct kvm_run *run, struct kvm_vcpu *vcpu)
{
struct debug_reg *dbg_reg = &(vcpu->arch.dbg_reg);
KVM: PPC: E500: Add userspace debug stub support This patch adds the debug stub support on booke/bookehv. Now QEMU debug stub can use hw breakpoint, watchpoint and software breakpoint to debug guest. This is how we save/restore debug register context when switching between guest, userspace and kernel user-process: When QEMU is running -> thread->debug_reg == QEMU debug register context. -> Kernel will handle switching the debug register on context switch. -> no vcpu_load() called QEMU makes ioctls (except RUN) -> This will call vcpu_load() -> should not change context. -> Some ioctls can change vcpu debug register, context saved in vcpu->debug_regs QEMU Makes RUN ioctl -> Save thread->debug_reg on STACK -> Store thread->debug_reg == vcpu->debug_reg -> load thread->debug_reg -> RUN VCPU ( So thread points to vcpu context ) Context switch happens When VCPU running -> makes vcpu_load() should not load any context -> kernel loads the vcpu context as thread->debug_regs points to vcpu context. On heavyweight_exit -> Load the context saved on stack in thread->debug_reg Currently we do not support debug resource emulation to guest, On debug exception, always exit to user space irrespective of user space is expecting the debug exception or not. If this is unexpected exception (breakpoint/watchpoint event not set by userspace) then let us leave the action on user space. This is similar to what it was before, only thing is that now we have proper exit state available to user space. Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-07-04 06:57:47 +00:00
u32 dbsr = vcpu->arch.dbsr;
if (vcpu->guest_debug == 0) {
/*
* Debug resources belong to Guest.
* Imprecise debug event is not injected
*/
if (dbsr & DBSR_IDE) {
dbsr &= ~DBSR_IDE;
if (!dbsr)
return RESUME_GUEST;
}
if (dbsr && (vcpu->arch.shared->msr & MSR_DE) &&
(vcpu->arch.dbg_reg.dbcr0 & DBCR0_IDM))
kvmppc_core_queue_debug(vcpu);
/* Inject a program interrupt if trap debug is not allowed */
if ((dbsr & DBSR_TIE) && !(vcpu->arch.shared->msr & MSR_DE))
kvmppc_core_queue_program(vcpu, ESR_PTR);
return RESUME_GUEST;
}
/*
* Debug resource owned by userspace.
* Clear guest dbsr (vcpu->arch.dbsr)
*/
vcpu->arch.dbsr = 0;
KVM: PPC: E500: Add userspace debug stub support This patch adds the debug stub support on booke/bookehv. Now QEMU debug stub can use hw breakpoint, watchpoint and software breakpoint to debug guest. This is how we save/restore debug register context when switching between guest, userspace and kernel user-process: When QEMU is running -> thread->debug_reg == QEMU debug register context. -> Kernel will handle switching the debug register on context switch. -> no vcpu_load() called QEMU makes ioctls (except RUN) -> This will call vcpu_load() -> should not change context. -> Some ioctls can change vcpu debug register, context saved in vcpu->debug_regs QEMU Makes RUN ioctl -> Save thread->debug_reg on STACK -> Store thread->debug_reg == vcpu->debug_reg -> load thread->debug_reg -> RUN VCPU ( So thread points to vcpu context ) Context switch happens When VCPU running -> makes vcpu_load() should not load any context -> kernel loads the vcpu context as thread->debug_regs points to vcpu context. On heavyweight_exit -> Load the context saved on stack in thread->debug_reg Currently we do not support debug resource emulation to guest, On debug exception, always exit to user space irrespective of user space is expecting the debug exception or not. If this is unexpected exception (breakpoint/watchpoint event not set by userspace) then let us leave the action on user space. This is similar to what it was before, only thing is that now we have proper exit state available to user space. Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-07-04 06:57:47 +00:00
run->debug.arch.status = 0;
run->debug.arch.address = vcpu->arch.pc;
if (dbsr & (DBSR_IAC1 | DBSR_IAC2 | DBSR_IAC3 | DBSR_IAC4)) {
run->debug.arch.status |= KVMPPC_DEBUG_BREAKPOINT;
} else {
if (dbsr & (DBSR_DAC1W | DBSR_DAC2W))
run->debug.arch.status |= KVMPPC_DEBUG_WATCH_WRITE;
else if (dbsr & (DBSR_DAC1R | DBSR_DAC2R))
run->debug.arch.status |= KVMPPC_DEBUG_WATCH_READ;
if (dbsr & (DBSR_DAC1R | DBSR_DAC1W))
run->debug.arch.address = dbg_reg->dac1;
else if (dbsr & (DBSR_DAC2R | DBSR_DAC2W))
run->debug.arch.address = dbg_reg->dac2;
}
return RESUME_HOST;
}
static void kvmppc_fill_pt_regs(struct pt_regs *regs)
{
ulong r1, ip, msr, lr;
asm("mr %0, 1" : "=r"(r1));
asm("mflr %0" : "=r"(lr));
asm("mfmsr %0" : "=r"(msr));
asm("bl 1f; 1: mflr %0" : "=r"(ip));
memset(regs, 0, sizeof(*regs));
regs->gpr[1] = r1;
regs->nip = ip;
regs->msr = msr;
regs->link = lr;
}
/*
* For interrupts needed to be handled by host interrupt handlers,
* corresponding host handler are called from here in similar way
* (but not exact) as they are called from low level handler
* (such as from arch/powerpc/kernel/head_fsl_booke.S).
*/
static void kvmppc_restart_interrupt(struct kvm_vcpu *vcpu,
unsigned int exit_nr)
{
struct pt_regs regs;
switch (exit_nr) {
case BOOKE_INTERRUPT_EXTERNAL:
kvmppc_fill_pt_regs(&regs);
do_IRQ(&regs);
break;
case BOOKE_INTERRUPT_DECREMENTER:
kvmppc_fill_pt_regs(&regs);
timer_interrupt(&regs);
break;
#if defined(CONFIG_PPC_DOORBELL)
case BOOKE_INTERRUPT_DOORBELL:
kvmppc_fill_pt_regs(&regs);
doorbell_exception(&regs);
break;
#endif
case BOOKE_INTERRUPT_MACHINE_CHECK:
/* FIXME */
break;
case BOOKE_INTERRUPT_PERFORMANCE_MONITOR:
kvmppc_fill_pt_regs(&regs);
performance_monitor_exception(&regs);
break;
case BOOKE_INTERRUPT_WATCHDOG:
kvmppc_fill_pt_regs(&regs);
#ifdef CONFIG_BOOKE_WDT
WatchdogException(&regs);
#else
unknown_exception(&regs);
#endif
break;
case BOOKE_INTERRUPT_CRITICAL:
kvmppc_fill_pt_regs(&regs);
unknown_exception(&regs);
break;
KVM: PPC: E500: Add userspace debug stub support This patch adds the debug stub support on booke/bookehv. Now QEMU debug stub can use hw breakpoint, watchpoint and software breakpoint to debug guest. This is how we save/restore debug register context when switching between guest, userspace and kernel user-process: When QEMU is running -> thread->debug_reg == QEMU debug register context. -> Kernel will handle switching the debug register on context switch. -> no vcpu_load() called QEMU makes ioctls (except RUN) -> This will call vcpu_load() -> should not change context. -> Some ioctls can change vcpu debug register, context saved in vcpu->debug_regs QEMU Makes RUN ioctl -> Save thread->debug_reg on STACK -> Store thread->debug_reg == vcpu->debug_reg -> load thread->debug_reg -> RUN VCPU ( So thread points to vcpu context ) Context switch happens When VCPU running -> makes vcpu_load() should not load any context -> kernel loads the vcpu context as thread->debug_regs points to vcpu context. On heavyweight_exit -> Load the context saved on stack in thread->debug_reg Currently we do not support debug resource emulation to guest, On debug exception, always exit to user space irrespective of user space is expecting the debug exception or not. If this is unexpected exception (breakpoint/watchpoint event not set by userspace) then let us leave the action on user space. This is similar to what it was before, only thing is that now we have proper exit state available to user space. Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-07-04 06:57:47 +00:00
case BOOKE_INTERRUPT_DEBUG:
/* Save DBSR before preemption is enabled */
vcpu->arch.dbsr = mfspr(SPRN_DBSR);
kvmppc_clear_dbsr();
break;
}
}
KVM: PPC: Bookehv: Get vcpu's last instruction for emulation On book3e, KVM uses load external pid (lwepx) dedicated instruction to read guest last instruction on the exit path. lwepx exceptions (DTLB_MISS, DSI and LRAT), generated by loading a guest address, needs to be handled by KVM. These exceptions are generated in a substituted guest translation context (EPLC[EGS] = 1) from host context (MSR[GS] = 0). Currently, KVM hooks only interrupts generated from guest context (MSR[GS] = 1), doing minimal checks on the fast path to avoid host performance degradation. lwepx exceptions originate from host state (MSR[GS] = 0) which implies additional checks in DO_KVM macro (beside the current MSR[GS] = 1) by looking at the Exception Syndrome Register (ESR[EPID]) and the External PID Load Context Register (EPLC[EGS]). Doing this on each Data TLB miss exception is obvious too intrusive for the host. Read guest last instruction from kvmppc_load_last_inst() by searching for the physical address and kmap it. This address the TODO for TLB eviction and execute-but-not-read entries, and allow us to get rid of lwepx until we are able to handle failures. A simple stress benchmark shows a 1% sys performance degradation compared with previous approach (lwepx without failure handling): time for i in `seq 1 10000`; do /bin/echo > /dev/null; done real 0m 8.85s user 0m 4.34s sys 0m 4.48s vs real 0m 8.84s user 0m 4.36s sys 0m 4.44s A solution to use lwepx and to handle its exceptions in KVM would be to temporary highjack the interrupt vector from host. This imposes additional synchronizations for cores like FSL e6500 that shares host IVOR registers between hardware threads. This optimized solution can be later developed on top of this patch. Signed-off-by: Mihai Caraman <mihai.caraman@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-23 16:06:22 +00:00
static int kvmppc_resume_inst_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
enum emulation_result emulated, u32 last_inst)
{
switch (emulated) {
case EMULATE_AGAIN:
return RESUME_GUEST;
case EMULATE_FAIL:
pr_debug("%s: load instruction from guest address %lx failed\n",
__func__, vcpu->arch.pc);
/* For debugging, encode the failing instruction and
* report it to userspace. */
run->hw.hardware_exit_reason = ~0ULL << 32;
run->hw.hardware_exit_reason |= last_inst;
kvmppc_core_queue_program(vcpu, ESR_PIL);
return RESUME_HOST;
default:
BUG();
}
}
/**
* kvmppc_handle_exit
*
* Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
*/
int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
unsigned int exit_nr)
{
int r = RESUME_HOST;
int s;
int idx;
KVM: PPC: Bookehv: Get vcpu's last instruction for emulation On book3e, KVM uses load external pid (lwepx) dedicated instruction to read guest last instruction on the exit path. lwepx exceptions (DTLB_MISS, DSI and LRAT), generated by loading a guest address, needs to be handled by KVM. These exceptions are generated in a substituted guest translation context (EPLC[EGS] = 1) from host context (MSR[GS] = 0). Currently, KVM hooks only interrupts generated from guest context (MSR[GS] = 1), doing minimal checks on the fast path to avoid host performance degradation. lwepx exceptions originate from host state (MSR[GS] = 0) which implies additional checks in DO_KVM macro (beside the current MSR[GS] = 1) by looking at the Exception Syndrome Register (ESR[EPID]) and the External PID Load Context Register (EPLC[EGS]). Doing this on each Data TLB miss exception is obvious too intrusive for the host. Read guest last instruction from kvmppc_load_last_inst() by searching for the physical address and kmap it. This address the TODO for TLB eviction and execute-but-not-read entries, and allow us to get rid of lwepx until we are able to handle failures. A simple stress benchmark shows a 1% sys performance degradation compared with previous approach (lwepx without failure handling): time for i in `seq 1 10000`; do /bin/echo > /dev/null; done real 0m 8.85s user 0m 4.34s sys 0m 4.48s vs real 0m 8.84s user 0m 4.36s sys 0m 4.44s A solution to use lwepx and to handle its exceptions in KVM would be to temporary highjack the interrupt vector from host. This imposes additional synchronizations for cores like FSL e6500 that shares host IVOR registers between hardware threads. This optimized solution can be later developed on top of this patch. Signed-off-by: Mihai Caraman <mihai.caraman@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-23 16:06:22 +00:00
u32 last_inst = KVM_INST_FETCH_FAILED;
enum emulation_result emulated = EMULATE_DONE;
