net: WireGuard secure network tunnel
WireGuard is a layer 3 secure networking tunnel made specifically for
the kernel, that aims to be much simpler and easier to audit than IPsec.
Extensive documentation and description of the protocol and
considerations, along with formal proofs of the cryptography, are
available at:
* https://www.wireguard.com/
* https://www.wireguard.com/papers/wireguard.pdf
This commit implements WireGuard as a simple network device driver,
accessible in the usual RTNL way used by virtual network drivers. It
makes use of the udp_tunnel APIs, GRO, GSO, NAPI, and the usual set of
networking subsystem APIs. It has a somewhat novel multicore queueing
system designed for maximum throughput and minimal latency of encryption
operations, but it is implemented modestly using workqueues and NAPI.
Configuration is done via generic Netlink, and following a review from
the Netlink maintainer a year ago, several high profile userspace tools
have already implemented the API.
This commit also comes with several different tests, both in-kernel
tests and out-of-kernel tests based on network namespaces, taking profit
of the fact that sockets used by WireGuard intentionally stay in the
namespace the WireGuard interface was originally created, exactly like
the semantics of userspace tun devices. See wireguard.com/netns/ for
pictures and examples.
The source code is fairly short, but rather than combining everything
into a single file, WireGuard is developed as cleanly separable files,
making auditing and comprehension easier. Things are laid out as
follows:
* noise.[ch], cookie.[ch], messages.h: These implement the bulk of the
cryptographic aspects of the protocol, and are mostly data-only in
nature, taking in buffers of bytes and spitting out buffers of
bytes. They also handle reference counting for their various shared
pieces of data, like keys and key lists.
* ratelimiter.[ch]: Used as an integral part of cookie.[ch] for
ratelimiting certain types of cryptographic operations in accordance
with particular WireGuard semantics.
* allowedips.[ch], peerlookup.[ch]: The main lookup structures of
WireGuard, the former being trie-like with particular semantics, an
integral part of the design of the protocol, and the latter just
being nice helper functions around the various hashtables we use.
* device.[ch]: Implementation of functions for the netdevice and for
rtnl, responsible for maintaining the life of a given interface and
wiring it up to the rest of WireGuard.
* peer.[ch]: Each interface has a list of peers, with helper functions
available here for creation, destruction, and reference counting.
* socket.[ch]: Implementation of functions related to udp_socket and
the general set of kernel socket APIs, for sending and receiving
ciphertext UDP packets, and taking care of WireGuard-specific sticky
socket routing semantics for the automatic roaming.
* netlink.[ch]: Userspace API entry point for configuring WireGuard
peers and devices. The API has been implemented by several userspace
tools and network management utility, and the WireGuard project
distributes the basic wg(8) tool.
* queueing.[ch]: Shared function on the rx and tx path for handling
the various queues used in the multicore algorithms.
* send.c: Handles encrypting outgoing packets in parallel on
multiple cores, before sending them in order on a single core, via
workqueues and ring buffers. Also handles sending handshake and cookie
messages as part of the protocol, in parallel.
* receive.c: Handles decrypting incoming packets in parallel on
multiple cores, before passing them off in order to be ingested via
the rest of the networking subsystem with GRO via the typical NAPI
poll function. Also handles receiving handshake and cookie messages
as part of the protocol, in parallel.
* timers.[ch]: Uses the timer wheel to implement protocol particular
event timeouts, and gives a set of very simple event-driven entry
point functions for callers.
* main.c, version.h: Initialization and deinitialization of the module.
* selftest/*.h: Runtime unit tests for some of the most security
sensitive functions.
* tools/testing/selftests/wireguard/netns.sh: Aforementioned testing
script using network namespaces.
This commit aims to be as self-contained as possible, implementing
WireGuard as a standalone module not needing much special handling or
coordination from the network subsystem. I expect for future
optimizations to the network stack to positively improve WireGuard, and
vice-versa, but for the time being, this exists as intentionally
standalone.
