forked from Minki/linux
543 lines
15 KiB
C
543 lines
15 KiB
C
|
/*
|
||
|
* sun4i-ss-cipher.c - hardware cryptographic accelerator for Allwinner A20 SoC
|
||
|
*
|
||
|
* Copyright (C) 2013-2015 Corentin LABBE <clabbe.montjoie@gmail.com>
|
||
|
*
|
||
|
* This file add support for AES cipher with 128,192,256 bits
|
||
|
* keysize in CBC and ECB mode.
|
||
|
* Add support also for DES and 3DES in CBC and ECB mode.
|
||
|
*
|
||
|
* You could find the datasheet in Documentation/arm/sunxi/README
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*/
|
||
|
#include "sun4i-ss.h"
|
||
|
|
||
|
static int sun4i_ss_opti_poll(struct ablkcipher_request *areq)
|
||
|
{
|
||
|
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
|
||
|
struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
|
||
|
struct sun4i_ss_ctx *ss = op->ss;
|
||
|
unsigned int ivsize = crypto_ablkcipher_ivsize(tfm);
|
||
|
struct sun4i_cipher_req_ctx *ctx = ablkcipher_request_ctx(areq);
|
||
|
u32 mode = ctx->mode;
|
||
|
/* when activating SS, the default FIFO space is SS_RX_DEFAULT(32) */
|
||
|
u32 rx_cnt = SS_RX_DEFAULT;
|
||
|
u32 tx_cnt = 0;
|
||
|
u32 spaces;
|
||
|
u32 v;
|
||
|
int i, err = 0;
|
||
|
unsigned int ileft = areq->nbytes;
|
||
|
unsigned int oleft = areq->nbytes;
|
||
|
unsigned int todo;
|
||
|
struct sg_mapping_iter mi, mo;
|
||
|
unsigned int oi, oo; /* offset for in and out */
|
||
|
|
||
|
if (areq->nbytes == 0)
|
||
|
return 0;
|
||
|
|
||
|
if (!areq->info) {
|
||
|
dev_err_ratelimited(ss->dev, "ERROR: Empty IV\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
if (!areq->src || !areq->dst) {
|
||
|
dev_err_ratelimited(ss->dev, "ERROR: Some SGs are NULL\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
spin_lock_bh(&ss->slock);
|
||
|
|
||
|
for (i = 0; i < op->keylen; i += 4)
|
||
|
writel(*(op->key + i / 4), ss->base + SS_KEY0 + i);
|
||
|
|
||
|
if (areq->info) {
|
||
|
for (i = 0; i < 4 && i < ivsize / 4; i++) {
|
||
|
v = *(u32 *)(areq->info + i * 4);
|
||
|
writel(v, ss->base + SS_IV0 + i * 4);
|
||
|
}
|
||
|
}
|
||
|
writel(mode, ss->base + SS_CTL);
|
||
|
|
||
|
sg_miter_start(&mi, areq->src, sg_nents(areq->src),
|
||
|
SG_MITER_FROM_SG | SG_MITER_ATOMIC);
|
||
|
sg_miter_start(&mo, areq->dst, sg_nents(areq->dst),
|
||
|
SG_MITER_TO_SG | SG_MITER_ATOMIC);
|
||
|
sg_miter_next(&mi);
|
||
|
sg_miter_next(&mo);
|
||
|
if (!mi.addr || !mo.addr) {
|
||
|
dev_err_ratelimited(ss->dev, "ERROR: sg_miter return null\n");
|
||
|
err = -EINVAL;
|
||
|
goto release_ss;
|
||
|
}
|
||
|
|
||
|
ileft = areq->nbytes / 4;
|
||
|
oleft = areq->nbytes / 4;
|
||
|
oi = 0;
|
||
|
oo = 0;
|
||
|
do {
|
||
|
todo = min3(rx_cnt, ileft, (mi.length - oi) / 4);
|
||
|
if (todo > 0) {
|
||
|
ileft -= todo;
|
||
|
writesl(ss->base + SS_RXFIFO, mi.addr + oi, todo);
|
||
|
oi += todo * 4;
|
||
|
}
|
||
|
if (oi == mi.length) {
|
||
|
sg_miter_next(&mi);
|
||
|
oi = 0;
|
||
|
}
|
||
|
|
||
|
spaces = readl(ss->base + SS_FCSR);