/* update before a new last_exit_type is rewritten */
kvmppc_update_timing_stats(vcpu);
/* restart interrupts if they were meant for the host */
kvmppc_restart_interrupt(vcpu, exit_nr);
KVM: PPC: Bookehv: Get vcpu's last instruction for emulation On book3e, KVM uses load external pid (lwepx) dedicated instruction to read guest last instruction on the exit path. lwepx exceptions (DTLB_MISS, DSI and LRAT), generated by loading a guest address, needs to be handled by KVM. These exceptions are generated in a substituted guest translation context (EPLC[EGS] = 1) from host context (MSR[GS] = 0). Currently, KVM hooks only interrupts generated from guest context (MSR[GS] = 1), doing minimal checks on the fast path to avoid host performance degradation. lwepx exceptions originate from host state (MSR[GS] = 0) which implies additional checks in DO_KVM macro (beside the current MSR[GS] = 1) by looking at the Exception Syndrome Register (ESR[EPID]) and the External PID Load Context Register (EPLC[EGS]). Doing this on each Data TLB miss exception is obvious too intrusive for the host. Read guest last instruction from kvmppc_load_last_inst() by searching for the physical address and kmap it. This address the TODO for TLB eviction and execute-but-not-read entries, and allow us to get rid of lwepx until we are able to handle failures. A simple stress benchmark shows a 1% sys performance degradation compared with previous approach (lwepx without failure handling): time for i in `seq 1 10000`; do /bin/echo > /dev/null; done real 0m 8.85s user 0m 4.34s sys 0m 4.48s vs real 0m 8.84s user 0m 4.36s sys 0m 4.44s A solution to use lwepx and to handle its exceptions in KVM would be to temporary highjack the interrupt vector from host. This imposes additional synchronizations for cores like FSL e6500 that shares host IVOR registers between hardware threads. This optimized solution can be later developed on top of this patch. Signed-off-by: Mihai Caraman <mihai.caraman@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-23 16:06:22 +00:00
/*
* get last instruction before being preempted
KVM: PPC: Bookehv: Get vcpu's last instruction for emulation On book3e, KVM uses load external pid (lwepx) dedicated instruction to read guest last instruction on the exit path. lwepx exceptions (DTLB_MISS, DSI and LRAT), generated by loading a guest address, needs to be handled by KVM. These exceptions are generated in a substituted guest translation context (EPLC[EGS] = 1) from host context (MSR[GS] = 0). Currently, KVM hooks only interrupts generated from guest context (MSR[GS] = 1), doing minimal checks on the fast path to avoid host performance degradation. lwepx exceptions originate from host state (MSR[GS] = 0) which implies additional checks in DO_KVM macro (beside the current MSR[GS] = 1) by looking at the Exception Syndrome Register (ESR[EPID]) and the External PID Load Context Register (EPLC[EGS]). Doing this on each Data TLB miss exception is obvious too intrusive for the host. Read guest last instruction from kvmppc_load_last_inst() by searching for the physical address and kmap it. This address the TODO for TLB eviction and execute-but-not-read entries, and allow us to get rid of lwepx until we are able to handle failures. A simple stress benchmark shows a 1% sys performance degradation compared with previous approach (lwepx without failure handling): time for i in `seq 1 10000`; do /bin/echo > /dev/null; done real 0m 8.85s user 0m 4.34s sys 0m 4.48s vs real 0m 8.84s user 0m 4.36s sys 0m 4.44s A solution to use lwepx and to handle its exceptions in KVM would be to temporary highjack the interrupt vector from host. This imposes additional synchronizations for cores like FSL e6500 that shares host IVOR registers between hardware threads. This optimized solution can be later developed on top of this patch. Signed-off-by: Mihai Caraman <mihai.caraman@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-23 16:06:22 +00:00
* TODO: for e6500 check also BOOKE_INTERRUPT_LRAT_ERROR & ESR_DATA
*/
switch (exit_nr) {
case BOOKE_INTERRUPT_DATA_STORAGE:
case BOOKE_INTERRUPT_DTLB_MISS:
case BOOKE_INTERRUPT_HV_PRIV:
emulated = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
KVM: PPC: Bookehv: Get vcpu's last instruction for emulation On book3e, KVM uses load external pid (lwepx) dedicated instruction to read guest last instruction on the exit path. lwepx exceptions (DTLB_MISS, DSI and LRAT), generated by loading a guest address, needs to be handled by KVM. These exceptions are generated in a substituted guest translation context (EPLC[EGS] = 1) from host context (MSR[GS] = 0). Currently, KVM hooks only interrupts generated from guest context (MSR[GS] = 1), doing minimal checks on the fast path to avoid host performance degradation. lwepx exceptions originate from host state (MSR[GS] = 0) which implies additional checks in DO_KVM macro (beside the current MSR[GS] = 1) by looking at the Exception Syndrome Register (ESR[EPID]) and the External PID Load Context Register (EPLC[EGS]). Doing this on each Data TLB miss exception is obvious too intrusive for the host. Read guest last instruction from kvmppc_load_last_inst() by searching for the physical address and kmap it. This address the TODO for TLB eviction and execute-but-not-read entries, and allow us to get rid of lwepx until we are able to handle failures. A simple stress benchmark shows a 1% sys performance degradation compared with previous approach (lwepx without failure handling): time for i in `seq 1 10000`; do /bin/echo > /dev/null; done real 0m 8.85s user 0m 4.34s sys 0m 4.48s vs real 0m 8.84s user 0m 4.36s sys 0m 4.44s A solution to use lwepx and to handle its exceptions in KVM would be to temporary highjack the interrupt vector from host. This imposes additional synchronizations for cores like FSL e6500 that shares host IVOR registers between hardware threads. This optimized solution can be later developed on top of this patch. Signed-off-by: Mihai Caraman <mihai.caraman@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-23 16:06:22 +00:00
break;
case BOOKE_INTERRUPT_PROGRAM:
/* SW breakpoints arrive as illegal instructions on HV */
if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
emulated = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
break;
KVM: PPC: Bookehv: Get vcpu's last instruction for emulation On book3e, KVM uses load external pid (lwepx) dedicated instruction to read guest last instruction on the exit path. lwepx exceptions (DTLB_MISS, DSI and LRAT), generated by loading a guest address, needs to be handled by KVM. These exceptions are generated in a substituted guest translation context (EPLC[EGS] = 1) from host context (MSR[GS] = 0). Currently, KVM hooks only interrupts generated from guest context (MSR[GS] = 1), doing minimal checks on the fast path to avoid host performance degradation. lwepx exceptions originate from host state (MSR[GS] = 0) which implies additional checks in DO_KVM macro (beside the current MSR[GS] = 1) by looking at the Exception Syndrome Register (ESR[EPID]) and the External PID Load Context Register (EPLC[EGS]). Doing this on each Data TLB miss exception is obvious too intrusive for the host. Read guest last instruction from kvmppc_load_last_inst() by searching for the physical address and kmap it. This address the TODO for TLB eviction and execute-but-not-read entries, and allow us to get rid of lwepx until we are able to handle failures. A simple stress benchmark shows a 1% sys performance degradation compared with previous approach (lwepx without failure handling): time for i in `seq 1 10000`; do /bin/echo > /dev/null; done real 0m 8.85s user 0m 4.34s sys 0m 4.48s vs real 0m 8.84s user 0m 4.36s sys 0m 4.44s A solution to use lwepx and to handle its exceptions in KVM would be to temporary highjack the interrupt vector from host. This imposes additional synchronizations for cores like FSL e6500 that shares host IVOR registers between hardware threads. This optimized solution can be later developed on top of this patch. Signed-off-by: Mihai Caraman <mihai.caraman@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-23 16:06:22 +00:00
default:
break;
}
trace_kvm_exit(exit_nr, vcpu);
guest_exit_irqoff();
local_irq_enable();
run->exit_reason = KVM_EXIT_UNKNOWN;
run->ready_for_interrupt_injection = 1;
KVM: PPC: Bookehv: Get vcpu's last instruction for emulation On book3e, KVM uses load external pid (lwepx) dedicated instruction to read guest last instruction on the exit path. lwepx exceptions (DTLB_MISS, DSI and LRAT), generated by loading a guest address, needs to be handled by KVM. These exceptions are generated in a substituted guest translation context (EPLC[EGS] = 1) from host context (MSR[GS] = 0). Currently, KVM hooks only interrupts generated from guest context (MSR[GS] = 1), doing minimal checks on the fast path to avoid host performance degradation. lwepx exceptions originate from host state (MSR[GS] = 0) which implies additional checks in DO_KVM macro (beside the current MSR[GS] = 1) by looking at the Exception Syndrome Register (ESR[EPID]) and the External PID Load Context Register (EPLC[EGS]). Doing this on each Data TLB miss exception is obvious too intrusive for the host. Read guest last instruction from kvmppc_load_last_inst() by searching for the physical address and kmap it. This address the TODO for TLB eviction and execute-but-not-read entries, and allow us to get rid of lwepx until we are able to handle failures. A simple stress benchmark shows a 1% sys performance degradation compared with previous approach (lwepx without failure handling): time for i in `seq 1 10000`; do /bin/echo > /dev/null; done real 0m 8.85s user 0m 4.34s sys 0m 4.48s vs real 0m 8.84s user 0m 4.36s sys 0m 4.44s A solution to use lwepx and to handle its exceptions in KVM would be to temporary highjack the interrupt vector from host. This imposes additional synchronizations for cores like FSL e6500 that shares host IVOR registers between hardware threads. This optimized solution can be later developed on top of this patch. Signed-off-by: Mihai Caraman <mihai.caraman@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-23 16:06:22 +00:00
if (emulated != EMULATE_DONE) {
r = kvmppc_resume_inst_load(run, vcpu, emulated, last_inst);
goto out;
}
switch (exit_nr) {
case BOOKE_INTERRUPT_MACHINE_CHECK:
printk("MACHINE CHECK: %lx\n", mfspr(SPRN_MCSR));
kvmppc_dump_vcpu(vcpu);
/* For debugging, send invalid exit reason to user space */
run->hw.hardware_exit_reason = ~1ULL << 32;
run->hw.hardware_exit_reason |= mfspr(SPRN_MCSR);
r = RESUME_HOST;
break;
case BOOKE_INTERRUPT_EXTERNAL:
kvmppc_account_exit(vcpu, EXT_INTR_EXITS);
r = RESUME_GUEST;
break;
case BOOKE_INTERRUPT_DECREMENTER:
kvmppc_account_exit(vcpu, DEC_EXITS);
r = RESUME_GUEST;
break;
case BOOKE_INTERRUPT_WATCHDOG:
r = RESUME_GUEST;
break;
case BOOKE_INTERRUPT_DOORBELL:
kvmppc_account_exit(vcpu, DBELL_EXITS);
r = RESUME_GUEST;
break;
case BOOKE_INTERRUPT_GUEST_DBELL_CRIT:
kvmppc_account_exit(vcpu, GDBELL_EXITS);
/*
* We are here because there is a pending guest interrupt
* which could not be delivered as MSR_CE or MSR_ME was not
* set. Once we break from here we will retry delivery.
*/
r = RESUME_GUEST;
break;
case BOOKE_INTERRUPT_GUEST_DBELL:
kvmppc_account_exit(vcpu, GDBELL_EXITS);
/*
* We are here because there is a pending guest interrupt
* which could not be delivered as MSR_EE was not set. Once
* we break from here we will retry delivery.
*/
r = RESUME_GUEST;
break;
case BOOKE_INTERRUPT_PERFORMANCE_MONITOR:
r = RESUME_GUEST;
break;
case BOOKE_INTERRUPT_HV_PRIV:
r = emulation_exit(run, vcpu);
break;
case BOOKE_INTERRUPT_PROGRAM:
if ((vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) &&
(last_inst == KVMPPC_INST_SW_BREAKPOINT)) {
/*
* We are here because of an SW breakpoint instr,
* so lets return to host to handle.
*/
r = kvmppc_handle_debug(run, vcpu);
run->exit_reason = KVM_EXIT_DEBUG;
kvmppc_account_exit(vcpu, DEBUG_EXITS);
break;
}
if (vcpu->arch.shared->msr & (MSR_PR | MSR_GS)) {
/*
* Program traps generated by user-level software must
* be handled by the guest kernel.
