linux/drivers/base/power/main.c

1842 lines
46 KiB
C
Raw Normal View History

/*
* drivers/base/power/main.c - Where the driver meets power management.
*
* Copyright (c) 2003 Patrick Mochel
* Copyright (c) 2003 Open Source Development Lab
*
* This file is released under the GPLv2
*
*
* The driver model core calls device_pm_add() when a device is registered.
* This will initialize the embedded device_pm_info object in the device
* and add it to the list of power-controlled devices. sysfs entries for
* controlling device power management will also be added.
*
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
* A separate list is used for keeping track of power info, because the power
* domain dependencies may differ from the ancestral dependencies that the
* subsystem list maintains.
*/
#include <linux/device.h>
#include <linux/kallsyms.h>
#include <linux/export.h>
#include <linux/mutex.h>
#include <linux/pm.h>
#include <linux/pm_runtime.h>
#include <linux/pm-trace.h>
#include <linux/pm_wakeirq.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
PM: Asynchronous suspend and resume of devices Theoretically, the total time of system sleep transitions (suspend to RAM, hibernation) can be reduced by running suspend and resume callbacks of device drivers in parallel with each other. However, there are dependencies between devices such that we're not allowed to suspend the parent of a device before suspending the device itself. Analogously, we're not allowed to resume a device before resuming its parent. The most straightforward way to take these dependencies into accout is to start the async threads used for suspending and resuming devices at the core level, so that async_schedule() is called for each suspend and resume callback supposed to be executed asynchronously. For this purpose, introduce a new device flag, power.async_suspend, used to mark the devices whose suspend and resume callbacks are to be executed asynchronously (ie. in parallel with the main suspend/resume thread and possibly in parallel with each other) and helper function device_enable_async_suspend() allowing one to set power.async_suspend for given device (power.async_suspend is unset by default for all devices). For each device with the power.async_suspend flag set the PM core will use async_schedule() to execute its suspend and resume callbacks. The async threads started for different devices as a result of calling async_schedule() are synchronized with each other and with the main suspend/resume thread with the help of completions, in the following way: (1) There is a completion, power.completion, for each device object. (2) Each device's completion is reset before calling async_schedule() for the device or, in the case of devices with the power.async_suspend flags unset, before executing the device's suspend and resume callbacks. (3) During suspend, right before running the bus type, device type and device class suspend callbacks for the device, the PM core waits for the completions of all the device's children to be completed. (4) During resume, right before running the bus type, device type and device class resume callbacks for the device, the PM core waits for the completion of the device's parent to be completed. (5) The PM core completes power.completion for each device right after the bus type, device type and device class suspend (or resume) callbacks executed for the device have returned. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
2010-01-23 21:23:32 +00:00
#include <linux/async.h>
#include <linux/suspend.h>
#include <trace/events/power.h>
#include <linux/cpufreq.h>
PM / cpuidle: System resume hang fix with cpuidle On certain bios, resume hangs if cpus are allowed to enter idle states during suspend [1]. This was fixed in apci idle driver [2].But intel_idle driver does not have this fix. Thus instead of replicating the fix in both the idle drivers, or in more platform specific idle drivers if needed, the more general cpuidle infrastructure could handle this. A suspend callback in cpuidle_driver could handle this fix. But a cpuidle_driver provides only basic functionalities like platform idle state detection capability and mechanisms to support entry and exit into CPU idle states. All other cpuidle functions are found in the cpuidle generic infrastructure for good reason that all cpuidle drivers, irrepective of their platforms will support these functions. One option therefore would be to register a suspend callback in cpuidle which handles this fix. This could be called through a PM_SUSPEND_PREPARE notifier. But this is too generic a notfier for a driver to handle. Also, ideally the job of cpuidle is not to handle side effects of suspend. It should expose the interfaces which "handle cpuidle 'during' suspend" or any other operation, which the subsystems call during that respective operation. The fix demands that during suspend, no cpus should be allowed to enter deep C-states. The interface cpuidle_uninstall_idle_handler() in cpuidle ensures that. Not just that it also kicks all the cpus which are already in idle out of their idle states which was being done during cpu hotplug through a CPU_DYING_FROZEN callbacks. Now the question arises about when during suspend should cpuidle_uninstall_idle_handler() be called. Since we are dealing with drivers it seems best to call this function during dpm_suspend(). Delaying the call till dpm_suspend_noirq() does no harm, as long as it is before cpu_hotplug_begin() to avoid race conditions with cpu hotpulg operations. In dpm_suspend_noirq(), it would be wise to place this call before suspend_device_irqs() to avoid ugly interactions with the same. Ananlogously, during resume. References: [1] https://bugs.launchpad.net/ubuntu/+source/linux/+bug/674075. [2] http://marc.info/?l=linux-pm&m=133958534231884&w=2 Reported-and-tested-by: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Preeti U Murthy <preeti@linux.vnet.ibm.com> Reviewed-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
2012-07-09 08:12:56 +00:00
#include <linux/cpuidle.h>
2013-10-17 17:48:46 +00:00
#include <linux/timer.h>
#include "../base.h"
#include "power.h"
typedef int (*pm_callback_t)(struct device *);
/*
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
* The entries in the dpm_list list are in a depth first order, simply
* because children are guaranteed to be discovered after parents, and
* are inserted at the back of the list on discovery.
*
Driver core: create lock/unlock functions for struct device In the future, we are going to be changing the lock type for struct device (once we get the lockdep infrastructure properly worked out) To make that changeover easier, and to possibly burry the lock in a different part of struct device, let's create some functions to lock and unlock a device so that no out-of-core code needs to be changed in the future. This patch creates the device_lock/unlock/trylock() functions, and converts all in-tree users to them. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Jean Delvare <khali@linux-fr.org> Cc: Dave Young <hidave.darkstar@gmail.com> Cc: Ming Lei <tom.leiming@gmail.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Phil Carmody <ext-phil.2.carmody@nokia.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Cornelia Huck <cornelia.huck@de.ibm.com> Cc: Rafael J. Wysocki <rjw@sisk.pl> Cc: Pavel Machek <pavel@ucw.cz> Cc: Len Brown <len.brown@intel.com> Cc: Magnus Damm <damm@igel.co.jp> Cc: Alan Stern <stern@rowland.harvard.edu> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Stefan Richter <stefanr@s5r6.in-berlin.de> Cc: David Brownell <dbrownell@users.sourceforge.net> Cc: Vegard Nossum <vegard.nossum@gmail.com> Cc: Jesse Barnes <jbarnes@virtuousgeek.org> Cc: Alex Chiang <achiang@hp.com> Cc: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andrew Patterson <andrew.patterson@hp.com> Cc: Yu Zhao <yu.zhao@intel.com> Cc: Dominik Brodowski <linux@dominikbrodowski.net> Cc: Samuel Ortiz <sameo@linux.intel.com> Cc: Wolfram Sang <w.sang@pengutronix.de> Cc: CHENG Renquan <rqcheng@smu.edu.sg> Cc: Oliver Neukum <oliver@neukum.org> Cc: Frans Pop <elendil@planet.nl> Cc: David Vrabel <david.vrabel@csr.com> Cc: Kay Sievers <kay.sievers@vrfy.org> Cc: Sarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-02-17 18:57:05 +00:00
* Since device_pm_add() may be called with a device lock held,
* we must never try to acquire a device lock while holding
* dpm_list_mutex.
*/
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
LIST_HEAD(dpm_list);
static LIST_HEAD(dpm_prepared_list);
static LIST_HEAD(dpm_suspended_list);
static LIST_HEAD(dpm_late_early_list);
static LIST_HEAD(dpm_noirq_list);
PM / Suspend: Add statistics debugfs file for suspend to RAM Record S3 failure time about each reason and the latest two failed devices' names in S3 progress. We can check it through 'suspend_stats' entry in debugfs. The motivation of the patch: We are enabling power features on Medfield. Comparing with PC/notebook, a mobile enters/exits suspend-2-ram (we call it s3 on Medfield) far more frequently. If it can't enter suspend-2-ram in time, the power might be used up soon. We often find sometimes, a device suspend fails. Then, system retries s3 over and over again. As display is off, testers and developers don't know what happens. Some testers and developers complain they don't know if system tries suspend-2-ram, and what device fails to suspend. They need such info for a quick check. The patch adds suspend_stats under debugfs for users to check suspend to RAM statistics quickly. If not using this patch, we have other methods to get info about what device fails. One is to turn on CONFIG_PM_DEBUG, but users would get too much info and testers need recompile the system. In addition, dynamic debug is another good tool to dump debug info. But it still doesn't match our utilization scenario closely. 1) user need write a user space parser to process the syslog output; 2) Our testing scenario is we leave the mobile for at least hours. Then, check its status. No serial console available during the testing. One is because console would be suspended, and the other is serial console connecting with spi or HSU devices would consume power. These devices are powered off at suspend-2-ram. Signed-off-by: ShuoX Liu <shuox.liu@intel.com> Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
2011-08-10 21:01:26 +00:00
struct suspend_stats suspend_stats;
static DEFINE_MUTEX(dpm_list_mtx);
PM: Asynchronous suspend and resume of devices Theoretically, the total time of system sleep transitions (suspend to RAM, hibernation) can be reduced by running suspend and resume callbacks of device drivers in parallel with each other. However, there are dependencies between devices such that we're not allowed to suspend the parent of a device before suspending the device itself. Analogously, we're not allowed to resume a device before resuming its parent. The most straightforward way to take these dependencies into accout is to start the async threads used for suspending and resuming devices at the core level, so that async_schedule() is called for each suspend and resume callback supposed to be executed asynchronously. For this purpose, introduce a new device flag, power.async_suspend, used to mark the devices whose suspend and resume callbacks are to be executed asynchronously (ie. in parallel with the main suspend/resume thread and possibly in parallel with each other) and helper function device_enable_async_suspend() allowing one to set power.async_suspend for given device (power.async_suspend is unset by default for all devices). For each device with the power.async_suspend flag set the PM core will use async_schedule() to execute its suspend and resume callbacks. The async threads started for different devices as a result of calling async_schedule() are synchronized with each other and with the main suspend/resume thread with the help of completions, in the following way: (1) There is a completion, power.completion, for each device object. (2) Each device's completion is reset before calling async_schedule() for the device or, in the case of devices with the power.async_suspend flags unset, before executing the device's suspend and resume callbacks. (3) During suspend, right before running the bus type, device type and device class suspend callbacks for the device, the PM core waits for the completions of all the device's children to be completed. (4) During resume, right before running the bus type, device type and device class resume callbacks for the device, the PM core waits for the completion of the device's parent to be completed. (5) The PM core completes power.completion for each device right after the bus type, device type and device class suspend (or resume) callbacks executed for the device have returned. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
2010-01-23 21:23:32 +00:00
static pm_message_t pm_transition;
static int async_error;
static char *pm_verb(int event)
{
switch (event) {
case PM_EVENT_SUSPEND:
return "suspend";
case PM_EVENT_RESUME:
return "resume";
case PM_EVENT_FREEZE:
return "freeze";
case PM_EVENT_QUIESCE:
return "quiesce";
case PM_EVENT_HIBERNATE:
return "hibernate";
case PM_EVENT_THAW:
return "thaw";
case PM_EVENT_RESTORE:
return "restore";
case PM_EVENT_RECOVER:
return "recover";
default:
return "(unknown PM event)";
}
}
/**
* device_pm_sleep_init - Initialize system suspend-related device fields.
* @dev: Device object being initialized.
*/
void device_pm_sleep_init(struct device *dev)
{
dev->power.is_prepared = false;
dev->power.is_suspended = false;
dev->power.is_noirq_suspended = false;
dev->power.is_late_suspended = false;
PM: Asynchronous suspend and resume of devices Theoretically, the total time of system sleep transitions (suspend to RAM, hibernation) can be reduced by running suspend and resume callbacks of device drivers in parallel with each other. However, there are dependencies between devices such that we're not allowed to suspend the parent of a device before suspending the device itself. Analogously, we're not allowed to resume a device before resuming its parent. The most straightforward way to take these dependencies into accout is to start the async threads used for suspending and resuming devices at the core level, so that async_schedule() is called for each suspend and resume callback supposed to be executed asynchronously. For this purpose, introduce a new device flag, power.async_suspend, used to mark the devices whose suspend and resume callbacks are to be executed asynchronously (ie. in parallel with the main suspend/resume thread and possibly in parallel with each other) and helper function device_enable_async_suspend() allowing one to set power.async_suspend for given device (power.async_suspend is unset by default for all devices). For each device with the power.async_suspend flag set the PM core will use async_schedule() to execute its suspend and resume callbacks. The async threads started for different devices as a result of calling async_schedule() are synchronized with each other and with the main suspend/resume thread with the help of completions, in the following way: (1) There is a completion, power.completion, for each device object. (2) Each device's completion is reset before calling async_schedule() for the device or, in the case of devices with the power.async_suspend flags unset, before executing the device's suspend and resume callbacks. (3) During suspend, right before running the bus type, device type and device class suspend callbacks for the device, the PM core waits for the completions of all the device's children to be completed. (4) During resume, right before running the bus type, device type and device class resume callbacks for the device, the PM core waits for the completion of the device's parent to be completed. (5) The PM core completes power.completion for each device right after the bus type, device type and device class suspend (or resume) callbacks executed for the device have returned. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
2010-01-23 21:23:32 +00:00
init_completion(&dev->power.completion);
complete_all(&dev->power.completion);
dev->power.wakeup = NULL;
INIT_LIST_HEAD(&dev->power.entry);
}
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
/**
* device_pm_lock - Lock the list of active devices used by the PM core.
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
*/
void device_pm_lock(void)
{
mutex_lock(&dpm_list_mtx);
}
/**
* device_pm_unlock - Unlock the list of active devices used by the PM core.
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
*/
void device_pm_unlock(void)
{
mutex_unlock(&dpm_list_mtx);
}
/**
* device_pm_add - Add a device to the PM core's list of active devices.
* @dev: Device to add to the list.
*/
void device_pm_add(struct device *dev)
{
pr_debug("PM: Adding info for %s:%s\n",
dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
device_pm_check_callbacks(dev);
mutex_lock(&dpm_list_mtx);
if (dev->parent && dev->parent->power.is_prepared)
dev_warn(dev, "parent %s should not be sleeping\n",
dev_name(dev->parent));
list_add_tail(&dev->power.entry, &dpm_list);
driver core: Functional dependencies tracking support Currently, there is a problem with taking functional dependencies between devices into account. What I mean by a "functional dependency" is when the driver of device B needs device A to be functional and (generally) its driver to be present in order to work properly. This has certain consequences for power management (suspend/resume and runtime PM ordering) and shutdown ordering of these devices. In general, it also implies that the driver of A needs to be working for B to be probed successfully and it cannot be unbound from the device before the B's driver. Support for representing those functional dependencies between devices is added here to allow the driver core to track them and act on them in certain cases where applicable. The argument for doing that in the driver core is that there are quite a few distinct use cases involving device dependencies, they are relatively hard to get right in a driver (if one wants to address all of them properly) and it only gets worse if multiplied by the number of drivers potentially needing to do it. Morever, at least one case (asynchronous system suspend/resume) cannot be handled in a single driver at all, because it requires the driver of A to wait for B to suspend (during system suspend) and the driver of B to wait for A to resume (during system resume). For this reason, represent dependencies between devices as "links", with the help of struct device_link objects each containing pointers to the "linked" devices, a list node for each of them, status information, flags, and an RCU head for synchronization. Also add two new list heads, representing the lists of links to the devices that depend on the given one (consumers) and to the devices depended on by it (suppliers), and a "driver presence status" field (needed for figuring out initial states of device links) to struct device. The entire data structure consisting of all of the lists of link objects for all devices is protected by a mutex (for link object addition/removal and for list walks during device driver probing and removal) and by SRCU (for list walking in other case that will be introduced by subsequent change sets). If CONFIG_SRCU is not selected, however, an rwsem is used for protecting the entire data structure. In addition, each link object has an internal status field whose value reflects whether or not drivers are bound to the devices pointed to by the link or probing/removal of their drivers is in progress etc. That field is only modified under the device links mutex, but it may be read outside of it in some cases (introduced by subsequent change sets), so modifications of it are annotated with WRITE_ONCE(). New links are added by calling device_link_add() which takes three arguments: pointers to the devices in question and flags. In particular, if DL_FLAG_STATELESS is set in the flags, the link status is not to be taken into account for this link and the driver core will not manage it. In turn, if DL_FLAG_AUTOREMOVE is set in the flags, the driver core will remove the link automatically when the consumer device driver unbinds from it. One of the actions carried out by device_link_add() is to reorder the lists used for device shutdown and system suspend/resume to put the consumer device along with all of its children and all of its consumers (and so on, recursively) to the ends of those lists in order to ensure the right ordering between all of the supplier and consumer devices. For this reason, it is not possible to create a link between two devices if the would-be supplier device already depends on the would-be consumer device as either a direct descendant of it or a consumer of one of its direct descendants or one of its consumers and so on. There are two types of link objects, persistent and non-persistent. The persistent ones stay around until one of the target devices is deleted, while the non-persistent ones are removed automatically when the consumer driver unbinds from its device (ie. they are assumed to be valid only as long as the consumer device has a driver bound to it). Persistent links are created by default and non-persistent links are created when the DL_FLAG_AUTOREMOVE flag is passed to device_link_add(). Both persistent and non-persistent device links can be deleted with an explicit call to device_link_del(). Links created without the DL_FLAG_STATELESS flag set are managed by the driver core using a simple state machine. There are 5 states each link can be in: DORMANT (unused), AVAILABLE (the supplier driver is present and functional), CONSUMER_PROBE (the consumer driver is probing), ACTIVE (both supplier and consumer drivers are present and functional), and SUPPLIER_UNBIND (the supplier driver is unbinding). The driver core updates the link state automatically depending on what happens to the linked devices and for each link state specific actions are taken in addition to that. For example, if the supplier driver unbinds from its device, the driver core will also unbind the drivers of all of its consumers automatically under the assumption that they cannot function properly without the supplier. Analogously, the driver core will only allow the consumer driver to bind to its device if the supplier driver is present and functional (ie. the link is in the AVAILABLE state). If that's not the case, it will rely on the existing deferred probing mechanism to wait for the supplier driver to become available. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-10-30 16:32:16 +00:00
dev->power.in_dpm_list = true;
mutex_unlock(&dpm_list_mtx);
}
/**
* device_pm_remove - Remove a device from the PM core's list of active devices.
* @dev: Device to be removed from the list.
*/
void device_pm_remove(struct device *dev)
{
pr_debug("PM: Removing info for %s:%s\n",
dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
PM: Asynchronous suspend and resume of devices Theoretically, the total time of system sleep transitions (suspend to RAM, hibernation) can be reduced by running suspend and resume callbacks of device drivers in parallel with each other. However, there are dependencies between devices such that we're not allowed to suspend the parent of a device before suspending the device itself. Analogously, we're not allowed to resume a device before resuming its parent. The most straightforward way to take these dependencies into accout is to start the async threads used for suspending and resuming devices at the core level, so that async_schedule() is called for each suspend and resume callback supposed to be executed asynchronously. For this purpose, introduce a new device flag, power.async_suspend, used to mark the devices whose suspend and resume callbacks are to be executed asynchronously (ie. in parallel with the main suspend/resume thread and possibly in parallel with each other) and helper function device_enable_async_suspend() allowing one to set power.async_suspend for given device (power.async_suspend is unset by default for all devices). For each device with the power.async_suspend flag set the PM core will use async_schedule() to execute its suspend and resume callbacks. The async threads started for different devices as a result of calling async_schedule() are synchronized with each other and with the main suspend/resume thread with the help of completions, in the following way: (1) There is a completion, power.completion, for each device object. (2) Each device's completion is reset before calling async_schedule() for the device or, in the case of devices with the power.async_suspend flags unset, before executing the device's suspend and resume callbacks. (3) During suspend, right before running the bus type, device type and device class suspend callbacks for the device, the PM core waits for the completions of all the device's children to be completed. (4) During resume, right before running the bus type, device type and device class resume callbacks for the device, the PM core waits for the completion of the device's parent to be completed. (5) The PM core completes power.completion for each device right after the bus type, device type and device class suspend (or resume) callbacks executed for the device have returned. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
2010-01-23 21:23:32 +00:00
complete_all(&dev->power.completion);
mutex_lock(&dpm_list_mtx);
list_del_init(&dev->power.entry);
driver core: Functional dependencies tracking support Currently, there is a problem with taking functional dependencies between devices into account. What I mean by a "functional dependency" is when the driver of device B needs device A to be functional and (generally) its driver to be present in order to work properly. This has certain consequences for power management (suspend/resume and runtime PM ordering) and shutdown ordering of these devices. In general, it also implies that the driver of A needs to be working for B to be probed successfully and it cannot be unbound from the device before the B's driver. Support for representing those functional dependencies between devices is added here to allow the driver core to track them and act on them in certain cases where applicable. The argument for doing that in the driver core is that there are quite a few distinct use cases involving device dependencies, they are relatively hard to get right in a driver (if one wants to address all of them properly) and it only gets worse if multiplied by the number of drivers potentially needing to do it. Morever, at least one case (asynchronous system suspend/resume) cannot be handled in a single driver at all, because it requires the driver of A to wait for B to suspend (during system suspend) and the driver of B to wait for A to resume (during system resume). For this reason, represent dependencies between devices as "links", with the help of struct device_link objects each containing pointers to the "linked" devices, a list node for each of them, status information, flags, and an RCU head for synchronization. Also add two new list heads, representing the lists of links to the devices that depend on the given one (consumers) and to the devices depended on by it (suppliers), and a "driver presence status" field (needed for figuring out initial states of device links) to struct device. The entire data structure consisting of all of the lists of link objects for all devices is protected by a mutex (for link object addition/removal and for list walks during device driver probing and removal) and by SRCU (for list walking in other case that will be introduced by subsequent change sets). If CONFIG_SRCU is not selected, however, an rwsem is used for protecting the entire data structure. In addition, each link object has an internal status field whose value reflects whether or not drivers are bound to the devices pointed to by the link or probing/removal of their drivers is in progress etc. That field is only modified under the device links mutex, but it may be read outside of it in some cases (introduced by subsequent change sets), so modifications of it are annotated with WRITE_ONCE(). New links are added by calling device_link_add() which takes three arguments: pointers to the devices in question and flags. In particular, if DL_FLAG_STATELESS is set in the flags, the link status is not to be taken into account for this link and the driver core will not manage it. In turn, if DL_FLAG_AUTOREMOVE is set in the flags, the driver core will remove the link automatically when the consumer device driver unbinds from it. One of the actions carried out by device_link_add() is to reorder the lists used for device shutdown and system suspend/resume to put the consumer device along with all of its children and all of its consumers (and so on, recursively) to the ends of those lists in order to ensure the right ordering between all of the supplier and consumer devices. For this reason, it is not possible to create a link between two devices if the would-be supplier device already depends on the would-be consumer device as either a direct descendant of it or a consumer of one of its direct descendants or one of its consumers and so on. There are two types of link objects, persistent and non-persistent. The persistent ones stay around until one of the target devices is deleted, while the non-persistent ones are removed automatically when the consumer driver unbinds from its device (ie. they are assumed to be valid only as long as the consumer device has a driver bound to it). Persistent links are created by default and non-persistent links are created when the DL_FLAG_AUTOREMOVE flag is passed to device_link_add(). Both persistent and non-persistent device links can be deleted with an explicit call to device_link_del(). Links created without the DL_FLAG_STATELESS flag set are managed by the driver core using a simple state machine. There are 5 states each link can be in: DORMANT (unused), AVAILABLE (the supplier driver is present and functional), CONSUMER_PROBE (the consumer driver is probing), ACTIVE (both supplier and consumer drivers are present and functional), and SUPPLIER_UNBIND (the supplier driver is unbinding). The driver core updates the link state automatically depending on what happens to the linked devices and for each link state specific actions are taken in addition to that. For example, if the supplier driver unbinds from its device, the driver core will also unbind the drivers of all of its consumers automatically under the assumption that they cannot function properly without the supplier. Analogously, the driver core will only allow the consumer driver to bind to its device if the supplier driver is present and functional (ie. the link is in the AVAILABLE state). If that's not the case, it will rely on the existing deferred probing mechanism to wait for the supplier driver to become available. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-10-30 16:32:16 +00:00
dev->power.in_dpm_list = false;
mutex_unlock(&dpm_list_mtx);
device_wakeup_disable(dev);
pm_runtime_remove(dev);
device_pm_check_callbacks(dev);
}
/**
* device_pm_move_before - Move device in the PM core's list of active devices.
* @deva: Device to move in dpm_list.
* @devb: Device @deva should come before.
*/
void device_pm_move_before(struct device *deva, struct device *devb)
{
pr_debug("PM: Moving %s:%s before %s:%s\n",
deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
/* Delete deva from dpm_list and reinsert before devb. */
list_move_tail(&deva->power.entry, &devb->power.entry);
}
/**
* device_pm_move_after - Move device in the PM core's list of active devices.
* @deva: Device to move in dpm_list.
* @devb: Device @deva should come after.
*/
void device_pm_move_after(struct device *deva, struct device *devb)
{
pr_debug("PM: Moving %s:%s after %s:%s\n",
deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
/* Delete deva from dpm_list and reinsert after devb. */
list_move(&deva->power.entry, &devb->power.entry);
}
/**
* device_pm_move_last - Move device to end of the PM core's list of devices.
* @dev: Device to move in dpm_list.
