forked from Minki/linux
614 lines
16 KiB
C
614 lines
16 KiB
C
|
/* -*- c-basic-offset: 8 -*-
|
||
|
*
|
||
|
* fw-device.c - Device probing and sysfs code.
|
||
|
*
|
||
|
* Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net>
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software Foundation,
|
||
|
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||
|
*/
|
||
|
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/wait.h>
|
||
|
#include <linux/errno.h>
|
||
|
#include <linux/kthread.h>
|
||
|
#include <linux/device.h>
|
||
|
#include <linux/delay.h>
|
||
|
#include "fw-transaction.h"
|
||
|
#include "fw-topology.h"
|
||
|
#include "fw-device.h"
|
||
|
|
||
|
void fw_csr_iterator_init(struct fw_csr_iterator *ci, u32 * p)
|
||
|
{
|
||
|
ci->p = p + 1;
|
||
|
ci->end = ci->p + (p[0] >> 16);
|
||
|
}
|
||
|
|
||
|
EXPORT_SYMBOL(fw_csr_iterator_init);
|
||
|
|
||
|
int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
|
||
|
{
|
||
|
*key = *ci->p >> 24;
|
||
|
*value = *ci->p & 0xffffff;
|
||
|
|
||
|
return ci->p++ < ci->end;
|
||
|
}
|
||
|
|
||
|
EXPORT_SYMBOL(fw_csr_iterator_next);
|
||
|
|
||
|
static int is_fw_unit(struct device *dev);
|
||
|
|
||
|
static int match_unit_directory(u32 * directory, struct fw_device_id *id)
|
||
|
{
|
||
|
struct fw_csr_iterator ci;
|
||
|
int key, value, match;
|
||
|
|
||
|
match = 0;
|
||
|
fw_csr_iterator_init(&ci, directory);
|
||
|
while (fw_csr_iterator_next(&ci, &key, &value)) {
|
||
|
if (key == CSR_VENDOR && value == id->vendor)
|
||
|
match |= FW_MATCH_VENDOR;
|
||
|
if (key == CSR_MODEL && value == id->model)
|
||
|
match |= FW_MATCH_MODEL;
|
||
|
if (key == CSR_SPECIFIER_ID && value == id->specifier_id)
|
||
|
match |= FW_MATCH_SPECIFIER_ID;
|
||
|
if (key == CSR_VERSION && value == id->version)
|
||
|
match |= FW_MATCH_VERSION;
|
||
|
}
|
||
|
|
||
|
return (match & id->match_flags) == id->match_flags;
|
||
|
}
|
||
|
|
||
|
static int fw_unit_match(struct device *dev, struct device_driver *drv)
|
||
|
{
|
||
|
struct fw_unit *unit = fw_unit(dev);
|
||
|
struct fw_driver *driver = fw_driver(drv);
|
||
|
int i;
|
||
|
|
||
|
/* We only allow binding to fw_units. */
|
||
|
if (!is_fw_unit(dev))
|
||
|
return 0;
|
||
|
|
||
|
for (i = 0; driver->id_table[i].match_flags != 0; i++) {
|
||
|
if (match_unit_directory(unit->directory, &driver->id_table[i]))
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
|
||
|
{
|
||
|
struct fw_device *device = fw_device(unit->device.parent);
|
||
|
struct fw_csr_iterator ci;
|
||
|
|
||
|
int key, value;
|
||
|
int vendor = 0;
|
||
|
int model = 0;
|
||
|
int specifier_id = 0;
|
||
|
int version = 0;
|
||
|
|
||
|
fw_csr_iterator_init(&ci, &device->config_rom[5]);
|
||
|
while (fw_csr_iterator_next(&ci, &key, &value)) {
|
||
|
switch (key) {
|
||
|
case CSR_VENDOR:
|
||
|
vendor = value;
|
||
|
break;
|
||
|
case CSR_MODEL:
|
||
|
model = value;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
fw_csr_iterator_init(&ci, unit->directory);
|
||
|
while (fw_csr_iterator_next(&ci, &key, &value)) {
|
||
|
switch (key) {
|
||
|
case CSR_SPECIFIER_ID:
|
||
|
specifier_id = value;
|
||
|
break;
|
||
|
case CSR_VERSION:
|
||
|
version = value;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return snprintf(buffer, buffer_size,