*
* In GS mode, hypervisor privileged instructions trap
* on BOOKE_INTERRUPT_HV_PRIV, not here, so these are
* actual program interrupts, handled by the guest.
*/
kvmppc_core_queue_program(vcpu, vcpu->arch.fault_esr);
r = RESUME_GUEST;
kvmppc_account_exit(vcpu, USR_PR_INST);
break;
}
r = emulation_exit(run, vcpu);
break;
case BOOKE_INTERRUPT_FP_UNAVAIL:
2008-11-05 15:36:23 +00:00
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_FP_UNAVAIL);
kvmppc_account_exit(vcpu, FP_UNAVAIL);
r = RESUME_GUEST;
break;
#ifdef CONFIG_SPE
case BOOKE_INTERRUPT_SPE_UNAVAIL: {
if (vcpu->arch.shared->msr & MSR_SPE)
kvmppc_vcpu_enable_spe(vcpu);
else
kvmppc_booke_queue_irqprio(vcpu,
BOOKE_IRQPRIO_SPE_UNAVAIL);
r = RESUME_GUEST;
break;
}
case BOOKE_INTERRUPT_SPE_FP_DATA:
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_SPE_FP_DATA);
r = RESUME_GUEST;
break;
case BOOKE_INTERRUPT_SPE_FP_ROUND:
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_SPE_FP_ROUND);
r = RESUME_GUEST;
break;
#elif defined(CONFIG_SPE_POSSIBLE)
case BOOKE_INTERRUPT_SPE_UNAVAIL:
/*
* Guest wants SPE, but host kernel doesn't support it. Send
* an "unimplemented operation" program check to the guest.
*/
kvmppc_core_queue_program(vcpu, ESR_PUO | ESR_SPV);
r = RESUME_GUEST;
break;
/*
* These really should never happen without CONFIG_SPE,
* as we should never enable the real MSR[SPE] in the guest.
*/
case BOOKE_INTERRUPT_SPE_FP_DATA:
case BOOKE_INTERRUPT_SPE_FP_ROUND:
printk(KERN_CRIT "%s: unexpected SPE interrupt %u at %08lx\n",
__func__, exit_nr, vcpu->arch.pc);
run->hw.hardware_exit_reason = exit_nr;
r = RESUME_HOST;
break;
#endif /* CONFIG_SPE_POSSIBLE */
/*
* On cores with Vector category, KVM is loaded only if CONFIG_ALTIVEC,
* see kvmppc_core_check_processor_compat().
*/
#ifdef CONFIG_ALTIVEC
case BOOKE_INTERRUPT_ALTIVEC_UNAVAIL:
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_ALTIVEC_UNAVAIL);
r = RESUME_GUEST;
break;
case BOOKE_INTERRUPT_ALTIVEC_ASSIST:
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_ALTIVEC_ASSIST);
r = RESUME_GUEST;
break;
#endif
case BOOKE_INTERRUPT_DATA_STORAGE:
kvmppc_core_queue_data_storage(vcpu, vcpu->arch.fault_dear,
vcpu->arch.fault_esr);
kvmppc_account_exit(vcpu, DSI_EXITS);
r = RESUME_GUEST;
break;
case BOOKE_INTERRUPT_INST_STORAGE:
kvmppc_core_queue_inst_storage(vcpu, vcpu->arch.fault_esr);
kvmppc_account_exit(vcpu, ISI_EXITS);
r = RESUME_GUEST;
break;
case BOOKE_INTERRUPT_ALIGNMENT:
kvmppc_core_queue_alignment(vcpu, vcpu->arch.fault_dear,
vcpu->arch.fault_esr);
r = RESUME_GUEST;
break;
#ifdef CONFIG_KVM_BOOKE_HV
case BOOKE_INTERRUPT_HV_SYSCALL:
if (!(vcpu->arch.shared->msr & MSR_PR)) {
kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
} else {
/*
* hcall from guest userspace -- send privileged
* instruction program check.
*/
kvmppc_core_queue_program(vcpu, ESR_PPR);
}
r = RESUME_GUEST;
break;
#else
case BOOKE_INTERRUPT_SYSCALL:
if (!(vcpu->arch.shared->msr & MSR_PR) &&
(((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) {
/* KVM PV hypercalls */
kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
r = RESUME_GUEST;
} else {
/* Guest syscalls */
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_SYSCALL);
}
kvmppc_account_exit(vcpu, SYSCALL_EXITS);
r = RESUME_GUEST;
break;
#endif
case BOOKE_INTERRUPT_DTLB_MISS: {
unsigned long eaddr = vcpu->arch.fault_dear;
int gtlb_index;
gpa_t gpaddr;
gfn_t gfn;
#ifdef CONFIG_KVM_E500V2
if (!(vcpu->arch.shared->msr & MSR_PR) &&
(eaddr & PAGE_MASK) == vcpu->arch.magic_page_ea) {
kvmppc_map_magic(vcpu);
kvmppc_account_exit(vcpu, DTLB_VIRT_MISS_EXITS);
r = RESUME_GUEST;
break;
}
#endif
/* Check the guest TLB. */
gtlb_index = kvmppc_mmu_dtlb_index(vcpu, eaddr);
if (gtlb_index < 0) {
/* The guest didn't have a mapping for it. */
kvmppc_core_queue_dtlb_miss(vcpu,
vcpu->arch.fault_dear,
vcpu->arch.fault_esr);
kvmppc_mmu_dtlb_miss(vcpu);
kvmppc_account_exit(vcpu, DTLB_REAL_MISS_EXITS);
r = RESUME_GUEST;
break;
}
idx = srcu_read_lock(&vcpu->kvm->srcu);
gpaddr = kvmppc_mmu_xlate(vcpu, gtlb_index, eaddr);
gfn = gpaddr >> PAGE_SHIFT;
if (kvm_is_visible_gfn(vcpu->kvm, gfn)) {
/* The guest TLB had a mapping, but the shadow TLB
* didn't, and it is RAM. This could be because:
* a) the entry is mapping the host kernel, or
* b) the guest used a large mapping which we're faking
* Either way, we need to satisfy the fault without
* invoking the guest. */
kvmppc_mmu_map(vcpu, eaddr, gpaddr, gtlb_index);
kvmppc_account_exit(vcpu, DTLB_VIRT_MISS_EXITS);
r = RESUME_GUEST;
} else {
/* Guest has mapped and accessed a page which is not
* actually RAM. */
vcpu->arch.paddr_accessed = gpaddr;
vcpu->arch.vaddr_accessed = eaddr;
r = kvmppc_emulate_mmio(run, vcpu);
kvmppc_account_exit(vcpu, MMIO_EXITS);
}
srcu_read_unlock(&vcpu->kvm->srcu, idx);
break;
}
case BOOKE_INTERRUPT_ITLB_MISS: {
unsigned long eaddr = vcpu->arch.pc;
gpa_t gpaddr;
gfn_t gfn;
int gtlb_index;
r = RESUME_GUEST;
/* Check the guest TLB. */
gtlb_index = kvmppc_mmu_itlb_index(vcpu, eaddr);
if (gtlb_index < 0) {
/* The guest didn't have a mapping for it. */
2008-11-05 15:36:23 +00:00
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_ITLB_MISS);
kvmppc_mmu_itlb_miss(vcpu);
kvmppc_account_exit(vcpu, ITLB_REAL_MISS_EXITS);
break;
}
kvmppc_account_exit(vcpu, ITLB_VIRT_MISS_EXITS);
idx = srcu_read_lock(&vcpu->kvm->srcu);
gpaddr = kvmppc_mmu_xlate(vcpu, gtlb_index, eaddr);
gfn = gpaddr >> PAGE_SHIFT;
if (kvm_is_visible_gfn(vcpu->kvm, gfn)) {
/* The guest TLB had a mapping, but the shadow TLB
* didn't. This could be because:
* a) the entry is mapping the host kernel, or
* b) the guest used a large mapping which we're faking
* Either way, we need to satisfy the fault without
* invoking the guest. */
kvmppc_mmu_map(vcpu, eaddr, gpaddr, gtlb_index);
} else {
/* Guest mapped and leaped at non-RAM! */
2008-11-05 15:36:23 +00:00
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_MACHINE_CHECK);
}
srcu_read_unlock(&vcpu->kvm->srcu, idx);
break;
}
case BOOKE_INTERRUPT_DEBUG: {
KVM: PPC: E500: Add userspace debug stub support This patch adds the debug stub support on booke/bookehv. Now QEMU debug stub can use hw breakpoint, watchpoint and software breakpoint to debug guest. This is how we save/restore debug register context when switching between guest, userspace and kernel user-process: When QEMU is running -> thread->debug_reg == QEMU debug register context. -> Kernel will handle switching the debug register on context switch. -> no vcpu_load() called QEMU makes ioctls (except RUN) -> This will call vcpu_load() -> should not change context. -> Some ioctls can change vcpu debug register, context saved in vcpu->debug_regs QEMU Makes RUN ioctl -> Save thread->debug_reg on STACK -> Store thread->debug_reg == vcpu->debug_reg -> load thread->debug_reg -> RUN VCPU ( So thread points to vcpu context ) Context switch happens When VCPU running -> makes vcpu_load() should not load any context -> kernel loads the vcpu context as thread->debug_regs points to vcpu context. On heavyweight_exit -> Load the context saved on stack in thread->debug_reg Currently we do not support debug resource emulation to guest, On debug exception, always exit to user space irrespective of user space is expecting the debug exception or not. If this is unexpected exception (breakpoint/watchpoint event not set by userspace) then let us leave the action on user space. This is similar to what it was before, only thing is that now we have proper exit state available to user space. Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-07-04 06:57:47 +00:00
r = kvmppc_handle_debug(run, vcpu);
if (r == RESUME_HOST)
run->exit_reason = KVM_EXIT_DEBUG;
kvmppc_account_exit(vcpu, DEBUG_EXITS);
break;
}
default:
printk(KERN_EMERG "exit_nr %d\n", exit_nr);
BUG();
}
KVM: PPC: Bookehv: Get vcpu's last instruction for emulation On book3e, KVM uses load external pid (lwepx) dedicated instruction to read guest last instruction on the exit path. lwepx exceptions (DTLB_MISS, DSI and LRAT), generated by loading a guest address, needs to be handled by KVM. These exceptions are generated in a substituted guest translation context (EPLC[EGS] = 1) from host context (MSR[GS] = 0). Currently, KVM hooks only interrupts generated from guest context (MSR[GS] = 1), doing minimal checks on the fast path to avoid host performance degradation. lwepx exceptions originate from host state (MSR[GS] = 0) which implies additional checks in DO_KVM macro (beside the current MSR[GS] = 1) by looking at the Exception Syndrome Register (ESR[EPID]) and the External PID Load Context Register (EPLC[EGS]). Doing this on each Data TLB miss exception is obvious too intrusive for the host. Read guest last instruction from kvmppc_load_last_inst() by searching for the physical address and kmap it. This address the TODO for TLB eviction and execute-but-not-read entries, and allow us to get rid of lwepx until we are able to handle failures. A simple stress benchmark shows a 1% sys performance degradation compared with previous approach (lwepx without failure handling): time for i in `seq 1 10000`; do /bin/echo > /dev/null; done real 0m 8.85s user 0m 4.34s sys 0m 4.48s vs real 0m 8.84s user 0m 4.36s sys 0m 4.44s A solution to use lwepx and to handle its exceptions in KVM would be to temporary highjack the interrupt vector from host. This imposes additional synchronizations for cores like FSL e6500 that shares host IVOR registers between hardware threads. This optimized solution can be later developed on top of this patch. Signed-off-by: Mihai Caraman <mihai.caraman@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-23 16:06:22 +00:00
out:
/*
* To avoid clobbering exit_reason, only check for signals if we
* aren't already exiting to userspace for some other reason.