*/
void device_pm_move_last(struct device *dev)
{
pr_debug("PM: Moving %s:%s to end of list\n",
dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
list_move_tail(&dev->power.entry, &dpm_list);
}
static ktime_t initcall_debug_start(struct device *dev)
{
ktime_t calltime = ktime_set(0, 0);
if (pm_print_times_enabled) {
pr_info("calling %s+ @ %i, parent: %s\n",
dev_name(dev), task_pid_nr(current),
dev->parent ? dev_name(dev->parent) : "none");
calltime = ktime_get();
}
return calltime;
}
static void initcall_debug_report(struct device *dev, ktime_t calltime,
int error, pm_message_t state, char *info)
{
ktime_t rettime;
s64 nsecs;
rettime = ktime_get();
nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
if (pm_print_times_enabled) {
pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
error, (unsigned long long)nsecs >> 10);
}
}
PM: Asynchronous suspend and resume of devices Theoretically, the total time of system sleep transitions (suspend to RAM, hibernation) can be reduced by running suspend and resume callbacks of device drivers in parallel with each other. However, there are dependencies between devices such that we're not allowed to suspend the parent of a device before suspending the device itself. Analogously, we're not allowed to resume a device before resuming its parent. The most straightforward way to take these dependencies into accout is to start the async threads used for suspending and resuming devices at the core level, so that async_schedule() is called for each suspend and resume callback supposed to be executed asynchronously. For this purpose, introduce a new device flag, power.async_suspend, used to mark the devices whose suspend and resume callbacks are to be executed asynchronously (ie. in parallel with the main suspend/resume thread and possibly in parallel with each other) and helper function device_enable_async_suspend() allowing one to set power.async_suspend for given device (power.async_suspend is unset by default for all devices). For each device with the power.async_suspend flag set the PM core will use async_schedule() to execute its suspend and resume callbacks. The async threads started for different devices as a result of calling async_schedule() are synchronized with each other and with the main suspend/resume thread with the help of completions, in the following way: (1) There is a completion, power.completion, for each device object. (2) Each device's completion is reset before calling async_schedule() for the device or, in the case of devices with the power.async_suspend flags unset, before executing the device's suspend and resume callbacks. (3) During suspend, right before running the bus type, device type and device class suspend callbacks for the device, the PM core waits for the completions of all the device's children to be completed. (4) During resume, right before running the bus type, device type and device class resume callbacks for the device, the PM core waits for the completion of the device's parent to be completed. (5) The PM core completes power.completion for each device right after the bus type, device type and device class suspend (or resume) callbacks executed for the device have returned. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
2010-01-23 21:23:32 +00:00
/**
* dpm_wait - Wait for a PM operation to complete.
* @dev: Device to wait for.
* @async: If unset, wait only if the device's power.async_suspend flag is set.
*/
static void dpm_wait(struct device *dev, bool async)
{
if (!dev)
return;
if (async || (pm_async_enabled && dev->power.async_suspend))
PM: Asynchronous suspend and resume of devices Theoretically, the total time of system sleep transitions (suspend to RAM, hibernation) can be reduced by running suspend and resume callbacks of device drivers in parallel with each other. However, there are dependencies between devices such that we're not allowed to suspend the parent of a device before suspending the device itself. Analogously, we're not allowed to resume a device before resuming its parent. The most straightforward way to take these dependencies into accout is to start the async threads used for suspending and resuming devices at the core level, so that async_schedule() is called for each suspend and resume callback supposed to be executed asynchronously. For this purpose, introduce a new device flag, power.async_suspend, used to mark the devices whose suspend and resume callbacks are to be executed asynchronously (ie. in parallel with the main suspend/resume thread and possibly in parallel with each other) and helper function device_enable_async_suspend() allowing one to set power.async_suspend for given device (power.async_suspend is unset by default for all devices). For each device with the power.async_suspend flag set the PM core will use async_schedule() to execute its suspend and resume callbacks. The async threads started for different devices as a result of calling async_schedule() are synchronized with each other and with the main suspend/resume thread with the help of completions, in the following way: (1) There is a completion, power.completion, for each device object. (2) Each device's completion is reset before calling async_schedule() for the device or, in the case of devices with the power.async_suspend flags unset, before executing the device's suspend and resume callbacks. (3) During suspend, right before running the bus type, device type and device class suspend callbacks for the device, the PM core waits for the completions of all the device's children to be completed. (4) During resume, right before running the bus type, device type and device class resume callbacks for the device, the PM core waits for the completion of the device's parent to be completed. (5) The PM core completes power.completion for each device right after the bus type, device type and device class suspend (or resume) callbacks executed for the device have returned. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
2010-01-23 21:23:32 +00:00
wait_for_completion(&dev->power.completion);
}
static int dpm_wait_fn(struct device *dev, void *async_ptr)
{
dpm_wait(dev, *((bool *)async_ptr));
return 0;
}
static void dpm_wait_for_children(struct device *dev, bool async)
{
device_for_each_child(dev, &async, dpm_wait_fn);
}
static void dpm_wait_for_suppliers(struct device *dev, bool async)
{
struct device_link *link;
int idx;
idx = device_links_read_lock();
/*
* If the supplier goes away right after we've checked the link to it,
* we'll wait for its completion to change the state, but that's fine,
* because the only things that will block as a result are the SRCU
* callbacks freeing the link objects for the links in the list we're
* walking.
*/
list_for_each_entry_rcu(link, &dev->links.suppliers, c_node)
if (READ_ONCE(link->status) != DL_STATE_DORMANT)
dpm_wait(link->supplier, async);
device_links_read_unlock(idx);
}
static void dpm_wait_for_superior(struct device *dev, bool async)
{
dpm_wait(dev->parent, async);
dpm_wait_for_suppliers(dev, async);
}
static void dpm_wait_for_consumers(struct device *dev, bool async)
{
struct device_link *link;
int idx;
idx = device_links_read_lock();
/*
* The status of a device link can only be changed from "dormant" by a
* probe, but that cannot happen during system suspend/resume. In
* theory it can change to "dormant" at that time, but then it is
* reasonable to wait for the target device anyway (eg. if it goes
* away, it's better to wait for it to go away completely and then
* continue instead of trying to continue in parallel with its
* unregistration).
*/
list_for_each_entry_rcu(link, &dev->links.consumers, s_node)
if (READ_ONCE(link->status) != DL_STATE_DORMANT)
dpm_wait(link->consumer, async);
device_links_read_unlock(idx);
}
static void dpm_wait_for_subordinate(struct device *dev, bool async)
{
dpm_wait_for_children(dev, async);
dpm_wait_for_consumers(dev, async);
}
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
/**
* pm_op - Return the PM operation appropriate for given PM event.
* @ops: PM operations to choose from.
* @state: PM transition of the system being carried out.
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
*/
static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
{
switch (state.event) {
#ifdef CONFIG_SUSPEND
case PM_EVENT_SUSPEND:
return ops->suspend;
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
case PM_EVENT_RESUME:
return ops->resume;
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
#endif /* CONFIG_SUSPEND */
#ifdef CONFIG_HIBERNATE_CALLBACKS
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
case PM_EVENT_FREEZE:
case PM_EVENT_QUIESCE:
return ops->freeze;
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
case PM_EVENT_HIBERNATE:
return ops->poweroff;
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
case PM_EVENT_THAW:
case PM_EVENT_RECOVER:
return ops->thaw;
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
break;
case PM_EVENT_RESTORE:
return ops->restore;
#endif /* CONFIG_HIBERNATE_CALLBACKS */
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
}
return NULL;
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
}
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-29 19:38:29 +00:00
/**
* pm_late_early_op - Return the PM operation appropriate for given PM event.
* @ops: PM operations to choose from.
* @state: PM transition of the system being carried out.
*
* Runtime PM is disabled for @dev while this function is being executed.
*/
static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
pm_message_t state)
{
switch (state.event) {
#ifdef CONFIG_SUSPEND
case PM_EVENT_SUSPEND:
return ops->suspend_late;
case PM_EVENT_RESUME:
return ops->resume_early;
#endif /* CONFIG_SUSPEND */
#ifdef CONFIG_HIBERNATE_CALLBACKS
case PM_EVENT_FREEZE:
case PM_EVENT_QUIESCE:
return ops->freeze_late;
case PM_EVENT_HIBERNATE:
return ops->poweroff_late;
case PM_EVENT_THAW:
case PM_EVENT_RECOVER:
return ops->thaw_early;
case PM_EVENT_RESTORE:
return ops->restore_early;
#endif /* CONFIG_HIBERNATE_CALLBACKS */
}
return NULL;
}
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
/**
* pm_noirq_op - Return the PM operation appropriate for given PM event.
* @ops: PM operations to choose from.
* @state: PM transition of the system being carried out.
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
*
* The driver of @dev will not receive interrupts while this function is being
* executed.
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
*/
static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
{
switch (state.event) {
#ifdef CONFIG_SUSPEND
case PM_EVENT_SUSPEND:
return ops->suspend_noirq;
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
case PM_EVENT_RESUME:
return ops->resume_noirq;
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
#endif /* CONFIG_SUSPEND */
#ifdef CONFIG_HIBERNATE_CALLBACKS
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
case PM_EVENT_FREEZE:
case PM_EVENT_QUIESCE:
return ops->freeze_noirq;
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
case PM_EVENT_HIBERNATE:
return ops->poweroff_noirq;
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
case PM_EVENT_THAW:
case PM_EVENT_RECOVER:
return ops->thaw_noirq;
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
case PM_EVENT_RESTORE:
return ops->restore_noirq;
#endif /* CONFIG_HIBERNATE_CALLBACKS */
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
}
return NULL;
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
}
static void pm_dev_dbg(struct device *dev, pm_message_t state, char *info)
{
dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
", may wakeup" : "");
}
static void pm_dev_err(struct device *dev, pm_message_t state, char *info,
int error)
{
printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
dev_name(dev), pm_verb(state.event), info, error);
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
}
static void dpm_show_time(ktime_t starttime, pm_message_t state, char *info)
{
ktime_t calltime;
u64 usecs64;
int usecs;
calltime = ktime_get();
usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
do_div(usecs64, NSEC_PER_USEC);
usecs = usecs64;
if (usecs == 0)
usecs = 1;
pr_info("PM: %s%s%s of devices complete after %ld.%03ld msecs\n",
info ?: "", info ? " " : "", pm_verb(state.event),
usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
}
static int dpm_run_callback(pm_callback_t cb, struct device *dev,
pm_message_t state, char *info)
{
ktime_t calltime;
int error;
if (!cb)
return 0;
calltime = initcall_debug_start(dev);
pm_dev_dbg(dev, state, info);
trace_device_pm_callback_start(dev, info, state.event);
error = cb(dev);
trace_device_pm_callback_end(dev, error);
suspend_report_result(cb, error);
initcall_debug_report(dev, calltime, error, state, info);
return error;
}
2013-10-17 17:48:46 +00:00
#ifdef CONFIG_DPM_WATCHDOG
struct dpm_watchdog {
struct device *dev;
struct task_struct *tsk;
struct timer_list timer;
};
#define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
struct dpm_watchdog wd
/**
* dpm_watchdog_handler - Driver suspend / resume watchdog handler.
* @data: Watchdog object address.
*
* Called when a driver has timed out suspending or resuming.
* There's not much we can do here to recover so panic() to
* capture a crash-dump in pstore.
*/
static void dpm_watchdog_handler(unsigned long data)
{
struct dpm_watchdog *wd = (void *)data;
dev_emerg(wd->dev, "**** DPM device timeout ****\n");
show_stack(wd->tsk, NULL);
panic("%s %s: unrecoverable failure\n",
dev_driver_string(wd->dev), dev_name(wd->dev));
}
/**
* dpm_watchdog_set - Enable pm watchdog for given device.
* @wd: Watchdog. Must be allocated on the stack.
* @dev: Device to handle.
*/
static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
{
struct timer_list *timer = &wd->timer;
wd->dev = dev;
wd->tsk = current;
init_timer_on_stack(timer);
/* use same timeout value for both suspend and resume */
timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
timer->function = dpm_watchdog_handler;
timer->data = (unsigned long)wd;
add_timer(timer);
}
/**
* dpm_watchdog_clear - Disable suspend/resume watchdog.
* @wd: Watchdog to disable.
*/
static void dpm_watchdog_clear(struct dpm_watchdog *wd)
{
struct timer_list *timer = &wd->timer;
del_timer_sync(timer);
destroy_timer_on_stack(timer);
}
#else
#define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
#define dpm_watchdog_set(x, y)
#define dpm_watchdog_clear(x)
#endif
/*------------------------- Resume routines -------------------------*/
/**
* device_resume_noirq - Execute an "early resume" callback for given device.
* @dev: Device to handle.
* @state: PM transition of the system being carried out.
* @async: If true, the device is being resumed asynchronously.
*
* The driver of @dev will not receive interrupts while this function is being
* executed.
*/
static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
{
pm_callback_t callback = NULL;
char *info = NULL;
int error = 0;
TRACE_DEVICE(dev);
TRACE_RESUME(0);
PM / sleep: Mechanism to avoid resuming runtime-suspended devices unnecessarily Currently, some subsystems (e.g. PCI and the ACPI PM domain) have to resume all runtime-suspended devices during system suspend, mostly because those devices may need to be reprogrammed due to different wakeup settings for system sleep and for runtime PM. For some devices, though, it's OK to remain in runtime suspend throughout a complete system suspend/resume cycle (if the device was in runtime suspend at the start of the cycle). We would like to do this whenever possible, to avoid the overhead of extra power-up and power-down events. However, problems may arise because the device's descendants may require it to be at full power at various points during the cycle. Therefore the most straightforward way to do this safely is if the device and all its descendants can remain runtime suspended until the complete stage of system resume. To this end, introduce a new device PM flag, power.direct_complete and modify the PM core to use that flag as follows. If the ->prepare() callback of a device returns a positive number, the PM core will regard that as an indication that it may leave the device runtime-suspended. It will then check if the system power transition in progress is a suspend (and not hibernation in particular) and if the device is, indeed, runtime-suspended. In that case, the PM core will set the device's power.direct_complete flag. Otherwise it will clear power.direct_complete for the device and it also will later clear it for the device's parent (if there's one). Next, the PM core will not invoke the ->suspend() ->suspend_late(), ->suspend_irq(), ->resume_irq(), ->resume_early(), or ->resume() callbacks for all devices having power.direct_complete set. It will invoke their ->complete() callbacks, however, and those callbacks are then responsible for resuming the devices as appropriate, if necessary. For example, in some cases they may need to queue up runtime resume requests for the devices using pm_request_resume(). Changelog partly based on an Alan Stern's description of the idea (http://marc.info/?l=linux-pm&m=139940466625569&w=2). Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Alan Stern <stern@rowland.harvard.edu>
2014-05-16 00:46:50 +00:00
if (dev->power.syscore || dev->power.direct_complete)
goto Out;
if (!dev->power.is_noirq_suspended)
goto Out;
dpm_wait_for_superior(dev, async);
if (dev->pm_domain) {
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-29 19:38:29 +00:00
info = "noirq power domain ";
callback = pm_noirq_op(&dev->pm_domain->ops, state);
PM: Make power domain callbacks take precedence over subsystem ones Change the PM core's behavior related to power domains in such a way that, if a power domain is defined for a given device, its callbacks will be executed instead of and not in addition to the device subsystem's PM callbacks. The idea behind the initial implementation of power domains handling by the PM core was that power domain callbacks would be executed in addition to subsystem callbacks, so that it would be possible to extend the subsystem callbacks by using power domains. It turns out, however, that this wouldn't be really convenient in some important situations. For example, there are systems in which power can only be removed from entire power domains. On those systems it is not desirable to execute device drivers' PM callbacks until it is known that power is going to be removed from the devices in question, which means that they should be executed by power domain callbacks rather then by subsystem (e.g. bus type) PM callbacks, because subsystems generally have no information about what devices belong to which power domain. Thus, for instance, if the bus type in question is the platform bus type, its PM callbacks generally should not be called in addition to power domain callbacks, because they run device drivers' callbacks unconditionally if defined. While in principle the default subsystem PM callbacks, or a subset of them, may be replaced with different functions, it doesn't seem correct to do so, because that would change the subsystem's behavior with respect to all devices in the system, regardless of whether or not they belong to any power domains. Thus, the only remaining option is to make power domain callbacks take precedence over subsystem callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Grant Likely <grant.likely@secretlab.ca> Acked-by: Kevin Hilman <khilman@ti.com>
2011-04-28 22:35:50 +00:00
} else if (dev->type && dev->type->pm) {
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-29 19:38:29 +00:00
info = "noirq type ";
callback = pm_noirq_op(dev->type->pm, state);
PM: Make system-wide PM and runtime PM treat subsystems consistently The code handling system-wide power transitions (eg. suspend-to-RAM) can in theory execute callbacks provided by the device's bus type, device type and class in each phase of the power transition. In turn, the runtime PM core code only calls one of those callbacks at a time, preferring bus type callbacks to device type or class callbacks and device type callbacks to class callbacks. It seems reasonable to make them both behave in the same way in that respect. Moreover, even though a device may belong to two subsystems (eg. bus type and device class) simultaneously, in practice power management callbacks for system-wide power transitions are always provided by only one of them (ie. if the bus type callbacks are defined, the device class ones are not and vice versa). Thus it is possible to modify the code handling system-wide power transitions so that it follows the core runtime PM code (ie. treats the subsystem callbacks as mutually exclusive). On the other hand, the core runtime PM code will choose to execute, for example, a runtime suspend callback provided by the device type even if the bus type's struct dev_pm_ops object exists, but the runtime_suspend pointer in it happens to be NULL. This is confusing, because it may lead to the execution of callbacks from different subsystems during different operations (eg. the bus type suspend callback may be executed during runtime suspend of the device, while the device type callback will be executed during system suspend). Make all of the power management code treat subsystem callbacks in a consistent way, such that: (1) If the device's type is defined (eg. dev->type is not NULL) and its pm pointer is not NULL, the callbacks from dev->type->pm will be used. (2) If dev->type is NULL or dev->type->pm is NULL, but the device's class is defined (eg. dev->class is not NULL) and its pm pointer is not NULL, the callbacks from dev->class->pm will be used. (3) If dev->type is NULL or dev->type->pm is NULL and dev->class is NULL or dev->class->pm is NULL, the callbacks from dev->bus->pm will be used provided that both dev->bus and dev->bus->pm are not NULL. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Kevin Hilman <khilman@ti.com> Reasoning-sounds-sane-to: Grant Likely <grant.likely@secretlab.ca> Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-02-18 22:20:21 +00:00
} else if (dev->class && dev->class->pm) {
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-29 19:38:29 +00:00
info = "noirq class ";
callback = pm_noirq_op(dev->class->pm, state);
PM: Make system-wide PM and runtime PM treat subsystems consistently The code handling system-wide power transitions (eg. suspend-to-RAM) can in theory execute callbacks provided by the device's bus type, device type and class in each phase of the power transition. In turn, the runtime PM core code only calls one of those callbacks at a time, preferring bus type callbacks to device type or class callbacks and device type callbacks to class callbacks. It seems reasonable to make them both behave in the same way in that respect. Moreover, even though a device may belong to two subsystems (eg. bus type and device class) simultaneously, in practice power management callbacks for system-wide power transitions are always provided by only one of them (ie. if the bus type callbacks are defined, the device class ones are not and vice versa). Thus it is possible to modify the code handling system-wide power transitions so that it follows the core runtime PM code (ie. treats the subsystem callbacks as mutually exclusive). On the other hand, the core runtime PM code will choose to execute, for example, a runtime suspend callback provided by the device type even if the bus type's struct dev_pm_ops object exists, but the runtime_suspend pointer in it happens to be NULL. This is confusing, because it may lead to the execution of callbacks from different subsystems during different operations (eg. the bus type suspend callback may be executed during runtime suspend of the device, while the device type callback will be executed during system suspend). Make all of the power management code treat subsystem callbacks in a consistent way, such that: (1) If the device's type is defined (eg. dev->type is not NULL) and its pm pointer is not NULL, the callbacks from dev->type->pm will be used. (2) If dev->type is NULL or dev->type->pm is NULL, but the device's class is defined (eg. dev->class is not NULL) and its pm pointer is not NULL, the callbacks from dev->class->pm will be used. (3) If dev->type is NULL or dev->type->pm is NULL and dev->class is NULL or dev->class->pm is NULL, the callbacks from dev->bus->pm will be used provided that both dev->bus and dev->bus->pm are not NULL. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Kevin Hilman <khilman@ti.com> Reasoning-sounds-sane-to: Grant Likely <grant.likely@secretlab.ca> Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-02-18 22:20:21 +00:00
} else if (dev->bus && dev->bus->pm) {
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-29 19:38:29 +00:00
info = "noirq bus ";
callback = pm_noirq_op(dev->bus->pm, state);
}
if (!callback && dev->driver && dev->driver->pm) {
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-29 19:38:29 +00:00
info = "noirq driver ";
callback = pm_noirq_op(dev->driver->pm, state);
}
error = dpm_run_callback(callback, dev, state, info);
dev->power.is_noirq_suspended = false;
Out:
complete_all(&dev->power.completion);
TRACE_RESUME(error);
return error;
}
static bool is_async(struct device *dev)
{
return dev->power.async_suspend && pm_async_enabled
&& !pm_trace_is_enabled();
}
static void async_resume_noirq(void *data, async_cookie_t cookie)
{
struct device *dev = (struct device *)data;
int error;
error = device_resume_noirq(dev, pm_transition, true);
if (error)
pm_dev_err(dev, pm_transition, " async", error);
put_device(dev);
}
/**
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-29 19:38:29 +00:00
* dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
* @state: PM transition of the system being carried out.
*
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-29 19:38:29 +00:00
* Call the "noirq" resume handlers for all devices in dpm_noirq_list and
* enable device drivers to receive interrupts.
*/
void dpm_resume_noirq(pm_message_t state)
{
struct device *dev;
ktime_t starttime = ktime_get();
trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
mutex_lock(&dpm_list_mtx);
pm_transition = state;
/*
* Advanced the async threads upfront,
* in case the starting of async threads is
* delayed by non-async resuming devices.
*/
list_for_each_entry(dev, &dpm_noirq_list, power.entry) {
reinit_completion(&dev->power.completion);
if (is_async(dev)) {
get_device(dev);
async_schedule(async_resume_noirq, dev);
}
}
while (!list_empty(&dpm_noirq_list)) {
dev = to_device(dpm_noirq_list.next);
get_device(dev);
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-29 19:38:29 +00:00
list_move_tail(&dev->power.entry, &dpm_late_early_list);
mutex_unlock(&dpm_list_mtx);
if (!is_async(dev)) {
int error;
error = device_resume_noirq(dev, state, false);
if (error) {
suspend_stats.failed_resume_noirq++;
dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
dpm_save_failed_dev(dev_name(dev));
pm_dev_err(dev, state, " noirq", error);
}
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-29 19:38:29 +00:00
}
mutex_lock(&dpm_list_mtx);
put_device(dev);
}
mutex_unlock(&dpm_list_mtx);
async_synchronize_full();
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-29 19:38:29 +00:00
dpm_show_time(starttime, state, "noirq");
resume_device_irqs();
device_wakeup_disarm_wake_irqs();
PM / cpuidle: System resume hang fix with cpuidle On certain bios, resume hangs if cpus are allowed to enter idle states during suspend [1]. This was fixed in apci idle driver [2].But intel_idle driver does not have this fix. Thus instead of replicating the fix in both the idle drivers, or in more platform specific idle drivers if needed, the more general cpuidle infrastructure could handle this. A suspend callback in cpuidle_driver could handle this fix. But a cpuidle_driver provides only basic functionalities like platform idle state detection capability and mechanisms to support entry and exit into CPU idle states. All other cpuidle functions are found in the cpuidle generic infrastructure for good reason that all cpuidle drivers, irrepective of their platforms will support these functions. One option therefore would be to register a suspend callback in cpuidle which handles this fix. This could be called through a PM_SUSPEND_PREPARE notifier. But this is too generic a notfier for a driver to handle. Also, ideally the job of cpuidle is not to handle side effects of suspend. It should expose the interfaces which "handle cpuidle 'during' suspend" or any other operation, which the subsystems call during that respective operation. The fix demands that during suspend, no cpus should be allowed to enter deep C-states. The interface cpuidle_uninstall_idle_handler() in cpuidle ensures that. Not just that it also kicks all the cpus which are already in idle out of their idle states which was being done during cpu hotplug through a CPU_DYING_FROZEN callbacks. Now the question arises about when during suspend should cpuidle_uninstall_idle_handler() be called. Since we are dealing with drivers it seems best to call this function during dpm_suspend(). Delaying the call till dpm_suspend_noirq() does no harm, as long as it is before cpu_hotplug_begin() to avoid race conditions with cpu hotpulg operations. In dpm_suspend_noirq(), it would be wise to place this call before suspend_device_irqs() to avoid ugly interactions with the same. Ananlogously, during resume. References: [1] https://bugs.launchpad.net/ubuntu/+source/linux/+bug/674075. [2] http://marc.info/?l=linux-pm&m=133958534231884&w=2 Reported-and-tested-by: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Preeti U Murthy <preeti@linux.vnet.ibm.com> Reviewed-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
2012-07-09 08:12:56 +00:00
cpuidle_resume();
trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-29 19:38:29 +00:00
}
/**
* device_resume_early - Execute an "early resume" callback for given device.
* @dev: Device to handle.
* @state: PM transition of the system being carried out.
* @async: If true, the device is being resumed asynchronously.
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-29 19:38:29 +00:00
*
* Runtime PM is disabled for @dev while this function is being executed.