|
||
|
"ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
|
||
|
vendor, model, specifier_id, version);
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
fw_unit_uevent(struct device *dev, char **envp, int num_envp,
|
||
|
char *buffer, int buffer_size)
|
||
|
{
|
||
|
struct fw_unit *unit = fw_unit(dev);
|
||
|
char modalias[64];
|
||
|
int length = 0;
|
||
|
int i = 0;
|
||
|
|
||
|
if (!is_fw_unit(dev))
|
||
|
goto out;
|
||
|
|
||
|
get_modalias(unit, modalias, sizeof modalias);
|
||
|
|
||
|
if (add_uevent_var(envp, num_envp, &i,
|
||
|
buffer, buffer_size, &length,
|
||
|
"MODALIAS=%s", modalias))
|
||
|
return -ENOMEM;
|
||
|
|
||
|
out:
|
||
|
envp[i] = NULL;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
struct bus_type fw_bus_type = {
|
||
|
.name = "fw",
|
||
|
.match = fw_unit_match,
|
||
|
.uevent = fw_unit_uevent
|
||
|
};
|
||
|
|
||
|
EXPORT_SYMBOL(fw_bus_type);
|
||
|
|
||
|
extern struct fw_device *fw_device_get(struct fw_device *device)
|
||
|
{
|
||
|
get_device(&device->device);
|
||
|
|
||
|
return device;
|
||
|
}
|
||
|
|
||
|
extern void fw_device_put(struct fw_device *device)
|
||
|
{
|
||
|
put_device(&device->device);
|
||
|
}
|
||
|
|
||
|
static void fw_device_release(struct device *dev)
|
||
|
{
|
||
|
struct fw_device *device = fw_device(dev);
|
||
|
unsigned long flags;
|
||
|
|
||
|
/* Take the card lock so we don't set this to NULL while a
|
||
|
* FW_NODE_UPDATED callback is being handled. */
|
||
|
spin_lock_irqsave(&device->card->lock, flags);
|
||
|
device->node->data = NULL;
|
||
|
spin_unlock_irqrestore(&device->card->lock, flags);
|
||
|
|
||
|
fw_node_put(device->node);
|
||
|
fw_card_put(device->card);
|
||
|
kfree(device->config_rom);
|
||
|
kfree(device);
|
||
|
}
|
||
|
|
||
|
int fw_device_enable_phys_dma(struct fw_device *device)
|
||
|
{
|
||
|
return device->card->driver->enable_phys_dma(device->card,
|
||
|
device->node_id,
|
||
|
device->generation);
|
||
|
}
|
||
|
|
||
|
EXPORT_SYMBOL(fw_device_enable_phys_dma);
|
||
|
|
||
|
static ssize_t
|
||
|
show_modalias_attribute(struct device *dev,
|
||
|
struct device_attribute *attr, char *buf)
|
||
|
{
|
||
|
struct fw_unit *unit = fw_unit(dev);
|
||
|
int length;
|
||
|
|
||
|
length = get_modalias(unit, buf, PAGE_SIZE);
|
||
|
strcpy(buf + length, "\n");
|
||
|
|
||
|
return length + 1;
|
||
|
}
|
||
|
|
||
|
static struct device_attribute modalias_attribute = {
|
||
|
.attr = {.name = "modalias",.mode = S_IRUGO},
|
||
|
.show = show_modalias_attribute
|
||
|
};
|
||
|
|
||
|
static ssize_t
|
||
|
show_config_rom_attribute(struct device *dev,
|
||
|
struct device_attribute *attr, char *buf)
|
||
|
{
|
||
|
struct fw_device *device = fw_device(dev);
|
||
|
|
||
|
memcpy(buf, device->config_rom, device->config_rom_length * 4);
|
||
|
|
||
|
return device->config_rom_length * 4;
|
||
|
}
|
||
|
|
||
|
static struct device_attribute config_rom_attribute = {
|
||
|
.attr = {.name = "config_rom",.mode = S_IRUGO},
|
||
|
.show = show_config_rom_attribute,
|
||
|
};
|
||
|
|
||
|
struct read_quadlet_callback_data {
|
||
|
struct completion done;
|
||
|
int rcode;
|
||
|
u32 data;
|
||
|
};
|
||
|
|
||
|
static void
|
||
|