*/
if (!(r & RESUME_HOST)) {
s = kvmppc_prepare_to_enter(vcpu);
if (s <= 0)
r = (s << 2) | RESUME_HOST | (r & RESUME_FLAG_NV);
else {
/* interrupts now hard-disabled */
kvmppc_fix_ee_before_entry();
kvmppc_load_guest_fp(vcpu);
kvmppc_load_guest_altivec(vcpu);
}
}
return r;
}
static void kvmppc_set_tsr(struct kvm_vcpu *vcpu, u32 new_tsr)
{
u32 old_tsr = vcpu->arch.tsr;
vcpu->arch.tsr = new_tsr;
if ((old_tsr ^ vcpu->arch.tsr) & (TSR_ENW | TSR_WIS))
arm_next_watchdog(vcpu);
update_timer_ints(vcpu);
}
/* Initial guest state: 16MB mapping 0 -> 0, PC = 0, MSR = 0, R1 = 16MB */
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
int i;
int r;
vcpu->arch.pc = 0;
vcpu->arch.shared->pir = vcpu->vcpu_id;
kvmppc_set_gpr(vcpu, 1, (16<<20) - 8); /* -8 for the callee-save LR slot */
kvmppc_set_msr(vcpu, 0);
#ifndef CONFIG_KVM_BOOKE_HV
KVM: PPC: E500: Add userspace debug stub support This patch adds the debug stub support on booke/bookehv. Now QEMU debug stub can use hw breakpoint, watchpoint and software breakpoint to debug guest. This is how we save/restore debug register context when switching between guest, userspace and kernel user-process: When QEMU is running -> thread->debug_reg == QEMU debug register context. -> Kernel will handle switching the debug register on context switch. -> no vcpu_load() called QEMU makes ioctls (except RUN) -> This will call vcpu_load() -> should not change context. -> Some ioctls can change vcpu debug register, context saved in vcpu->debug_regs QEMU Makes RUN ioctl -> Save thread->debug_reg on STACK -> Store thread->debug_reg == vcpu->debug_reg -> load thread->debug_reg -> RUN VCPU ( So thread points to vcpu context ) Context switch happens When VCPU running -> makes vcpu_load() should not load any context -> kernel loads the vcpu context as thread->debug_regs points to vcpu context. On heavyweight_exit -> Load the context saved on stack in thread->debug_reg Currently we do not support debug resource emulation to guest, On debug exception, always exit to user space irrespective of user space is expecting the debug exception or not. If this is unexpected exception (breakpoint/watchpoint event not set by userspace) then let us leave the action on user space. This is similar to what it was before, only thing is that now we have proper exit state available to user space. Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-07-04 06:57:47 +00:00
vcpu->arch.shadow_msr = MSR_USER | MSR_IS | MSR_DS;
vcpu->arch.shadow_pid = 1;
vcpu->arch.shared->msr = 0;
#endif
/* Eye-catching numbers so we know if the guest takes an interrupt
* before it's programmed its own IVPR/IVORs. */
vcpu->arch.ivpr = 0x55550000;
for (i = 0; i < BOOKE_IRQPRIO_MAX; i++)
vcpu->arch.ivor[i] = 0x7700 | i * 4;
kvmppc_init_timing_stats(vcpu);
r = kvmppc_core_vcpu_setup(vcpu);
kvmppc_sanity_check(vcpu);
return r;
}
int kvmppc_subarch_vcpu_init(struct kvm_vcpu *vcpu)
{
/* setup watchdog timer once */
spin_lock_init(&vcpu->arch.wdt_lock);
treewide: setup_timer() -> timer_setup() (2 field) This converts all remaining setup_timer() calls that use a nested field to reach a struct timer_list. Coccinelle does not have an easy way to match multiple fields, so a new script is needed to change the matches of "&_E->_timer" into "&_E->_field1._timer" in all the rules. spatch --very-quiet --all-includes --include-headers \ -I ./arch/x86/include -I ./arch/x86/include/generated \ -I ./include -I ./arch/x86/include/uapi \ -I ./arch/x86/include/generated/uapi -I ./include/uapi \ -I ./include/generated/uapi --include ./include/linux/kconfig.h \ --dir . \ --cocci-file ~/src/data/timer_setup-2fields.cocci @fix_address_of depends@ expression e; @@ setup_timer( -&(e) +&e , ...) // Update any raw setup_timer() usages that have a NULL callback, but // would otherwise match change_timer_function_usage, since the latter // will update all function assignments done in the face of a NULL // function initialization in setup_timer(). @change_timer_function_usage_NULL@ expression _E; identifier _field1; identifier _timer; type _cast_data; @@ ( -setup_timer(&_E->_field1._timer, NULL, _E); +timer_setup(&_E->_field1._timer, NULL, 0); | -setup_timer(&_E->_field1._timer, NULL, (_cast_data)_E); +timer_setup(&_E->_field1._timer, NULL, 0); | -setup_timer(&_E._field1._timer, NULL, &_E); +timer_setup(&_E._field1._timer, NULL, 0); | -setup_timer(&_E._field1._timer, NULL, (_cast_data)&_E); +timer_setup(&_E._field1._timer, NULL, 0); ) @change_timer_function_usage@ expression _E; identifier _field1; identifier _timer; struct timer_list _stl; identifier _callback; type _cast_func, _cast_data; @@ ( -setup_timer(&_E->_field1._timer, _callback, _E); +timer_setup(&_E->_field1._timer, _callback, 0); | -setup_timer(&_E->_field1._timer, &_callback, _E); +timer_setup(&_E->_field1._timer, _callback, 0); | -setup_timer(&_E->_field1._timer, _callback, (_cast_data)_E); +timer_setup(&_E->_field1._timer, _callback, 0); | -setup_timer(&_E->_field1._timer, &_callback, (_cast_data)_E); +timer_setup(&_E->_field1._timer, _callback, 0); | -setup_timer(&_E->_field1._timer, (_cast_func)_callback, _E); +timer_setup(&_E->_field1._timer, _callback, 0); | -setup_timer(&_E->_field1._timer, (_cast_func)&_callback, _E); +timer_setup(&_E->_field1._timer, _callback, 0); | -setup_timer(&_E->_field1._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E->_field1._timer, _callback, 0); | -setup_timer(&_E->_field1._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E->_field1._timer, _callback, 0); | -setup_timer(&_E._field1._timer, _callback, (_cast_data)_E); +timer_setup(&_E._field1._timer, _callback, 0); | -setup_timer(&_E._field1._timer, _callback, (_cast_data)&_E); +timer_setup(&_E._field1._timer, _callback, 0); | -setup_timer(&_E._field1._timer, &_callback, (_cast_data)_E); +timer_setup(&_E._field1._timer, _callback, 0); | -setup_timer(&_E._field1._timer, &_callback, (_cast_data)&_E); +timer_setup(&_E._field1._timer, _callback, 0); | -setup_timer(&_E._field1._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E._field1._timer, _callback, 0); | -setup_timer(&_E._field1._timer, (_cast_func)_callback, (_cast_data)&_E); +timer_setup(&_E._field1._timer, _callback, 0); | -setup_timer(&_E._field1._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E._field1._timer, _callback, 0); | -setup_timer(&_E._field1._timer, (_cast_func)&_callback, (_cast_data)&_E); +timer_setup(&_E._field1._timer, _callback, 0); | _E->_field1._timer@_stl.function = _callback; | _E->_field1._timer@_stl.function = &_callback; | _E->_field1._timer@_stl.function = (_cast_func)_callback; | _E->_field1._timer@_stl.function = (_cast_func)&_callback; | _E._field1._timer@_stl.function = _callback; | _E._field1._timer@_stl.function = &_callback; | _E._field1._timer@_stl.function = (_cast_func)_callback; | _E._field1._timer@_stl.function = (_cast_func)&_callback; ) // callback(unsigned long arg) @change_callback_handle_cast depends on change_timer_function_usage@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._field1; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; identifier _handle; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { ( ... when != _origarg _handletype *_handle = -(_handletype *)_origarg; +from_timer(_handle, t, _field1._timer); ... when != _origarg | ... when != _origarg _handletype *_handle = -(void *)_origarg; +from_timer(_handle, t, _field1._timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(_handletype *)_origarg; +from_timer(_handle, t, _field1._timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(void *)_origarg; +from_timer(_handle, t, _field1._timer); ... when != _origarg ) } // callback(unsigned long arg) without existing variable @change_callback_handle_cast_no_arg depends on change_timer_function_usage && !change_callback_handle_cast@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._field1; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { + _handletype *_origarg = from_timer(_origarg, t, _field1._timer); + ... when != _origarg - (_handletype *)_origarg + _origarg ... when != _origarg } // Avoid already converted callbacks. @match_callback_converted depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier t; @@ void _callback(struct timer_list *t) { ... } // callback(struct something *handle) @change_callback_handle_arg depends on change_timer_function_usage && !match_callback_converted && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._field1; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; @@ void _callback( -_handletype *_handle +struct timer_list *t ) { + _handletype *_handle = from_timer(_handle, t, _field1._timer); ... } // If change_callback_handle_arg ran on an empty function, remove // the added handler. @unchange_callback_handle_arg depends on change_timer_function_usage && change_callback_handle_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._field1; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; identifier t; @@ void _callback(struct timer_list *t) { - _handletype *_handle = from_timer(_handle, t, _field1._timer); } // We only want to refactor the setup_timer() data argument if we've found // the matching callback. This undoes changes in change_timer_function_usage. @unchange_timer_function_usage depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg && !change_callback_handle_arg@ expression change_timer_function_usage._E; identifier change_timer_function_usage._field1; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type change_timer_function_usage._cast_data; @@ ( -timer_setup(&_E->_field1._timer, _callback, 0); +setup_timer(&_E->_field1._timer, _callback, (_cast_data)_E); | -timer_setup(&_E._field1._timer, _callback, 0); +setup_timer(&_E._field1._timer, _callback, (_cast_data)&_E); ) // If we fixed a callback from a .function assignment, fix the // assignment cast now. @change_timer_function_assignment depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression change_timer_function_usage._E; identifier change_timer_function_usage._field1; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_func; typedef TIMER_FUNC_TYPE; @@ ( _E->_field1._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_field1._timer.function = -&_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_field1._timer.function = -(_cast_func)_callback; +(TIMER_FUNC_TYPE)_callback ; | _E->_field1._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; | _E._field1._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E._field1._timer.function = -&_callback; +(TIMER_FUNC_TYPE)_callback ; | _E._field1._timer.function = -(_cast_func)_callback +(TIMER_FUNC_TYPE)_callback ; | _E._field1._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; ) // Sometimes timer functions are called directly. Replace matched args. @change_timer_function_calls depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression _E; identifier change_timer_function_usage._field1; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_data; @@ _callback( ( -(_cast_data)_E +&_E->_field1._timer | -(_cast_data)&_E +&_E._field1._timer | -_E +&_E->_field1._timer ) ) // If a timer has been configured without a data argument, it can be // converted without regard to the callback argument, since it is unused. @match_timer_function_unused_data@ expression _E; identifier _field1; identifier _timer; identifier _callback; @@ ( -setup_timer(&_E->_field1._timer, _callback, 0); +timer_setup(&_E->_field1._timer, _callback, 0); | -setup_timer(&_E->_field1._timer, _callback, 0L); +timer_setup(&_E->_field1._timer, _callback, 0); | -setup_timer(&_E->_field1._timer, _callback, 0UL); +timer_setup(&_E->_field1._timer, _callback, 0); | -setup_timer(&_E._field1._timer, _callback, 0); +timer_setup(&_E._field1._timer, _callback, 0); | -setup_timer(&_E._field1._timer, _callback, 0L); +timer_setup(&_E._field1._timer, _callback, 0); | -setup_timer(&_E._field1._timer, _callback, 0UL); +timer_setup(&_E._field1._timer, _callback, 0); | -setup_timer(&_field1._timer, _callback, 0); +timer_setup(&_field1._timer, _callback, 0); | -setup_timer(&_field1._timer, _callback, 0L); +timer_setup(&_field1._timer, _callback, 0); | -setup_timer(&_field1._timer, _callback, 0UL); +timer_setup(&_field1._timer, _callback, 0); | -setup_timer(_field1._timer, _callback, 0); +timer_setup(_field1._timer, _callback, 0); | -setup_timer(_field1._timer, _callback, 0L); +timer_setup(_field1._timer, _callback, 0); | -setup_timer(_field1._timer, _callback, 0UL); +timer_setup(_field1._timer, _callback, 0); ) @change_callback_unused_data depends on match_timer_function_unused_data@ identifier match_timer_function_unused_data._callback; type _origtype; identifier _origarg; @@ void _callback( -_origtype _origarg +struct timer_list *unused ) { ... when != _origarg } Signed-off-by: Kees Cook <keescook@chromium.org>
2017-10-18 03:21:24 +00:00
timer_setup(&vcpu->arch.wdt_timer, kvmppc_watchdog_func, 0);
/*
* Clear DBSR.MRR to avoid guest debug interrupt as
* this is of host interest
*/
mtspr(SPRN_DBSR, DBSR_MRR);
return 0;
}
void kvmppc_subarch_vcpu_uninit(struct kvm_vcpu *vcpu)
{
del_timer_sync(&vcpu->arch.wdt_timer);
}
int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
int i;
vcpu_load(vcpu);
regs->pc = vcpu->arch.pc;
regs->cr = kvmppc_get_cr(vcpu);
regs->ctr = vcpu->arch.ctr;
regs->lr = vcpu->arch.lr;
regs->xer = kvmppc_get_xer(vcpu);
regs->msr = vcpu->arch.shared->msr;
regs->srr0 = kvmppc_get_srr0(vcpu);
regs->srr1 = kvmppc_get_srr1(vcpu);
regs->pid = vcpu->arch.pid;
regs->sprg0 = kvmppc_get_sprg0(vcpu);
regs->sprg1 = kvmppc_get_sprg1(vcpu);
regs->sprg2 = kvmppc_get_sprg2(vcpu);
regs->sprg3 = kvmppc_get_sprg3(vcpu);
regs->sprg4 = kvmppc_get_sprg4(vcpu);
regs->sprg5 = kvmppc_get_sprg5(vcpu);
regs->sprg6 = kvmppc_get_sprg6(vcpu);
regs->sprg7 = kvmppc_get_sprg7(vcpu);
for (i = 0; i < ARRAY_SIZE(regs->gpr); i++)
regs->gpr[i] = kvmppc_get_gpr(vcpu, i);
vcpu_put(vcpu);
return 0;
}
int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
int i;
vcpu_load(vcpu);
vcpu->arch.pc = regs->pc;
kvmppc_set_cr(vcpu, regs->cr);
vcpu->arch.ctr = regs->ctr;
vcpu->arch.lr = regs->lr;
kvmppc_set_xer(vcpu, regs->xer);
kvmppc_set_msr(vcpu, regs->msr);
kvmppc_set_srr0(vcpu, regs->srr0);
kvmppc_set_srr1(vcpu, regs->srr1);
kvmppc_set_pid(vcpu, regs->pid);
kvmppc_set_sprg0(vcpu, regs->sprg0);
kvmppc_set_sprg1(vcpu, regs->sprg1);
kvmppc_set_sprg2(vcpu, regs->sprg2);
kvmppc_set_sprg3(vcpu, regs->sprg3);
kvmppc_set_sprg4(vcpu, regs->sprg4);
kvmppc_set_sprg5(vcpu, regs->sprg5);
kvmppc_set_sprg6(vcpu, regs->sprg6);
kvmppc_set_sprg7(vcpu, regs->sprg7);
for (i = 0; i < ARRAY_SIZE(regs->gpr); i++)
kvmppc_set_gpr(vcpu, i, regs->gpr[i]);
vcpu_put(vcpu);
return 0;
}
static void get_sregs_base(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
u64 tb = get_tb();
sregs->u.e.features |= KVM_SREGS_E_BASE;
sregs->u.e.csrr0 = vcpu->arch.csrr0;
sregs->u.e.csrr1 = vcpu->arch.csrr1;
sregs->u.e.mcsr = vcpu->arch.mcsr;
sregs->u.e.esr = kvmppc_get_esr(vcpu);
sregs->u.e.dear = kvmppc_get_dar(vcpu);
sregs->u.e.tsr = vcpu->arch.tsr;
sregs->u.e.tcr = vcpu->arch.tcr;
sregs->u.e.dec = kvmppc_get_dec(vcpu, tb);
sregs->u.e.tb = tb;
sregs->u.e.vrsave = vcpu->arch.vrsave;
}
static int set_sregs_base(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
if (!(sregs->u.e.features & KVM_SREGS_E_BASE))
return 0;
vcpu->arch.csrr0 = sregs->u.e.csrr0;
vcpu->arch.csrr1 = sregs->u.e.csrr1;
vcpu->arch.mcsr = sregs->u.e.mcsr;
kvmppc_set_esr(vcpu, sregs->u.e.esr);
kvmppc_set_dar(vcpu, sregs->u.e.dear);
vcpu->arch.vrsave = sregs->u.e.vrsave;
kvmppc_set_tcr(vcpu, sregs->u.e.tcr);
if (sregs->u.e.update_special & KVM_SREGS_E_UPDATE_DEC) {
vcpu->arch.dec = sregs->u.e.dec;
kvmppc_emulate_dec(vcpu);
}
if (sregs->u.e.update_special & KVM_SREGS_E_UPDATE_TSR)
kvmppc_set_tsr(vcpu, sregs->u.e.tsr);
return 0;
}
static void get_sregs_arch206(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
sregs->u.e.features |= KVM_SREGS_E_ARCH206;
sregs->u.e.pir = vcpu->vcpu_id;
sregs->u.e.mcsrr0 = vcpu->arch.mcsrr0;
sregs->u.e.mcsrr1 = vcpu->arch.mcsrr1;
sregs->u.e.decar = vcpu->arch.decar;
sregs->u.e.ivpr = vcpu->arch.ivpr;
}
static int set_sregs_arch206(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
if (!(sregs->u.e.features & KVM_SREGS_E_ARCH206))
return 0;
if (sregs->u.e.pir != vcpu->vcpu_id)
return -EINVAL;
vcpu->arch.mcsrr0 = sregs->u.e.mcsrr0;
vcpu->arch.mcsrr1 = sregs->u.e.mcsrr1;
vcpu->arch.decar = sregs->u.e.decar;
vcpu->arch.ivpr = sregs->u.e.ivpr;
return 0;
}
int kvmppc_get_sregs_ivor(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
{
sregs->u.e.features |= KVM_SREGS_E_IVOR;
sregs->u.e.ivor_low[0] = vcpu->arch.ivor[BOOKE_IRQPRIO_CRITICAL];
sregs->u.e.ivor_low[1] = vcpu->arch.ivor[BOOKE_IRQPRIO_MACHINE_CHECK];
sregs->u.e.ivor_low[2] = vcpu->arch.ivor[BOOKE_IRQPRIO_DATA_STORAGE];
sregs->u.e.ivor_low[3] = vcpu->arch.ivor[BOOKE_IRQPRIO_INST_STORAGE];
sregs->u.e.ivor_low[4] = vcpu->arch.ivor[BOOKE_IRQPRIO_EXTERNAL];
sregs->u.e.ivor_low[5] = vcpu->arch.ivor[BOOKE_IRQPRIO_ALIGNMENT];
sregs->u.e.ivor_low[6] = vcpu->arch.ivor[BOOKE_IRQPRIO_PROGRAM];
sregs->u.e.ivor_low[7] = vcpu->arch.ivor[BOOKE_IRQPRIO_FP_UNAVAIL];
sregs->u.e.ivor_low[8] = vcpu->arch.ivor[BOOKE_IRQPRIO_SYSCALL];
sregs->u.e.ivor_low[9] = vcpu->arch.ivor[BOOKE_IRQPRIO_AP_UNAVAIL];
sregs->u.e.ivor_low[10] = vcpu->arch.ivor[BOOKE_IRQPRIO_DECREMENTER];
sregs->u.e.ivor_low[11] = vcpu->arch.ivor[BOOKE_IRQPRIO_FIT];
sregs->u.e.ivor_low[12] = vcpu->arch.ivor[BOOKE_IRQPRIO_WATCHDOG];
sregs->u.e.ivor_low[13] = vcpu->arch.ivor[BOOKE_IRQPRIO_DTLB_MISS];
sregs->u.e.ivor_low[14] = vcpu->arch.ivor[BOOKE_IRQPRIO_ITLB_MISS];
sregs->u.e.ivor_low[15] = vcpu->arch.ivor[BOOKE_IRQPRIO_DEBUG];
return 0;
}
int kvmppc_set_sregs_ivor(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
{
if (!(sregs->u.e.features & KVM_SREGS_E_IVOR))
return 0;
vcpu->arch.ivor[BOOKE_IRQPRIO_CRITICAL] = sregs->u.e.ivor_low[0];
vcpu->arch.ivor[BOOKE_IRQPRIO_MACHINE_CHECK] = sregs->u.e.ivor_low[1];
vcpu->arch.ivor[BOOKE_IRQPRIO_DATA_STORAGE] = sregs->u.e.ivor_low[2];
vcpu->arch.ivor[BOOKE_IRQPRIO_INST_STORAGE] = sregs->u.e.ivor_low[3];
vcpu->arch.ivor[BOOKE_IRQPRIO_EXTERNAL] = sregs->u.e.ivor_low[4];
vcpu->arch.ivor[BOOKE_IRQPRIO_ALIGNMENT] = sregs->u.e.ivor_low[5];
vcpu->arch.ivor[BOOKE_IRQPRIO_PROGRAM] = sregs->u.e.ivor_low[6];
vcpu->arch.ivor[BOOKE_IRQPRIO_FP_UNAVAIL] = sregs->u.e.ivor_low[7];
vcpu->arch.ivor[BOOKE_IRQPRIO_SYSCALL] = sregs->u.e.ivor_low[8];
vcpu->arch.ivor[BOOKE_IRQPRIO_AP_UNAVAIL] = sregs->u.e.ivor_low[9];
vcpu->arch.ivor[BOOKE_IRQPRIO_DECREMENTER] = sregs->u.e.ivor_low[10];
vcpu->arch.ivor[BOOKE_IRQPRIO_FIT] = sregs->u.e.ivor_low[11];
vcpu->arch.ivor[BOOKE_IRQPRIO_WATCHDOG] = sregs->u.e.ivor_low[12];
vcpu->arch.ivor[BOOKE_IRQPRIO_DTLB_MISS] = sregs->u.e.ivor_low[13];
vcpu->arch.ivor[BOOKE_IRQPRIO_ITLB_MISS] = sregs->u.e.ivor_low[14];
vcpu->arch.ivor[BOOKE_IRQPRIO_DEBUG] = sregs->u.e.ivor_low[15];
return 0;
}
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
int ret;
vcpu_load(vcpu);
sregs->pvr = vcpu->arch.pvr;
get_sregs_base(vcpu, sregs);
get_sregs_arch206(vcpu, sregs);
ret = vcpu->kvm->arch.kvm_ops->get_sregs(vcpu, sregs);
vcpu_put(vcpu);
return ret;
}
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
int ret = -EINVAL;
vcpu_load(vcpu);
if (vcpu->arch.pvr != sregs->pvr)
goto out;
ret = set_sregs_base(vcpu, sregs);
if (ret < 0)
goto out;
ret = set_sregs_arch206(vcpu, sregs);
if (ret < 0)
goto out;
ret = vcpu->kvm->arch.kvm_ops->set_sregs(vcpu, sregs);
out:
vcpu_put(vcpu);
return ret;
}
int kvmppc_get_one_reg(struct kvm_vcpu *vcpu, u64 id,
union kvmppc_one_reg *val)
{
int r = 0;
switch (id) {
case KVM_REG_PPC_IAC1:
*val = get_reg_val(id, vcpu->arch.dbg_reg.iac1);
break;
case KVM_REG_PPC_IAC2:
*val = get_reg_val(id, vcpu->arch.dbg_reg.iac2);
break;
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
case KVM_REG_PPC_IAC3:
*val = get_reg_val(id, vcpu->arch.dbg_reg.iac3);
break;
case KVM_REG_PPC_IAC4:
*val = get_reg_val(id, vcpu->arch.dbg_reg.iac4);
break;
#endif
case KVM_REG_PPC_DAC1:
*val = get_reg_val(id, vcpu->arch.dbg_reg.dac1);
break;
case KVM_REG_PPC_DAC2:
*val = get_reg_val(id, vcpu->arch.dbg_reg.dac2);
break;
case KVM_REG_PPC_EPR: {
u32 epr = kvmppc_get_epr(vcpu);
*val = get_reg_val(id, epr);
break;
}
#if defined(CONFIG_64BIT)
case KVM_REG_PPC_EPCR:
*val = get_reg_val(id, vcpu->arch.epcr);
break;
#endif
case KVM_REG_PPC_TCR:
*val = get_reg_val(id, vcpu->arch.tcr);
break;
case KVM_REG_PPC_TSR:
*val = get_reg_val(id, vcpu->arch.tsr);
break;
case KVM_REG_PPC_DEBUG_INST:
*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
break;
case KVM_REG_PPC_VRSAVE:
*val = get_reg_val(id, vcpu->arch.vrsave);
break;
default:
r = vcpu->kvm->arch.kvm_ops->get_one_reg(vcpu, id, val);
break;
}
return r;
}
int kvmppc_set_one_reg(struct kvm_vcpu *vcpu, u64 id,
union kvmppc_one_reg *val)
{
int r = 0;
switch (id) {
case KVM_REG_PPC_IAC1:
vcpu->arch.dbg_reg.iac1 = set_reg_val(id, *val);
break;
case KVM_REG_PPC_IAC2:
vcpu->arch.dbg_reg.iac2 = set_reg_val(id, *val);
break;
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
case KVM_REG_PPC_IAC3:
vcpu->arch.dbg_reg.iac3 = set_reg_val(id, *val);
break;
case KVM_REG_PPC_IAC4:
vcpu->arch.dbg_reg.iac4 = set_reg_val(id, *val);
break;
#endif
case KVM_REG_PPC_DAC1:
vcpu->arch.dbg_reg.dac1 = set_reg_val(id, *val);
break;
case KVM_REG_PPC_DAC2:
vcpu->arch.dbg_reg.dac2 = set_reg_val(id, *val);
break;
case KVM_REG_PPC_EPR: {
u32 new_epr = set_reg_val(id, *val);
kvmppc_set_epr(vcpu, new_epr);
break;
}
#if defined(CONFIG_64BIT)
case KVM_REG_PPC_EPCR: {
u32 new_epcr = set_reg_val(id, *val);
kvmppc_set_epcr(vcpu, new_epcr);
break;
}
#endif
case KVM_REG_PPC_OR_TSR: {
u32 tsr_bits = set_reg_val(id, *val);
kvmppc_set_tsr_bits(vcpu, tsr_bits);
break;
}
case KVM_REG_PPC_CLEAR_TSR: {
u32 tsr_bits = set_reg_val(id, *val);
kvmppc_clr_tsr_bits(vcpu, tsr_bits);
break;
}
case KVM_REG_PPC_TSR: {
u32 tsr = set_reg_val(id, *val);
kvmppc_set_tsr(vcpu, tsr);
break;
}
case KVM_REG_PPC_TCR: {
u32 tcr = set_reg_val(id, *val);
kvmppc_set_tcr(vcpu, tcr);
break;
}
case KVM_REG_PPC_VRSAVE:
vcpu->arch.vrsave = set_reg_val(id, *val);
break;
default:
r = vcpu->kvm->arch.kvm_ops->set_one_reg(vcpu, id, val);
break;
}
return r;
}
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
return -ENOTSUPP;
}
int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
return -ENOTSUPP;
}
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
struct kvm_translation *tr)
{
int r;
vcpu_load(vcpu);
r = kvmppc_core_vcpu_translate(vcpu, tr);
vcpu_put(vcpu);
return r;
}
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
return -ENOTSUPP;
}
void kvmppc_core_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
struct kvm_memory_slot *dont)
{
}
int kvmppc_core_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
unsigned long npages)
{
return 0;
}
int kvmppc_core_prepare_memory_region(struct kvm *kvm,
struct kvm_memory_slot *memslot,
const struct kvm_userspace_memory_region *mem)
{
return 0;
}
void kvmppc_core_commit_memory_region(struct kvm *kvm,
const struct kvm_userspace_memory_region *mem,
const struct kvm_memory_slot *old,
const struct kvm_memory_slot *new)
{
}
void kvmppc_core_flush_memslot(struct kvm *kvm, struct kvm_memory_slot *memslot)
{
}
void kvmppc_set_epcr(struct kvm_vcpu *vcpu, u32 new_epcr)
{
#if defined(CONFIG_64BIT)
vcpu->arch.epcr = new_epcr;
#ifdef CONFIG_KVM_BOOKE_HV
vcpu->arch.shadow_epcr &= ~SPRN_EPCR_GICM;
if (vcpu->arch.epcr & SPRN_EPCR_ICM)
vcpu->arch.shadow_epcr |= SPRN_EPCR_GICM;
#endif
#endif
}
void kvmppc_set_tcr(struct kvm_vcpu *vcpu, u32 new_tcr)
{
vcpu->arch.tcr = new_tcr;
arm_next_watchdog(vcpu);
update_timer_ints(vcpu);
}
void kvmppc_set_tsr_bits(struct kvm_vcpu *vcpu, u32 tsr_bits)
{
set_bits(tsr_bits, &vcpu->arch.tsr);
smp_wmb();
kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
kvm_vcpu_kick(vcpu);
}
void kvmppc_clr_tsr_bits(struct kvm_vcpu *vcpu, u32 tsr_bits)
{
clear_bits(tsr_bits, &vcpu->arch.tsr);
/*
* We may have stopped the watchdog due to
* being stuck on final expiration.
*/
if (tsr_bits & (TSR_ENW | TSR_WIS))
arm_next_watchdog(vcpu);
update_timer_ints(vcpu);
}
void kvmppc_decrementer_func(struct kvm_vcpu *vcpu)
{
if (vcpu->arch.tcr & TCR_ARE) {
vcpu->arch.dec = vcpu->arch.decar;
kvmppc_emulate_dec(vcpu);
}
kvmppc_set_tsr_bits(vcpu, TSR_DIS);
}
KVM: PPC: E500: Add userspace debug stub support This patch adds the debug stub support on booke/bookehv. Now QEMU debug stub can use hw breakpoint, watchpoint and software breakpoint to debug guest. This is how we save/restore debug register context when switching between guest, userspace and kernel user-process: When QEMU is running -> thread->debug_reg == QEMU debug register context. -> Kernel will handle switching the debug register on context switch. -> no vcpu_load() called QEMU makes ioctls (except RUN) -> This will call vcpu_load() -> should not change context. -> Some ioctls can change vcpu debug register, context saved in vcpu->debug_regs QEMU Makes RUN ioctl -> Save thread->debug_reg on STACK -> Store thread->debug_reg == vcpu->debug_reg -> load thread->debug_reg -> RUN VCPU ( So thread points to vcpu context ) Context switch happens When VCPU running -> makes vcpu_load() should not load any context -> kernel loads the vcpu context as thread->debug_regs points to vcpu context. On heavyweight_exit -> Load the context saved on stack in thread->debug_reg Currently we do not support debug resource emulation to guest, On debug exception, always exit to user space irrespective of user space is expecting the debug exception or not. If this is unexpected exception (breakpoint/watchpoint event not set by userspace) then let us leave the action on user space. This is similar to what it was before, only thing is that now we have proper exit state available to user space. Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-07-04 06:57:47 +00:00
static int kvmppc_booke_add_breakpoint(struct debug_reg *dbg_reg,
uint64_t addr, int index)
{
switch (index) {
case 0:
dbg_reg->dbcr0 |= DBCR0_IAC1;
dbg_reg->iac1 = addr;
break;
case 1:
dbg_reg->dbcr0 |= DBCR0_IAC2;
dbg_reg->iac2 = addr;
break;
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
case 2:
dbg_reg->dbcr0 |= DBCR0_IAC3;
dbg_reg->iac3 = addr;
break;
case 3:
dbg_reg->dbcr0 |= DBCR0_IAC4;
dbg_reg->iac4 = addr;
break;
#endif
default:
return -EINVAL;
}
dbg_reg->dbcr0 |= DBCR0_IDM;
return 0;
}
static int kvmppc_booke_add_watchpoint(struct debug_reg *dbg_reg, uint64_t addr,
int type, int index)
{
switch (index) {
case 0:
if (type & KVMPPC_DEBUG_WATCH_READ)
dbg_reg->dbcr0 |= DBCR0_DAC1R;
if (type & KVMPPC_DEBUG_WATCH_WRITE)
dbg_reg->dbcr0 |= DBCR0_DAC1W;
dbg_reg->dac1 = addr;
break;
case 1:
if (type & KVMPPC_DEBUG_WATCH_READ)
dbg_reg->dbcr0 |= DBCR0_DAC2R;
if (type & KVMPPC_DEBUG_WATCH_WRITE)
dbg_reg->dbcr0 |= DBCR0_DAC2W;
dbg_reg->dac2 = addr;
break;
default:
return -EINVAL;
}
dbg_reg->dbcr0 |= DBCR0_IDM;
return 0;
}
void kvm_guest_protect_msr(struct kvm_vcpu *vcpu, ulong prot_bitmap, bool set)
{
/* XXX: Add similar MSR protection for BookE-PR */
#ifdef CONFIG_KVM_BOOKE_HV
BUG_ON(prot_bitmap & ~(MSRP_UCLEP | MSRP_DEP | MSRP_PMMP));
if (set) {
if (prot_bitmap & MSR_UCLE)
vcpu->arch.shadow_msrp |= MSRP_UCLEP;
if (prot_bitmap & MSR_DE)
vcpu->arch.shadow_msrp |= MSRP_DEP;
if (prot_bitmap & MSR_PMM)
vcpu->arch.shadow_msrp |= MSRP_PMMP;
} else {
if (prot_bitmap & MSR_UCLE)
vcpu->arch.shadow_msrp &= ~MSRP_UCLEP;
if (prot_bitmap & MSR_DE)
vcpu->arch.shadow_msrp &= ~MSRP_DEP;
if (prot_bitmap & MSR_PMM)
vcpu->arch.shadow_msrp &= ~MSRP_PMMP;
}
#endif
}
int kvmppc_xlate(struct kvm_vcpu *vcpu, ulong eaddr, enum xlate_instdata xlid,
enum xlate_readwrite xlrw, struct kvmppc_pte *pte)
{
int gtlb_index;
gpa_t gpaddr;
#ifdef CONFIG_KVM_E500V2
if (!(vcpu->arch.shared->msr & MSR_PR) &&
(eaddr & PAGE_MASK) == vcpu->arch.magic_page_ea) {
pte->eaddr = eaddr;
pte->raddr = (vcpu->arch.magic_page_pa & PAGE_MASK) |
(eaddr & ~PAGE_MASK);
pte->vpage = eaddr >> PAGE_SHIFT;
pte->may_read = true;
pte->may_write = true;
pte->may_execute = true;
return 0;
}
#endif
/* Check the guest TLB. */
switch (xlid) {
case XLATE_INST:
gtlb_index = kvmppc_mmu_itlb_index(vcpu, eaddr);
break;
case XLATE_DATA:
gtlb_index = kvmppc_mmu_dtlb_index(vcpu, eaddr);
break;
default:
BUG();
}
/* Do we have a TLB entry at all? */
if (gtlb_index < 0)
return -ENOENT;
gpaddr = kvmppc_mmu_xlate(vcpu, gtlb_index, eaddr);
pte->eaddr = eaddr;
pte->raddr = (gpaddr & PAGE_MASK) | (eaddr & ~PAGE_MASK);
pte->vpage = eaddr >> PAGE_SHIFT;
/* XXX read permissions from the guest TLB */
pte->may_read = true;
pte->may_write = true;
pte->may_execute = true;
return 0;
}
KVM: PPC: E500: Add userspace debug stub support This patch adds the debug stub support on booke/bookehv. Now QEMU debug stub can use hw breakpoint, watchpoint and software breakpoint to debug guest. This is how we save/restore debug register context when switching between guest, userspace and kernel user-process: When QEMU is running -> thread->debug_reg == QEMU debug register context. -> Kernel will handle switching the debug register on context switch. -> no vcpu_load() called QEMU makes ioctls (except RUN) -> This will call vcpu_load() -> should not change context. -> Some ioctls can change vcpu debug register, context saved in vcpu->debug_regs QEMU Makes RUN ioctl -> Save thread->debug_reg on STACK -> Store thread->debug_reg == vcpu->debug_reg -> load thread->debug_reg -> RUN VCPU ( So thread points to vcpu context ) Context switch happens When VCPU running -> makes vcpu_load() should not load any context -> kernel loads the vcpu context as thread->debug_regs points to vcpu context. On heavyweight_exit -> Load the context saved on stack in thread->debug_reg Currently we do not support debug resource emulation to guest, On debug exception, always exit to user space irrespective of user space is expecting the debug exception or not. If this is unexpected exception (breakpoint/watchpoint event not set by userspace) then let us leave the action on user space. This is similar to what it was before, only thing is that now we have proper exit state available to user space. Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-07-04 06:57:47 +00:00
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
struct kvm_guest_debug *dbg)
{
struct debug_reg *dbg_reg;
int n, b = 0, w = 0;
int ret = 0;
vcpu_load(vcpu);