|
||
|
rx_cnt = SS_RXFIFO_SPACES(spaces);
|
||
|
tx_cnt = SS_TXFIFO_SPACES(spaces);
|
||
|
|
||
|
todo = min3(tx_cnt, oleft, (mo.length - oo) / 4);
|
||
|
if (todo > 0) {
|
||
|
oleft -= todo;
|
||
|
readsl(ss->base + SS_TXFIFO, mo.addr + oo, todo);
|
||
|
oo += todo * 4;
|
||
|
}
|
||
|
if (oo == mo.length) {
|
||
|
sg_miter_next(&mo);
|
||
|
oo = 0;
|
||
|
}
|
||
|
} while (mo.length > 0);
|
||
|
|
||
|
if (areq->info) {
|
||
|
for (i = 0; i < 4 && i < ivsize / 4; i++) {
|
||
|
v = readl(ss->base + SS_IV0 + i * 4);
|
||
|
*(u32 *)(areq->info + i * 4) = v;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
release_ss:
|
||
|
sg_miter_stop(&mi);
|
||
|
sg_miter_stop(&mo);
|
||
|
writel(0, ss->base + SS_CTL);
|
||
|
spin_unlock_bh(&ss->slock);
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
/* Generic function that support SG with size not multiple of 4 */
|
||
|
static int sun4i_ss_cipher_poll(struct ablkcipher_request *areq)
|
||
|
{
|
||
|
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
|
||
|
struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
|
||
|
struct sun4i_ss_ctx *ss = op->ss;
|
||
|
int no_chunk = 1;
|
||
|
struct scatterlist *in_sg = areq->src;
|
||
|
struct scatterlist *out_sg = areq->dst;
|
||
|
unsigned int ivsize = crypto_ablkcipher_ivsize(tfm);
|
||
|
struct sun4i_cipher_req_ctx *ctx = ablkcipher_request_ctx(areq);
|
||
|
u32 mode = ctx->mode;
|
||
|
/* when activating SS, the default FIFO space is SS_RX_DEFAULT(32) */
|
||
|
u32 rx_cnt = SS_RX_DEFAULT;
|
||
|
u32 tx_cnt = 0;
|
||
|
u32 v;
|
||
|
u32 spaces;
|
||
|
int i, err = 0;
|
||
|
unsigned int ileft = areq->nbytes;
|
||
|
unsigned int oleft = areq->nbytes;
|
||
|
unsigned int todo;
|
||
|
struct sg_mapping_iter mi, mo;
|
||
|
unsigned int oi, oo; /* offset for in and out */
|
||
|
char buf[4 * SS_RX_MAX];/* buffer for linearize SG src */
|
||
|
char bufo[4 * SS_TX_MAX]; /* buffer for linearize SG dst */
|
||
|
unsigned int ob = 0; /* offset in buf */
|
||
|
unsigned int obo = 0; /* offset in bufo*/
|
||
|
unsigned int obl = 0; /* length of data in bufo */
|
||
|
|
||
|
if (areq->nbytes == 0)
|
||
|
return 0;
|
||
|
|
||
|
if (!areq->info) {
|
||
|
dev_err_ratelimited(ss->dev, "ERROR: Empty IV\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
if (!areq->src || !areq->dst) {
|
||
|
dev_err_ratelimited(ss->dev, "ERROR: Some SGs are NULL\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* if we have only SGs with size multiple of 4,
|
||
|
* we can use the SS optimized function
|
||
|
*/
|
||
|
while (in_sg && no_chunk == 1) {
|
||
|
if ((in_sg->length % 4) != 0)
|
||
|
no_chunk = 0;
|
||
|
in_sg = sg_next(in_sg);
|
||
|
}
|
||
|
while (out_sg && no_chunk == 1) {
|
||
|
if ((out_sg->length % 4) != 0)
|
||
|
no_chunk = 0;
|
||
|
out_sg = sg_next(out_sg);
|
||
|
}
|
||
|
|
||
|
if (no_chunk == 1)
|
||
|
return sun4i_ss_opti_poll(areq);
|
||
|
|
||
|
spin_lock_bh(&ss->slock);
|
||
|
|
||
|