We introduce a menu option for CONFIG_WIREGUARD, as well as providing a
verbose debug log and self-tests via CONFIG_WIREGUARD_DEBUG.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Cc: David Miller <davem@davemloft.net>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: linux-crypto@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: netdev@vger.kernel.org
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-08 23:27:34 +00:00
|
|
|
/* SPDX-License-Identifier: GPL-2.0 */
|
|
|
|
/*
|
|
|
|
* Copyright (C) 2015-2019 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef _WG_QUEUEING_H
|
|
|
|
#define _WG_QUEUEING_H
|
|
|
|
|
|
|
|
#include "peer.h"
|
|
|
|
#include <linux/types.h>
|
|
|
|
#include <linux/skbuff.h>
|
|
|
|
#include <linux/ip.h>
|
|
|
|
#include <linux/ipv6.h>
|
2020-06-30 01:06:21 +00:00
|
|
|
#include <net/ip_tunnels.h>
|
net: WireGuard secure network tunnel
WireGuard is a layer 3 secure networking tunnel made specifically for
the kernel, that aims to be much simpler and easier to audit than IPsec.
Extensive documentation and description of the protocol and
considerations, along with formal proofs of the cryptography, are
available at:
* https://www.wireguard.com/
* https://www.wireguard.com/papers/wireguard.pdf
This commit implements WireGuard as a simple network device driver,
accessible in the usual RTNL way used by virtual network drivers. It
makes use of the udp_tunnel APIs, GRO, GSO, NAPI, and the usual set of
networking subsystem APIs. It has a somewhat novel multicore queueing
system designed for maximum throughput and minimal latency of encryption
operations, but it is implemented modestly using workqueues and NAPI.
Configuration is done via generic Netlink, and following a review from
the Netlink maintainer a year ago, several high profile userspace tools
have already implemented the API.
This commit also comes with several different tests, both in-kernel
tests and out-of-kernel tests based on network namespaces, taking profit
of the fact that sockets used by WireGuard intentionally stay in the
namespace the WireGuard interface was originally created, exactly like
the semantics of userspace tun devices. See wireguard.com/netns/ for
pictures and examples.
The source code is fairly short, but rather than combining everything
into a single file, WireGuard is developed as cleanly separable files,
making auditing and comprehension easier. Things are laid out as
follows:
* noise.[ch], cookie.[ch], messages.h: These implement the bulk of the
cryptographic aspects of the protocol, and are mostly data-only in
nature, taking in buffers of bytes and spitting out buffers of
bytes. They also handle reference counting for their various shared
pieces of data, like keys and key lists.
* ratelimiter.[ch]: Used as an integral part of cookie.[ch] for
ratelimiting certain types of cryptographic operations in accordance
with particular WireGuard semantics.
* allowedips.[ch], peerlookup.[ch]: The main lookup structures of
WireGuard, the former being trie-like with particular semantics, an
integral part of the design of the protocol, and the latter just
being nice helper functions around the various hashtables we use.
* device.[ch]: Implementation of functions for the netdevice and for
rtnl, responsible for maintaining the life of a given interface and
wiring it up to the rest of WireGuard.
* peer.[ch]: Each interface has a list of peers, with helper functions
available here for creation, destruction, and reference counting.
* socket.[ch]: Implementation of functions related to udp_socket and
the general set of kernel socket APIs, for sending and receiving
ciphertext UDP packets, and taking care of WireGuard-specific sticky
socket routing semantics for the automatic roaming.
* netlink.[ch]: Userspace API entry point for configuring WireGuard
peers and devices. The API has been implemented by several userspace
tools and network management utility, and the WireGuard project
distributes the basic wg(8) tool.
* queueing.[ch]: Shared function on the rx and tx path for handling
the various queues used in the multicore algorithms.
* send.c: Handles encrypting outgoing packets in parallel on
multiple cores, before sending them in order on a single core, via
workqueues and ring buffers. Also handles sending handshake and cookie
messages as part of the protocol, in parallel.
* receive.c: Handles decrypting incoming packets in parallel on
multiple cores, before passing them off in order to be ingested via
the rest of the networking subsystem with GRO via the typical NAPI
poll function. Also handles receiving handshake and cookie messages
as part of the protocol, in parallel.
* timers.[ch]: Uses the timer wheel to implement protocol particular
event timeouts, and gives a set of very simple event-driven entry
point functions for callers.
* main.c, version.h: Initialization and deinitialization of the module.
* selftest/*.h: Runtime unit tests for some of the most security
sensitive functions.