complete_transaction(struct fw_card *card, int rcode,
|
||
|
void *payload, size_t length, void *data)
|
||
|
{
|
||
|
struct read_quadlet_callback_data *callback_data = data;
|
||
|
|
||
|
if (rcode == RCODE_COMPLETE)
|
||
|
callback_data->data = be32_to_cpu(*(__be32 *)payload);
|
||
|
callback_data->rcode = rcode;
|
||
|
complete(&callback_data->done);
|
||
|
}
|
||
|
|
||
|
static int read_rom(struct fw_device *device, int index, u32 * data)
|
||
|
{
|
||
|
struct read_quadlet_callback_data callback_data;
|
||
|
struct fw_transaction t;
|
||
|
u64 offset;
|
||
|
|
||
|
init_completion(&callback_data.done);
|
||
|
|
||
|
offset = 0xfffff0000400ULL + index * 4;
|
||
|
fw_send_request(device->card, &t, TCODE_READ_QUADLET_REQUEST,
|
||
|
device->node_id | LOCAL_BUS,
|
||
|
device->generation, SCODE_100,
|
||
|
offset, NULL, 4, complete_transaction, &callback_data);
|
||
|
|
||
|
wait_for_completion(&callback_data.done);
|
||
|
|
||
|
*data = callback_data.data;
|
||
|
|
||
|
return callback_data.rcode;
|
||
|
}
|
||
|
|
||
|
static int read_bus_info_block(struct fw_device *device)
|
||
|
{
|
||
|
static u32 rom[256];
|
||
|
u32 stack[16], sp, key;
|
||
|
int i, end, length;
|
||
|
|
||
|
/* First read the bus info block. */
|
||
|
for (i = 0; i < 5; i++) {
|
||
|
if (read_rom(device, i, &rom[i]) != RCODE_COMPLETE)
|
||
|
return -1;
|
||
|
/* As per IEEE1212 7.2, during power-up, devices can
|
||
|
* reply with a 0 for the first quadlet of the config
|
||
|
* rom to indicate that they are booting (for example,
|
||
|
* if the firmware is on the disk of a external
|
||
|
* harddisk). In that case we just fail, and the
|
||
|
* retry mechanism will try again later. */
|
||
|
if (i == 0 && rom[i] == 0)
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
/* Now parse the config rom. The config rom is a recursive
|
||
|
* directory structure so we parse it using a stack of
|
||
|
* references to the blocks that make up the structure. We
|
||
|
* push a reference to the root directory on the stack to
|
||
|
* start things off. */
|
||
|
length = i;
|
||
|
sp = 0;
|
||
|
stack[sp++] = 0xc0000005;
|
||
|
while (sp > 0) {
|
||
|
/* Pop the next block reference of the stack. The
|
||
|
* lower 24 bits is the offset into the config rom,
|
||
|
* the upper 8 bits are the type of the reference the
|
||
|
* block. */
|
||
|
key = stack[--sp];
|
||
|
i = key & 0xffffff;
|
||
|
if (i >= ARRAY_SIZE(rom))
|
||
|
/* The reference points outside the standard
|
||
|
* config rom area, something's fishy. */
|
||
|
return -1;
|
||
|
|
||
|
/* Read header quadlet for the block to get the length. */
|
||
|
if (read_rom(device, i, &rom[i]) != RCODE_COMPLETE)
|
||
|
return -1;
|
||
|
end = i + (rom[i] >> 16) + 1;
|
||
|
i++;
|
||
|
if (end > ARRAY_SIZE(rom))
|
||
|
/* This block extends outside standard config
|
||
|
* area (and the array we're reading it
|
||
|
* into). That's broken, so ignore this
|
||
|
* device. */
|
||
|
return -1;
|
||
|
|
||
|
/* Now read in the block. If this is a directory
|
||
|
* block, check the entries as we read them to see if
|
||
|
* it references another block, and push it in that case. */
|
||
|
while (i < end) {
|
||
|
if (read_rom(device, i, &rom[i]) != RCODE_COMPLETE)
|
||