*/
static int device_resume_early(struct device *dev, pm_message_t state, bool async)
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-29 19:38:29 +00:00
{
pm_callback_t callback = NULL;
char *info = NULL;
int error = 0;
TRACE_DEVICE(dev);
TRACE_RESUME(0);
PM / sleep: Mechanism to avoid resuming runtime-suspended devices unnecessarily Currently, some subsystems (e.g. PCI and the ACPI PM domain) have to resume all runtime-suspended devices during system suspend, mostly because those devices may need to be reprogrammed due to different wakeup settings for system sleep and for runtime PM. For some devices, though, it's OK to remain in runtime suspend throughout a complete system suspend/resume cycle (if the device was in runtime suspend at the start of the cycle). We would like to do this whenever possible, to avoid the overhead of extra power-up and power-down events. However, problems may arise because the device's descendants may require it to be at full power at various points during the cycle. Therefore the most straightforward way to do this safely is if the device and all its descendants can remain runtime suspended until the complete stage of system resume. To this end, introduce a new device PM flag, power.direct_complete and modify the PM core to use that flag as follows. If the ->prepare() callback of a device returns a positive number, the PM core will regard that as an indication that it may leave the device runtime-suspended. It will then check if the system power transition in progress is a suspend (and not hibernation in particular) and if the device is, indeed, runtime-suspended. In that case, the PM core will set the device's power.direct_complete flag. Otherwise it will clear power.direct_complete for the device and it also will later clear it for the device's parent (if there's one). Next, the PM core will not invoke the ->suspend() ->suspend_late(), ->suspend_irq(), ->resume_irq(), ->resume_early(), or ->resume() callbacks for all devices having power.direct_complete set. It will invoke their ->complete() callbacks, however, and those callbacks are then responsible for resuming the devices as appropriate, if necessary. For example, in some cases they may need to queue up runtime resume requests for the devices using pm_request_resume(). Changelog partly based on an Alan Stern's description of the idea (http://marc.info/?l=linux-pm&m=139940466625569&w=2). Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Alan Stern <stern@rowland.harvard.edu>
2014-05-16 00:46:50 +00:00
if (dev->power.syscore || dev->power.direct_complete)
goto Out;
if (!dev->power.is_late_suspended)
goto Out;
dpm_wait_for_superior(dev, async);
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-29 19:38:29 +00:00
if (dev->pm_domain) {
info = "early power domain ";
callback = pm_late_early_op(&dev->pm_domain->ops, state);
} else if (dev->type && dev->type->pm) {
info = "early type ";
callback = pm_late_early_op(dev->type->pm, state);
} else if (dev->class && dev->class->pm) {
info = "early class ";
callback = pm_late_early_op(dev->class->pm, state);
} else if (dev->bus && dev->bus->pm) {
info = "early bus ";
callback = pm_late_early_op(dev->bus->pm, state);
}
if (!callback && dev->driver && dev->driver->pm) {
info = "early driver ";
callback = pm_late_early_op(dev->driver->pm, state);
}
error = dpm_run_callback(callback, dev, state, info);
dev->power.is_late_suspended = false;
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-29 19:38:29 +00:00
Out:
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-29 19:38:29 +00:00
TRACE_RESUME(error);
pm_runtime_enable(dev);
complete_all(&dev->power.completion);
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-29 19:38:29 +00:00
return error;
}
static void async_resume_early(void *data, async_cookie_t cookie)
{
struct device *dev = (struct device *)data;
int error;
error = device_resume_early(dev, pm_transition, true);
if (error)
pm_dev_err(dev, pm_transition, " async", error);
put_device(dev);
}
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-29 19:38:29 +00:00
/**
* dpm_resume_early - Execute "early resume" callbacks for all devices.
* @state: PM transition of the system being carried out.
*/
void dpm_resume_early(pm_message_t state)
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-29 19:38:29 +00:00
{
struct device *dev;
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-29 19:38:29 +00:00
ktime_t starttime = ktime_get();
trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-29 19:38:29 +00:00
mutex_lock(&dpm_list_mtx);
pm_transition = state;
/*
* Advanced the async threads upfront,
* in case the starting of async threads is
* delayed by non-async resuming devices.
*/
list_for_each_entry(dev, &dpm_late_early_list, power.entry) {
reinit_completion(&dev->power.completion);
if (is_async(dev)) {
get_device(dev);
async_schedule(async_resume_early, dev);
}
}
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-29 19:38:29 +00:00
while (!list_empty(&dpm_late_early_list)) {
dev = to_device(dpm_late_early_list.next);
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-29 19:38:29 +00:00
get_device(dev);
list_move_tail(&dev->power.entry, &dpm_suspended_list);
mutex_unlock(&dpm_list_mtx);
if (!is_async(dev)) {
int error;
error = device_resume_early(dev, state, false);
if (error) {
suspend_stats.failed_resume_early++;
dpm_save_failed_step(SUSPEND_RESUME_EARLY);
dpm_save_failed_dev(dev_name(dev));
pm_dev_err(dev, state, " early", error);
}
}
mutex_lock(&dpm_list_mtx);
put_device(dev);
}
mutex_unlock(&dpm_list_mtx);
async_synchronize_full();
dpm_show_time(starttime, state, "early");
trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
}
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-29 19:38:29 +00:00
/**
* dpm_resume_start - Execute "noirq" and "early" device callbacks.
* @state: PM transition of the system being carried out.
*/
void dpm_resume_start(pm_message_t state)
{
dpm_resume_noirq(state);
dpm_resume_early(state);
}
EXPORT_SYMBOL_GPL(dpm_resume_start);
/**
* device_resume - Execute "resume" callbacks for given device.
* @dev: Device to handle.
* @state: PM transition of the system being carried out.
PM: Asynchronous suspend and resume of devices Theoretically, the total time of system sleep transitions (suspend to RAM, hibernation) can be reduced by running suspend and resume callbacks of device drivers in parallel with each other. However, there are dependencies between devices such that we're not allowed to suspend the parent of a device before suspending the device itself. Analogously, we're not allowed to resume a device before resuming its parent. The most straightforward way to take these dependencies into accout is to start the async threads used for suspending and resuming devices at the core level, so that async_schedule() is called for each suspend and resume callback supposed to be executed asynchronously. For this purpose, introduce a new device flag, power.async_suspend, used to mark the devices whose suspend and resume callbacks are to be executed asynchronously (ie. in parallel with the main suspend/resume thread and possibly in parallel with each other) and helper function device_enable_async_suspend() allowing one to set power.async_suspend for given device (power.async_suspend is unset by default for all devices). For each device with the power.async_suspend flag set the PM core will use async_schedule() to execute its suspend and resume callbacks. The async threads started for different devices as a result of calling async_schedule() are synchronized with each other and with the main suspend/resume thread with the help of completions, in the following way: (1) There is a completion, power.completion, for each device object. (2) Each device's completion is reset before calling async_schedule() for the device or, in the case of devices with the power.async_suspend flags unset, before executing the device's suspend and resume callbacks. (3) During suspend, right before running the bus type, device type and device class suspend callbacks for the device, the PM core waits for the completions of all the device's children to be completed. (4) During resume, right before running the bus type, device type and device class resume callbacks for the device, the PM core waits for the completion of the device's parent to be completed. (5) The PM core completes power.completion for each device right after the bus type, device type and device class suspend (or resume) callbacks executed for the device have returned. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
2010-01-23 21:23:32 +00:00
* @async: If true, the device is being resumed asynchronously.
*/
static int device_resume(struct device *dev, pm_message_t state, bool async)
{
pm_callback_t callback = NULL;
char *info = NULL;
int error = 0;
2013-10-17 17:48:46 +00:00
DECLARE_DPM_WATCHDOG_ON_STACK(wd);
TRACE_DEVICE(dev);
TRACE_RESUME(0);
if (dev->power.syscore)
goto Complete;
PM / sleep: Mechanism to avoid resuming runtime-suspended devices unnecessarily Currently, some subsystems (e.g. PCI and the ACPI PM domain) have to resume all runtime-suspended devices during system suspend, mostly because those devices may need to be reprogrammed due to different wakeup settings for system sleep and for runtime PM. For some devices, though, it's OK to remain in runtime suspend throughout a complete system suspend/resume cycle (if the device was in runtime suspend at the start of the cycle). We would like to do this whenever possible, to avoid the overhead of extra power-up and power-down events. However, problems may arise because the device's descendants may require it to be at full power at various points during the cycle. Therefore the most straightforward way to do this safely is if the device and all its descendants can remain runtime suspended until the complete stage of system resume. To this end, introduce a new device PM flag, power.direct_complete and modify the PM core to use that flag as follows. If the ->prepare() callback of a device returns a positive number, the PM core will regard that as an indication that it may leave the device runtime-suspended. It will then check if the system power transition in progress is a suspend (and not hibernation in particular) and if the device is, indeed, runtime-suspended. In that case, the PM core will set the device's power.direct_complete flag. Otherwise it will clear power.direct_complete for the device and it also will later clear it for the device's parent (if there's one). Next, the PM core will not invoke the ->suspend() ->suspend_late(), ->suspend_irq(), ->resume_irq(), ->resume_early(), or ->resume() callbacks for all devices having power.direct_complete set. It will invoke their ->complete() callbacks, however, and those callbacks are then responsible for resuming the devices as appropriate, if necessary. For example, in some cases they may need to queue up runtime resume requests for the devices using pm_request_resume(). Changelog partly based on an Alan Stern's description of the idea (http://marc.info/?l=linux-pm&m=139940466625569&w=2). Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Alan Stern <stern@rowland.harvard.edu>
2014-05-16 00:46:50 +00:00
if (dev->power.direct_complete) {
/* Match the pm_runtime_disable() in __device_suspend(). */
pm_runtime_enable(dev);
goto Complete;
}
dpm_wait_for_superior(dev, async);
2013-10-17 17:48:46 +00:00
dpm_watchdog_set(&wd, dev);
Driver core: create lock/unlock functions for struct device In the future, we are going to be changing the lock type for struct device (once we get the lockdep infrastructure properly worked out) To make that changeover easier, and to possibly burry the lock in a different part of struct device, let's create some functions to lock and unlock a device so that no out-of-core code needs to be changed in the future. This patch creates the device_lock/unlock/trylock() functions, and converts all in-tree users to them. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Jean Delvare <khali@linux-fr.org> Cc: Dave Young <hidave.darkstar@gmail.com> Cc: Ming Lei <tom.leiming@gmail.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Phil Carmody <ext-phil.2.carmody@nokia.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Cornelia Huck <cornelia.huck@de.ibm.com> Cc: Rafael J. Wysocki <rjw@sisk.pl> Cc: Pavel Machek <pavel@ucw.cz> Cc: Len Brown <len.brown@intel.com> Cc: Magnus Damm <damm@igel.co.jp> Cc: Alan Stern <stern@rowland.harvard.edu> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Stefan Richter <stefanr@s5r6.in-berlin.de> Cc: David Brownell <dbrownell@users.sourceforge.net> Cc: Vegard Nossum <vegard.nossum@gmail.com> Cc: Jesse Barnes <jbarnes@virtuousgeek.org> Cc: Alex Chiang <achiang@hp.com> Cc: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andrew Patterson <andrew.patterson@hp.com> Cc: Yu Zhao <yu.zhao@intel.com> Cc: Dominik Brodowski <linux@dominikbrodowski.net> Cc: Samuel Ortiz <sameo@linux.intel.com> Cc: Wolfram Sang <w.sang@pengutronix.de> Cc: CHENG Renquan <rqcheng@smu.edu.sg> Cc: Oliver Neukum <oliver@neukum.org> Cc: Frans Pop <elendil@planet.nl> Cc: David Vrabel <david.vrabel@csr.com> Cc: Kay Sievers <kay.sievers@vrfy.org> Cc: Sarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-02-17 18:57:05 +00:00
device_lock(dev);
/*
* This is a fib. But we'll allow new children to be added below
* a resumed device, even if the device hasn't been completed yet.
*/
dev->power.is_prepared = false;
if (!dev->power.is_suspended)
goto Unlock;
if (dev->pm_domain) {
info = "power domain ";
callback = pm_op(&dev->pm_domain->ops, state);
goto Driver;
2011-02-16 20:53:17 +00:00
}
PM: Make system-wide PM and runtime PM treat subsystems consistently The code handling system-wide power transitions (eg. suspend-to-RAM) can in theory execute callbacks provided by the device's bus type, device type and class in each phase of the power transition. In turn, the runtime PM core code only calls one of those callbacks at a time, preferring bus type callbacks to device type or class callbacks and device type callbacks to class callbacks. It seems reasonable to make them both behave in the same way in that respect. Moreover, even though a device may belong to two subsystems (eg. bus type and device class) simultaneously, in practice power management callbacks for system-wide power transitions are always provided by only one of them (ie. if the bus type callbacks are defined, the device class ones are not and vice versa). Thus it is possible to modify the code handling system-wide power transitions so that it follows the core runtime PM code (ie. treats the subsystem callbacks as mutually exclusive). On the other hand, the core runtime PM code will choose to execute, for example, a runtime suspend callback provided by the device type even if the bus type's struct dev_pm_ops object exists, but the runtime_suspend pointer in it happens to be NULL. This is confusing, because it may lead to the execution of callbacks from different subsystems during different operations (eg. the bus type suspend callback may be executed during runtime suspend of the device, while the device type callback will be executed during system suspend). Make all of the power management code treat subsystem callbacks in a consistent way, such that: (1) If the device's type is defined (eg. dev->type is not NULL) and its pm pointer is not NULL, the callbacks from dev->type->pm will be used. (2) If dev->type is NULL or dev->type->pm is NULL, but the device's class is defined (eg. dev->class is not NULL) and its pm pointer is not NULL, the callbacks from dev->class->pm will be used. (3) If dev->type is NULL or dev->type->pm is NULL and dev->class is NULL or dev->class->pm is NULL, the callbacks from dev->bus->pm will be used provided that both dev->bus and dev->bus->pm are not NULL. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Kevin Hilman <khilman@ti.com> Reasoning-sounds-sane-to: Grant Likely <grant.likely@secretlab.ca> Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-02-18 22:20:21 +00:00
if (dev->type && dev->type->pm) {
info = "type ";
callback = pm_op(dev->type->pm, state);
goto Driver;
}
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
if (dev->class) {
if (dev->class->pm) {
info = "class ";
callback = pm_op(dev->class->pm, state);
goto Driver;
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
} else if (dev->class->resume) {
info = "legacy class ";
callback = dev->class->resume;
PM: Make system-wide PM and runtime PM treat subsystems consistently The code handling system-wide power transitions (eg. suspend-to-RAM) can in theory execute callbacks provided by the device's bus type, device type and class in each phase of the power transition. In turn, the runtime PM core code only calls one of those callbacks at a time, preferring bus type callbacks to device type or class callbacks and device type callbacks to class callbacks. It seems reasonable to make them both behave in the same way in that respect. Moreover, even though a device may belong to two subsystems (eg. bus type and device class) simultaneously, in practice power management callbacks for system-wide power transitions are always provided by only one of them (ie. if the bus type callbacks are defined, the device class ones are not and vice versa). Thus it is possible to modify the code handling system-wide power transitions so that it follows the core runtime PM code (ie. treats the subsystem callbacks as mutually exclusive). On the other hand, the core runtime PM code will choose to execute, for example, a runtime suspend callback provided by the device type even if the bus type's struct dev_pm_ops object exists, but the runtime_suspend pointer in it happens to be NULL. This is confusing, because it may lead to the execution of callbacks from different subsystems during different operations (eg. the bus type suspend callback may be executed during runtime suspend of the device, while the device type callback will be executed during system suspend). Make all of the power management code treat subsystem callbacks in a consistent way, such that: (1) If the device's type is defined (eg. dev->type is not NULL) and its pm pointer is not NULL, the callbacks from dev->type->pm will be used. (2) If dev->type is NULL or dev->type->pm is NULL, but the device's class is defined (eg. dev->class is not NULL) and its pm pointer is not NULL, the callbacks from dev->class->pm will be used. (3) If dev->type is NULL or dev->type->pm is NULL and dev->class is NULL or dev->class->pm is NULL, the callbacks from dev->bus->pm will be used provided that both dev->bus and dev->bus->pm are not NULL. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Kevin Hilman <khilman@ti.com> Reasoning-sounds-sane-to: Grant Likely <grant.likely@secretlab.ca> Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-02-18 22:20:21 +00:00
goto End;
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
}
}
PM: Make system-wide PM and runtime PM treat subsystems consistently The code handling system-wide power transitions (eg. suspend-to-RAM) can in theory execute callbacks provided by the device's bus type, device type and class in each phase of the power transition. In turn, the runtime PM core code only calls one of those callbacks at a time, preferring bus type callbacks to device type or class callbacks and device type callbacks to class callbacks. It seems reasonable to make them both behave in the same way in that respect. Moreover, even though a device may belong to two subsystems (eg. bus type and device class) simultaneously, in practice power management callbacks for system-wide power transitions are always provided by only one of them (ie. if the bus type callbacks are defined, the device class ones are not and vice versa). Thus it is possible to modify the code handling system-wide power transitions so that it follows the core runtime PM code (ie. treats the subsystem callbacks as mutually exclusive). On the other hand, the core runtime PM code will choose to execute, for example, a runtime suspend callback provided by the device type even if the bus type's struct dev_pm_ops object exists, but the runtime_suspend pointer in it happens to be NULL. This is confusing, because it may lead to the execution of callbacks from different subsystems during different operations (eg. the bus type suspend callback may be executed during runtime suspend of the device, while the device type callback will be executed during system suspend). Make all of the power management code treat subsystem callbacks in a consistent way, such that: (1) If the device's type is defined (eg. dev->type is not NULL) and its pm pointer is not NULL, the callbacks from dev->type->pm will be used. (2) If dev->type is NULL or dev->type->pm is NULL, but the device's class is defined (eg. dev->class is not NULL) and its pm pointer is not NULL, the callbacks from dev->class->pm will be used. (3) If dev->type is NULL or dev->type->pm is NULL and dev->class is NULL or dev->class->pm is NULL, the callbacks from dev->bus->pm will be used provided that both dev->bus and dev->bus->pm are not NULL. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Kevin Hilman <khilman@ti.com> Reasoning-sounds-sane-to: Grant Likely <grant.likely@secretlab.ca> Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-02-18 22:20:21 +00:00
if (dev->bus) {
if (dev->bus->pm) {
info = "bus ";
callback = pm_op(dev->bus->pm, state);
PM: Make system-wide PM and runtime PM treat subsystems consistently The code handling system-wide power transitions (eg. suspend-to-RAM) can in theory execute callbacks provided by the device's bus type, device type and class in each phase of the power transition. In turn, the runtime PM core code only calls one of those callbacks at a time, preferring bus type callbacks to device type or class callbacks and device type callbacks to class callbacks. It seems reasonable to make them both behave in the same way in that respect. Moreover, even though a device may belong to two subsystems (eg. bus type and device class) simultaneously, in practice power management callbacks for system-wide power transitions are always provided by only one of them (ie. if the bus type callbacks are defined, the device class ones are not and vice versa). Thus it is possible to modify the code handling system-wide power transitions so that it follows the core runtime PM code (ie. treats the subsystem callbacks as mutually exclusive). On the other hand, the core runtime PM code will choose to execute, for example, a runtime suspend callback provided by the device type even if the bus type's struct dev_pm_ops object exists, but the runtime_suspend pointer in it happens to be NULL. This is confusing, because it may lead to the execution of callbacks from different subsystems during different operations (eg. the bus type suspend callback may be executed during runtime suspend of the device, while the device type callback will be executed during system suspend). Make all of the power management code treat subsystem callbacks in a consistent way, such that: (1) If the device's type is defined (eg. dev->type is not NULL) and its pm pointer is not NULL, the callbacks from dev->type->pm will be used. (2) If dev->type is NULL or dev->type->pm is NULL, but the device's class is defined (eg. dev->class is not NULL) and its pm pointer is not NULL, the callbacks from dev->class->pm will be used. (3) If dev->type is NULL or dev->type->pm is NULL and dev->class is NULL or dev->class->pm is NULL, the callbacks from dev->bus->pm will be used provided that both dev->bus and dev->bus->pm are not NULL. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Kevin Hilman <khilman@ti.com> Reasoning-sounds-sane-to: Grant Likely <grant.likely@secretlab.ca> Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-02-18 22:20:21 +00:00
} else if (dev->bus->resume) {
info = "legacy bus ";
callback = dev->bus->resume;
goto End;
PM: Make system-wide PM and runtime PM treat subsystems consistently The code handling system-wide power transitions (eg. suspend-to-RAM) can in theory execute callbacks provided by the device's bus type, device type and class in each phase of the power transition. In turn, the runtime PM core code only calls one of those callbacks at a time, preferring bus type callbacks to device type or class callbacks and device type callbacks to class callbacks. It seems reasonable to make them both behave in the same way in that respect. Moreover, even though a device may belong to two subsystems (eg. bus type and device class) simultaneously, in practice power management callbacks for system-wide power transitions are always provided by only one of them (ie. if the bus type callbacks are defined, the device class ones are not and vice versa). Thus it is possible to modify the code handling system-wide power transitions so that it follows the core runtime PM code (ie. treats the subsystem callbacks as mutually exclusive). On the other hand, the core runtime PM code will choose to execute, for example, a runtime suspend callback provided by the device type even if the bus type's struct dev_pm_ops object exists, but the runtime_suspend pointer in it happens to be NULL. This is confusing, because it may lead to the execution of callbacks from different subsystems during different operations (eg. the bus type suspend callback may be executed during runtime suspend of the device, while the device type callback will be executed during system suspend). Make all of the power management code treat subsystem callbacks in a consistent way, such that: (1) If the device's type is defined (eg. dev->type is not NULL) and its pm pointer is not NULL, the callbacks from dev->type->pm will be used. (2) If dev->type is NULL or dev->type->pm is NULL, but the device's class is defined (eg. dev->class is not NULL) and its pm pointer is not NULL, the callbacks from dev->class->pm will be used. (3) If dev->type is NULL or dev->type->pm is NULL and dev->class is NULL or dev->class->pm is NULL, the callbacks from dev->bus->pm will be used provided that both dev->bus and dev->bus->pm are not NULL. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Kevin Hilman <khilman@ti.com> Reasoning-sounds-sane-to: Grant Likely <grant.likely@secretlab.ca> Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-02-18 22:20:21 +00:00
}
}
Driver:
if (!callback && dev->driver && dev->driver->pm) {
info = "driver ";
callback = pm_op(dev->driver->pm, state);
}
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
End:
error = dpm_run_callback(callback, dev, state, info);
dev->power.is_suspended = false;
Unlock:
Driver core: create lock/unlock functions for struct device In the future, we are going to be changing the lock type for struct device (once we get the lockdep infrastructure properly worked out) To make that changeover easier, and to possibly burry the lock in a different part of struct device, let's create some functions to lock and unlock a device so that no out-of-core code needs to be changed in the future. This patch creates the device_lock/unlock/trylock() functions, and converts all in-tree users to them. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Jean Delvare <khali@linux-fr.org> Cc: Dave Young <hidave.darkstar@gmail.com> Cc: Ming Lei <tom.leiming@gmail.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Phil Carmody <ext-phil.2.carmody@nokia.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Cornelia Huck <cornelia.huck@de.ibm.com> Cc: Rafael J. Wysocki <rjw@sisk.pl> Cc: Pavel Machek <pavel@ucw.cz> Cc: Len Brown <len.brown@intel.com> Cc: Magnus Damm <damm@igel.co.jp> Cc: Alan Stern <stern@rowland.harvard.edu> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Stefan Richter <stefanr@s5r6.in-berlin.de> Cc: David Brownell <dbrownell@users.sourceforge.net> Cc: Vegard Nossum <vegard.nossum@gmail.com> Cc: Jesse Barnes <jbarnes@virtuousgeek.org> Cc: Alex Chiang <achiang@hp.com> Cc: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andrew Patterson <andrew.patterson@hp.com> Cc: Yu Zhao <yu.zhao@intel.com> Cc: Dominik Brodowski <linux@dominikbrodowski.net> Cc: Samuel Ortiz <sameo@linux.intel.com> Cc: Wolfram Sang <w.sang@pengutronix.de> Cc: CHENG Renquan <rqcheng@smu.edu.sg> Cc: Oliver Neukum <oliver@neukum.org> Cc: Frans Pop <elendil@planet.nl> Cc: David Vrabel <david.vrabel@csr.com> Cc: Kay Sievers <kay.sievers@vrfy.org> Cc: Sarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-02-17 18:57:05 +00:00
device_unlock(dev);
2013-10-17 17:48:46 +00:00
dpm_watchdog_clear(&wd);
Complete:
PM: Asynchronous suspend and resume of devices Theoretically, the total time of system sleep transitions (suspend to RAM, hibernation) can be reduced by running suspend and resume callbacks of device drivers in parallel with each other. However, there are dependencies between devices such that we're not allowed to suspend the parent of a device before suspending the device itself. Analogously, we're not allowed to resume a device before resuming its parent. The most straightforward way to take these dependencies into accout is to start the async threads used for suspending and resuming devices at the core level, so that async_schedule() is called for each suspend and resume callback supposed to be executed asynchronously. For this purpose, introduce a new device flag, power.async_suspend, used to mark the devices whose suspend and resume callbacks are to be executed asynchronously (ie. in parallel with the main suspend/resume thread and possibly in parallel with each other) and helper function device_enable_async_suspend() allowing one to set power.async_suspend for given device (power.async_suspend is unset by default for all devices). For each device with the power.async_suspend flag set the PM core will use async_schedule() to execute its suspend and resume callbacks. The async threads started for different devices as a result of calling async_schedule() are synchronized with each other and with the main suspend/resume thread with the help of completions, in the following way: (1) There is a completion, power.completion, for each device object. (2) Each device's completion is reset before calling async_schedule() for the device or, in the case of devices with the power.async_suspend flags unset, before executing the device's suspend and resume callbacks. (3) During suspend, right before running the bus type, device type and device class suspend callbacks for the device, the PM core waits for the completions of all the device's children to be completed. (4) During resume, right before running the bus type, device type and device class resume callbacks for the device, the PM core waits for the completion of the device's parent to be completed. (5) The PM core completes power.completion for each device right after the bus type, device type and device class suspend (or resume) callbacks executed for the device have returned. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
2010-01-23 21:23:32 +00:00
complete_all(&dev->power.completion);
TRACE_RESUME(error);
PM: Limit race conditions between runtime PM and system sleep (v2) One of the roles of the PM core is to prevent different PM callbacks executed for the same device object from racing with each other. Unfortunately, after commit e8665002477f0278f84f898145b1f141ba26ee26 (PM: Allow pm_runtime_suspend() to succeed during system suspend) runtime PM callbacks may be executed concurrently with system suspend/resume callbacks for the same device. The main reason for commit e8665002477f0278f84f898145b1f141ba26ee26 was that some subsystems and device drivers wanted to use runtime PM helpers, pm_runtime_suspend() and pm_runtime_put_sync() in particular, for carrying out the suspend of devices in their .suspend() callbacks. However, as it's been determined recently, there are multiple reasons not to do so, inlcuding: * The caller really doesn't control the runtime PM usage counters, because user space can access them through sysfs and effectively block runtime PM. That means using pm_runtime_suspend() or pm_runtime_get_sync() to suspend devices during system suspend may or may not work. * If a driver calls pm_runtime_suspend() from its .suspend() callback, it causes the subsystem's .runtime_suspend() callback to be executed, which leads to the call sequence: subsys->suspend(dev) driver->suspend(dev) pm_runtime_suspend(dev) subsys->runtime_suspend(dev) recursive from the subsystem's point of view. For some subsystems that may actually work (e.g. the platform bus type), but for some it will fail in a rather spectacular fashion (e.g. PCI). In each case it means a layering violation. * Both the subsystem and the driver can provide .suspend_noirq() callbacks for system suspend that can do whatever the .runtime_suspend() callbacks do just fine, so it really isn't necessary to call pm_runtime_suspend() during system suspend. * The runtime PM's handling of wakeup devices is usually different from the system suspend's one, so .runtime_suspend() may simply be inappropriate for system suspend. * System suspend is supposed to work even if CONFIG_PM_RUNTIME is unset. * The runtime PM workqueue is frozen before system suspend, so if whatever the driver is going to do during system suspend depends on it, that simply won't work. Still, there is a good reason to allow pm_runtime_resume() to succeed during system suspend and resume (for instance, some subsystems and device drivers may legitimately use it to ensure that their devices are in full-power states before suspending them). Moreover, there is no reason to prevent runtime PM callbacks from being executed in parallel with the system suspend/resume .prepare() and .complete() callbacks and the code removed by commit e8665002477f0278f84f898145b1f141ba26ee26 went too far in this respect. On the other hand, runtime PM callbacks, including .runtime_resume(), must not be executed during system suspend's "late" stage of suspending devices and during system resume's "early" device resume stage. Taking all of the above into consideration, make the PM core acquire a runtime PM reference to every device and resume it if there's a runtime PM resume request pending right before executing the subsystem-level .suspend() callback for it. Make the PM core drop references to all devices right after executing the subsystem-level .resume() callbacks for them. Additionally, make the PM core disable the runtime PM framework for all devices during system suspend, after executing the subsystem-level .suspend() callbacks for them, and enable the runtime PM framework for all devices during system resume, right before executing the subsystem-level .resume() callbacks for them. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Kevin Hilman <khilman@ti.com>
2011-07-06 08:51:58 +00:00
return error;
}
PM: Asynchronous suspend and resume of devices Theoretically, the total time of system sleep transitions (suspend to RAM, hibernation) can be reduced by running suspend and resume callbacks of device drivers in parallel with each other. However, there are dependencies between devices such that we're not allowed to suspend the parent of a device before suspending the device itself. Analogously, we're not allowed to resume a device before resuming its parent. The most straightforward way to take these dependencies into accout is to start the async threads used for suspending and resuming devices at the core level, so that async_schedule() is called for each suspend and resume callback supposed to be executed asynchronously. For this purpose, introduce a new device flag, power.async_suspend, used to mark the devices whose suspend and resume callbacks are to be executed asynchronously (ie. in parallel with the main suspend/resume thread and possibly in parallel with each other) and helper function device_enable_async_suspend() allowing one to set power.async_suspend for given device (power.async_suspend is unset by default for all devices). For each device with the power.async_suspend flag set the PM core will use async_schedule() to execute its suspend and resume callbacks. The async threads started for different devices as a result of calling async_schedule() are synchronized with each other and with the main suspend/resume thread with the help of completions, in the following way: (1) There is a completion, power.completion, for each device object. (2) Each device's completion is reset before calling async_schedule() for the device or, in the case of devices with the power.async_suspend flags unset, before executing the device's suspend and resume callbacks. (3) During suspend, right before running the bus type, device type and device class suspend callbacks for the device, the PM core waits for the completions of all the device's children to be completed. (4) During resume, right before running the bus type, device type and device class resume callbacks for the device, the PM core waits for the completion of the device's parent to be completed. (5) The PM core completes power.completion for each device right after the bus type, device type and device class suspend (or resume) callbacks executed for the device have returned. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
2010-01-23 21:23:32 +00:00
static void async_resume(void *data, async_cookie_t cookie)
{
struct device *dev = (struct device *)data;
int error;
error = device_resume(dev, pm_transition, true);
PM: Asynchronous suspend and resume of devices Theoretically, the total time of system sleep transitions (suspend to RAM, hibernation) can be reduced by running suspend and resume callbacks of device drivers in parallel with each other. However, there are dependencies between devices such that we're not allowed to suspend the parent of a device before suspending the device itself. Analogously, we're not allowed to resume a device before resuming its parent. The most straightforward way to take these dependencies into accout is to start the async threads used for suspending and resuming devices at the core level, so that async_schedule() is called for each suspend and resume callback supposed to be executed asynchronously. For this purpose, introduce a new device flag, power.async_suspend, used to mark the devices whose suspend and resume callbacks are to be executed asynchronously (ie. in parallel with the main suspend/resume thread and possibly in parallel with each other) and helper function device_enable_async_suspend() allowing one to set power.async_suspend for given device (power.async_suspend is unset by default for all devices). For each device with the power.async_suspend flag set the PM core will use async_schedule() to execute its suspend and resume callbacks. The async threads started for different devices as a result of calling async_schedule() are synchronized with each other and with the main suspend/resume thread with the help of completions, in the following way: (1) There is a completion, power.completion, for each device object. (2) Each device's completion is reset before calling async_schedule() for the device or, in the case of devices with the power.async_suspend flags unset, before executing the device's suspend and resume callbacks. (3) During suspend, right before running the bus type, device type and device class suspend callbacks for the device, the PM core waits for the completions of all the device's children to be completed. (4) During resume, right before running the bus type, device type and device class resume callbacks for the device, the PM core waits for the completion of the device's parent to be completed. (5) The PM core completes power.completion for each device right after the bus type, device type and device class suspend (or resume) callbacks executed for the device have returned. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
2010-01-23 21:23:32 +00:00
if (error)
pm_dev_err(dev, pm_transition, " async", error);
put_device(dev);
}
/**
* dpm_resume - Execute "resume" callbacks for non-sysdev devices.