KVM: PPC: E500: Add userspace debug stub support This patch adds the debug stub support on booke/bookehv. Now QEMU debug stub can use hw breakpoint, watchpoint and software breakpoint to debug guest. This is how we save/restore debug register context when switching between guest, userspace and kernel user-process: When QEMU is running -> thread->debug_reg == QEMU debug register context. -> Kernel will handle switching the debug register on context switch. -> no vcpu_load() called QEMU makes ioctls (except RUN) -> This will call vcpu_load() -> should not change context. -> Some ioctls can change vcpu debug register, context saved in vcpu->debug_regs QEMU Makes RUN ioctl -> Save thread->debug_reg on STACK -> Store thread->debug_reg == vcpu->debug_reg -> load thread->debug_reg -> RUN VCPU ( So thread points to vcpu context ) Context switch happens When VCPU running -> makes vcpu_load() should not load any context -> kernel loads the vcpu context as thread->debug_regs points to vcpu context. On heavyweight_exit -> Load the context saved on stack in thread->debug_reg Currently we do not support debug resource emulation to guest, On debug exception, always exit to user space irrespective of user space is expecting the debug exception or not. If this is unexpected exception (breakpoint/watchpoint event not set by userspace) then let us leave the action on user space. This is similar to what it was before, only thing is that now we have proper exit state available to user space. Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-07-04 06:57:47 +00:00
if (!(dbg->control & KVM_GUESTDBG_ENABLE)) {
vcpu->arch.dbg_reg.dbcr0 = 0;
KVM: PPC: E500: Add userspace debug stub support This patch adds the debug stub support on booke/bookehv. Now QEMU debug stub can use hw breakpoint, watchpoint and software breakpoint to debug guest. This is how we save/restore debug register context when switching between guest, userspace and kernel user-process: When QEMU is running -> thread->debug_reg == QEMU debug register context. -> Kernel will handle switching the debug register on context switch. -> no vcpu_load() called QEMU makes ioctls (except RUN) -> This will call vcpu_load() -> should not change context. -> Some ioctls can change vcpu debug register, context saved in vcpu->debug_regs QEMU Makes RUN ioctl -> Save thread->debug_reg on STACK -> Store thread->debug_reg == vcpu->debug_reg -> load thread->debug_reg -> RUN VCPU ( So thread points to vcpu context ) Context switch happens When VCPU running -> makes vcpu_load() should not load any context -> kernel loads the vcpu context as thread->debug_regs points to vcpu context. On heavyweight_exit -> Load the context saved on stack in thread->debug_reg Currently we do not support debug resource emulation to guest, On debug exception, always exit to user space irrespective of user space is expecting the debug exception or not. If this is unexpected exception (breakpoint/watchpoint event not set by userspace) then let us leave the action on user space. This is similar to what it was before, only thing is that now we have proper exit state available to user space. Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-07-04 06:57:47 +00:00
vcpu->guest_debug = 0;
kvm_guest_protect_msr(vcpu, MSR_DE, false);
goto out;
KVM: PPC: E500: Add userspace debug stub support This patch adds the debug stub support on booke/bookehv. Now QEMU debug stub can use hw breakpoint, watchpoint and software breakpoint to debug guest. This is how we save/restore debug register context when switching between guest, userspace and kernel user-process: When QEMU is running -> thread->debug_reg == QEMU debug register context. -> Kernel will handle switching the debug register on context switch. -> no vcpu_load() called QEMU makes ioctls (except RUN) -> This will call vcpu_load() -> should not change context. -> Some ioctls can change vcpu debug register, context saved in vcpu->debug_regs QEMU Makes RUN ioctl -> Save thread->debug_reg on STACK -> Store thread->debug_reg == vcpu->debug_reg -> load thread->debug_reg -> RUN VCPU ( So thread points to vcpu context ) Context switch happens When VCPU running -> makes vcpu_load() should not load any context -> kernel loads the vcpu context as thread->debug_regs points to vcpu context. On heavyweight_exit -> Load the context saved on stack in thread->debug_reg Currently we do not support debug resource emulation to guest, On debug exception, always exit to user space irrespective of user space is expecting the debug exception or not. If this is unexpected exception (breakpoint/watchpoint event not set by userspace) then let us leave the action on user space. This is similar to what it was before, only thing is that now we have proper exit state available to user space. Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-07-04 06:57:47 +00:00
}
kvm_guest_protect_msr(vcpu, MSR_DE, true);
vcpu->guest_debug = dbg->control;
vcpu->arch.dbg_reg.dbcr0 = 0;
KVM: PPC: E500: Add userspace debug stub support This patch adds the debug stub support on booke/bookehv. Now QEMU debug stub can use hw breakpoint, watchpoint and software breakpoint to debug guest. This is how we save/restore debug register context when switching between guest, userspace and kernel user-process: When QEMU is running -> thread->debug_reg == QEMU debug register context. -> Kernel will handle switching the debug register on context switch. -> no vcpu_load() called QEMU makes ioctls (except RUN) -> This will call vcpu_load() -> should not change context. -> Some ioctls can change vcpu debug register, context saved in vcpu->debug_regs QEMU Makes RUN ioctl -> Save thread->debug_reg on STACK -> Store thread->debug_reg == vcpu->debug_reg -> load thread->debug_reg -> RUN VCPU ( So thread points to vcpu context ) Context switch happens When VCPU running -> makes vcpu_load() should not load any context -> kernel loads the vcpu context as thread->debug_regs points to vcpu context. On heavyweight_exit -> Load the context saved on stack in thread->debug_reg Currently we do not support debug resource emulation to guest, On debug exception, always exit to user space irrespective of user space is expecting the debug exception or not. If this is unexpected exception (breakpoint/watchpoint event not set by userspace) then let us leave the action on user space. This is similar to what it was before, only thing is that now we have proper exit state available to user space. Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-07-04 06:57:47 +00:00
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
vcpu->arch.dbg_reg.dbcr0 |= DBCR0_IDM | DBCR0_IC;
KVM: PPC: E500: Add userspace debug stub support This patch adds the debug stub support on booke/bookehv. Now QEMU debug stub can use hw breakpoint, watchpoint and software breakpoint to debug guest. This is how we save/restore debug register context when switching between guest, userspace and kernel user-process: When QEMU is running -> thread->debug_reg == QEMU debug register context. -> Kernel will handle switching the debug register on context switch. -> no vcpu_load() called QEMU makes ioctls (except RUN) -> This will call vcpu_load() -> should not change context. -> Some ioctls can change vcpu debug register, context saved in vcpu->debug_regs QEMU Makes RUN ioctl -> Save thread->debug_reg on STACK -> Store thread->debug_reg == vcpu->debug_reg -> load thread->debug_reg -> RUN VCPU ( So thread points to vcpu context ) Context switch happens When VCPU running -> makes vcpu_load() should not load any context -> kernel loads the vcpu context as thread->debug_regs points to vcpu context. On heavyweight_exit -> Load the context saved on stack in thread->debug_reg Currently we do not support debug resource emulation to guest, On debug exception, always exit to user space irrespective of user space is expecting the debug exception or not. If this is unexpected exception (breakpoint/watchpoint event not set by userspace) then let us leave the action on user space. This is similar to what it was before, only thing is that now we have proper exit state available to user space. Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-07-04 06:57:47 +00:00
/* Code below handles only HW breakpoints */
dbg_reg = &(vcpu->arch.dbg_reg);
KVM: PPC: E500: Add userspace debug stub support This patch adds the debug stub support on booke/bookehv. Now QEMU debug stub can use hw breakpoint, watchpoint and software breakpoint to debug guest. This is how we save/restore debug register context when switching between guest, userspace and kernel user-process: When QEMU is running -> thread->debug_reg == QEMU debug register context. -> Kernel will handle switching the debug register on context switch. -> no vcpu_load() called QEMU makes ioctls (except RUN) -> This will call vcpu_load() -> should not change context. -> Some ioctls can change vcpu debug register, context saved in vcpu->debug_regs QEMU Makes RUN ioctl -> Save thread->debug_reg on STACK -> Store thread->debug_reg == vcpu->debug_reg -> load thread->debug_reg -> RUN VCPU ( So thread points to vcpu context ) Context switch happens When VCPU running -> makes vcpu_load() should not load any context -> kernel loads the vcpu context as thread->debug_regs points to vcpu context. On heavyweight_exit -> Load the context saved on stack in thread->debug_reg Currently we do not support debug resource emulation to guest, On debug exception, always exit to user space irrespective of user space is expecting the debug exception or not. If this is unexpected exception (breakpoint/watchpoint event not set by userspace) then let us leave the action on user space. This is similar to what it was before, only thing is that now we have proper exit state available to user space. Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-07-04 06:57:47 +00:00
#ifdef CONFIG_KVM_BOOKE_HV
/*
* On BookE-HV (e500mc) the guest is always executed with MSR.GS=1
* DBCR1 and DBCR2 are set to trigger debug events when MSR.PR is 0
*/
dbg_reg->dbcr1 = 0;
dbg_reg->dbcr2 = 0;
#else
/*
* On BookE-PR (e500v2) the guest is always executed with MSR.PR=1
* We set DBCR1 and DBCR2 to only trigger debug events when MSR.PR
* is set.