for (i = 0; i < op->keylen; i += 4)
|
||
|
writel(*(op->key + i / 4), ss->base + SS_KEY0 + i);
|
||
|
|
||
|
if (areq->info) {
|
||
|
for (i = 0; i < 4 && i < ivsize / 4; i++) {
|
||
|
v = *(u32 *)(areq->info + i * 4);
|
||
|
writel(v, ss->base + SS_IV0 + i * 4);
|
||
|
}
|
||
|
}
|
||
|
writel(mode, ss->base + SS_CTL);
|
||
|
|
||
|
sg_miter_start(&mi, areq->src, sg_nents(areq->src),
|
||
|
SG_MITER_FROM_SG | SG_MITER_ATOMIC);
|
||
|
sg_miter_start(&mo, areq->dst, sg_nents(areq->dst),
|
||
|
SG_MITER_TO_SG | SG_MITER_ATOMIC);
|
||
|
sg_miter_next(&mi);
|
||
|
sg_miter_next(&mo);
|
||
|
if (!mi.addr || !mo.addr) {
|
||
|
dev_err_ratelimited(ss->dev, "ERROR: sg_miter return null\n");
|
||
|
err = -EINVAL;
|
||
|
goto release_ss;
|
||
|
}
|
||
|
ileft = areq->nbytes;
|
||
|
oleft = areq->nbytes;
|
||
|
oi = 0;
|
||
|
oo = 0;
|
||
|
|
||
|
while (oleft > 0) {
|
||
|
if (ileft > 0) {
|
||
|
/*
|
||
|
* todo is the number of consecutive 4byte word that we
|
||
|
* can read from current SG
|
||
|
*/
|
||
|
todo = min3(rx_cnt, ileft / 4, (mi.length - oi) / 4);
|
||
|
if (todo > 0 && ob == 0) {
|
||
|
writesl(ss->base + SS_RXFIFO, mi.addr + oi,
|
||
|
todo);
|
||
|
ileft -= todo * 4;
|
||
|
oi += todo * 4;
|
||
|
} else {
|
||
|
/*
|
||
|
* not enough consecutive bytes, so we need to
|
||
|
* linearize in buf. todo is in bytes
|
||
|
* After that copy, if we have a multiple of 4
|
||
|
* we need to be able to write all buf in one
|
||
|
* pass, so it is why we min() with rx_cnt
|
||
|
*/
|
||
|
todo = min3(rx_cnt * 4 - ob, ileft,
|
||
|
mi.length - oi);
|
||
|
memcpy(buf + ob, mi.addr + oi, todo);
|
||
|
ileft -= todo;
|
||
|
oi += todo;
|
||
|
ob += todo;
|
||
|
if (ob % 4 == 0) {
|
||
|
writesl(ss->base + SS_RXFIFO, buf,
|
||
|
ob / 4);
|
||
|
ob = 0;
|
||
|
}
|
||
|
}
|
||
|
if (oi == mi.length) {
|
||
|
sg_miter_next(&mi);
|
||
|
oi = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
spaces = readl(ss->base + SS_FCSR);
|
||
|
rx_cnt = SS_RXFIFO_SPACES(spaces);
|
||
|
tx_cnt = SS_TXFIFO_SPACES(spaces);
|
||
|
dev_dbg(ss->dev, "%x %u/%u %u/%u cnt=%u %u/%u %u/%u cnt=%u %u %u\n",
|
||
|
mode,
|
||
|
oi, mi.length, ileft, areq->nbytes, rx_cnt,
|
||
|
oo, mo.length, oleft, areq->nbytes, tx_cnt,
|
||
|
todo, ob);
|
||
|
|
||
|
if (tx_cnt == 0)
|
||
|
continue;
|
||
|
/* todo in 4bytes word */
|
||
|
todo = min3(tx_cnt, oleft / 4, (mo.length - oo) / 4);
|
||
|
if (todo > 0) {
|
||
|
readsl(ss->base + SS_TXFIFO, mo.addr + oo, todo);
|
||
|
oleft -= todo * 4;
|
||
|
oo += todo * 4;
|
||
|
if (oo == mo.length) {
|
||
|
sg_miter_next(&mo);
|
||
|
oo = 0;
|
||
|
}
|
||
|
} else {
|
||
|
/*
|
||
|
* read obl bytes in bufo, we read at maximum for
|
||
|
* emptying the device
|
||
|
*/
|
||
|
readsl(ss->base + SS_TXFIFO, bufo, tx_cnt);
|
||
|
obl = tx_cnt * 4;
|
||
|
obo = 0;
|
||
|
do {
|
||
|
/*
|
||
|
* how many bytes we can copy ?
|
||
|
* no more than remaining SG size
|
||
|
* no more than remaining buffer
|
||