* tools/testing/selftests/wireguard/netns.sh: Aforementioned testing
script using network namespaces.
This commit aims to be as self-contained as possible, implementing
WireGuard as a standalone module not needing much special handling or
coordination from the network subsystem. I expect for future
optimizations to the network stack to positively improve WireGuard, and
vice-versa, but for the time being, this exists as intentionally
standalone.
We introduce a menu option for CONFIG_WIREGUARD, as well as providing a
verbose debug log and self-tests via CONFIG_WIREGUARD_DEBUG.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Cc: David Miller <davem@davemloft.net>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: linux-crypto@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: netdev@vger.kernel.org
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-08 23:27:34 +00:00
|
|
|
|
|
|
|
struct wg_device;
|
|
|
|
struct wg_peer;
|
|
|
|
struct multicore_worker;
|
|
|
|
struct crypt_queue;
|
|
|
|
struct sk_buff;
|
|
|
|
|
|
|
|
/* queueing.c APIs: */
|
|
|
|
int wg_packet_queue_init(struct crypt_queue *queue, work_func_t function,
|
|
|
|
bool multicore, unsigned int len);
|
|
|
|
void wg_packet_queue_free(struct crypt_queue *queue, bool multicore);
|
|
|
|
struct multicore_worker __percpu *
|
|
|
|
wg_packet_percpu_multicore_worker_alloc(work_func_t function, void *ptr);
|
|
|
|
|
|
|
|
/* receive.c APIs: */
|
|
|
|
void wg_packet_receive(struct wg_device *wg, struct sk_buff *skb);
|
|
|
|
void wg_packet_handshake_receive_worker(struct work_struct *work);
|
|
|
|
/* NAPI poll function: */
|
|
|
|
int wg_packet_rx_poll(struct napi_struct *napi, int budget);
|
|
|
|
/* Workqueue worker: */
|
|
|
|
void wg_packet_decrypt_worker(struct work_struct *work);
|
|
|
|
|
|
|
|
/* send.c APIs: */
|
|
|
|
void wg_packet_send_queued_handshake_initiation(struct wg_peer *peer,
|
|
|
|
bool is_retry);
|
|
|
|
void wg_packet_send_handshake_response(struct wg_peer *peer);
|
|
|
|
void wg_packet_send_handshake_cookie(struct wg_device *wg,
|
|
|
|
struct sk_buff *initiating_skb,
|
|
|
|
__le32 sender_index);
|
|
|
|
void wg_packet_send_keepalive(struct wg_peer *peer);
|
|
|
|
void wg_packet_purge_staged_packets(struct wg_peer *peer);
|
|
|
|
void wg_packet_send_staged_packets(struct wg_peer *peer);
|
|
|
|
/* Workqueue workers: */
|
|
|
|
void wg_packet_handshake_send_worker(struct work_struct *work);
|
|
|
|
void wg_packet_tx_worker(struct work_struct *work);
|
|
|
|
void wg_packet_encrypt_worker(struct work_struct *work);
|
|
|
|
|
|
|
|
enum packet_state {
|
|
|
|
PACKET_STATE_UNCRYPTED,
|
|
|
|
PACKET_STATE_CRYPTED,
|
|
|
|
PACKET_STATE_DEAD
|
|
|
|
};
|
|
|
|
|
|
|
|
struct packet_cb {
|
|
|
|
u64 nonce;
|
|
|
|
struct noise_keypair *keypair;
|
|
|
|
atomic_t state;
|
|
|
|
u32 mtu;
|
|
|
|
u8 ds;
|
|
|
|
};
|
|
|
|
|
|
|
|
#define PACKET_CB(skb) ((struct packet_cb *)((skb)->cb))
|
|
|
|
#define PACKET_PEER(skb) (PACKET_CB(skb)->keypair->entry.peer)
|
|
|
|
|
wireguard: queueing: account for skb->protocol==0
We carry out checks to the effect of:
if (skb->protocol != wg_examine_packet_protocol(skb))
goto err;
By having wg_skb_examine_untrusted_ip_hdr return 0 on failure, this
means that the check above still passes in the case where skb->protocol
is zero, which is possible to hit with AF_PACKET:
struct sockaddr_pkt saddr = { .spkt_device = "wg0" };
unsigned char buffer[5] = { 0 };
sendto(socket(AF_PACKET, SOCK_PACKET, /* skb->protocol = */ 0),
buffer, sizeof(buffer), 0, (const struct sockaddr *)&saddr, sizeof(saddr));
Additional checks mean that this isn't actually a problem in the code
base, but I could imagine it becoming a problem later if the function is
used more liberally.