|
return -1;
|
||
|
if ((key >> 30) == 3 && (rom[i] >> 30) > 1 &&
|
||
|
sp < ARRAY_SIZE(stack))
|
||
|
stack[sp++] = i + rom[i];
|
||
|
i++;
|
||
|
}
|
||
|
if (length < i)
|
||
|
length = i;
|
||
|
}
|
||
|
|
||
|
device->config_rom = kmalloc(length * 4, GFP_KERNEL);
|
||
|
if (device->config_rom == NULL)
|
||
|
return -1;
|
||
|
memcpy(device->config_rom, rom, length * 4);
|
||
|
device->config_rom_length = length;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void fw_unit_release(struct device *dev)
|
||
|
{
|
||
|
struct fw_unit *unit = fw_unit(dev);
|
||
|
|
||
|
kfree(unit);
|
||
|
}
|
||
|
|
||
|
static int is_fw_unit(struct device *dev)
|
||
|
{
|
||
|
return dev->release == fw_unit_release;
|
||
|
}
|
||
|
|
||
|
static void create_units(struct fw_device *device)
|
||
|
{
|
||
|
struct fw_csr_iterator ci;
|
||
|
struct fw_unit *unit;
|
||
|
int key, value, i;
|
||
|
|
||
|
i = 0;
|
||
|
fw_csr_iterator_init(&ci, &device->config_rom[5]);
|
||
|
while (fw_csr_iterator_next(&ci, &key, &value)) {
|
||
|
if (key != (CSR_UNIT | CSR_DIRECTORY))
|
||
|
continue;
|
||
|
|
||
|
/* Get the address of the unit directory and try to
|
||
|
* match the drivers id_tables against it. */
|
||
|
unit = kzalloc(sizeof *unit, GFP_KERNEL);
|
||
|
if (unit == NULL) {
|
||
|
fw_error("failed to allocate memory for unit\n");
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
unit->directory = ci.p + value - 1;
|
||
|
unit->device.bus = &fw_bus_type;
|
||
|
unit->device.release = fw_unit_release;
|
||
|
unit->device.parent = &device->device;
|
||
|
snprintf(unit->device.bus_id, sizeof unit->device.bus_id,
|
||
|
"%s.%d", device->device.bus_id, i++);
|
||
|
|
||
|
if (device_register(&unit->device) < 0) {
|
||
|
kfree(unit);
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
if (device_create_file(&unit->device, &modalias_attribute) < 0) {
|
||
|
device_unregister(&unit->device);
|
||
|
kfree(unit);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int shutdown_unit(struct device *device, void *data)
|
||
|
{
|
||
|
struct fw_unit *unit = fw_unit(device);
|
||
|
|
||
|
if (is_fw_unit(device)) {
|
||
|
device_remove_file(&unit->device, &modalias_attribute);
|
||
|
device_unregister(&unit->device);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void fw_device_shutdown(struct work_struct *work)
|
||
|
{
|
||
|
struct fw_device *device =
|
||
|
container_of(work, struct fw_device, work.work);
|
||
|
|
||
|
device_remove_file(&device->device, &config_rom_attribute);
|
||
|
cdev_del(&device->cdev);
|
||
|
unregister_chrdev_region(device->device.devt, 1);
|
||
|
device_for_each_child(&device->device, NULL, shutdown_unit);
|
||
|
device_unregister(&device->device);
|
||
|
}
|
||
|
|
||
|
/* These defines control the retry behavior for reading the config
|
||
|
* rom. It shouldn't be necessary to tweak these; if the device
|
||
|
* doesn't respond to a config rom read within 10 seconds, it's not
|
||
|
* going to respond at all. As for the initial delay, a lot of
|
||
|
* devices will be able to respond within half a second after bus
|
||
|
* reset. On the other hand, it's not really worth being more
|
||
|
* aggressive than that, since it scales pretty well; if 10 devices
|
||
|