* @state: PM transition of the system being carried out.
*
* Execute the appropriate "resume" callback for all devices whose status
* indicates that they are suspended.
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
*/
void dpm_resume(pm_message_t state)
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
{
struct device *dev;
ktime_t starttime = ktime_get();
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
trace_suspend_resume(TPS("dpm_resume"), state.event, true);
might_sleep();
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
mutex_lock(&dpm_list_mtx);
PM: Asynchronous suspend and resume of devices Theoretically, the total time of system sleep transitions (suspend to RAM, hibernation) can be reduced by running suspend and resume callbacks of device drivers in parallel with each other. However, there are dependencies between devices such that we're not allowed to suspend the parent of a device before suspending the device itself. Analogously, we're not allowed to resume a device before resuming its parent. The most straightforward way to take these dependencies into accout is to start the async threads used for suspending and resuming devices at the core level, so that async_schedule() is called for each suspend and resume callback supposed to be executed asynchronously. For this purpose, introduce a new device flag, power.async_suspend, used to mark the devices whose suspend and resume callbacks are to be executed asynchronously (ie. in parallel with the main suspend/resume thread and possibly in parallel with each other) and helper function device_enable_async_suspend() allowing one to set power.async_suspend for given device (power.async_suspend is unset by default for all devices). For each device with the power.async_suspend flag set the PM core will use async_schedule() to execute its suspend and resume callbacks. The async threads started for different devices as a result of calling async_schedule() are synchronized with each other and with the main suspend/resume thread with the help of completions, in the following way: (1) There is a completion, power.completion, for each device object. (2) Each device's completion is reset before calling async_schedule() for the device or, in the case of devices with the power.async_suspend flags unset, before executing the device's suspend and resume callbacks. (3) During suspend, right before running the bus type, device type and device class suspend callbacks for the device, the PM core waits for the completions of all the device's children to be completed. (4) During resume, right before running the bus type, device type and device class resume callbacks for the device, the PM core waits for the completion of the device's parent to be completed. (5) The PM core completes power.completion for each device right after the bus type, device type and device class suspend (or resume) callbacks executed for the device have returned. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
2010-01-23 21:23:32 +00:00
pm_transition = state;
async_error = 0;
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
reinit_completion(&dev->power.completion);
if (is_async(dev)) {
get_device(dev);
async_schedule(async_resume, dev);
}
}
while (!list_empty(&dpm_suspended_list)) {
dev = to_device(dpm_suspended_list.next);
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
get_device(dev);
if (!is_async(dev)) {
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
int error;
mutex_unlock(&dpm_list_mtx);
error = device_resume(dev, state, false);
PM / Suspend: Add statistics debugfs file for suspend to RAM Record S3 failure time about each reason and the latest two failed devices' names in S3 progress. We can check it through 'suspend_stats' entry in debugfs. The motivation of the patch: We are enabling power features on Medfield. Comparing with PC/notebook, a mobile enters/exits suspend-2-ram (we call it s3 on Medfield) far more frequently. If it can't enter suspend-2-ram in time, the power might be used up soon. We often find sometimes, a device suspend fails. Then, system retries s3 over and over again. As display is off, testers and developers don't know what happens. Some testers and developers complain they don't know if system tries suspend-2-ram, and what device fails to suspend. They need such info for a quick check. The patch adds suspend_stats under debugfs for users to check suspend to RAM statistics quickly. If not using this patch, we have other methods to get info about what device fails. One is to turn on CONFIG_PM_DEBUG, but users would get too much info and testers need recompile the system. In addition, dynamic debug is another good tool to dump debug info. But it still doesn't match our utilization scenario closely. 1) user need write a user space parser to process the syslog output; 2) Our testing scenario is we leave the mobile for at least hours. Then, check its status. No serial console available during the testing. One is because console would be suspended, and the other is serial console connecting with spi or HSU devices would consume power. These devices are powered off at suspend-2-ram. Signed-off-by: ShuoX Liu <shuox.liu@intel.com> Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
2011-08-10 21:01:26 +00:00
if (error) {
suspend_stats.failed_resume++;
dpm_save_failed_step(SUSPEND_RESUME);
dpm_save_failed_dev(dev_name(dev));
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
pm_dev_err(dev, state, "", error);
PM / Suspend: Add statistics debugfs file for suspend to RAM Record S3 failure time about each reason and the latest two failed devices' names in S3 progress. We can check it through 'suspend_stats' entry in debugfs. The motivation of the patch: We are enabling power features on Medfield. Comparing with PC/notebook, a mobile enters/exits suspend-2-ram (we call it s3 on Medfield) far more frequently. If it can't enter suspend-2-ram in time, the power might be used up soon. We often find sometimes, a device suspend fails. Then, system retries s3 over and over again. As display is off, testers and developers don't know what happens. Some testers and developers complain they don't know if system tries suspend-2-ram, and what device fails to suspend. They need such info for a quick check. The patch adds suspend_stats under debugfs for users to check suspend to RAM statistics quickly. If not using this patch, we have other methods to get info about what device fails. One is to turn on CONFIG_PM_DEBUG, but users would get too much info and testers need recompile the system. In addition, dynamic debug is another good tool to dump debug info. But it still doesn't match our utilization scenario closely. 1) user need write a user space parser to process the syslog output; 2) Our testing scenario is we leave the mobile for at least hours. Then, check its status. No serial console available during the testing. One is because console would be suspended, and the other is serial console connecting with spi or HSU devices would consume power. These devices are powered off at suspend-2-ram. Signed-off-by: ShuoX Liu <shuox.liu@intel.com> Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
2011-08-10 21:01:26 +00:00
}
mutex_lock(&dpm_list_mtx);
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
}
if (!list_empty(&dev->power.entry))
list_move_tail(&dev->power.entry, &dpm_prepared_list);
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
put_device(dev);
}
mutex_unlock(&dpm_list_mtx);
PM: Asynchronous suspend and resume of devices Theoretically, the total time of system sleep transitions (suspend to RAM, hibernation) can be reduced by running suspend and resume callbacks of device drivers in parallel with each other. However, there are dependencies between devices such that we're not allowed to suspend the parent of a device before suspending the device itself. Analogously, we're not allowed to resume a device before resuming its parent. The most straightforward way to take these dependencies into accout is to start the async threads used for suspending and resuming devices at the core level, so that async_schedule() is called for each suspend and resume callback supposed to be executed asynchronously. For this purpose, introduce a new device flag, power.async_suspend, used to mark the devices whose suspend and resume callbacks are to be executed asynchronously (ie. in parallel with the main suspend/resume thread and possibly in parallel with each other) and helper function device_enable_async_suspend() allowing one to set power.async_suspend for given device (power.async_suspend is unset by default for all devices). For each device with the power.async_suspend flag set the PM core will use async_schedule() to execute its suspend and resume callbacks. The async threads started for different devices as a result of calling async_schedule() are synchronized with each other and with the main suspend/resume thread with the help of completions, in the following way: (1) There is a completion, power.completion, for each device object. (2) Each device's completion is reset before calling async_schedule() for the device or, in the case of devices with the power.async_suspend flags unset, before executing the device's suspend and resume callbacks. (3) During suspend, right before running the bus type, device type and device class suspend callbacks for the device, the PM core waits for the completions of all the device's children to be completed. (4) During resume, right before running the bus type, device type and device class resume callbacks for the device, the PM core waits for the completion of the device's parent to be completed. (5) The PM core completes power.completion for each device right after the bus type, device type and device class suspend (or resume) callbacks executed for the device have returned. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
2010-01-23 21:23:32 +00:00
async_synchronize_full();
dpm_show_time(starttime, state, NULL);
cpufreq_resume();
trace_suspend_resume(TPS("dpm_resume"), state.event, false);
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
}
/**
* device_complete - Complete a PM transition for given device.
* @dev: Device to handle.
* @state: PM transition of the system being carried out.
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
*/
static void device_complete(struct device *dev, pm_message_t state)
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
{
void (*callback)(struct device *) = NULL;
char *info = NULL;
if (dev->power.syscore)
return;
Driver core: create lock/unlock functions for struct device In the future, we are going to be changing the lock type for struct device (once we get the lockdep infrastructure properly worked out) To make that changeover easier, and to possibly burry the lock in a different part of struct device, let's create some functions to lock and unlock a device so that no out-of-core code needs to be changed in the future. This patch creates the device_lock/unlock/trylock() functions, and converts all in-tree users to them. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Jean Delvare <khali@linux-fr.org> Cc: Dave Young <hidave.darkstar@gmail.com> Cc: Ming Lei <tom.leiming@gmail.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Phil Carmody <ext-phil.2.carmody@nokia.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Cornelia Huck <cornelia.huck@de.ibm.com> Cc: Rafael J. Wysocki <rjw@sisk.pl> Cc: Pavel Machek <pavel@ucw.cz> Cc: Len Brown <len.brown@intel.com> Cc: Magnus Damm <damm@igel.co.jp> Cc: Alan Stern <stern@rowland.harvard.edu> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Stefan Richter <stefanr@s5r6.in-berlin.de> Cc: David Brownell <dbrownell@users.sourceforge.net> Cc: Vegard Nossum <vegard.nossum@gmail.com> Cc: Jesse Barnes <jbarnes@virtuousgeek.org> Cc: Alex Chiang <achiang@hp.com> Cc: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andrew Patterson <andrew.patterson@hp.com> Cc: Yu Zhao <yu.zhao@intel.com> Cc: Dominik Brodowski <linux@dominikbrodowski.net> Cc: Samuel Ortiz <sameo@linux.intel.com> Cc: Wolfram Sang <w.sang@pengutronix.de> Cc: CHENG Renquan <rqcheng@smu.edu.sg> Cc: Oliver Neukum <oliver@neukum.org> Cc: Frans Pop <elendil@planet.nl> Cc: David Vrabel <david.vrabel@csr.com> Cc: Kay Sievers <kay.sievers@vrfy.org> Cc: Sarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-02-17 18:57:05 +00:00
device_lock(dev);
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
if (dev->pm_domain) {
info = "completing power domain ";
callback = dev->pm_domain->ops.complete;
PM: Make power domain callbacks take precedence over subsystem ones Change the PM core's behavior related to power domains in such a way that, if a power domain is defined for a given device, its callbacks will be executed instead of and not in addition to the device subsystem's PM callbacks. The idea behind the initial implementation of power domains handling by the PM core was that power domain callbacks would be executed in addition to subsystem callbacks, so that it would be possible to extend the subsystem callbacks by using power domains. It turns out, however, that this wouldn't be really convenient in some important situations. For example, there are systems in which power can only be removed from entire power domains. On those systems it is not desirable to execute device drivers' PM callbacks until it is known that power is going to be removed from the devices in question, which means that they should be executed by power domain callbacks rather then by subsystem (e.g. bus type) PM callbacks, because subsystems generally have no information about what devices belong to which power domain. Thus, for instance, if the bus type in question is the platform bus type, its PM callbacks generally should not be called in addition to power domain callbacks, because they run device drivers' callbacks unconditionally if defined. While in principle the default subsystem PM callbacks, or a subset of them, may be replaced with different functions, it doesn't seem correct to do so, because that would change the subsystem's behavior with respect to all devices in the system, regardless of whether or not they belong to any power domains. Thus, the only remaining option is to make power domain callbacks take precedence over subsystem callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Grant Likely <grant.likely@secretlab.ca> Acked-by: Kevin Hilman <khilman@ti.com>
2011-04-28 22:35:50 +00:00
} else if (dev->type && dev->type->pm) {
info = "completing type ";
callback = dev->type->pm->complete;
PM: Make system-wide PM and runtime PM treat subsystems consistently The code handling system-wide power transitions (eg. suspend-to-RAM) can in theory execute callbacks provided by the device's bus type, device type and class in each phase of the power transition. In turn, the runtime PM core code only calls one of those callbacks at a time, preferring bus type callbacks to device type or class callbacks and device type callbacks to class callbacks. It seems reasonable to make them both behave in the same way in that respect. Moreover, even though a device may belong to two subsystems (eg. bus type and device class) simultaneously, in practice power management callbacks for system-wide power transitions are always provided by only one of them (ie. if the bus type callbacks are defined, the device class ones are not and vice versa). Thus it is possible to modify the code handling system-wide power transitions so that it follows the core runtime PM code (ie. treats the subsystem callbacks as mutually exclusive). On the other hand, the core runtime PM code will choose to execute, for example, a runtime suspend callback provided by the device type even if the bus type's struct dev_pm_ops object exists, but the runtime_suspend pointer in it happens to be NULL. This is confusing, because it may lead to the execution of callbacks from different subsystems during different operations (eg. the bus type suspend callback may be executed during runtime suspend of the device, while the device type callback will be executed during system suspend). Make all of the power management code treat subsystem callbacks in a consistent way, such that: (1) If the device's type is defined (eg. dev->type is not NULL) and its pm pointer is not NULL, the callbacks from dev->type->pm will be used. (2) If dev->type is NULL or dev->type->pm is NULL, but the device's class is defined (eg. dev->class is not NULL) and its pm pointer is not NULL, the callbacks from dev->class->pm will be used. (3) If dev->type is NULL or dev->type->pm is NULL and dev->class is NULL or dev->class->pm is NULL, the callbacks from dev->bus->pm will be used provided that both dev->bus and dev->bus->pm are not NULL. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Kevin Hilman <khilman@ti.com> Reasoning-sounds-sane-to: Grant Likely <grant.likely@secretlab.ca> Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-02-18 22:20:21 +00:00
} else if (dev->class && dev->class->pm) {
info = "completing class ";
callback = dev->class->pm->complete;
PM: Make system-wide PM and runtime PM treat subsystems consistently The code handling system-wide power transitions (eg. suspend-to-RAM) can in theory execute callbacks provided by the device's bus type, device type and class in each phase of the power transition. In turn, the runtime PM core code only calls one of those callbacks at a time, preferring bus type callbacks to device type or class callbacks and device type callbacks to class callbacks. It seems reasonable to make them both behave in the same way in that respect. Moreover, even though a device may belong to two subsystems (eg. bus type and device class) simultaneously, in practice power management callbacks for system-wide power transitions are always provided by only one of them (ie. if the bus type callbacks are defined, the device class ones are not and vice versa). Thus it is possible to modify the code handling system-wide power transitions so that it follows the core runtime PM code (ie. treats the subsystem callbacks as mutually exclusive). On the other hand, the core runtime PM code will choose to execute, for example, a runtime suspend callback provided by the device type even if the bus type's struct dev_pm_ops object exists, but the runtime_suspend pointer in it happens to be NULL. This is confusing, because it may lead to the execution of callbacks from different subsystems during different operations (eg. the bus type suspend callback may be executed during runtime suspend of the device, while the device type callback will be executed during system suspend). Make all of the power management code treat subsystem callbacks in a consistent way, such that: (1) If the device's type is defined (eg. dev->type is not NULL) and its pm pointer is not NULL, the callbacks from dev->type->pm will be used. (2) If dev->type is NULL or dev->type->pm is NULL, but the device's class is defined (eg. dev->class is not NULL) and its pm pointer is not NULL, the callbacks from dev->class->pm will be used. (3) If dev->type is NULL or dev->type->pm is NULL and dev->class is NULL or dev->class->pm is NULL, the callbacks from dev->bus->pm will be used provided that both dev->bus and dev->bus->pm are not NULL. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Kevin Hilman <khilman@ti.com> Reasoning-sounds-sane-to: Grant Likely <grant.likely@secretlab.ca> Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-02-18 22:20:21 +00:00
} else if (dev->bus && dev->bus->pm) {
info = "completing bus ";
callback = dev->bus->pm->complete;
}
if (!callback && dev->driver && dev->driver->pm) {
info = "completing driver ";
callback = dev->driver->pm->complete;
}
if (callback) {
pm_dev_dbg(dev, state, info);
callback(dev);
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
}
Driver core: create lock/unlock functions for struct device In the future, we are going to be changing the lock type for struct device (once we get the lockdep infrastructure properly worked out) To make that changeover easier, and to possibly burry the lock in a different part of struct device, let's create some functions to lock and unlock a device so that no out-of-core code needs to be changed in the future. This patch creates the device_lock/unlock/trylock() functions, and converts all in-tree users to them. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Jean Delvare <khali@linux-fr.org> Cc: Dave Young <hidave.darkstar@gmail.com> Cc: Ming Lei <tom.leiming@gmail.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Phil Carmody <ext-phil.2.carmody@nokia.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Cornelia Huck <cornelia.huck@de.ibm.com> Cc: Rafael J. Wysocki <rjw@sisk.pl> Cc: Pavel Machek <pavel@ucw.cz> Cc: Len Brown <len.brown@intel.com> Cc: Magnus Damm <damm@igel.co.jp> Cc: Alan Stern <stern@rowland.harvard.edu> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Stefan Richter <stefanr@s5r6.in-berlin.de> Cc: David Brownell <dbrownell@users.sourceforge.net> Cc: Vegard Nossum <vegard.nossum@gmail.com> Cc: Jesse Barnes <jbarnes@virtuousgeek.org> Cc: Alex Chiang <achiang@hp.com> Cc: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andrew Patterson <andrew.patterson@hp.com> Cc: Yu Zhao <yu.zhao@intel.com> Cc: Dominik Brodowski <linux@dominikbrodowski.net> Cc: Samuel Ortiz <sameo@linux.intel.com> Cc: Wolfram Sang <w.sang@pengutronix.de> Cc: CHENG Renquan <rqcheng@smu.edu.sg> Cc: Oliver Neukum <oliver@neukum.org> Cc: Frans Pop <elendil@planet.nl> Cc: David Vrabel <david.vrabel@csr.com> Cc: Kay Sievers <kay.sievers@vrfy.org> Cc: Sarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-02-17 18:57:05 +00:00
device_unlock(dev);
pm_runtime_put(dev);
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
}
/**
* dpm_complete - Complete a PM transition for all non-sysdev devices.
* @state: PM transition of the system being carried out.
*
* Execute the ->complete() callbacks for all devices whose PM status is not
* DPM_ON (this allows new devices to be registered).
*/
void dpm_complete(pm_message_t state)
{
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
struct list_head list;
trace_suspend_resume(TPS("dpm_complete"), state.event, true);
might_sleep();
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
INIT_LIST_HEAD(&list);
mutex_lock(&dpm_list_mtx);
while (!list_empty(&dpm_prepared_list)) {
struct device *dev = to_device(dpm_prepared_list.prev);
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
get_device(dev);
dev->power.is_prepared = false;
list_move(&dev->power.entry, &list);
mutex_unlock(&dpm_list_mtx);
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
trace_device_pm_callback_start(dev, "", state.event);
device_complete(dev, state);
trace_device_pm_callback_end(dev, 0);
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
mutex_lock(&dpm_list_mtx);
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
put_device(dev);
}
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
list_splice(&list, &dpm_list);
mutex_unlock(&dpm_list_mtx);
/* Allow device probing and trigger re-probing of deferred devices */
device_unblock_probing();
trace_suspend_resume(TPS("dpm_complete"), state.event, false);
}
/**
* dpm_resume_end - Execute "resume" callbacks and complete system transition.
* @state: PM transition of the system being carried out.
*
* Execute "resume" callbacks for all devices and complete the PM transition of
* the system.
*/
void dpm_resume_end(pm_message_t state)
{
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
dpm_resume(state);
dpm_complete(state);
}
EXPORT_SYMBOL_GPL(dpm_resume_end);
/*------------------------- Suspend routines -------------------------*/
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
/**
* resume_event - Return a "resume" message for given "suspend" sleep state.
* @sleep_state: PM message representing a sleep state.
*
* Return a PM message representing the resume event corresponding to given
* sleep state.
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
*/
static pm_message_t resume_event(pm_message_t sleep_state)
{
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
switch (sleep_state.event) {
case PM_EVENT_SUSPEND:
return PMSG_RESUME;
case PM_EVENT_FREEZE:
case PM_EVENT_QUIESCE:
return PMSG_RECOVER;
case PM_EVENT_HIBERNATE:
return PMSG_RESTORE;
}
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
return PMSG_ON;
}
/**
* device_suspend_noirq - Execute a "late suspend" callback for given device.
* @dev: Device to handle.
* @state: PM transition of the system being carried out.
* @async: If true, the device is being suspended asynchronously.
*
* The driver of @dev will not receive interrupts while this function is being
* executed.