|
* no need to test against oleft
|
||
|
*/
|
||
|
todo = min(mo.length - oo, obl - obo);
|
||
|
memcpy(mo.addr + oo, bufo + obo, todo);
|
||
|
oleft -= todo;
|
||
|
obo += todo;
|
||
|
oo += todo;
|
||
|
if (oo == mo.length) {
|
||
|
sg_miter_next(&mo);
|
||
|
oo = 0;
|
||
|
}
|
||
|
} while (obo < obl);
|
||
|
/* bufo must be fully used here */
|
||
|
}
|
||
|
}
|
||
|
if (areq->info) {
|
||
|
for (i = 0; i < 4 && i < ivsize / 4; i++) {
|
||
|
v = readl(ss->base + SS_IV0 + i * 4);
|
||
|
*(u32 *)(areq->info + i * 4) = v;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
release_ss:
|
||
|
sg_miter_stop(&mi);
|
||
|
sg_miter_stop(&mo);
|
||
|
writel(0, ss->base + SS_CTL);
|
||
|
spin_unlock_bh(&ss->slock);
|
||
|
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
/* CBC AES */
|
||
|
int sun4i_ss_cbc_aes_encrypt(struct ablkcipher_request *areq)
|
||
|
{
|
||
|
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
|
||
|
struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
|
||
|
struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq);
|
||
|
|
||
|
rctx->mode = SS_OP_AES | SS_CBC | SS_ENABLED | SS_ENCRYPTION |
|
||
|
op->keymode;
|
||
|
return sun4i_ss_cipher_poll(areq);
|
||
|
}
|
||
|
|
||
|
int sun4i_ss_cbc_aes_decrypt(struct ablkcipher_request *areq)
|
||
|
{
|
||
|
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
|
||
|
struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
|
||
|
struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq);
|
||
|
|
||
|
rctx->mode = SS_OP_AES | SS_CBC | SS_ENABLED | SS_DECRYPTION |
|
||
|
op->keymode;
|
||
|
return sun4i_ss_cipher_poll(areq);
|
||
|
}
|
||
|
|
||
|
/* ECB AES */
|
||
|
int sun4i_ss_ecb_aes_encrypt(struct ablkcipher_request *areq)
|
||
|
{
|
||
|
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
|
||
|
struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
|
||
|
struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq);
|
||
|
|
||
|
rctx->mode = SS_OP_AES | SS_ECB | SS_ENABLED | SS_ENCRYPTION |
|
||
|
op->keymode;
|
||
|
return sun4i_ss_cipher_poll(areq);
|
||
|
}
|
||
|
|
||
|
int sun4i_ss_ecb_aes_decrypt(struct ablkcipher_request *areq)
|
||
|
{
|
||
|
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
|
||
|
struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
|
||
|
struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq);
|
||
|
|
||
|
rctx->mode = SS_OP_AES | SS_ECB | SS_ENABLED | SS_DECRYPTION |
|
||
|
op->keymode;
|
||
|
return sun4i_ss_cipher_poll(areq);
|
||
|
}
|
||
|
|
||
|
/* CBC DES */
|
||
|
int sun4i_ss_cbc_des_encrypt(struct ablkcipher_request *areq)
|
||
|
{
|
||
|
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
|
||
|
struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
|
||
|
struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq);
|
||
|
|
||
|
rctx->mode = SS_OP_DES | SS_CBC | SS_ENABLED | SS_ENCRYPTION |
|
||
|
op->keymode;
|
||
|
return sun4i_ss_cipher_poll(areq);