*/
dbg_reg->dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | DBCR1_IAC3US |
DBCR1_IAC4US;
dbg_reg->dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
#endif
if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
goto out;
KVM: PPC: E500: Add userspace debug stub support This patch adds the debug stub support on booke/bookehv. Now QEMU debug stub can use hw breakpoint, watchpoint and software breakpoint to debug guest. This is how we save/restore debug register context when switching between guest, userspace and kernel user-process: When QEMU is running -> thread->debug_reg == QEMU debug register context. -> Kernel will handle switching the debug register on context switch. -> no vcpu_load() called QEMU makes ioctls (except RUN) -> This will call vcpu_load() -> should not change context. -> Some ioctls can change vcpu debug register, context saved in vcpu->debug_regs QEMU Makes RUN ioctl -> Save thread->debug_reg on STACK -> Store thread->debug_reg == vcpu->debug_reg -> load thread->debug_reg -> RUN VCPU ( So thread points to vcpu context ) Context switch happens When VCPU running -> makes vcpu_load() should not load any context -> kernel loads the vcpu context as thread->debug_regs points to vcpu context. On heavyweight_exit -> Load the context saved on stack in thread->debug_reg Currently we do not support debug resource emulation to guest, On debug exception, always exit to user space irrespective of user space is expecting the debug exception or not. If this is unexpected exception (breakpoint/watchpoint event not set by userspace) then let us leave the action on user space. This is similar to what it was before, only thing is that now we have proper exit state available to user space. Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-07-04 06:57:47 +00:00
ret = -EINVAL;
KVM: PPC: E500: Add userspace debug stub support This patch adds the debug stub support on booke/bookehv. Now QEMU debug stub can use hw breakpoint, watchpoint and software breakpoint to debug guest. This is how we save/restore debug register context when switching between guest, userspace and kernel user-process: When QEMU is running -> thread->debug_reg == QEMU debug register context. -> Kernel will handle switching the debug register on context switch. -> no vcpu_load() called QEMU makes ioctls (except RUN) -> This will call vcpu_load() -> should not change context. -> Some ioctls can change vcpu debug register, context saved in vcpu->debug_regs QEMU Makes RUN ioctl -> Save thread->debug_reg on STACK -> Store thread->debug_reg == vcpu->debug_reg -> load thread->debug_reg -> RUN VCPU ( So thread points to vcpu context ) Context switch happens When VCPU running -> makes vcpu_load() should not load any context -> kernel loads the vcpu context as thread->debug_regs points to vcpu context. On heavyweight_exit -> Load the context saved on stack in thread->debug_reg Currently we do not support debug resource emulation to guest, On debug exception, always exit to user space irrespective of user space is expecting the debug exception or not. If this is unexpected exception (breakpoint/watchpoint event not set by userspace) then let us leave the action on user space. This is similar to what it was before, only thing is that now we have proper exit state available to user space. Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-07-04 06:57:47 +00:00
for (n = 0; n < (KVMPPC_BOOKE_IAC_NUM + KVMPPC_BOOKE_DAC_NUM); n++) {
uint64_t addr = dbg->arch.bp[n].addr;
uint32_t type = dbg->arch.bp[n].type;
if (type == KVMPPC_DEBUG_NONE)
continue;
if (type & ~(KVMPPC_DEBUG_WATCH_READ |
KVM: PPC: E500: Add userspace debug stub support This patch adds the debug stub support on booke/bookehv. Now QEMU debug stub can use hw breakpoint, watchpoint and software breakpoint to debug guest. This is how we save/restore debug register context when switching between guest, userspace and kernel user-process: When QEMU is running -> thread->debug_reg == QEMU debug register context. -> Kernel will handle switching the debug register on context switch. -> no vcpu_load() called QEMU makes ioctls (except RUN) -> This will call vcpu_load() -> should not change context. -> Some ioctls can change vcpu debug register, context saved in vcpu->debug_regs QEMU Makes RUN ioctl -> Save thread->debug_reg on STACK -> Store thread->debug_reg == vcpu->debug_reg -> load thread->debug_reg -> RUN VCPU ( So thread points to vcpu context ) Context switch happens When VCPU running -> makes vcpu_load() should not load any context -> kernel loads the vcpu context as thread->debug_regs points to vcpu context. On heavyweight_exit -> Load the context saved on stack in thread->debug_reg Currently we do not support debug resource emulation to guest, On debug exception, always exit to user space irrespective of user space is expecting the debug exception or not. If this is unexpected exception (breakpoint/watchpoint event not set by userspace) then let us leave the action on user space. This is similar to what it was before, only thing is that now we have proper exit state available to user space. Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-07-04 06:57:47 +00:00
KVMPPC_DEBUG_WATCH_WRITE |
KVMPPC_DEBUG_BREAKPOINT))
goto out;
KVM: PPC: E500: Add userspace debug stub support This patch adds the debug stub support on booke/bookehv. Now QEMU debug stub can use hw breakpoint, watchpoint and software breakpoint to debug guest. This is how we save/restore debug register context when switching between guest, userspace and kernel user-process: When QEMU is running -> thread->debug_reg == QEMU debug register context. -> Kernel will handle switching the debug register on context switch. -> no vcpu_load() called QEMU makes ioctls (except RUN) -> This will call vcpu_load() -> should not change context. -> Some ioctls can change vcpu debug register, context saved in vcpu->debug_regs QEMU Makes RUN ioctl -> Save thread->debug_reg on STACK -> Store thread->debug_reg == vcpu->debug_reg -> load thread->debug_reg -> RUN VCPU ( So thread points to vcpu context ) Context switch happens When VCPU running -> makes vcpu_load() should not load any context -> kernel loads the vcpu context as thread->debug_regs points to vcpu context. On heavyweight_exit -> Load the context saved on stack in thread->debug_reg Currently we do not support debug resource emulation to guest, On debug exception, always exit to user space irrespective of user space is expecting the debug exception or not. If this is unexpected exception (breakpoint/watchpoint event not set by userspace) then let us leave the action on user space. This is similar to what it was before, only thing is that now we have proper exit state available to user space. Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-07-04 06:57:47 +00:00
if (type & KVMPPC_DEBUG_BREAKPOINT) {
/* Setting H/W breakpoint */
if (kvmppc_booke_add_breakpoint(dbg_reg, addr, b++))
goto out;
KVM: PPC: E500: Add userspace debug stub support This patch adds the debug stub support on booke/bookehv. Now QEMU debug stub can use hw breakpoint, watchpoint and software breakpoint to debug guest. This is how we save/restore debug register context when switching between guest, userspace and kernel user-process: When QEMU is running -> thread->debug_reg == QEMU debug register context. -> Kernel will handle switching the debug register on context switch. -> no vcpu_load() called QEMU makes ioctls (except RUN) -> This will call vcpu_load() -> should not change context. -> Some ioctls can change vcpu debug register, context saved in vcpu->debug_regs QEMU Makes RUN ioctl -> Save thread->debug_reg on STACK -> Store thread->debug_reg == vcpu->debug_reg -> load thread->debug_reg -> RUN VCPU ( So thread points to vcpu context ) Context switch happens When VCPU running -> makes vcpu_load() should not load any context -> kernel loads the vcpu context as thread->debug_regs points to vcpu context. On heavyweight_exit -> Load the context saved on stack in thread->debug_reg Currently we do not support debug resource emulation to guest, On debug exception, always exit to user space irrespective of user space is expecting the debug exception or not. If this is unexpected exception (breakpoint/watchpoint event not set by userspace) then let us leave the action on user space. This is similar to what it was before, only thing is that now we have proper exit state available to user space. Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-07-04 06:57:47 +00:00
} else {
/* Setting H/W watchpoint */
if (kvmppc_booke_add_watchpoint(dbg_reg, addr,
type, w++))
goto out;
KVM: PPC: E500: Add userspace debug stub support This patch adds the debug stub support on booke/bookehv. Now QEMU debug stub can use hw breakpoint, watchpoint and software breakpoint to debug guest. This is how we save/restore debug register context when switching between guest, userspace and kernel user-process: When QEMU is running -> thread->debug_reg == QEMU debug register context. -> Kernel will handle switching the debug register on context switch. -> no vcpu_load() called QEMU makes ioctls (except RUN) -> This will call vcpu_load() -> should not change context. -> Some ioctls can change vcpu debug register, context saved in vcpu->debug_regs QEMU Makes RUN ioctl -> Save thread->debug_reg on STACK -> Store thread->debug_reg == vcpu->debug_reg -> load thread->debug_reg -> RUN VCPU ( So thread points to vcpu context ) Context switch happens When VCPU running -> makes vcpu_load() should not load any context -> kernel loads the vcpu context as thread->debug_regs points to vcpu context. On heavyweight_exit -> Load the context saved on stack in thread->debug_reg Currently we do not support debug resource emulation to guest, On debug exception, always exit to user space irrespective of user space is expecting the debug exception or not. If this is unexpected exception (breakpoint/watchpoint event not set by userspace) then let us leave the action on user space. This is similar to what it was before, only thing is that now we have proper exit state available to user space. Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-07-04 06:57:47 +00:00
}
}
ret = 0;
out:
vcpu_put(vcpu);
return ret;
KVM: PPC: E500: Add userspace debug stub support This patch adds the debug stub support on booke/bookehv. Now QEMU debug stub can use hw breakpoint, watchpoint and software breakpoint to debug guest. This is how we save/restore debug register context when switching between guest, userspace and kernel user-process: When QEMU is running -> thread->debug_reg == QEMU debug register context. -> Kernel will handle switching the debug register on context switch. -> no vcpu_load() called QEMU makes ioctls (except RUN) -> This will call vcpu_load() -> should not change context. -> Some ioctls can change vcpu debug register, context saved in vcpu->debug_regs QEMU Makes RUN ioctl -> Save thread->debug_reg on STACK -> Store thread->debug_reg == vcpu->debug_reg -> load thread->debug_reg -> RUN VCPU ( So thread points to vcpu context ) Context switch happens When VCPU running -> makes vcpu_load() should not load any context -> kernel loads the vcpu context as thread->debug_regs points to vcpu context. On heavyweight_exit -> Load the context saved on stack in thread->debug_reg Currently we do not support debug resource emulation to guest, On debug exception, always exit to user space irrespective of user space is expecting the debug exception or not. If this is unexpected exception (breakpoint/watchpoint event not set by userspace) then let us leave the action on user space. This is similar to what it was before, only thing is that now we have proper exit state available to user space. Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-07-04 06:57:47 +00:00
}
void kvmppc_booke_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
vcpu->cpu = smp_processor_id();
current->thread.kvm_vcpu = vcpu;
}
void kvmppc_booke_vcpu_put(struct kvm_vcpu *vcpu)
{
current->thread.kvm_vcpu = NULL;
vcpu->cpu = -1;
KVM: PPC: E500: Add userspace debug stub support This patch adds the debug stub support on booke/bookehv. Now QEMU debug stub can use hw breakpoint, watchpoint and software breakpoint to debug guest. This is how we save/restore debug register context when switching between guest, userspace and kernel user-process: When QEMU is running -> thread->debug_reg == QEMU debug register context. -> Kernel will handle switching the debug register on context switch. -> no vcpu_load() called QEMU makes ioctls (except RUN) -> This will call vcpu_load() -> should not change context. -> Some ioctls can change vcpu debug register, context saved in vcpu->debug_regs QEMU Makes RUN ioctl -> Save thread->debug_reg on STACK -> Store thread->debug_reg == vcpu->debug_reg -> load thread->debug_reg -> RUN VCPU ( So thread points to vcpu context ) Context switch happens When VCPU running -> makes vcpu_load() should not load any context -> kernel loads the vcpu context as thread->debug_regs points to vcpu context. On heavyweight_exit -> Load the context saved on stack in thread->debug_reg Currently we do not support debug resource emulation to guest, On debug exception, always exit to user space irrespective of user space is expecting the debug exception or not. If this is unexpected exception (breakpoint/watchpoint event not set by userspace) then let us leave the action on user space. This is similar to what it was before, only thing is that now we have proper exit state available to user space. Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-07-04 06:57:47 +00:00
/* Clear pending debug event in DBSR */
kvmppc_clear_dbsr();
}
void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
{
vcpu->kvm->arch.kvm_ops->mmu_destroy(vcpu);
}
int kvmppc_core_init_vm(struct kvm *kvm)
{
return kvm->arch.kvm_ops->init_vm(kvm);
}
struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
{
return kvm->arch.kvm_ops->vcpu_create(kvm, id);
}
void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
{
vcpu->kvm->arch.kvm_ops->vcpu_free(vcpu);
}
void kvmppc_core_destroy_vm(struct kvm *kvm)
{
kvm->arch.kvm_ops->destroy_vm(kvm);
}
void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
vcpu->kvm->arch.kvm_ops->vcpu_load(vcpu, cpu);
}
void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
{
vcpu->kvm->arch.kvm_ops->vcpu_put(vcpu);
}
int __init kvmppc_booke_init(void)
{
#ifndef CONFIG_KVM_BOOKE_HV
unsigned long ivor[16];
unsigned long *handler = kvmppc_booke_handler_addr;
unsigned long max_ivor = 0;
unsigned long handler_len;
int i;
/* We install our own exception handlers by hijacking IVPR. IVPR must
* be 16-bit aligned, so we need a 64KB allocation. */
kvmppc_booke_handlers = __get_free_pages(GFP_KERNEL | __GFP_ZERO,
VCPU_SIZE_ORDER);
if (!kvmppc_booke_handlers)
return -ENOMEM;
/* XXX make sure our handlers are smaller than Linux's */
/* Copy our interrupt handlers to match host IVORs. That way we don't
* have to swap the IVORs on every guest/host transition. */
ivor[0] = mfspr(SPRN_IVOR0);
ivor[1] = mfspr(SPRN_IVOR1);
ivor[2] = mfspr(SPRN_IVOR2);
ivor[3] = mfspr(SPRN_IVOR3);
ivor[4] = mfspr(SPRN_IVOR4);
ivor[5] = mfspr(SPRN_IVOR5);
ivor[6] = mfspr(SPRN_IVOR6);
ivor[7] = mfspr(SPRN_IVOR7);
ivor[8] = mfspr(SPRN_IVOR8);
ivor[9] = mfspr(SPRN_IVOR9);
ivor[10] = mfspr(SPRN_IVOR10);
ivor[11] = mfspr(SPRN_IVOR11);
ivor[12] = mfspr(SPRN_IVOR12);
ivor[13] = mfspr(SPRN_IVOR13);
ivor[14] = mfspr(SPRN_IVOR14);
ivor[15] = mfspr(SPRN_IVOR15);
for (i = 0; i < 16; i++) {
if (ivor[i] > max_ivor)
max_ivor = i;
handler_len = handler[i + 1] - handler[i];
memcpy((void *)kvmppc_booke_handlers + ivor[i],
(void *)handler[i], handler_len);
}
handler_len = handler[max_ivor + 1] - handler[max_ivor];
flush_icache_range(kvmppc_booke_handlers, kvmppc_booke_handlers +
ivor[max_ivor] + handler_len);
#endif /* !BOOKE_HV */
return 0;
}
void __exit kvmppc_booke_exit(void)
{
free_pages(kvmppc_booke_handlers, VCPU_SIZE_ORDER);
kvm_exit();
}