*/
static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
{
pm_callback_t callback = NULL;
char *info = NULL;
int error = 0;
TRACE_DEVICE(dev);
TRACE_SUSPEND(0);
Driver core patches for 4.10-rc1 Here's the new driver core patches for 4.10-rc1. Big thing here is the nice addition of "functional dependencies" to the driver core. The idea has been talked about for a very long time, great job to Rafael for stepping up and implementing it. It's been tested for longer than the 4.9-rc1 date, we held off on merging it earlier in order to feel more comfortable about it. Other than that, it's just a handful of small other patches, some good cleanups to the mess that is the firmware class code, and we have a test driver for the deferred probe logic. All of these have been in linux-next for a while with no reported issues. Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> -----BEGIN PGP SIGNATURE----- iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCWFAvPQ8cZ3JlZ0Brcm9h aC5jb20ACgkQMUfUDdst+ym3NgCgmhFeWEkp9SDt17YGGavmnzQUlBQAoJlUipJp PHeQkq15ZWw3wWC9FEvM =91M1 -----END PGP SIGNATURE----- Merge tag 'driver-core-4.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core Pull driver core updates from Greg KH: "Here's the new driver core patches for 4.10-rc1. Big thing here is the nice addition of "functional dependencies" to the driver core. The idea has been talked about for a very long time, great job to Rafael for stepping up and implementing it. It's been tested for longer than the 4.9-rc1 date, we held off on merging it earlier in order to feel more comfortable about it. Other than that, it's just a handful of small other patches, some good cleanups to the mess that is the firmware class code, and we have a test driver for the deferred probe logic. All of these have been in linux-next for a while with no reported issues" * tag 'driver-core-4.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (30 commits) firmware: Correct handling of fw_state_wait() return value driver core: Silence device links sphinx warning firmware: remove warning at documentation generation time drivers: base: dma-mapping: Fix typo in dmam_alloc_non_coherent comments driver core: test_async: fix up typo found by 0-day firmware: move fw_state_is_done() into UHM section firmware: do not use fw_lock for fw_state protection firmware: drop bit ops in favor of simple state machine firmware: refactor loading status firmware: fix usermode helper fallback loading driver core: firmware_class: convert to use class_groups driver core: devcoredump: convert to use class_groups driver core: class: add class_groups support kernfs: Declare two local data structures static driver-core: fix platform_no_drv_owner.cocci warnings drivers/base/memory.c: Remove unused 'first_page' variable driver core: add CLASS_ATTR_WO() drivers: base: cacheinfo: support DT overrides for cache properties drivers: base: cacheinfo: add pr_fmt logging drivers: base: cacheinfo: fix boot error message when acpi is enabled ...
2016-12-13 19:42:18 +00:00
dpm_wait_for_subordinate(dev, async);
if (async_error)
goto Complete;
if (pm_wakeup_pending()) {
async_error = -EBUSY;
goto Complete;
}
PM / sleep: Mechanism to avoid resuming runtime-suspended devices unnecessarily Currently, some subsystems (e.g. PCI and the ACPI PM domain) have to resume all runtime-suspended devices during system suspend, mostly because those devices may need to be reprogrammed due to different wakeup settings for system sleep and for runtime PM. For some devices, though, it's OK to remain in runtime suspend throughout a complete system suspend/resume cycle (if the device was in runtime suspend at the start of the cycle). We would like to do this whenever possible, to avoid the overhead of extra power-up and power-down events. However, problems may arise because the device's descendants may require it to be at full power at various points during the cycle. Therefore the most straightforward way to do this safely is if the device and all its descendants can remain runtime suspended until the complete stage of system resume. To this end, introduce a new device PM flag, power.direct_complete and modify the PM core to use that flag as follows. If the ->prepare() callback of a device returns a positive number, the PM core will regard that as an indication that it may leave the device runtime-suspended. It will then check if the system power transition in progress is a suspend (and not hibernation in particular) and if the device is, indeed, runtime-suspended. In that case, the PM core will set the device's power.direct_complete flag. Otherwise it will clear power.direct_complete for the device and it also will later clear it for the device's parent (if there's one). Next, the PM core will not invoke the ->suspend() ->suspend_late(), ->suspend_irq(), ->resume_irq(), ->resume_early(), or ->resume() callbacks for all devices having power.direct_complete set. It will invoke their ->complete() callbacks, however, and those callbacks are then responsible for resuming the devices as appropriate, if necessary. For example, in some cases they may need to queue up runtime resume requests for the devices using pm_request_resume(). Changelog partly based on an Alan Stern's description of the idea (http://marc.info/?l=linux-pm&m=139940466625569&w=2). Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Alan Stern <stern@rowland.harvard.edu>
2014-05-16 00:46:50 +00:00
if (dev->power.syscore || dev->power.direct_complete)
goto Complete;
if (dev->pm_domain) {
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-29 19:38:29 +00:00
info = "noirq power domain ";
callback = pm_noirq_op(&dev->pm_domain->ops, state);
PM: Make power domain callbacks take precedence over subsystem ones Change the PM core's behavior related to power domains in such a way that, if a power domain is defined for a given device, its callbacks will be executed instead of and not in addition to the device subsystem's PM callbacks. The idea behind the initial implementation of power domains handling by the PM core was that power domain callbacks would be executed in addition to subsystem callbacks, so that it would be possible to extend the subsystem callbacks by using power domains. It turns out, however, that this wouldn't be really convenient in some important situations. For example, there are systems in which power can only be removed from entire power domains. On those systems it is not desirable to execute device drivers' PM callbacks until it is known that power is going to be removed from the devices in question, which means that they should be executed by power domain callbacks rather then by subsystem (e.g. bus type) PM callbacks, because subsystems generally have no information about what devices belong to which power domain. Thus, for instance, if the bus type in question is the platform bus type, its PM callbacks generally should not be called in addition to power domain callbacks, because they run device drivers' callbacks unconditionally if defined. While in principle the default subsystem PM callbacks, or a subset of them, may be replaced with different functions, it doesn't seem correct to do so, because that would change the subsystem's behavior with respect to all devices in the system, regardless of whether or not they belong to any power domains. Thus, the only remaining option is to make power domain callbacks take precedence over subsystem callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Grant Likely <grant.likely@secretlab.ca> Acked-by: Kevin Hilman <khilman@ti.com>
2011-04-28 22:35:50 +00:00
} else if (dev->type && dev->type->pm) {
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-29 19:38:29 +00:00
info = "noirq type ";
callback = pm_noirq_op(dev->type->pm, state);
PM: Make system-wide PM and runtime PM treat subsystems consistently The code handling system-wide power transitions (eg. suspend-to-RAM) can in theory execute callbacks provided by the device's bus type, device type and class in each phase of the power transition. In turn, the runtime PM core code only calls one of those callbacks at a time, preferring bus type callbacks to device type or class callbacks and device type callbacks to class callbacks. It seems reasonable to make them both behave in the same way in that respect. Moreover, even though a device may belong to two subsystems (eg. bus type and device class) simultaneously, in practice power management callbacks for system-wide power transitions are always provided by only one of them (ie. if the bus type callbacks are defined, the device class ones are not and vice versa). Thus it is possible to modify the code handling system-wide power transitions so that it follows the core runtime PM code (ie. treats the subsystem callbacks as mutually exclusive). On the other hand, the core runtime PM code will choose to execute, for example, a runtime suspend callback provided by the device type even if the bus type's struct dev_pm_ops object exists, but the runtime_suspend pointer in it happens to be NULL. This is confusing, because it may lead to the execution of callbacks from different subsystems during different operations (eg. the bus type suspend callback may be executed during runtime suspend of the device, while the device type callback will be executed during system suspend). Make all of the power management code treat subsystem callbacks in a consistent way, such that: (1) If the device's type is defined (eg. dev->type is not NULL) and its pm pointer is not NULL, the callbacks from dev->type->pm will be used. (2) If dev->type is NULL or dev->type->pm is NULL, but the device's class is defined (eg. dev->class is not NULL) and its pm pointer is not NULL, the callbacks from dev->class->pm will be used. (3) If dev->type is NULL or dev->type->pm is NULL and dev->class is NULL or dev->class->pm is NULL, the callbacks from dev->bus->pm will be used provided that both dev->bus and dev->bus->pm are not NULL. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Kevin Hilman <khilman@ti.com> Reasoning-sounds-sane-to: Grant Likely <grant.likely@secretlab.ca> Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-02-18 22:20:21 +00:00
} else if (dev->class && dev->class->pm) {
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-29 19:38:29 +00:00
info = "noirq class ";
callback = pm_noirq_op(dev->class->pm, state);
PM: Make system-wide PM and runtime PM treat subsystems consistently The code handling system-wide power transitions (eg. suspend-to-RAM) can in theory execute callbacks provided by the device's bus type, device type and class in each phase of the power transition. In turn, the runtime PM core code only calls one of those callbacks at a time, preferring bus type callbacks to device type or class callbacks and device type callbacks to class callbacks. It seems reasonable to make them both behave in the same way in that respect. Moreover, even though a device may belong to two subsystems (eg. bus type and device class) simultaneously, in practice power management callbacks for system-wide power transitions are always provided by only one of them (ie. if the bus type callbacks are defined, the device class ones are not and vice versa). Thus it is possible to modify the code handling system-wide power transitions so that it follows the core runtime PM code (ie. treats the subsystem callbacks as mutually exclusive). On the other hand, the core runtime PM code will choose to execute, for example, a runtime suspend callback provided by the device type even if the bus type's struct dev_pm_ops object exists, but the runtime_suspend pointer in it happens to be NULL. This is confusing, because it may lead to the execution of callbacks from different subsystems during different operations (eg. the bus type suspend callback may be executed during runtime suspend of the device, while the device type callback will be executed during system suspend). Make all of the power management code treat subsystem callbacks in a consistent way, such that: (1) If the device's type is defined (eg. dev->type is not NULL) and its pm pointer is not NULL, the callbacks from dev->type->pm will be used. (2) If dev->type is NULL or dev->type->pm is NULL, but the device's class is defined (eg. dev->class is not NULL) and its pm pointer is not NULL, the callbacks from dev->class->pm will be used. (3) If dev->type is NULL or dev->type->pm is NULL and dev->class is NULL or dev->class->pm is NULL, the callbacks from dev->bus->pm will be used provided that both dev->bus and dev->bus->pm are not NULL. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Kevin Hilman <khilman@ti.com> Reasoning-sounds-sane-to: Grant Likely <grant.likely@secretlab.ca> Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-02-18 22:20:21 +00:00
} else if (dev->bus && dev->bus->pm) {
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-29 19:38:29 +00:00
info = "noirq bus ";
callback = pm_noirq_op(dev->bus->pm, state);
2011-02-16 20:53:17 +00:00
}
if (!callback && dev->driver && dev->driver->pm) {
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-29 19:38:29 +00:00
info = "noirq driver ";
callback = pm_noirq_op(dev->driver->pm, state);
}
error = dpm_run_callback(callback, dev, state, info);
if (!error)
dev->power.is_noirq_suspended = true;
else
async_error = error;
Complete:
complete_all(&dev->power.completion);
TRACE_SUSPEND(error);
return error;
}
static void async_suspend_noirq(void *data, async_cookie_t cookie)
{
struct device *dev = (struct device *)data;
int error;
error = __device_suspend_noirq(dev, pm_transition, true);
if (error) {
dpm_save_failed_dev(dev_name(dev));
pm_dev_err(dev, pm_transition, " async", error);
}
put_device(dev);
}
static int device_suspend_noirq(struct device *dev)
{
reinit_completion(&dev->power.completion);
if (is_async(dev)) {
get_device(dev);
async_schedule(async_suspend_noirq, dev);
return 0;
}
return __device_suspend_noirq(dev, pm_transition, false);
}
/**
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-29 19:38:29 +00:00
* dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
* @state: PM transition of the system being carried out.
*
* Prevent device drivers from receiving interrupts and call the "noirq" suspend
* handlers for all non-sysdev devices.
*/
int dpm_suspend_noirq(pm_message_t state)
{
ktime_t starttime = ktime_get();
int error = 0;
trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
PM / cpuidle: System resume hang fix with cpuidle On certain bios, resume hangs if cpus are allowed to enter idle states during suspend [1]. This was fixed in apci idle driver [2].But intel_idle driver does not have this fix. Thus instead of replicating the fix in both the idle drivers, or in more platform specific idle drivers if needed, the more general cpuidle infrastructure could handle this. A suspend callback in cpuidle_driver could handle this fix. But a cpuidle_driver provides only basic functionalities like platform idle state detection capability and mechanisms to support entry and exit into CPU idle states. All other cpuidle functions are found in the cpuidle generic infrastructure for good reason that all cpuidle drivers, irrepective of their platforms will support these functions. One option therefore would be to register a suspend callback in cpuidle which handles this fix. This could be called through a PM_SUSPEND_PREPARE notifier. But this is too generic a notfier for a driver to handle. Also, ideally the job of cpuidle is not to handle side effects of suspend. It should expose the interfaces which "handle cpuidle 'during' suspend" or any other operation, which the subsystems call during that respective operation. The fix demands that during suspend, no cpus should be allowed to enter deep C-states. The interface cpuidle_uninstall_idle_handler() in cpuidle ensures that. Not just that it also kicks all the cpus which are already in idle out of their idle states which was being done during cpu hotplug through a CPU_DYING_FROZEN callbacks. Now the question arises about when during suspend should cpuidle_uninstall_idle_handler() be called. Since we are dealing with drivers it seems best to call this function during dpm_suspend(). Delaying the call till dpm_suspend_noirq() does no harm, as long as it is before cpu_hotplug_begin() to avoid race conditions with cpu hotpulg operations. In dpm_suspend_noirq(), it would be wise to place this call before suspend_device_irqs() to avoid ugly interactions with the same. Ananlogously, during resume. References: [1] https://bugs.launchpad.net/ubuntu/+source/linux/+bug/674075. [2] http://marc.info/?l=linux-pm&m=133958534231884&w=2 Reported-and-tested-by: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Preeti U Murthy <preeti@linux.vnet.ibm.com> Reviewed-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
2012-07-09 08:12:56 +00:00
cpuidle_pause();
device_wakeup_arm_wake_irqs();
suspend_device_irqs();
mutex_lock(&dpm_list_mtx);
pm_transition = state;
async_error = 0;
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-29 19:38:29 +00:00
while (!list_empty(&dpm_late_early_list)) {
struct device *dev = to_device(dpm_late_early_list.prev);
get_device(dev);
mutex_unlock(&dpm_list_mtx);
error = device_suspend_noirq(dev);
mutex_lock(&dpm_list_mtx);
if (error) {
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-29 19:38:29 +00:00
pm_dev_err(dev, state, " noirq", error);
PM / Suspend: Add statistics debugfs file for suspend to RAM Record S3 failure time about each reason and the latest two failed devices' names in S3 progress. We can check it through 'suspend_stats' entry in debugfs. The motivation of the patch: We are enabling power features on Medfield. Comparing with PC/notebook, a mobile enters/exits suspend-2-ram (we call it s3 on Medfield) far more frequently. If it can't enter suspend-2-ram in time, the power might be used up soon. We often find sometimes, a device suspend fails. Then, system retries s3 over and over again. As display is off, testers and developers don't know what happens. Some testers and developers complain they don't know if system tries suspend-2-ram, and what device fails to suspend. They need such info for a quick check. The patch adds suspend_stats under debugfs for users to check suspend to RAM statistics quickly. If not using this patch, we have other methods to get info about what device fails. One is to turn on CONFIG_PM_DEBUG, but users would get too much info and testers need recompile the system. In addition, dynamic debug is another good tool to dump debug info. But it still doesn't match our utilization scenario closely. 1) user need write a user space parser to process the syslog output; 2) Our testing scenario is we leave the mobile for at least hours. Then, check its status. No serial console available during the testing. One is because console would be suspended, and the other is serial console connecting with spi or HSU devices would consume power. These devices are powered off at suspend-2-ram. Signed-off-by: ShuoX Liu <shuox.liu@intel.com> Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
2011-08-10 21:01:26 +00:00
dpm_save_failed_dev(dev_name(dev));
put_device(dev);
break;
}
if (!list_empty(&dev->power.entry))
list_move(&dev->power.entry, &dpm_noirq_list);
put_device(dev);
if (async_error)
break;
}
mutex_unlock(&dpm_list_mtx);
async_synchronize_full();
if (!error)
error = async_error;
if (error) {
suspend_stats.failed_suspend_noirq++;
dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
dpm_resume_noirq(resume_event(state));
} else {
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-29 19:38:29 +00:00
dpm_show_time(starttime, state, "noirq");
}
trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-29 19:38:29 +00:00
return error;
}
/**
* device_suspend_late - Execute a "late suspend" callback for given device.
* @dev: Device to handle.
* @state: PM transition of the system being carried out.
* @async: If true, the device is being suspended asynchronously.
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-29 19:38:29 +00:00
*
* Runtime PM is disabled for @dev while this function is being executed.
*/
static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-29 19:38:29 +00:00
{
pm_callback_t callback = NULL;
char *info = NULL;
int error = 0;
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-29 19:38:29 +00:00
TRACE_DEVICE(dev);
TRACE_SUSPEND(0);
__pm_runtime_disable(dev, false);
Driver core patches for 4.10-rc1 Here's the new driver core patches for 4.10-rc1. Big thing here is the nice addition of "functional dependencies" to the driver core. The idea has been talked about for a very long time, great job to Rafael for stepping up and implementing it. It's been tested for longer than the 4.9-rc1 date, we held off on merging it earlier in order to feel more comfortable about it. Other than that, it's just a handful of small other patches, some good cleanups to the mess that is the firmware class code, and we have a test driver for the deferred probe logic. All of these have been in linux-next for a while with no reported issues. Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> -----BEGIN PGP SIGNATURE----- iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCWFAvPQ8cZ3JlZ0Brcm9h aC5jb20ACgkQMUfUDdst+ym3NgCgmhFeWEkp9SDt17YGGavmnzQUlBQAoJlUipJp PHeQkq15ZWw3wWC9FEvM =91M1 -----END PGP SIGNATURE----- Merge tag 'driver-core-4.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core Pull driver core updates from Greg KH: "Here's the new driver core patches for 4.10-rc1. Big thing here is the nice addition of "functional dependencies" to the driver core. The idea has been talked about for a very long time, great job to Rafael for stepping up and implementing it. It's been tested for longer than the 4.9-rc1 date, we held off on merging it earlier in order to feel more comfortable about it. Other than that, it's just a handful of small other patches, some good cleanups to the mess that is the firmware class code, and we have a test driver for the deferred probe logic. All of these have been in linux-next for a while with no reported issues" * tag 'driver-core-4.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (30 commits) firmware: Correct handling of fw_state_wait() return value driver core: Silence device links sphinx warning firmware: remove warning at documentation generation time drivers: base: dma-mapping: Fix typo in dmam_alloc_non_coherent comments driver core: test_async: fix up typo found by 0-day firmware: move fw_state_is_done() into UHM section firmware: do not use fw_lock for fw_state protection firmware: drop bit ops in favor of simple state machine firmware: refactor loading status firmware: fix usermode helper fallback loading driver core: firmware_class: convert to use class_groups driver core: devcoredump: convert to use class_groups driver core: class: add class_groups support kernfs: Declare two local data structures static driver-core: fix platform_no_drv_owner.cocci warnings drivers/base/memory.c: Remove unused 'first_page' variable driver core: add CLASS_ATTR_WO() drivers: base: cacheinfo: support DT overrides for cache properties drivers: base: cacheinfo: add pr_fmt logging drivers: base: cacheinfo: fix boot error message when acpi is enabled ...
2016-12-13 19:42:18 +00:00
dpm_wait_for_subordinate(dev, async);
if (async_error)
goto Complete;
if (pm_wakeup_pending()) {
async_error = -EBUSY;
goto Complete;
}
PM / sleep: Mechanism to avoid resuming runtime-suspended devices unnecessarily Currently, some subsystems (e.g. PCI and the ACPI PM domain) have to resume all runtime-suspended devices during system suspend, mostly because those devices may need to be reprogrammed due to different wakeup settings for system sleep and for runtime PM. For some devices, though, it's OK to remain in runtime suspend throughout a complete system suspend/resume cycle (if the device was in runtime suspend at the start of the cycle). We would like to do this whenever possible, to avoid the overhead of extra power-up and power-down events. However, problems may arise because the device's descendants may require it to be at full power at various points during the cycle. Therefore the most straightforward way to do this safely is if the device and all its descendants can remain runtime suspended until the complete stage of system resume. To this end, introduce a new device PM flag, power.direct_complete and modify the PM core to use that flag as follows. If the ->prepare() callback of a device returns a positive number, the PM core will regard that as an indication that it may leave the device runtime-suspended. It will then check if the system power transition in progress is a suspend (and not hibernation in particular) and if the device is, indeed, runtime-suspended. In that case, the PM core will set the device's power.direct_complete flag. Otherwise it will clear power.direct_complete for the device and it also will later clear it for the device's parent (if there's one). Next, the PM core will not invoke the ->suspend() ->suspend_late(), ->suspend_irq(), ->resume_irq(), ->resume_early(), or ->resume() callbacks for all devices having power.direct_complete set. It will invoke their ->complete() callbacks, however, and those callbacks are then responsible for resuming the devices as appropriate, if necessary. For example, in some cases they may need to queue up runtime resume requests for the devices using pm_request_resume(). Changelog partly based on an Alan Stern's description of the idea (http://marc.info/?l=linux-pm&m=139940466625569&w=2). Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Alan Stern <stern@rowland.harvard.edu>
2014-05-16 00:46:50 +00:00
if (dev->power.syscore || dev->power.direct_complete)
goto Complete;
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-29 19:38:29 +00:00
if (dev->pm_domain) {
info = "late power domain ";
callback = pm_late_early_op(&dev->pm_domain->ops, state);
} else if (dev->type && dev->type->pm) {
info = "late type ";
callback = pm_late_early_op(dev->type->pm, state);
} else if (dev->class && dev->class->pm) {
info = "late class ";
callback = pm_late_early_op(dev->class->pm, state);
} else if (dev->bus && dev->bus->pm) {
info = "late bus ";
callback = pm_late_early_op(dev->bus->pm, state);
}
if (!callback && dev->driver && dev->driver->pm) {
info = "late driver ";
callback = pm_late_early_op(dev->driver->pm, state);
}
error = dpm_run_callback(callback, dev, state, info);
if (!error)
dev->power.is_late_suspended = true;
else
async_error = error;
Complete:
TRACE_SUSPEND(error);
complete_all(&dev->power.completion);
return error;
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-29 19:38:29 +00:00
}
static void async_suspend_late(void *data, async_cookie_t cookie)
{
struct device *dev = (struct device *)data;
int error;
error = __device_suspend_late(dev, pm_transition, true);
if (error) {
dpm_save_failed_dev(dev_name(dev));
pm_dev_err(dev, pm_transition, " async", error);
}
put_device(dev);
}
static int device_suspend_late(struct device *dev)
{
reinit_completion(&dev->power.completion);
if (is_async(dev)) {
get_device(dev);
async_schedule(async_suspend_late, dev);
return 0;
}
return __device_suspend_late(dev, pm_transition, false);
}
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-29 19:38:29 +00:00
/**
* dpm_suspend_late - Execute "late suspend" callbacks for all devices.
* @state: PM transition of the system being carried out.
*/
int dpm_suspend_late(pm_message_t state)
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-29 19:38:29 +00:00
{
ktime_t starttime = ktime_get();
int error = 0;
trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-29 19:38:29 +00:00
mutex_lock(&dpm_list_mtx);
pm_transition = state;
async_error = 0;
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-29 19:38:29 +00:00
while (!list_empty(&dpm_suspended_list)) {
struct device *dev = to_device(dpm_suspended_list.prev);
get_device(dev);
mutex_unlock(&dpm_list_mtx);
error = device_suspend_late(dev);
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-29 19:38:29 +00:00
mutex_lock(&dpm_list_mtx);
if (!list_empty(&dev->power.entry))
list_move(&dev->power.entry, &dpm_late_early_list);
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-29 19:38:29 +00:00
if (error) {
pm_dev_err(dev, state, " late", error);
dpm_save_failed_dev(dev_name(dev));
put_device(dev);
break;
}
put_device(dev);
if (async_error)
break;
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-29 19:38:29 +00:00
}
mutex_unlock(&dpm_list_mtx);
async_synchronize_full();
if (!error)
error = async_error;
if (error) {
suspend_stats.failed_suspend_late++;
dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-29 19:38:29 +00:00
dpm_resume_early(resume_event(state));
} else {
dpm_show_time(starttime, state, "late");
}
trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
return error;
}
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-29 19:38:29 +00:00
/**
* dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
* @state: PM transition of the system being carried out.
*/
int dpm_suspend_end(pm_message_t state)
{
int error = dpm_suspend_late(state);
if (error)
return error;
error = dpm_suspend_noirq(state);
if (error) {
dpm_resume_early(resume_event(state));
return error;
}
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-29 19:38:29 +00:00
return 0;
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-29 19:38:29 +00:00
}
EXPORT_SYMBOL_GPL(dpm_suspend_end);
/**
* legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
* @dev: Device to suspend.
* @state: PM transition of the system being carried out.
* @cb: Suspend callback to execute.
* @info: string description of caller.
*/
static int legacy_suspend(struct device *dev, pm_message_t state,
int (*cb)(struct device *dev, pm_message_t state),
char *info)
{
int error;
ktime_t calltime;
calltime = initcall_debug_start(dev);
trace_device_pm_callback_start(dev, info, state.event);
error = cb(dev, state);
trace_device_pm_callback_end(dev, error);
suspend_report_result(cb, error);
initcall_debug_report(dev, calltime, error, state, info);
return error;
}
static void dpm_clear_suppliers_direct_complete(struct device *dev)
{
struct device_link *link;
int idx;
idx = device_links_read_lock();
list_for_each_entry_rcu(link, &dev->links.suppliers, c_node) {
spin_lock_irq(&link->supplier->power.lock);
link->supplier->power.direct_complete = false;
spin_unlock_irq(&link->supplier->power.lock);
}
device_links_read_unlock(idx);
}
/**
* device_suspend - Execute "suspend" callbacks for given device.
* @dev: Device to handle.
* @state: PM transition of the system being carried out.