|
||
|
}
|
||
|
|
||
|
int sun4i_ss_cbc_des_decrypt(struct ablkcipher_request *areq)
|
||
|
{
|
||
|
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
|
||
|
struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
|
||
|
struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq);
|
||
|
|
||
|
rctx->mode = SS_OP_DES | SS_CBC | SS_ENABLED | SS_DECRYPTION |
|
||
|
op->keymode;
|
||
|
return sun4i_ss_cipher_poll(areq);
|
||
|
}
|
||
|
|
||
|
/* ECB DES */
|
||
|
int sun4i_ss_ecb_des_encrypt(struct ablkcipher_request *areq)
|
||
|
{
|
||
|
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
|
||
|
struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
|
||
|
struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq);
|
||
|
|
||
|
rctx->mode = SS_OP_DES | SS_ECB | SS_ENABLED | SS_ENCRYPTION |
|
||
|
op->keymode;
|
||
|
return sun4i_ss_cipher_poll(areq);
|
||
|
}
|
||
|
|
||
|
int sun4i_ss_ecb_des_decrypt(struct ablkcipher_request *areq)
|
||
|
{
|
||
|
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
|
||
|
struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
|
||
|
struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq);
|
||
|
|
||
|
rctx->mode = SS_OP_DES | SS_ECB | SS_ENABLED | SS_DECRYPTION |
|
||
|
op->keymode;
|
||
|
return sun4i_ss_cipher_poll(areq);
|
||
|
}
|
||
|
|
||
|
/* CBC 3DES */
|
||
|
int sun4i_ss_cbc_des3_encrypt(struct ablkcipher_request *areq)
|
||
|
{
|
||
|
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
|
||
|
struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
|
||
|
struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq);
|
||
|
|
||
|
rctx->mode = SS_OP_3DES | SS_CBC | SS_ENABLED | SS_ENCRYPTION |
|
||
|
op->keymode;
|
||
|
return sun4i_ss_cipher_poll(areq);
|
||
|
}
|
||
|
|
||
|
int sun4i_ss_cbc_des3_decrypt(struct ablkcipher_request *areq)
|
||
|
{
|
||
|
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
|
||
|
struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
|
||
|
struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq);
|
||
|
|
||
|
rctx->mode = SS_OP_3DES | SS_CBC | SS_ENABLED | SS_DECRYPTION |
|
||
|
op->keymode;
|
||
|
return sun4i_ss_cipher_poll(areq);
|
||
|
}
|
||
|
|
||
|
/* ECB 3DES */
|
||
|
int sun4i_ss_ecb_des3_encrypt(struct ablkcipher_request *areq)
|
||
|
{
|
||
|
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
|
||
|
struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
|
||
|
struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq);
|
||
|
|
||
|
rctx->mode = SS_OP_3DES | SS_ECB | SS_ENABLED | SS_ENCRYPTION |
|
||
|
op->keymode;
|
||
|
return sun4i_ss_cipher_poll(areq);
|
||
|
}
|
||
|
|
||
|
int sun4i_ss_ecb_des3_decrypt(struct ablkcipher_request *areq)
|
||
|
{
|
||
|
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
|
||
|
struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
|
||
|
struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq);
|
||
|
|
||
|