* are plugged in, they're all getting read within one second. */
|
||
|
|
||
|
#define MAX_RETRIES 5
|
||
|
#define RETRY_DELAY (2 * HZ)
|
||
|
#define INITIAL_DELAY (HZ / 2)
|
||
|
|
||
|
static void fw_device_init(struct work_struct *work)
|
||
|
{
|
||
|
static int serial;
|
||
|
struct fw_device *device =
|
||
|
container_of(work, struct fw_device, work.work);
|
||
|
|
||
|
/* All failure paths here set node->data to NULL, so that we
|
||
|
* don't try to do device_for_each_child() on a kfree()'d
|
||
|
* device. */
|
||
|
|
||
|
if (read_bus_info_block(device) < 0) {
|
||
|
if (device->config_rom_retries < MAX_RETRIES) {
|
||
|
device->config_rom_retries++;
|
||
|
schedule_delayed_work(&device->work, RETRY_DELAY);
|
||
|
} else {
|
||
|
fw_notify("giving up on config rom for node id %d\n",
|
||
|
device->node_id);
|
||
|
fw_device_release(&device->device);
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
device->device.bus = &fw_bus_type;
|
||
|
device->device.release = fw_device_release;
|
||
|
device->device.parent = device->card->device;
|
||
|
snprintf(device->device.bus_id, sizeof device->device.bus_id,
|
||
|
"fw%d", serial++);
|
||
|
|
||
|
if (alloc_chrdev_region(&device->device.devt, 0, 1, "fw")) {
|
||
|
fw_error("Failed to register char device region.\n");
|
||
|
goto error;
|
||
|
}
|
||
|
|
||
|
cdev_init(&device->cdev, &fw_device_ops);
|
||
|
device->cdev.owner = THIS_MODULE;
|
||
|
kobject_set_name(&device->cdev.kobj, device->device.bus_id);
|
||
|
if (cdev_add(&device->cdev, device->device.devt, 1)) {
|
||
|
fw_error("Failed to register char device.\n");
|
||
|
goto error;
|
||
|
}
|
||
|
|
||
|
if (device_add(&device->device)) {
|
||
|
fw_error("Failed to add device.\n");
|
||
|
goto error;
|
||
|
}
|
||
|
|
||
|
if (device_create_file(&device->device, &config_rom_attribute) < 0) {
|
||
|
fw_error("Failed to create config rom file.\n");
|
||
|
goto error_with_device;
|
||
|
}
|
||
|
|
||
|
create_units(device);
|
||
|
|
||
|
/* Transition the device to running state. If it got pulled
|
||
|
* out from under us while we did the intialization work, we
|
||
|
* have to shut down the device again here. Normally, though,
|
||
|
* fw_node_event will be responsible for shutting it down when
|
||
|
* necessary. We have to use the atomic cmpxchg here to avoid
|
||
|
* racing with the FW_NODE_DESTROYED case in
|
||
|
* fw_node_event(). */
|
||
|
if (cmpxchg(&device->state,
|
||
|
FW_DEVICE_INITIALIZING,
|
||
|
FW_DEVICE_RUNNING) == FW_DEVICE_SHUTDOWN)
|
||
|
fw_device_shutdown(&device->work.work);
|
||
|
else
|
||
|
fw_notify("created new fw device %s (%d config rom retries)\n",
|
||
|
device->device.bus_id, device->config_rom_retries);
|
||
|
|
||
|
/* Reschedule the IRM work if we just finished reading the
|
||
|
* root node config rom. If this races with a bus reset we
|
||
|
* just end up running the IRM work a couple of extra times -
|
||
|
* pretty harmless. */
|
||
|
if (device->node == device->card->root_node)
|
||
|
schedule_delayed_work(&device->card->work, 0);
|
||
|
|
||
|
return;
|
||
|
|
||
|
error_with_device:
|
||
|
device_del(&device->device);
|
||
|
error:
|
||
|
cdev_del(&device->cdev);
|
||
|
unregister_chrdev_region(device->device.devt, 1);
|
||
|