PM: Asynchronous suspend and resume of devices Theoretically, the total time of system sleep transitions (suspend to RAM, hibernation) can be reduced by running suspend and resume callbacks of device drivers in parallel with each other. However, there are dependencies between devices such that we're not allowed to suspend the parent of a device before suspending the device itself. Analogously, we're not allowed to resume a device before resuming its parent. The most straightforward way to take these dependencies into accout is to start the async threads used for suspending and resuming devices at the core level, so that async_schedule() is called for each suspend and resume callback supposed to be executed asynchronously. For this purpose, introduce a new device flag, power.async_suspend, used to mark the devices whose suspend and resume callbacks are to be executed asynchronously (ie. in parallel with the main suspend/resume thread and possibly in parallel with each other) and helper function device_enable_async_suspend() allowing one to set power.async_suspend for given device (power.async_suspend is unset by default for all devices). For each device with the power.async_suspend flag set the PM core will use async_schedule() to execute its suspend and resume callbacks. The async threads started for different devices as a result of calling async_schedule() are synchronized with each other and with the main suspend/resume thread with the help of completions, in the following way: (1) There is a completion, power.completion, for each device object. (2) Each device's completion is reset before calling async_schedule() for the device or, in the case of devices with the power.async_suspend flags unset, before executing the device's suspend and resume callbacks. (3) During suspend, right before running the bus type, device type and device class suspend callbacks for the device, the PM core waits for the completions of all the device's children to be completed. (4) During resume, right before running the bus type, device type and device class resume callbacks for the device, the PM core waits for the completion of the device's parent to be completed. (5) The PM core completes power.completion for each device right after the bus type, device type and device class suspend (or resume) callbacks executed for the device have returned. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
2010-01-23 21:23:32 +00:00
* @async: If true, the device is being suspended asynchronously.
*/
PM: Asynchronous suspend and resume of devices Theoretically, the total time of system sleep transitions (suspend to RAM, hibernation) can be reduced by running suspend and resume callbacks of device drivers in parallel with each other. However, there are dependencies between devices such that we're not allowed to suspend the parent of a device before suspending the device itself. Analogously, we're not allowed to resume a device before resuming its parent. The most straightforward way to take these dependencies into accout is to start the async threads used for suspending and resuming devices at the core level, so that async_schedule() is called for each suspend and resume callback supposed to be executed asynchronously. For this purpose, introduce a new device flag, power.async_suspend, used to mark the devices whose suspend and resume callbacks are to be executed asynchronously (ie. in parallel with the main suspend/resume thread and possibly in parallel with each other) and helper function device_enable_async_suspend() allowing one to set power.async_suspend for given device (power.async_suspend is unset by default for all devices). For each device with the power.async_suspend flag set the PM core will use async_schedule() to execute its suspend and resume callbacks. The async threads started for different devices as a result of calling async_schedule() are synchronized with each other and with the main suspend/resume thread with the help of completions, in the following way: (1) There is a completion, power.completion, for each device object. (2) Each device's completion is reset before calling async_schedule() for the device or, in the case of devices with the power.async_suspend flags unset, before executing the device's suspend and resume callbacks. (3) During suspend, right before running the bus type, device type and device class suspend callbacks for the device, the PM core waits for the completions of all the device's children to be completed. (4) During resume, right before running the bus type, device type and device class resume callbacks for the device, the PM core waits for the completion of the device's parent to be completed. (5) The PM core completes power.completion for each device right after the bus type, device type and device class suspend (or resume) callbacks executed for the device have returned. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
2010-01-23 21:23:32 +00:00
static int __device_suspend(struct device *dev, pm_message_t state, bool async)
{
pm_callback_t callback = NULL;
char *info = NULL;
int error = 0;
2013-10-17 17:48:46 +00:00
DECLARE_DPM_WATCHDOG_ON_STACK(wd);
TRACE_DEVICE(dev);
TRACE_SUSPEND(0);
dpm_wait_for_subordinate(dev, async);
PM: Asynchronous suspend and resume of devices Theoretically, the total time of system sleep transitions (suspend to RAM, hibernation) can be reduced by running suspend and resume callbacks of device drivers in parallel with each other. However, there are dependencies between devices such that we're not allowed to suspend the parent of a device before suspending the device itself. Analogously, we're not allowed to resume a device before resuming its parent. The most straightforward way to take these dependencies into accout is to start the async threads used for suspending and resuming devices at the core level, so that async_schedule() is called for each suspend and resume callback supposed to be executed asynchronously. For this purpose, introduce a new device flag, power.async_suspend, used to mark the devices whose suspend and resume callbacks are to be executed asynchronously (ie. in parallel with the main suspend/resume thread and possibly in parallel with each other) and helper function device_enable_async_suspend() allowing one to set power.async_suspend for given device (power.async_suspend is unset by default for all devices). For each device with the power.async_suspend flag set the PM core will use async_schedule() to execute its suspend and resume callbacks. The async threads started for different devices as a result of calling async_schedule() are synchronized with each other and with the main suspend/resume thread with the help of completions, in the following way: (1) There is a completion, power.completion, for each device object. (2) Each device's completion is reset before calling async_schedule() for the device or, in the case of devices with the power.async_suspend flags unset, before executing the device's suspend and resume callbacks. (3) During suspend, right before running the bus type, device type and device class suspend callbacks for the device, the PM core waits for the completions of all the device's children to be completed. (4) During resume, right before running the bus type, device type and device class resume callbacks for the device, the PM core waits for the completion of the device's parent to be completed. (5) The PM core completes power.completion for each device right after the bus type, device type and device class suspend (or resume) callbacks executed for the device have returned. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
2010-01-23 21:23:32 +00:00
if (async_error)
goto Complete;
PM: Limit race conditions between runtime PM and system sleep (v2) One of the roles of the PM core is to prevent different PM callbacks executed for the same device object from racing with each other. Unfortunately, after commit e8665002477f0278f84f898145b1f141ba26ee26 (PM: Allow pm_runtime_suspend() to succeed during system suspend) runtime PM callbacks may be executed concurrently with system suspend/resume callbacks for the same device. The main reason for commit e8665002477f0278f84f898145b1f141ba26ee26 was that some subsystems and device drivers wanted to use runtime PM helpers, pm_runtime_suspend() and pm_runtime_put_sync() in particular, for carrying out the suspend of devices in their .suspend() callbacks. However, as it's been determined recently, there are multiple reasons not to do so, inlcuding: * The caller really doesn't control the runtime PM usage counters, because user space can access them through sysfs and effectively block runtime PM. That means using pm_runtime_suspend() or pm_runtime_get_sync() to suspend devices during system suspend may or may not work. * If a driver calls pm_runtime_suspend() from its .suspend() callback, it causes the subsystem's .runtime_suspend() callback to be executed, which leads to the call sequence: subsys->suspend(dev) driver->suspend(dev) pm_runtime_suspend(dev) subsys->runtime_suspend(dev) recursive from the subsystem's point of view. For some subsystems that may actually work (e.g. the platform bus type), but for some it will fail in a rather spectacular fashion (e.g. PCI). In each case it means a layering violation. * Both the subsystem and the driver can provide .suspend_noirq() callbacks for system suspend that can do whatever the .runtime_suspend() callbacks do just fine, so it really isn't necessary to call pm_runtime_suspend() during system suspend. * The runtime PM's handling of wakeup devices is usually different from the system suspend's one, so .runtime_suspend() may simply be inappropriate for system suspend. * System suspend is supposed to work even if CONFIG_PM_RUNTIME is unset. * The runtime PM workqueue is frozen before system suspend, so if whatever the driver is going to do during system suspend depends on it, that simply won't work. Still, there is a good reason to allow pm_runtime_resume() to succeed during system suspend and resume (for instance, some subsystems and device drivers may legitimately use it to ensure that their devices are in full-power states before suspending them). Moreover, there is no reason to prevent runtime PM callbacks from being executed in parallel with the system suspend/resume .prepare() and .complete() callbacks and the code removed by commit e8665002477f0278f84f898145b1f141ba26ee26 went too far in this respect. On the other hand, runtime PM callbacks, including .runtime_resume(), must not be executed during system suspend's "late" stage of suspending devices and during system resume's "early" device resume stage. Taking all of the above into consideration, make the PM core acquire a runtime PM reference to every device and resume it if there's a runtime PM resume request pending right before executing the subsystem-level .suspend() callback for it. Make the PM core drop references to all devices right after executing the subsystem-level .resume() callbacks for them. Additionally, make the PM core disable the runtime PM framework for all devices during system suspend, after executing the subsystem-level .suspend() callbacks for them, and enable the runtime PM framework for all devices during system resume, right before executing the subsystem-level .resume() callbacks for them. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Kevin Hilman <khilman@ti.com>
2011-07-06 08:51:58 +00:00
/*
* If a device configured to wake up the system from sleep states
* has been suspended at run time and there's a resume request pending
* for it, this is equivalent to the device signaling wakeup, so the
* system suspend operation should be aborted.
*/
PM: Limit race conditions between runtime PM and system sleep (v2) One of the roles of the PM core is to prevent different PM callbacks executed for the same device object from racing with each other. Unfortunately, after commit e8665002477f0278f84f898145b1f141ba26ee26 (PM: Allow pm_runtime_suspend() to succeed during system suspend) runtime PM callbacks may be executed concurrently with system suspend/resume callbacks for the same device. The main reason for commit e8665002477f0278f84f898145b1f141ba26ee26 was that some subsystems and device drivers wanted to use runtime PM helpers, pm_runtime_suspend() and pm_runtime_put_sync() in particular, for carrying out the suspend of devices in their .suspend() callbacks. However, as it's been determined recently, there are multiple reasons not to do so, inlcuding: * The caller really doesn't control the runtime PM usage counters, because user space can access them through sysfs and effectively block runtime PM. That means using pm_runtime_suspend() or pm_runtime_get_sync() to suspend devices during system suspend may or may not work. * If a driver calls pm_runtime_suspend() from its .suspend() callback, it causes the subsystem's .runtime_suspend() callback to be executed, which leads to the call sequence: subsys->suspend(dev) driver->suspend(dev) pm_runtime_suspend(dev) subsys->runtime_suspend(dev) recursive from the subsystem's point of view. For some subsystems that may actually work (e.g. the platform bus type), but for some it will fail in a rather spectacular fashion (e.g. PCI). In each case it means a layering violation. * Both the subsystem and the driver can provide .suspend_noirq() callbacks for system suspend that can do whatever the .runtime_suspend() callbacks do just fine, so it really isn't necessary to call pm_runtime_suspend() during system suspend. * The runtime PM's handling of wakeup devices is usually different from the system suspend's one, so .runtime_suspend() may simply be inappropriate for system suspend. * System suspend is supposed to work even if CONFIG_PM_RUNTIME is unset. * The runtime PM workqueue is frozen before system suspend, so if whatever the driver is going to do during system suspend depends on it, that simply won't work. Still, there is a good reason to allow pm_runtime_resume() to succeed during system suspend and resume (for instance, some subsystems and device drivers may legitimately use it to ensure that their devices are in full-power states before suspending them). Moreover, there is no reason to prevent runtime PM callbacks from being executed in parallel with the system suspend/resume .prepare() and .complete() callbacks and the code removed by commit e8665002477f0278f84f898145b1f141ba26ee26 went too far in this respect. On the other hand, runtime PM callbacks, including .runtime_resume(), must not be executed during system suspend's "late" stage of suspending devices and during system resume's "early" device resume stage. Taking all of the above into consideration, make the PM core acquire a runtime PM reference to every device and resume it if there's a runtime PM resume request pending right before executing the subsystem-level .suspend() callback for it. Make the PM core drop references to all devices right after executing the subsystem-level .resume() callbacks for them. Additionally, make the PM core disable the runtime PM framework for all devices during system suspend, after executing the subsystem-level .suspend() callbacks for them, and enable the runtime PM framework for all devices during system resume, right before executing the subsystem-level .resume() callbacks for them. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Kevin Hilman <khilman@ti.com>
2011-07-06 08:51:58 +00:00
if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
pm_wakeup_event(dev, 0);
PM: Asynchronous suspend and resume of devices Theoretically, the total time of system sleep transitions (suspend to RAM, hibernation) can be reduced by running suspend and resume callbacks of device drivers in parallel with each other. However, there are dependencies between devices such that we're not allowed to suspend the parent of a device before suspending the device itself. Analogously, we're not allowed to resume a device before resuming its parent. The most straightforward way to take these dependencies into accout is to start the async threads used for suspending and resuming devices at the core level, so that async_schedule() is called for each suspend and resume callback supposed to be executed asynchronously. For this purpose, introduce a new device flag, power.async_suspend, used to mark the devices whose suspend and resume callbacks are to be executed asynchronously (ie. in parallel with the main suspend/resume thread and possibly in parallel with each other) and helper function device_enable_async_suspend() allowing one to set power.async_suspend for given device (power.async_suspend is unset by default for all devices). For each device with the power.async_suspend flag set the PM core will use async_schedule() to execute its suspend and resume callbacks. The async threads started for different devices as a result of calling async_schedule() are synchronized with each other and with the main suspend/resume thread with the help of completions, in the following way: (1) There is a completion, power.completion, for each device object. (2) Each device's completion is reset before calling async_schedule() for the device or, in the case of devices with the power.async_suspend flags unset, before executing the device's suspend and resume callbacks. (3) During suspend, right before running the bus type, device type and device class suspend callbacks for the device, the PM core waits for the completions of all the device's children to be completed. (4) During resume, right before running the bus type, device type and device class resume callbacks for the device, the PM core waits for the completion of the device's parent to be completed. (5) The PM core completes power.completion for each device right after the bus type, device type and device class suspend (or resume) callbacks executed for the device have returned. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
2010-01-23 21:23:32 +00:00
if (pm_wakeup_pending()) {
async_error = -EBUSY;
goto Complete;
}
if (dev->power.syscore)
goto Complete;
PM / sleep: Mechanism to avoid resuming runtime-suspended devices unnecessarily Currently, some subsystems (e.g. PCI and the ACPI PM domain) have to resume all runtime-suspended devices during system suspend, mostly because those devices may need to be reprogrammed due to different wakeup settings for system sleep and for runtime PM. For some devices, though, it's OK to remain in runtime suspend throughout a complete system suspend/resume cycle (if the device was in runtime suspend at the start of the cycle). We would like to do this whenever possible, to avoid the overhead of extra power-up and power-down events. However, problems may arise because the device's descendants may require it to be at full power at various points during the cycle. Therefore the most straightforward way to do this safely is if the device and all its descendants can remain runtime suspended until the complete stage of system resume. To this end, introduce a new device PM flag, power.direct_complete and modify the PM core to use that flag as follows. If the ->prepare() callback of a device returns a positive number, the PM core will regard that as an indication that it may leave the device runtime-suspended. It will then check if the system power transition in progress is a suspend (and not hibernation in particular) and if the device is, indeed, runtime-suspended. In that case, the PM core will set the device's power.direct_complete flag. Otherwise it will clear power.direct_complete for the device and it also will later clear it for the device's parent (if there's one). Next, the PM core will not invoke the ->suspend() ->suspend_late(), ->suspend_irq(), ->resume_irq(), ->resume_early(), or ->resume() callbacks for all devices having power.direct_complete set. It will invoke their ->complete() callbacks, however, and those callbacks are then responsible for resuming the devices as appropriate, if necessary. For example, in some cases they may need to queue up runtime resume requests for the devices using pm_request_resume(). Changelog partly based on an Alan Stern's description of the idea (http://marc.info/?l=linux-pm&m=139940466625569&w=2). Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Alan Stern <stern@rowland.harvard.edu>
2014-05-16 00:46:50 +00:00
if (dev->power.direct_complete) {
if (pm_runtime_status_suspended(dev)) {
pm_runtime_disable(dev);
if (pm_runtime_status_suspended(dev))
PM / sleep: Mechanism to avoid resuming runtime-suspended devices unnecessarily Currently, some subsystems (e.g. PCI and the ACPI PM domain) have to resume all runtime-suspended devices during system suspend, mostly because those devices may need to be reprogrammed due to different wakeup settings for system sleep and for runtime PM. For some devices, though, it's OK to remain in runtime suspend throughout a complete system suspend/resume cycle (if the device was in runtime suspend at the start of the cycle). We would like to do this whenever possible, to avoid the overhead of extra power-up and power-down events. However, problems may arise because the device's descendants may require it to be at full power at various points during the cycle. Therefore the most straightforward way to do this safely is if the device and all its descendants can remain runtime suspended until the complete stage of system resume. To this end, introduce a new device PM flag, power.direct_complete and modify the PM core to use that flag as follows. If the ->prepare() callback of a device returns a positive number, the PM core will regard that as an indication that it may leave the device runtime-suspended. It will then check if the system power transition in progress is a suspend (and not hibernation in particular) and if the device is, indeed, runtime-suspended. In that case, the PM core will set the device's power.direct_complete flag. Otherwise it will clear power.direct_complete for the device and it also will later clear it for the device's parent (if there's one). Next, the PM core will not invoke the ->suspend() ->suspend_late(), ->suspend_irq(), ->resume_irq(), ->resume_early(), or ->resume() callbacks for all devices having power.direct_complete set. It will invoke their ->complete() callbacks, however, and those callbacks are then responsible for resuming the devices as appropriate, if necessary. For example, in some cases they may need to queue up runtime resume requests for the devices using pm_request_resume(). Changelog partly based on an Alan Stern's description of the idea (http://marc.info/?l=linux-pm&m=139940466625569&w=2). Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Alan Stern <stern@rowland.harvard.edu>
2014-05-16 00:46:50 +00:00
goto Complete;
pm_runtime_enable(dev);
}
dev->power.direct_complete = false;
}
2013-10-17 17:48:46 +00:00
dpm_watchdog_set(&wd, dev);
PM: Limit race conditions between runtime PM and system sleep (v2) One of the roles of the PM core is to prevent different PM callbacks executed for the same device object from racing with each other. Unfortunately, after commit e8665002477f0278f84f898145b1f141ba26ee26 (PM: Allow pm_runtime_suspend() to succeed during system suspend) runtime PM callbacks may be executed concurrently with system suspend/resume callbacks for the same device. The main reason for commit e8665002477f0278f84f898145b1f141ba26ee26 was that some subsystems and device drivers wanted to use runtime PM helpers, pm_runtime_suspend() and pm_runtime_put_sync() in particular, for carrying out the suspend of devices in their .suspend() callbacks. However, as it's been determined recently, there are multiple reasons not to do so, inlcuding: * The caller really doesn't control the runtime PM usage counters, because user space can access them through sysfs and effectively block runtime PM. That means using pm_runtime_suspend() or pm_runtime_get_sync() to suspend devices during system suspend may or may not work. * If a driver calls pm_runtime_suspend() from its .suspend() callback, it causes the subsystem's .runtime_suspend() callback to be executed, which leads to the call sequence: subsys->suspend(dev) driver->suspend(dev) pm_runtime_suspend(dev) subsys->runtime_suspend(dev) recursive from the subsystem's point of view. For some subsystems that may actually work (e.g. the platform bus type), but for some it will fail in a rather spectacular fashion (e.g. PCI). In each case it means a layering violation. * Both the subsystem and the driver can provide .suspend_noirq() callbacks for system suspend that can do whatever the .runtime_suspend() callbacks do just fine, so it really isn't necessary to call pm_runtime_suspend() during system suspend. * The runtime PM's handling of wakeup devices is usually different from the system suspend's one, so .runtime_suspend() may simply be inappropriate for system suspend. * System suspend is supposed to work even if CONFIG_PM_RUNTIME is unset. * The runtime PM workqueue is frozen before system suspend, so if whatever the driver is going to do during system suspend depends on it, that simply won't work. Still, there is a good reason to allow pm_runtime_resume() to succeed during system suspend and resume (for instance, some subsystems and device drivers may legitimately use it to ensure that their devices are in full-power states before suspending them). Moreover, there is no reason to prevent runtime PM callbacks from being executed in parallel with the system suspend/resume .prepare() and .complete() callbacks and the code removed by commit e8665002477f0278f84f898145b1f141ba26ee26 went too far in this respect. On the other hand, runtime PM callbacks, including .runtime_resume(), must not be executed during system suspend's "late" stage of suspending devices and during system resume's "early" device resume stage. Taking all of the above into consideration, make the PM core acquire a runtime PM reference to every device and resume it if there's a runtime PM resume request pending right before executing the subsystem-level .suspend() callback for it. Make the PM core drop references to all devices right after executing the subsystem-level .resume() callbacks for them. Additionally, make the PM core disable the runtime PM framework for all devices during system suspend, after executing the subsystem-level .suspend() callbacks for them, and enable the runtime PM framework for all devices during system resume, right before executing the subsystem-level .resume() callbacks for them. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Kevin Hilman <khilman@ti.com>
2011-07-06 08:51:58 +00:00
device_lock(dev);
if (dev->pm_domain) {
info = "power domain ";
callback = pm_op(&dev->pm_domain->ops, state);
goto Run;
PM: Make power domain callbacks take precedence over subsystem ones Change the PM core's behavior related to power domains in such a way that, if a power domain is defined for a given device, its callbacks will be executed instead of and not in addition to the device subsystem's PM callbacks. The idea behind the initial implementation of power domains handling by the PM core was that power domain callbacks would be executed in addition to subsystem callbacks, so that it would be possible to extend the subsystem callbacks by using power domains. It turns out, however, that this wouldn't be really convenient in some important situations. For example, there are systems in which power can only be removed from entire power domains. On those systems it is not desirable to execute device drivers' PM callbacks until it is known that power is going to be removed from the devices in question, which means that they should be executed by power domain callbacks rather then by subsystem (e.g. bus type) PM callbacks, because subsystems generally have no information about what devices belong to which power domain. Thus, for instance, if the bus type in question is the platform bus type, its PM callbacks generally should not be called in addition to power domain callbacks, because they run device drivers' callbacks unconditionally if defined. While in principle the default subsystem PM callbacks, or a subset of them, may be replaced with different functions, it doesn't seem correct to do so, because that would change the subsystem's behavior with respect to all devices in the system, regardless of whether or not they belong to any power domains. Thus, the only remaining option is to make power domain callbacks take precedence over subsystem callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Grant Likely <grant.likely@secretlab.ca> Acked-by: Kevin Hilman <khilman@ti.com>
2011-04-28 22:35:50 +00:00
}
PM: Make system-wide PM and runtime PM treat subsystems consistently The code handling system-wide power transitions (eg. suspend-to-RAM) can in theory execute callbacks provided by the device's bus type, device type and class in each phase of the power transition. In turn, the runtime PM core code only calls one of those callbacks at a time, preferring bus type callbacks to device type or class callbacks and device type callbacks to class callbacks. It seems reasonable to make them both behave in the same way in that respect. Moreover, even though a device may belong to two subsystems (eg. bus type and device class) simultaneously, in practice power management callbacks for system-wide power transitions are always provided by only one of them (ie. if the bus type callbacks are defined, the device class ones are not and vice versa). Thus it is possible to modify the code handling system-wide power transitions so that it follows the core runtime PM code (ie. treats the subsystem callbacks as mutually exclusive). On the other hand, the core runtime PM code will choose to execute, for example, a runtime suspend callback provided by the device type even if the bus type's struct dev_pm_ops object exists, but the runtime_suspend pointer in it happens to be NULL. This is confusing, because it may lead to the execution of callbacks from different subsystems during different operations (eg. the bus type suspend callback may be executed during runtime suspend of the device, while the device type callback will be executed during system suspend). Make all of the power management code treat subsystem callbacks in a consistent way, such that: (1) If the device's type is defined (eg. dev->type is not NULL) and its pm pointer is not NULL, the callbacks from dev->type->pm will be used. (2) If dev->type is NULL or dev->type->pm is NULL, but the device's class is defined (eg. dev->class is not NULL) and its pm pointer is not NULL, the callbacks from dev->class->pm will be used. (3) If dev->type is NULL or dev->type->pm is NULL and dev->class is NULL or dev->class->pm is NULL, the callbacks from dev->bus->pm will be used provided that both dev->bus and dev->bus->pm are not NULL. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Kevin Hilman <khilman@ti.com> Reasoning-sounds-sane-to: Grant Likely <grant.likely@secretlab.ca> Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-02-18 22:20:21 +00:00
if (dev->type && dev->type->pm) {
info = "type ";
callback = pm_op(dev->type->pm, state);
goto Run;
PM: Make system-wide PM and runtime PM treat subsystems consistently The code handling system-wide power transitions (eg. suspend-to-RAM) can in theory execute callbacks provided by the device's bus type, device type and class in each phase of the power transition. In turn, the runtime PM core code only calls one of those callbacks at a time, preferring bus type callbacks to device type or class callbacks and device type callbacks to class callbacks. It seems reasonable to make them both behave in the same way in that respect. Moreover, even though a device may belong to two subsystems (eg. bus type and device class) simultaneously, in practice power management callbacks for system-wide power transitions are always provided by only one of them (ie. if the bus type callbacks are defined, the device class ones are not and vice versa). Thus it is possible to modify the code handling system-wide power transitions so that it follows the core runtime PM code (ie. treats the subsystem callbacks as mutually exclusive). On the other hand, the core runtime PM code will choose to execute, for example, a runtime suspend callback provided by the device type even if the bus type's struct dev_pm_ops object exists, but the runtime_suspend pointer in it happens to be NULL. This is confusing, because it may lead to the execution of callbacks from different subsystems during different operations (eg. the bus type suspend callback may be executed during runtime suspend of the device, while the device type callback will be executed during system suspend). Make all of the power management code treat subsystem callbacks in a consistent way, such that: (1) If the device's type is defined (eg. dev->type is not NULL) and its pm pointer is not NULL, the callbacks from dev->type->pm will be used. (2) If dev->type is NULL or dev->type->pm is NULL, but the device's class is defined (eg. dev->class is not NULL) and its pm pointer is not NULL, the callbacks from dev->class->pm will be used. (3) If dev->type is NULL or dev->type->pm is NULL and dev->class is NULL or dev->class->pm is NULL, the callbacks from dev->bus->pm will be used provided that both dev->bus and dev->bus->pm are not NULL. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Kevin Hilman <khilman@ti.com> Reasoning-sounds-sane-to: Grant Likely <grant.likely@secretlab.ca> Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-02-18 22:20:21 +00:00
}
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
if (dev->class) {
if (dev->class->pm) {
info = "class ";
callback = pm_op(dev->class->pm, state);
goto Run;
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
} else if (dev->class->suspend) {
pm_dev_dbg(dev, state, "legacy class ");
error = legacy_suspend(dev, state, dev->class->suspend,
"legacy class ");
PM: Make power domain callbacks take precedence over subsystem ones Change the PM core's behavior related to power domains in such a way that, if a power domain is defined for a given device, its callbacks will be executed instead of and not in addition to the device subsystem's PM callbacks. The idea behind the initial implementation of power domains handling by the PM core was that power domain callbacks would be executed in addition to subsystem callbacks, so that it would be possible to extend the subsystem callbacks by using power domains. It turns out, however, that this wouldn't be really convenient in some important situations. For example, there are systems in which power can only be removed from entire power domains. On those systems it is not desirable to execute device drivers' PM callbacks until it is known that power is going to be removed from the devices in question, which means that they should be executed by power domain callbacks rather then by subsystem (e.g. bus type) PM callbacks, because subsystems generally have no information about what devices belong to which power domain. Thus, for instance, if the bus type in question is the platform bus type, its PM callbacks generally should not be called in addition to power domain callbacks, because they run device drivers' callbacks unconditionally if defined. While in principle the default subsystem PM callbacks, or a subset of them, may be replaced with different functions, it doesn't seem correct to do so, because that would change the subsystem's behavior with respect to all devices in the system, regardless of whether or not they belong to any power domains. Thus, the only remaining option is to make power domain callbacks take precedence over subsystem callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Grant Likely <grant.likely@secretlab.ca> Acked-by: Kevin Hilman <khilman@ti.com>
2011-04-28 22:35:50 +00:00
goto End;
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
}
}
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
if (dev->bus) {
if (dev->bus->pm) {
info = "bus ";
callback = pm_op(dev->bus->pm, state);
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
} else if (dev->bus->suspend) {
pm_dev_dbg(dev, state, "legacy bus ");
error = legacy_suspend(dev, state, dev->bus->suspend,
"legacy bus ");
goto End;
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
}
2011-02-16 20:53:17 +00:00
}
Run:
if (!callback && dev->driver && dev->driver->pm) {
info = "driver ";
callback = pm_op(dev->driver->pm, state);
}
error = dpm_run_callback(callback, dev, state, info);
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
End:
if (!error) {