rctx->mode = SS_OP_3DES | SS_ECB | SS_ENABLED | SS_DECRYPTION |
|
||
|
op->keymode;
|
||
|
return sun4i_ss_cipher_poll(areq);
|
||
|
}
|
||
|
|
||
|
int sun4i_ss_cipher_init(struct crypto_tfm *tfm)
|
||
|
{
|
||
|
struct sun4i_tfm_ctx *op = crypto_tfm_ctx(tfm);
|
||
|
struct crypto_alg *alg = tfm->__crt_alg;
|
||
|
struct sun4i_ss_alg_template *algt;
|
||
|
|
||
|
memset(op, 0, sizeof(struct sun4i_tfm_ctx));
|
||
|
|
||
|
algt = container_of(alg, struct sun4i_ss_alg_template, alg.crypto);
|
||
|
op->ss = algt->ss;
|
||
|
|
||
|
tfm->crt_ablkcipher.reqsize = sizeof(struct sun4i_cipher_req_ctx);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* check and set the AES key, prepare the mode to be used */
|
||
|
int sun4i_ss_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
|
||
|
unsigned int keylen)
|
||
|
{
|
||
|
struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
|
||
|
struct sun4i_ss_ctx *ss = op->ss;
|
||
|
|
||
|
switch (keylen) {
|
||
|
case 128 / 8:
|
||
|
op->keymode = SS_AES_128BITS;
|
||
|
break;
|
||
|
case 192 / 8:
|
||
|
op->keymode = SS_AES_192BITS;
|
||
|
break;
|
||
|
case 256 / 8:
|
||
|
op->keymode = SS_AES_256BITS;
|
||
|
break;
|
||
|
default:
|
||
|
dev_err(ss->dev, "ERROR: Invalid keylen %u\n", keylen);
|
||
|
crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
op->keylen = keylen;
|
||
|
memcpy(op->key, key, keylen);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* check and set the DES key, prepare the mode to be used */
|
||
|
int sun4i_ss_des_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
|
||
|
unsigned int keylen)
|
||
|
{
|
||
|
struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
|
||
|
struct sun4i_ss_ctx *ss = op->ss;
|
||
|
u32 flags;
|
||
|
u32 tmp[DES_EXPKEY_WORDS];
|
||
|
int ret;
|
||
|
|
||
|
if (unlikely(keylen != DES_KEY_SIZE)) {
|
||
|
dev_err(ss->dev, "Invalid keylen %u\n", keylen);
|
||
|
crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
flags = crypto_ablkcipher_get_flags(tfm);
|
||
|
|
||
|
ret = des_ekey(tmp, key);
|
||
|
if (unlikely(ret == 0) && (flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
|
||
|
crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_WEAK_KEY);
|
||
|
dev_dbg(ss->dev, "Weak key %u\n", keylen);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
op->keylen = keylen;
|
||
|
memcpy(op->key, key, keylen);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* check and set the 3DES key, prepare the mode to be used */
|
||
|
int sun4i_ss_des3_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
|
||
|
unsigned int keylen)
|
||
|
{
|
||
|
struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
|
||
|
struct sun4i_ss_ctx *ss = op->ss;
|
||
|
|
||
|
if (unlikely(keylen != 3 * DES_KEY_SIZE)) {
|
||
|
dev_err(ss->dev, "Invalid keylen %u\n", keylen);
|
||
|
crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
op->keylen = keylen;
|
||
|
memcpy(op->key, key, keylen);
|
||
|
return 0;
|
||
|
}
|