put_device(&device->device);
|
||
|
}
|
||
|
|
||
|
static int update_unit(struct device *dev, void *data)
|
||
|
{
|
||
|
struct fw_unit *unit = fw_unit(dev);
|
||
|
struct fw_driver *driver = (struct fw_driver *)dev->driver;
|
||
|
|
||
|
if (is_fw_unit(dev) && driver != NULL && driver->update != NULL)
|
||
|
driver->update(unit);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
|
||
|
{
|
||
|
struct fw_device *device;
|
||
|
|
||
|
/* Ignore events for the local node (i.e. the node that
|
||
|
* corresponds to the ieee1394 controller in this linux box). */
|
||
|
if (node == card->local_node)
|
||
|
return;
|
||
|
|
||
|
switch (event) {
|
||
|
case FW_NODE_CREATED:
|
||
|
case FW_NODE_LINK_ON:
|
||
|
if (!node->link_on)
|
||
|
break;
|
||
|
|
||
|
device = kzalloc(sizeof(*device), GFP_ATOMIC);
|
||
|
if (device == NULL)
|
||
|
break;
|
||
|
|
||
|
/* Do minimal intialization of the device here, the
|
||
|
* rest will happen in fw_device_init(). We need the
|
||
|
* card and node so we can read the config rom and we
|
||
|
* need to do device_initialize() now so
|
||
|
* device_for_each_child() in FW_NODE_UPDATED is
|
||
|
* doesn't freak out. */
|
||
|
device_initialize(&device->device);
|
||
|
device->state = FW_DEVICE_INITIALIZING;
|
||
|
device->card = fw_card_get(card);
|
||
|
device->node = fw_node_get(node);
|
||
|
device->node_id = node->node_id;
|
||
|
device->generation = card->generation;
|
||
|
|
||
|
/* Set the node data to point back to this device so
|
||
|
* FW_NODE_UPDATED callbacks can update the node_id
|
||
|
* and generation for the device. */
|
||
|
node->data = device;
|
||
|
|
||
|
/* Many devices are slow to respond after bus resets,
|
||
|
* especially if they are bus powered and go through
|
||
|
* power-up after getting plugged in. We schedule the
|
||
|
* first config rom scan half a second after bus reset. */
|
||
|
INIT_DELAYED_WORK(&device->work, fw_device_init);
|
||
|
schedule_delayed_work(&device->work, INITIAL_DELAY);
|
||
|
break;
|
||
|
|
||
|
case FW_NODE_UPDATED:
|
||
|
if (!node->link_on || node->data == NULL)
|
||
|
break;
|
||
|
|
||
|
device = node->data;
|
||
|
device->node_id = node->node_id;
|
||
|
device->generation = card->generation;
|
||
|
device_for_each_child(&device->device, NULL, update_unit);
|
||
|
break;
|
||
|
|
||
|
case FW_NODE_DESTROYED:
|
||
|
case FW_NODE_LINK_OFF:
|
||
|
if (!node->data)
|
||
|
break;
|
||
|
|
||
|
/* Destroy the device associated with the node. There
|
||
|
* are two cases here: either the device is fully
|
||
|
* initialized (FW_DEVICE_RUNNING) or we're in the
|
||
|
* process of reading its config rom
|
||
|
* (FW_DEVICE_INITIALIZING). If it is fully
|
||
|
* initialized we can reuse device->work to schedule a
|
||
|
* full fw_device_shutdown(). If not, there's work
|
||
|
* scheduled to read it's config rom, and we just put
|
||
|
* the device in shutdown state to have that code fail
|
||
|
* to create the device. */
|
||
|
device = node->data;
|
||
|
if (xchg(&device->state,
|
||
|
FW_DEVICE_SHUTDOWN) == FW_DEVICE_RUNNING) {
|
||
|
INIT_DELAYED_WORK(&device->work, fw_device_shutdown);
|
||
|
schedule_delayed_work(&device->work, 0);
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
}
|