PM / sleep: Mechanism to avoid resuming runtime-suspended devices unnecessarily Currently, some subsystems (e.g. PCI and the ACPI PM domain) have to resume all runtime-suspended devices during system suspend, mostly because those devices may need to be reprogrammed due to different wakeup settings for system sleep and for runtime PM. For some devices, though, it's OK to remain in runtime suspend throughout a complete system suspend/resume cycle (if the device was in runtime suspend at the start of the cycle). We would like to do this whenever possible, to avoid the overhead of extra power-up and power-down events. However, problems may arise because the device's descendants may require it to be at full power at various points during the cycle. Therefore the most straightforward way to do this safely is if the device and all its descendants can remain runtime suspended until the complete stage of system resume. To this end, introduce a new device PM flag, power.direct_complete and modify the PM core to use that flag as follows. If the ->prepare() callback of a device returns a positive number, the PM core will regard that as an indication that it may leave the device runtime-suspended. It will then check if the system power transition in progress is a suspend (and not hibernation in particular) and if the device is, indeed, runtime-suspended. In that case, the PM core will set the device's power.direct_complete flag. Otherwise it will clear power.direct_complete for the device and it also will later clear it for the device's parent (if there's one). Next, the PM core will not invoke the ->suspend() ->suspend_late(), ->suspend_irq(), ->resume_irq(), ->resume_early(), or ->resume() callbacks for all devices having power.direct_complete set. It will invoke their ->complete() callbacks, however, and those callbacks are then responsible for resuming the devices as appropriate, if necessary. For example, in some cases they may need to queue up runtime resume requests for the devices using pm_request_resume(). Changelog partly based on an Alan Stern's description of the idea (http://marc.info/?l=linux-pm&m=139940466625569&w=2). Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Alan Stern <stern@rowland.harvard.edu>
2014-05-16 00:46:50 +00:00
struct device *parent = dev->parent;
dev->power.is_suspended = true;
PM / sleep: Mechanism to avoid resuming runtime-suspended devices unnecessarily Currently, some subsystems (e.g. PCI and the ACPI PM domain) have to resume all runtime-suspended devices during system suspend, mostly because those devices may need to be reprogrammed due to different wakeup settings for system sleep and for runtime PM. For some devices, though, it's OK to remain in runtime suspend throughout a complete system suspend/resume cycle (if the device was in runtime suspend at the start of the cycle). We would like to do this whenever possible, to avoid the overhead of extra power-up and power-down events. However, problems may arise because the device's descendants may require it to be at full power at various points during the cycle. Therefore the most straightforward way to do this safely is if the device and all its descendants can remain runtime suspended until the complete stage of system resume. To this end, introduce a new device PM flag, power.direct_complete and modify the PM core to use that flag as follows. If the ->prepare() callback of a device returns a positive number, the PM core will regard that as an indication that it may leave the device runtime-suspended. It will then check if the system power transition in progress is a suspend (and not hibernation in particular) and if the device is, indeed, runtime-suspended. In that case, the PM core will set the device's power.direct_complete flag. Otherwise it will clear power.direct_complete for the device and it also will later clear it for the device's parent (if there's one). Next, the PM core will not invoke the ->suspend() ->suspend_late(), ->suspend_irq(), ->resume_irq(), ->resume_early(), or ->resume() callbacks for all devices having power.direct_complete set. It will invoke their ->complete() callbacks, however, and those callbacks are then responsible for resuming the devices as appropriate, if necessary. For example, in some cases they may need to queue up runtime resume requests for the devices using pm_request_resume(). Changelog partly based on an Alan Stern's description of the idea (http://marc.info/?l=linux-pm&m=139940466625569&w=2). Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Alan Stern <stern@rowland.harvard.edu>
2014-05-16 00:46:50 +00:00
if (parent) {
spin_lock_irq(&parent->power.lock);
dev->parent->power.direct_complete = false;
if (dev->power.wakeup_path
&& !dev->parent->power.ignore_children)
dev->parent->power.wakeup_path = true;
spin_unlock_irq(&parent->power.lock);
}
dpm_clear_suppliers_direct_complete(dev);
}
Driver core: create lock/unlock functions for struct device In the future, we are going to be changing the lock type for struct device (once we get the lockdep infrastructure properly worked out) To make that changeover easier, and to possibly burry the lock in a different part of struct device, let's create some functions to lock and unlock a device so that no out-of-core code needs to be changed in the future. This patch creates the device_lock/unlock/trylock() functions, and converts all in-tree users to them. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Jean Delvare <khali@linux-fr.org> Cc: Dave Young <hidave.darkstar@gmail.com> Cc: Ming Lei <tom.leiming@gmail.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Phil Carmody <ext-phil.2.carmody@nokia.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Cornelia Huck <cornelia.huck@de.ibm.com> Cc: Rafael J. Wysocki <rjw@sisk.pl> Cc: Pavel Machek <pavel@ucw.cz> Cc: Len Brown <len.brown@intel.com> Cc: Magnus Damm <damm@igel.co.jp> Cc: Alan Stern <stern@rowland.harvard.edu> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Stefan Richter <stefanr@s5r6.in-berlin.de> Cc: David Brownell <dbrownell@users.sourceforge.net> Cc: Vegard Nossum <vegard.nossum@gmail.com> Cc: Jesse Barnes <jbarnes@virtuousgeek.org> Cc: Alex Chiang <achiang@hp.com> Cc: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andrew Patterson <andrew.patterson@hp.com> Cc: Yu Zhao <yu.zhao@intel.com> Cc: Dominik Brodowski <linux@dominikbrodowski.net> Cc: Samuel Ortiz <sameo@linux.intel.com> Cc: Wolfram Sang <w.sang@pengutronix.de> Cc: CHENG Renquan <rqcheng@smu.edu.sg> Cc: Oliver Neukum <oliver@neukum.org> Cc: Frans Pop <elendil@planet.nl> Cc: David Vrabel <david.vrabel@csr.com> Cc: Kay Sievers <kay.sievers@vrfy.org> Cc: Sarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-02-17 18:57:05 +00:00
device_unlock(dev);
2013-10-17 17:48:46 +00:00
dpm_watchdog_clear(&wd);
Complete:
if (error)
async_error = error;
complete_all(&dev->power.completion);
TRACE_SUSPEND(error);
return error;
}
PM: Asynchronous suspend and resume of devices Theoretically, the total time of system sleep transitions (suspend to RAM, hibernation) can be reduced by running suspend and resume callbacks of device drivers in parallel with each other. However, there are dependencies between devices such that we're not allowed to suspend the parent of a device before suspending the device itself. Analogously, we're not allowed to resume a device before resuming its parent. The most straightforward way to take these dependencies into accout is to start the async threads used for suspending and resuming devices at the core level, so that async_schedule() is called for each suspend and resume callback supposed to be executed asynchronously. For this purpose, introduce a new device flag, power.async_suspend, used to mark the devices whose suspend and resume callbacks are to be executed asynchronously (ie. in parallel with the main suspend/resume thread and possibly in parallel with each other) and helper function device_enable_async_suspend() allowing one to set power.async_suspend for given device (power.async_suspend is unset by default for all devices). For each device with the power.async_suspend flag set the PM core will use async_schedule() to execute its suspend and resume callbacks. The async threads started for different devices as a result of calling async_schedule() are synchronized with each other and with the main suspend/resume thread with the help of completions, in the following way: (1) There is a completion, power.completion, for each device object. (2) Each device's completion is reset before calling async_schedule() for the device or, in the case of devices with the power.async_suspend flags unset, before executing the device's suspend and resume callbacks. (3) During suspend, right before running the bus type, device type and device class suspend callbacks for the device, the PM core waits for the completions of all the device's children to be completed. (4) During resume, right before running the bus type, device type and device class resume callbacks for the device, the PM core waits for the completion of the device's parent to be completed. (5) The PM core completes power.completion for each device right after the bus type, device type and device class suspend (or resume) callbacks executed for the device have returned. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
2010-01-23 21:23:32 +00:00
static void async_suspend(void *data, async_cookie_t cookie)
{
struct device *dev = (struct device *)data;
int error;
error = __device_suspend(dev, pm_transition, true);
PM / Suspend: Add statistics debugfs file for suspend to RAM Record S3 failure time about each reason and the latest two failed devices' names in S3 progress. We can check it through 'suspend_stats' entry in debugfs. The motivation of the patch: We are enabling power features on Medfield. Comparing with PC/notebook, a mobile enters/exits suspend-2-ram (we call it s3 on Medfield) far more frequently. If it can't enter suspend-2-ram in time, the power might be used up soon. We often find sometimes, a device suspend fails. Then, system retries s3 over and over again. As display is off, testers and developers don't know what happens. Some testers and developers complain they don't know if system tries suspend-2-ram, and what device fails to suspend. They need such info for a quick check. The patch adds suspend_stats under debugfs for users to check suspend to RAM statistics quickly. If not using this patch, we have other methods to get info about what device fails. One is to turn on CONFIG_PM_DEBUG, but users would get too much info and testers need recompile the system. In addition, dynamic debug is another good tool to dump debug info. But it still doesn't match our utilization scenario closely. 1) user need write a user space parser to process the syslog output; 2) Our testing scenario is we leave the mobile for at least hours. Then, check its status. No serial console available during the testing. One is because console would be suspended, and the other is serial console connecting with spi or HSU devices would consume power. These devices are powered off at suspend-2-ram. Signed-off-by: ShuoX Liu <shuox.liu@intel.com> Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
2011-08-10 21:01:26 +00:00
if (error) {
dpm_save_failed_dev(dev_name(dev));
PM: Asynchronous suspend and resume of devices Theoretically, the total time of system sleep transitions (suspend to RAM, hibernation) can be reduced by running suspend and resume callbacks of device drivers in parallel with each other. However, there are dependencies between devices such that we're not allowed to suspend the parent of a device before suspending the device itself. Analogously, we're not allowed to resume a device before resuming its parent. The most straightforward way to take these dependencies into accout is to start the async threads used for suspending and resuming devices at the core level, so that async_schedule() is called for each suspend and resume callback supposed to be executed asynchronously. For this purpose, introduce a new device flag, power.async_suspend, used to mark the devices whose suspend and resume callbacks are to be executed asynchronously (ie. in parallel with the main suspend/resume thread and possibly in parallel with each other) and helper function device_enable_async_suspend() allowing one to set power.async_suspend for given device (power.async_suspend is unset by default for all devices). For each device with the power.async_suspend flag set the PM core will use async_schedule() to execute its suspend and resume callbacks. The async threads started for different devices as a result of calling async_schedule() are synchronized with each other and with the main suspend/resume thread with the help of completions, in the following way: (1) There is a completion, power.completion, for each device object. (2) Each device's completion is reset before calling async_schedule() for the device or, in the case of devices with the power.async_suspend flags unset, before executing the device's suspend and resume callbacks. (3) During suspend, right before running the bus type, device type and device class suspend callbacks for the device, the PM core waits for the completions of all the device's children to be completed. (4) During resume, right before running the bus type, device type and device class resume callbacks for the device, the PM core waits for the completion of the device's parent to be completed. (5) The PM core completes power.completion for each device right after the bus type, device type and device class suspend (or resume) callbacks executed for the device have returned. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
2010-01-23 21:23:32 +00:00
pm_dev_err(dev, pm_transition, " async", error);
PM / Suspend: Add statistics debugfs file for suspend to RAM Record S3 failure time about each reason and the latest two failed devices' names in S3 progress. We can check it through 'suspend_stats' entry in debugfs. The motivation of the patch: We are enabling power features on Medfield. Comparing with PC/notebook, a mobile enters/exits suspend-2-ram (we call it s3 on Medfield) far more frequently. If it can't enter suspend-2-ram in time, the power might be used up soon. We often find sometimes, a device suspend fails. Then, system retries s3 over and over again. As display is off, testers and developers don't know what happens. Some testers and developers complain they don't know if system tries suspend-2-ram, and what device fails to suspend. They need such info for a quick check. The patch adds suspend_stats under debugfs for users to check suspend to RAM statistics quickly. If not using this patch, we have other methods to get info about what device fails. One is to turn on CONFIG_PM_DEBUG, but users would get too much info and testers need recompile the system. In addition, dynamic debug is another good tool to dump debug info. But it still doesn't match our utilization scenario closely. 1) user need write a user space parser to process the syslog output; 2) Our testing scenario is we leave the mobile for at least hours. Then, check its status. No serial console available during the testing. One is because console would be suspended, and the other is serial console connecting with spi or HSU devices would consume power. These devices are powered off at suspend-2-ram. Signed-off-by: ShuoX Liu <shuox.liu@intel.com> Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
2011-08-10 21:01:26 +00:00
}
PM: Asynchronous suspend and resume of devices Theoretically, the total time of system sleep transitions (suspend to RAM, hibernation) can be reduced by running suspend and resume callbacks of device drivers in parallel with each other. However, there are dependencies between devices such that we're not allowed to suspend the parent of a device before suspending the device itself. Analogously, we're not allowed to resume a device before resuming its parent. The most straightforward way to take these dependencies into accout is to start the async threads used for suspending and resuming devices at the core level, so that async_schedule() is called for each suspend and resume callback supposed to be executed asynchronously. For this purpose, introduce a new device flag, power.async_suspend, used to mark the devices whose suspend and resume callbacks are to be executed asynchronously (ie. in parallel with the main suspend/resume thread and possibly in parallel with each other) and helper function device_enable_async_suspend() allowing one to set power.async_suspend for given device (power.async_suspend is unset by default for all devices). For each device with the power.async_suspend flag set the PM core will use async_schedule() to execute its suspend and resume callbacks. The async threads started for different devices as a result of calling async_schedule() are synchronized with each other and with the main suspend/resume thread with the help of completions, in the following way: (1) There is a completion, power.completion, for each device object. (2) Each device's completion is reset before calling async_schedule() for the device or, in the case of devices with the power.async_suspend flags unset, before executing the device's suspend and resume callbacks. (3) During suspend, right before running the bus type, device type and device class suspend callbacks for the device, the PM core waits for the completions of all the device's children to be completed. (4) During resume, right before running the bus type, device type and device class resume callbacks for the device, the PM core waits for the completion of the device's parent to be completed. (5) The PM core completes power.completion for each device right after the bus type, device type and device class suspend (or resume) callbacks executed for the device have returned. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
2010-01-23 21:23:32 +00:00
put_device(dev);
}
static int device_suspend(struct device *dev)
{
reinit_completion(&dev->power.completion);
PM: Asynchronous suspend and resume of devices Theoretically, the total time of system sleep transitions (suspend to RAM, hibernation) can be reduced by running suspend and resume callbacks of device drivers in parallel with each other. However, there are dependencies between devices such that we're not allowed to suspend the parent of a device before suspending the device itself. Analogously, we're not allowed to resume a device before resuming its parent. The most straightforward way to take these dependencies into accout is to start the async threads used for suspending and resuming devices at the core level, so that async_schedule() is called for each suspend and resume callback supposed to be executed asynchronously. For this purpose, introduce a new device flag, power.async_suspend, used to mark the devices whose suspend and resume callbacks are to be executed asynchronously (ie. in parallel with the main suspend/resume thread and possibly in parallel with each other) and helper function device_enable_async_suspend() allowing one to set power.async_suspend for given device (power.async_suspend is unset by default for all devices). For each device with the power.async_suspend flag set the PM core will use async_schedule() to execute its suspend and resume callbacks. The async threads started for different devices as a result of calling async_schedule() are synchronized with each other and with the main suspend/resume thread with the help of completions, in the following way: (1) There is a completion, power.completion, for each device object. (2) Each device's completion is reset before calling async_schedule() for the device or, in the case of devices with the power.async_suspend flags unset, before executing the device's suspend and resume callbacks. (3) During suspend, right before running the bus type, device type and device class suspend callbacks for the device, the PM core waits for the completions of all the device's children to be completed. (4) During resume, right before running the bus type, device type and device class resume callbacks for the device, the PM core waits for the completion of the device's parent to be completed. (5) The PM core completes power.completion for each device right after the bus type, device type and device class suspend (or resume) callbacks executed for the device have returned. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
2010-01-23 21:23:32 +00:00
if (is_async(dev)) {
PM: Asynchronous suspend and resume of devices Theoretically, the total time of system sleep transitions (suspend to RAM, hibernation) can be reduced by running suspend and resume callbacks of device drivers in parallel with each other. However, there are dependencies between devices such that we're not allowed to suspend the parent of a device before suspending the device itself. Analogously, we're not allowed to resume a device before resuming its parent. The most straightforward way to take these dependencies into accout is to start the async threads used for suspending and resuming devices at the core level, so that async_schedule() is called for each suspend and resume callback supposed to be executed asynchronously. For this purpose, introduce a new device flag, power.async_suspend, used to mark the devices whose suspend and resume callbacks are to be executed asynchronously (ie. in parallel with the main suspend/resume thread and possibly in parallel with each other) and helper function device_enable_async_suspend() allowing one to set power.async_suspend for given device (power.async_suspend is unset by default for all devices). For each device with the power.async_suspend flag set the PM core will use async_schedule() to execute its suspend and resume callbacks. The async threads started for different devices as a result of calling async_schedule() are synchronized with each other and with the main suspend/resume thread with the help of completions, in the following way: (1) There is a completion, power.completion, for each device object. (2) Each device's completion is reset before calling async_schedule() for the device or, in the case of devices with the power.async_suspend flags unset, before executing the device's suspend and resume callbacks. (3) During suspend, right before running the bus type, device type and device class suspend callbacks for the device, the PM core waits for the completions of all the device's children to be completed. (4) During resume, right before running the bus type, device type and device class resume callbacks for the device, the PM core waits for the completion of the device's parent to be completed. (5) The PM core completes power.completion for each device right after the bus type, device type and device class suspend (or resume) callbacks executed for the device have returned. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
2010-01-23 21:23:32 +00:00
get_device(dev);
async_schedule(async_suspend, dev);
return 0;
}
return __device_suspend(dev, pm_transition, false);
}
/**
* dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
* @state: PM transition of the system being carried out.
*/
int dpm_suspend(pm_message_t state)
{
ktime_t starttime = ktime_get();
int error = 0;
trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
might_sleep();
cpufreq_suspend();
mutex_lock(&dpm_list_mtx);
PM: Asynchronous suspend and resume of devices Theoretically, the total time of system sleep transitions (suspend to RAM, hibernation) can be reduced by running suspend and resume callbacks of device drivers in parallel with each other. However, there are dependencies between devices such that we're not allowed to suspend the parent of a device before suspending the device itself. Analogously, we're not allowed to resume a device before resuming its parent. The most straightforward way to take these dependencies into accout is to start the async threads used for suspending and resuming devices at the core level, so that async_schedule() is called for each suspend and resume callback supposed to be executed asynchronously. For this purpose, introduce a new device flag, power.async_suspend, used to mark the devices whose suspend and resume callbacks are to be executed asynchronously (ie. in parallel with the main suspend/resume thread and possibly in parallel with each other) and helper function device_enable_async_suspend() allowing one to set power.async_suspend for given device (power.async_suspend is unset by default for all devices). For each device with the power.async_suspend flag set the PM core will use async_schedule() to execute its suspend and resume callbacks. The async threads started for different devices as a result of calling async_schedule() are synchronized with each other and with the main suspend/resume thread with the help of completions, in the following way: (1) There is a completion, power.completion, for each device object. (2) Each device's completion is reset before calling async_schedule() for the device or, in the case of devices with the power.async_suspend flags unset, before executing the device's suspend and resume callbacks. (3) During suspend, right before running the bus type, device type and device class suspend callbacks for the device, the PM core waits for the completions of all the device's children to be completed. (4) During resume, right before running the bus type, device type and device class resume callbacks for the device, the PM core waits for the completion of the device's parent to be completed. (5) The PM core completes power.completion for each device right after the bus type, device type and device class suspend (or resume) callbacks executed for the device have returned. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
2010-01-23 21:23:32 +00:00
pm_transition = state;
async_error = 0;
while (!list_empty(&dpm_prepared_list)) {
struct device *dev = to_device(dpm_prepared_list.prev);
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
get_device(dev);
mutex_unlock(&dpm_list_mtx);
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
PM: Asynchronous suspend and resume of devices Theoretically, the total time of system sleep transitions (suspend to RAM, hibernation) can be reduced by running suspend and resume callbacks of device drivers in parallel with each other. However, there are dependencies between devices such that we're not allowed to suspend the parent of a device before suspending the device itself. Analogously, we're not allowed to resume a device before resuming its parent. The most straightforward way to take these dependencies into accout is to start the async threads used for suspending and resuming devices at the core level, so that async_schedule() is called for each suspend and resume callback supposed to be executed asynchronously. For this purpose, introduce a new device flag, power.async_suspend, used to mark the devices whose suspend and resume callbacks are to be executed asynchronously (ie. in parallel with the main suspend/resume thread and possibly in parallel with each other) and helper function device_enable_async_suspend() allowing one to set power.async_suspend for given device (power.async_suspend is unset by default for all devices). For each device with the power.async_suspend flag set the PM core will use async_schedule() to execute its suspend and resume callbacks. The async threads started for different devices as a result of calling async_schedule() are synchronized with each other and with the main suspend/resume thread with the help of completions, in the following way: (1) There is a completion, power.completion, for each device object. (2) Each device's completion is reset before calling async_schedule() for the device or, in the case of devices with the power.async_suspend flags unset, before executing the device's suspend and resume callbacks. (3) During suspend, right before running the bus type, device type and device class suspend callbacks for the device, the PM core waits for the completions of all the device's children to be completed. (4) During resume, right before running the bus type, device type and device class resume callbacks for the device, the PM core waits for the completion of the device's parent to be completed. (5) The PM core completes power.completion for each device right after the bus type, device type and device class suspend (or resume) callbacks executed for the device have returned. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
2010-01-23 21:23:32 +00:00
error = device_suspend(dev);
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
mutex_lock(&dpm_list_mtx);
if (error) {
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
pm_dev_err(dev, state, "", error);
PM / Suspend: Add statistics debugfs file for suspend to RAM Record S3 failure time about each reason and the latest two failed devices' names in S3 progress. We can check it through 'suspend_stats' entry in debugfs. The motivation of the patch: We are enabling power features on Medfield. Comparing with PC/notebook, a mobile enters/exits suspend-2-ram (we call it s3 on Medfield) far more frequently. If it can't enter suspend-2-ram in time, the power might be used up soon. We often find sometimes, a device suspend fails. Then, system retries s3 over and over again. As display is off, testers and developers don't know what happens. Some testers and developers complain they don't know if system tries suspend-2-ram, and what device fails to suspend. They need such info for a quick check. The patch adds suspend_stats under debugfs for users to check suspend to RAM statistics quickly. If not using this patch, we have other methods to get info about what device fails. One is to turn on CONFIG_PM_DEBUG, but users would get too much info and testers need recompile the system. In addition, dynamic debug is another good tool to dump debug info. But it still doesn't match our utilization scenario closely. 1) user need write a user space parser to process the syslog output; 2) Our testing scenario is we leave the mobile for at least hours. Then, check its status. No serial console available during the testing. One is because console would be suspended, and the other is serial console connecting with spi or HSU devices would consume power. These devices are powered off at suspend-2-ram. Signed-off-by: ShuoX Liu <shuox.liu@intel.com> Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
2011-08-10 21:01:26 +00:00
dpm_save_failed_dev(dev_name(dev));
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
put_device(dev);
break;
}
if (!list_empty(&dev->power.entry))
list_move(&dev->power.entry, &dpm_suspended_list);
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
put_device(dev);
PM: Asynchronous suspend and resume of devices Theoretically, the total time of system sleep transitions (suspend to RAM, hibernation) can be reduced by running suspend and resume callbacks of device drivers in parallel with each other. However, there are dependencies between devices such that we're not allowed to suspend the parent of a device before suspending the device itself. Analogously, we're not allowed to resume a device before resuming its parent. The most straightforward way to take these dependencies into accout is to start the async threads used for suspending and resuming devices at the core level, so that async_schedule() is called for each suspend and resume callback supposed to be executed asynchronously. For this purpose, introduce a new device flag, power.async_suspend, used to mark the devices whose suspend and resume callbacks are to be executed asynchronously (ie. in parallel with the main suspend/resume thread and possibly in parallel with each other) and helper function device_enable_async_suspend() allowing one to set power.async_suspend for given device (power.async_suspend is unset by default for all devices). For each device with the power.async_suspend flag set the PM core will use async_schedule() to execute its suspend and resume callbacks. The async threads started for different devices as a result of calling async_schedule() are synchronized with each other and with the main suspend/resume thread with the help of completions, in the following way: (1) There is a completion, power.completion, for each device object. (2) Each device's completion is reset before calling async_schedule() for the device or, in the case of devices with the power.async_suspend flags unset, before executing the device's suspend and resume callbacks. (3) During suspend, right before running the bus type, device type and device class suspend callbacks for the device, the PM core waits for the completions of all the device's children to be completed. (4) During resume, right before running the bus type, device type and device class resume callbacks for the device, the PM core waits for the completion of the device's parent to be completed. (5) The PM core completes power.completion for each device right after the bus type, device type and device class suspend (or resume) callbacks executed for the device have returned. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
2010-01-23 21:23:32 +00:00
if (async_error)
break;
}
mutex_unlock(&dpm_list_mtx);
PM: Asynchronous suspend and resume of devices Theoretically, the total time of system sleep transitions (suspend to RAM, hibernation) can be reduced by running suspend and resume callbacks of device drivers in parallel with each other. However, there are dependencies between devices such that we're not allowed to suspend the parent of a device before suspending the device itself. Analogously, we're not allowed to resume a device before resuming its parent. The most straightforward way to take these dependencies into accout is to start the async threads used for suspending and resuming devices at the core level, so that async_schedule() is called for each suspend and resume callback supposed to be executed asynchronously. For this purpose, introduce a new device flag, power.async_suspend, used to mark the devices whose suspend and resume callbacks are to be executed asynchronously (ie. in parallel with the main suspend/resume thread and possibly in parallel with each other) and helper function device_enable_async_suspend() allowing one to set power.async_suspend for given device (power.async_suspend is unset by default for all devices). For each device with the power.async_suspend flag set the PM core will use async_schedule() to execute its suspend and resume callbacks. The async threads started for different devices as a result of calling async_schedule() are synchronized with each other and with the main suspend/resume thread with the help of completions, in the following way: (1) There is a completion, power.completion, for each device object. (2) Each device's completion is reset before calling async_schedule() for the device or, in the case of devices with the power.async_suspend flags unset, before executing the device's suspend and resume callbacks. (3) During suspend, right before running the bus type, device type and device class suspend callbacks for the device, the PM core waits for the completions of all the device's children to be completed. (4) During resume, right before running the bus type, device type and device class resume callbacks for the device, the PM core waits for the completion of the device's parent to be completed. (5) The PM core completes power.completion for each device right after the bus type, device type and device class suspend (or resume) callbacks executed for the device have returned. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
2010-01-23 21:23:32 +00:00
async_synchronize_full();
if (!error)
error = async_error;
PM / Suspend: Add statistics debugfs file for suspend to RAM Record S3 failure time about each reason and the latest two failed devices' names in S3 progress. We can check it through 'suspend_stats' entry in debugfs. The motivation of the patch: We are enabling power features on Medfield. Comparing with PC/notebook, a mobile enters/exits suspend-2-ram (we call it s3 on Medfield) far more frequently. If it can't enter suspend-2-ram in time, the power might be used up soon. We often find sometimes, a device suspend fails. Then, system retries s3 over and over again. As display is off, testers and developers don't know what happens. Some testers and developers complain they don't know if system tries suspend-2-ram, and what device fails to suspend. They need such info for a quick check. The patch adds suspend_stats under debugfs for users to check suspend to RAM statistics quickly. If not using this patch, we have other methods to get info about what device fails. One is to turn on CONFIG_PM_DEBUG, but users would get too much info and testers need recompile the system. In addition, dynamic debug is another good tool to dump debug info. But it still doesn't match our utilization scenario closely. 1) user need write a user space parser to process the syslog output; 2) Our testing scenario is we leave the mobile for at least hours. Then, check its status. No serial console available during the testing. One is because console would be suspended, and the other is serial console connecting with spi or HSU devices would consume power. These devices are powered off at suspend-2-ram. Signed-off-by: ShuoX Liu <shuox.liu@intel.com> Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
2011-08-10 21:01:26 +00:00
if (error) {
suspend_stats.failed_suspend++;
dpm_save_failed_step(SUSPEND_SUSPEND);
} else
dpm_show_time(starttime, state, NULL);
trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
return error;
}
/**
* device_prepare - Prepare a device for system power transition.
* @dev: Device to handle.
* @state: PM transition of the system being carried out.
*
* Execute the ->prepare() callback(s) for given device. No new children of the
* device may be registered after this function has returned.
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
*/
static int device_prepare(struct device *dev, pm_message_t state)
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
{
int (*callback)(struct device *) = NULL;
PM / sleep: Mechanism to avoid resuming runtime-suspended devices unnecessarily Currently, some subsystems (e.g. PCI and the ACPI PM domain) have to resume all runtime-suspended devices during system suspend, mostly because those devices may need to be reprogrammed due to different wakeup settings for system sleep and for runtime PM. For some devices, though, it's OK to remain in runtime suspend throughout a complete system suspend/resume cycle (if the device was in runtime suspend at the start of the cycle). We would like to do this whenever possible, to avoid the overhead of extra power-up and power-down events. However, problems may arise because the device's descendants may require it to be at full power at various points during the cycle. Therefore the most straightforward way to do this safely is if the device and all its descendants can remain runtime suspended until the complete stage of system resume. To this end, introduce a new device PM flag, power.direct_complete and modify the PM core to use that flag as follows. If the ->prepare() callback of a device returns a positive number, the PM core will regard that as an indication that it may leave the device runtime-suspended. It will then check if the system power transition in progress is a suspend (and not hibernation in particular) and if the device is, indeed, runtime-suspended. In that case, the PM core will set the device's power.direct_complete flag. Otherwise it will clear power.direct_complete for the device and it also will later clear it for the device's parent (if there's one). Next, the PM core will not invoke the ->suspend() ->suspend_late(), ->suspend_irq(), ->resume_irq(), ->resume_early(), or ->resume() callbacks for all devices having power.direct_complete set. It will invoke their ->complete() callbacks, however, and those callbacks are then responsible for resuming the devices as appropriate, if necessary. For example, in some cases they may need to queue up runtime resume requests for the devices using pm_request_resume(). Changelog partly based on an Alan Stern's description of the idea (http://marc.info/?l=linux-pm&m=139940466625569&w=2). Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Alan Stern <stern@rowland.harvard.edu>
2014-05-16 00:46:50 +00:00
int ret = 0;
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
if (dev->power.syscore)
return 0;
/*
* If a device's parent goes into runtime suspend at the wrong time,
* it won't be possible to resume the device. To prevent this we
* block runtime suspend here, during the prepare phase, and allow
* it again during the complete phase.
*/
pm_runtime_get_noresume(dev);
Driver core: create lock/unlock functions for struct device In the future, we are going to be changing the lock type for struct device (once we get the lockdep infrastructure properly worked out) To make that changeover easier, and to possibly burry the lock in a different part of struct device, let's create some functions to lock and unlock a device so that no out-of-core code needs to be changed in the future. This patch creates the device_lock/unlock/trylock() functions, and converts all in-tree users to them. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Jean Delvare <khali@linux-fr.org> Cc: Dave Young <hidave.darkstar@gmail.com> Cc: Ming Lei <tom.leiming@gmail.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Phil Carmody <ext-phil.2.carmody@nokia.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Cornelia Huck <cornelia.huck@de.ibm.com> Cc: Rafael J. Wysocki <rjw@sisk.pl> Cc: Pavel Machek <pavel@ucw.cz> Cc: Len Brown <len.brown@intel.com> Cc: Magnus Damm <damm@igel.co.jp> Cc: Alan Stern <stern@rowland.harvard.edu> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Stefan Richter <stefanr@s5r6.in-berlin.de> Cc: David Brownell <dbrownell@users.sourceforge.net> Cc: Vegard Nossum <vegard.nossum@gmail.com> Cc: Jesse Barnes <jbarnes@virtuousgeek.org> Cc: Alex Chiang <achiang@hp.com> Cc: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andrew Patterson <andrew.patterson@hp.com> Cc: Yu Zhao <yu.zhao@intel.com> Cc: Dominik Brodowski <linux@dominikbrodowski.net> Cc: Samuel Ortiz <sameo@linux.intel.com> Cc: Wolfram Sang <w.sang@pengutronix.de> Cc: CHENG Renquan <rqcheng@smu.edu.sg> Cc: Oliver Neukum <oliver@neukum.org> Cc: Frans Pop <elendil@planet.nl> Cc: David Vrabel <david.vrabel@csr.com> Cc: Kay Sievers <kay.sievers@vrfy.org> Cc: Sarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-02-17 18:57:05 +00:00
device_lock(dev);
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
dev->power.wakeup_path = device_may_wakeup(dev);
if (dev->power.no_pm_callbacks) {
ret = 1; /* Let device go direct_complete */
goto unlock;
}
if (dev->pm_domain)
callback = dev->pm_domain->ops.prepare;
else if (dev->type && dev->type->pm)
callback = dev->type->pm->prepare;
else if (dev->class && dev->class->pm)
callback = dev->class->pm->prepare;
else if (dev->bus && dev->bus->pm)
callback = dev->bus->pm->prepare;
if (!callback && dev->driver && dev->driver->pm)
callback = dev->driver->pm->prepare;
if (callback)
PM / sleep: Mechanism to avoid resuming runtime-suspended devices unnecessarily Currently, some subsystems (e.g. PCI and the ACPI PM domain) have to resume all runtime-suspended devices during system suspend, mostly because those devices may need to be reprogrammed due to different wakeup settings for system sleep and for runtime PM. For some devices, though, it's OK to remain in runtime suspend throughout a complete system suspend/resume cycle (if the device was in runtime suspend at the start of the cycle). We would like to do this whenever possible, to avoid the overhead of extra power-up and power-down events. However, problems may arise because the device's descendants may require it to be at full power at various points during the cycle. Therefore the most straightforward way to do this safely is if the device and all its descendants can remain runtime suspended until the complete stage of system resume. To this end, introduce a new device PM flag, power.direct_complete and modify the PM core to use that flag as follows. If the ->prepare() callback of a device returns a positive number, the PM core will regard that as an indication that it may leave the device runtime-suspended. It will then check if the system power transition in progress is a suspend (and not hibernation in particular) and if the device is, indeed, runtime-suspended. In that case, the PM core will set the device's power.direct_complete flag. Otherwise it will clear power.direct_complete for the device and it also will later clear it for the device's parent (if there's one). Next, the PM core will not invoke the ->suspend() ->suspend_late(), ->suspend_irq(), ->resume_irq(), ->resume_early(), or ->resume() callbacks for all devices having power.direct_complete set. It will invoke their ->complete() callbacks, however, and those callbacks are then responsible for resuming the devices as appropriate, if necessary. For example, in some cases they may need to queue up runtime resume requests for the devices using pm_request_resume(). Changelog partly based on an Alan Stern's description of the idea (http://marc.info/?l=linux-pm&m=139940466625569&w=2). Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Alan Stern <stern@rowland.harvard.edu>
2014-05-16 00:46:50 +00:00
ret = callback(dev);
2011-02-16 20:53:17 +00:00
unlock:
Driver core: create lock/unlock functions for struct device In the future, we are going to be changing the lock type for struct device (once we get the lockdep infrastructure properly worked out) To make that changeover easier, and to possibly burry the lock in a different part of struct device, let's create some functions to lock and unlock a device so that no out-of-core code needs to be changed in the future. This patch creates the device_lock/unlock/trylock() functions, and converts all in-tree users to them. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Jean Delvare <khali@linux-fr.org> Cc: Dave Young <hidave.darkstar@gmail.com> Cc: Ming Lei <tom.leiming@gmail.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Phil Carmody <ext-phil.2.carmody@nokia.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Cornelia Huck <cornelia.huck@de.ibm.com> Cc: Rafael J. Wysocki <rjw@sisk.pl> Cc: Pavel Machek <pavel@ucw.cz> Cc: Len Brown <len.brown@intel.com> Cc: Magnus Damm <damm@igel.co.jp> Cc: Alan Stern <stern@rowland.harvard.edu> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Stefan Richter <stefanr@s5r6.in-berlin.de> Cc: David Brownell <dbrownell@users.sourceforge.net> Cc: Vegard Nossum <vegard.nossum@gmail.com> Cc: Jesse Barnes <jbarnes@virtuousgeek.org> Cc: Alex Chiang <achiang@hp.com> Cc: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andrew Patterson <andrew.patterson@hp.com> Cc: Yu Zhao <yu.zhao@intel.com> Cc: Dominik Brodowski <linux@dominikbrodowski.net> Cc: Samuel Ortiz <sameo@linux.intel.com> Cc: Wolfram Sang <w.sang@pengutronix.de> Cc: CHENG Renquan <rqcheng@smu.edu.sg> Cc: Oliver Neukum <oliver@neukum.org> Cc: Frans Pop <elendil@planet.nl> Cc: David Vrabel <david.vrabel@csr.com> Cc: Kay Sievers <kay.sievers@vrfy.org> Cc: Sarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-02-17 18:57:05 +00:00
device_unlock(dev);
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
PM / sleep: Mechanism to avoid resuming runtime-suspended devices unnecessarily Currently, some subsystems (e.g. PCI and the ACPI PM domain) have to resume all runtime-suspended devices during system suspend, mostly because those devices may need to be reprogrammed due to different wakeup settings for system sleep and for runtime PM. For some devices, though, it's OK to remain in runtime suspend throughout a complete system suspend/resume cycle (if the device was in runtime suspend at the start of the cycle). We would like to do this whenever possible, to avoid the overhead of extra power-up and power-down events. However, problems may arise because the device's descendants may require it to be at full power at various points during the cycle. Therefore the most straightforward way to do this safely is if the device and all its descendants can remain runtime suspended until the complete stage of system resume. To this end, introduce a new device PM flag, power.direct_complete and modify the PM core to use that flag as follows. If the ->prepare() callback of a device returns a positive number, the PM core will regard that as an indication that it may leave the device runtime-suspended. It will then check if the system power transition in progress is a suspend (and not hibernation in particular) and if the device is, indeed, runtime-suspended. In that case, the PM core will set the device's power.direct_complete flag. Otherwise it will clear power.direct_complete for the device and it also will later clear it for the device's parent (if there's one). Next, the PM core will not invoke the ->suspend() ->suspend_late(), ->suspend_irq(), ->resume_irq(), ->resume_early(), or ->resume() callbacks for all devices having power.direct_complete set. It will invoke their ->complete() callbacks, however, and those callbacks are then responsible for resuming the devices as appropriate, if necessary. For example, in some cases they may need to queue up runtime resume requests for the devices using pm_request_resume(). Changelog partly based on an Alan Stern's description of the idea (http://marc.info/?l=linux-pm&m=139940466625569&w=2). Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Alan Stern <stern@rowland.harvard.edu>
2014-05-16 00:46:50 +00:00
if (ret < 0) {
suspend_report_result(callback, ret);
pm_runtime_put(dev);
PM / sleep: Mechanism to avoid resuming runtime-suspended devices unnecessarily Currently, some subsystems (e.g. PCI and the ACPI PM domain) have to resume all runtime-suspended devices during system suspend, mostly because those devices may need to be reprogrammed due to different wakeup settings for system sleep and for runtime PM. For some devices, though, it's OK to remain in runtime suspend throughout a complete system suspend/resume cycle (if the device was in runtime suspend at the start of the cycle). We would like to do this whenever possible, to avoid the overhead of extra power-up and power-down events. However, problems may arise because the device's descendants may require it to be at full power at various points during the cycle. Therefore the most straightforward way to do this safely is if the device and all its descendants can remain runtime suspended until the complete stage of system resume. To this end, introduce a new device PM flag, power.direct_complete and modify the PM core to use that flag as follows. If the ->prepare() callback of a device returns a positive number, the PM core will regard that as an indication that it may leave the device runtime-suspended. It will then check if the system power transition in progress is a suspend (and not hibernation in particular) and if the device is, indeed, runtime-suspended. In that case, the PM core will set the device's power.direct_complete flag. Otherwise it will clear power.direct_complete for the device and it also will later clear it for the device's parent (if there's one). Next, the PM core will not invoke the ->suspend() ->suspend_late(), ->suspend_irq(), ->resume_irq(), ->resume_early(), or ->resume() callbacks for all devices having power.direct_complete set. It will invoke their ->complete() callbacks, however, and those callbacks are then responsible for resuming the devices as appropriate, if necessary. For example, in some cases they may need to queue up runtime resume requests for the devices using pm_request_resume(). Changelog partly based on an Alan Stern's description of the idea (http://marc.info/?l=linux-pm&m=139940466625569&w=2). Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Alan Stern <stern@rowland.harvard.edu>
2014-05-16 00:46:50 +00:00
return ret;
}
/*
* A positive return value from ->prepare() means "this device appears
* to be runtime-suspended and its state is fine, so if it really is
* runtime-suspended, you can leave it in that state provided that you
* will do the same thing with all of its descendants". This only
* applies to suspend transitions, however.
*/
spin_lock_irq(&dev->power.lock);
dev->power.direct_complete = ret > 0 && state.event == PM_EVENT_SUSPEND;
spin_unlock_irq(&dev->power.lock);
return 0;
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
}
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
/**
* dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
* @state: PM transition of the system being carried out.
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
*
* Execute the ->prepare() callback(s) for all devices.
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
*/
int dpm_prepare(pm_message_t state)
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
{
int error = 0;
trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
might_sleep();
/*
* Give a chance for the known devices to complete their probes, before
* disable probing of devices. This sync point is important at least
* at boot time + hibernation restore.
*/
wait_for_device_probe();
/*
* It is unsafe if probing of devices will happen during suspend or
* hibernation and system behavior will be unpredictable in this case.
* So, let's prohibit device's probing here and defer their probes
* instead. The normal behavior will be restored in dpm_complete().
*/
device_block_probing();
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
mutex_lock(&dpm_list_mtx);
while (!list_empty(&dpm_list)) {
struct device *dev = to_device(dpm_list.next);
get_device(dev);
mutex_unlock(&dpm_list_mtx);
trace_device_pm_callback_start(dev, "", state.event);
PM: Limit race conditions between runtime PM and system sleep (v2) One of the roles of the PM core is to prevent different PM callbacks executed for the same device object from racing with each other. Unfortunately, after commit e8665002477f0278f84f898145b1f141ba26ee26 (PM: Allow pm_runtime_suspend() to succeed during system suspend) runtime PM callbacks may be executed concurrently with system suspend/resume callbacks for the same device. The main reason for commit e8665002477f0278f84f898145b1f141ba26ee26 was that some subsystems and device drivers wanted to use runtime PM helpers, pm_runtime_suspend() and pm_runtime_put_sync() in particular, for carrying out the suspend of devices in their .suspend() callbacks. However, as it's been determined recently, there are multiple reasons not to do so, inlcuding: * The caller really doesn't control the runtime PM usage counters, because user space can access them through sysfs and effectively block runtime PM. That means using pm_runtime_suspend() or pm_runtime_get_sync() to suspend devices during system suspend may or may not work. * If a driver calls pm_runtime_suspend() from its .suspend() callback, it causes the subsystem's .runtime_suspend() callback to be executed, which leads to the call sequence: subsys->suspend(dev) driver->suspend(dev) pm_runtime_suspend(dev) subsys->runtime_suspend(dev) recursive from the subsystem's point of view. For some subsystems that may actually work (e.g. the platform bus type), but for some it will fail in a rather spectacular fashion (e.g. PCI). In each case it means a layering violation. * Both the subsystem and the driver can provide .suspend_noirq() callbacks for system suspend that can do whatever the .runtime_suspend() callbacks do just fine, so it really isn't necessary to call pm_runtime_suspend() during system suspend. * The runtime PM's handling of wakeup devices is usually different from the system suspend's one, so .runtime_suspend() may simply be inappropriate for system suspend. * System suspend is supposed to work even if CONFIG_PM_RUNTIME is unset. * The runtime PM workqueue is frozen before system suspend, so if whatever the driver is going to do during system suspend depends on it, that simply won't work. Still, there is a good reason to allow pm_runtime_resume() to succeed during system suspend and resume (for instance, some subsystems and device drivers may legitimately use it to ensure that their devices are in full-power states before suspending them). Moreover, there is no reason to prevent runtime PM callbacks from being executed in parallel with the system suspend/resume .prepare() and .complete() callbacks and the code removed by commit e8665002477f0278f84f898145b1f141ba26ee26 went too far in this respect. On the other hand, runtime PM callbacks, including .runtime_resume(), must not be executed during system suspend's "late" stage of suspending devices and during system resume's "early" device resume stage. Taking all of the above into consideration, make the PM core acquire a runtime PM reference to every device and resume it if there's a runtime PM resume request pending right before executing the subsystem-level .suspend() callback for it. Make the PM core drop references to all devices right after executing the subsystem-level .resume() callbacks for them. Additionally, make the PM core disable the runtime PM framework for all devices during system suspend, after executing the subsystem-level .suspend() callbacks for them, and enable the runtime PM framework for all devices during system resume, right before executing the subsystem-level .resume() callbacks for them. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Kevin Hilman <khilman@ti.com>
2011-07-06 08:51:58 +00:00
error = device_prepare(dev, state);
trace_device_pm_callback_end(dev, error);
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
mutex_lock(&dpm_list_mtx);
if (error) {
if (error == -EAGAIN) {
put_device(dev);
error = 0;
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
continue;
}
printk(KERN_INFO "PM: Device %s not prepared "
"for power transition: code %d\n",
dev_name(dev), error);
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
put_device(dev);
break;
}
dev->power.is_prepared = true;
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
if (!list_empty(&dev->power.entry))
list_move_tail(&dev->power.entry, &dpm_prepared_list);
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
put_device(dev);
}
mutex_unlock(&dpm_list_mtx);
trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
return error;
}
/**
* dpm_suspend_start - Prepare devices for PM transition and suspend them.
* @state: PM transition of the system being carried out.
*
* Prepare all non-sysdev devices for system PM transition and execute "suspend"
* callbacks for them.
*/
int dpm_suspend_start(pm_message_t state)
{
int error;
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
error = dpm_prepare(state);
PM / Suspend: Add statistics debugfs file for suspend to RAM Record S3 failure time about each reason and the latest two failed devices' names in S3 progress. We can check it through 'suspend_stats' entry in debugfs. The motivation of the patch: We are enabling power features on Medfield. Comparing with PC/notebook, a mobile enters/exits suspend-2-ram (we call it s3 on Medfield) far more frequently. If it can't enter suspend-2-ram in time, the power might be used up soon. We often find sometimes, a device suspend fails. Then, system retries s3 over and over again. As display is off, testers and developers don't know what happens. Some testers and developers complain they don't know if system tries suspend-2-ram, and what device fails to suspend. They need such info for a quick check. The patch adds suspend_stats under debugfs for users to check suspend to RAM statistics quickly. If not using this patch, we have other methods to get info about what device fails. One is to turn on CONFIG_PM_DEBUG, but users would get too much info and testers need recompile the system. In addition, dynamic debug is another good tool to dump debug info. But it still doesn't match our utilization scenario closely. 1) user need write a user space parser to process the syslog output; 2) Our testing scenario is we leave the mobile for at least hours. Then, check its status. No serial console available during the testing. One is because console would be suspended, and the other is serial console connecting with spi or HSU devices would consume power. These devices are powered off at suspend-2-ram. Signed-off-by: ShuoX Liu <shuox.liu@intel.com> Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
2011-08-10 21:01:26 +00:00
if (error) {
suspend_stats.failed_prepare++;
dpm_save_failed_step(SUSPEND_PREPARE);
} else
Introduce new top level suspend and hibernation callbacks Introduce 'struct pm_ops' and 'struct pm_ext_ops' ('ext' meaning 'extended') representing suspend and hibernation operations for bus types, device classes, device types and device drivers. Modify the PM core to use 'struct pm_ops' and 'struct pm_ext_ops' objects, if defined, instead of the ->suspend(), ->resume(), ->suspend_late(), and ->resume_early() callbacks (the old callbacks will be considered as legacy and gradually phased out). The main purpose of doing this is to separate suspend (aka S2RAM and standby) callbacks from hibernation callbacks in such a way that the new callbacks won't take arguments and the semantics of each of them will be clearly specified. This has been requested for multiple times by many people, including Linus himself, and the reason is that within the current scheme if ->resume() is called, for example, it's difficult to say why it's been called (ie. is it a resume from RAM or from hibernation or a suspend/hibernation failure etc.?). The second purpose is to make the suspend/hibernation callbacks more flexible so that device drivers can handle more than they can within the current scheme. For example, some drivers may need to prevent new children of the device from being registered before their ->suspend() callbacks are executed or they may want to carry out some operations requiring the availability of some other devices, not directly bound via the parent-child relationship, in order to prepare for the execution of ->suspend(), etc. Ultimately, we'd like to stop using the freezing of tasks for suspend and therefore the drivers' suspend/hibernation code will have to take care of the handling of the user space during suspend/hibernation. That, in turn, would be difficult within the current scheme, without the new ->prepare() and ->complete() callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-05-20 21:00:01 +00:00
error = dpm_suspend(state);
return error;
}
EXPORT_SYMBOL_GPL(dpm_suspend_start);
void __suspend_report_result(const char *function, void *fn, int ret)
{
if (ret)
printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
}
EXPORT_SYMBOL_GPL(__suspend_report_result);
/**
* device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
* @dev: Device to wait for.
* @subordinate: Device that needs to wait for @dev.
*/
int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
{
dpm_wait(dev, subordinate->power.async_suspend);
return async_error;
}
EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
/**
* dpm_for_each_dev - device iterator.
* @data: data for the callback.
* @fn: function to be called for each device.
*
* Iterate over devices in dpm_list, and call @fn for each device,
* passing it @data.
*/
void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
{
struct device *dev;
if (!fn)
return;
device_pm_lock();
list_for_each_entry(dev, &dpm_list, power.entry)
fn(dev, data);
device_pm_unlock();
}
EXPORT_SYMBOL_GPL(dpm_for_each_dev);
static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
{
if (!ops)
return true;
return !ops->prepare &&
!ops->suspend &&
!ops->suspend_late &&
!ops->suspend_noirq &&
!ops->resume_noirq &&
!ops->resume_early &&
!ops->resume &&
!ops->complete;
}
void device_pm_check_callbacks(struct device *dev)
{
spin_lock_irq(&dev->power.lock);
dev->power.no_pm_callbacks =
(!dev->bus || pm_ops_is_empty(dev->bus->pm)) &&
(!dev->class || pm_ops_is_empty(dev->class->pm)) &&
(!dev->type || pm_ops_is_empty(dev->type->pm)) &&
(!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
(!dev->driver || pm_ops_is_empty(dev->driver->pm));
spin_unlock_irq(&dev->power.lock);
}