I would prefer to fix this by having wg_examine_packet_protocol return a
32-bit ~0 value on failure, which will never match any value of
skb->protocol, which would simply change the generated code from a mov
to a movzx. However, sparse complains, and adding __force casts doesn't
seem like a good idea, so instead we just add a simple helper function
to check for the zero return value. Since wg_examine_packet_protocol
itself gets inlined, this winds up not adding an additional branch to
the generated code, since the 0 return value already happens in a
mergable branch.
Reported-by: Fabian Freyer <fabianfreyer@radicallyopensecurity.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-19 00:30:45 +00:00
|
|
|
static inline bool wg_check_packet_protocol(struct sk_buff *skb)
|
|
|
|
{
|
2020-06-30 01:06:21 +00:00
|
|
|
__be16 real_protocol = ip_tunnel_parse_protocol(skb);
|
wireguard: queueing: account for skb->protocol==0
We carry out checks to the effect of:
if (skb->protocol != wg_examine_packet_protocol(skb))
goto err;
By having wg_skb_examine_untrusted_ip_hdr return 0 on failure, this
means that the check above still passes in the case where skb->protocol
is zero, which is possible to hit with AF_PACKET:
struct sockaddr_pkt saddr = { .spkt_device = "wg0" };
unsigned char buffer[5] = { 0 };
sendto(socket(AF_PACKET, SOCK_PACKET, /* skb->protocol = */ 0),
buffer, sizeof(buffer), 0, (const struct sockaddr *)&saddr, sizeof(saddr));
Additional checks mean that this isn't actually a problem in the code
base, but I could imagine it becoming a problem later if the function is
used more liberally.
I would prefer to fix this by having wg_examine_packet_protocol return a
32-bit ~0 value on failure, which will never match any value of
skb->protocol, which would simply change the generated code from a mov
to a movzx. However, sparse complains, and adding __force casts doesn't
seem like a good idea, so instead we just add a simple helper function
to check for the zero return value. Since wg_examine_packet_protocol
itself gets inlined, this winds up not adding an additional branch to
the generated code, since the 0 return value already happens in a
mergable branch.
Reported-by: Fabian Freyer <fabianfreyer@radicallyopensecurity.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-19 00:30:45 +00:00
|
|
|
return real_protocol && skb->protocol == real_protocol;
|
|
|
|
}
|
|
|
|
|
wireguard: queueing: preserve flow hash across packet scrubbing
It's important that we clear most header fields during encapsulation and
decapsulation, because the packet is substantially changed, and we don't
want any info leak or logic bug due to an accidental correlation. But,
for encapsulation, it's wrong to clear skb->hash, since it's used by
fq_codel and flow dissection in general. Without it, classification does
not proceed as usual. This change might make it easier to estimate the
number of innerflows by examining clustering of out of order packets,
but this shouldn't open up anything that can't already be inferred
otherwise (e.g. syn packet size inference), and fq_codel can be disabled
anyway.
Furthermore, it might be the case that the hash isn't used or queried at
all until after wireguard transmits the encrypted UDP packet, which
means skb->hash might still be zero at this point, and thus no hash
taken over the inner packet data. In order to address this situation, we
force a calculation of skb->hash before encrypting packet data.
Of course this means that fq_codel might transmit packets slightly more
out of order than usual. Toke did some testing on beefy machines with
high quantities of parallel flows and found that increasing the
reply-attack counter to 8192 takes care of the most pathological cases
pretty well.
Reported-by: Dave Taht <dave.taht@gmail.com>
Reviewed-and-tested-by: Toke Høiland-Jørgensen <toke@toke.dk>
Fixes: e7096c131e51 ("net: WireGuard secure network tunnel")
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-20 04:49:29 +00:00
|
|
|
static inline void wg_reset_packet(struct sk_buff *skb, bool encapsulating)
|
net: WireGuard secure network tunnel
WireGuard is a layer 3 secure networking tunnel made specifically for
the kernel, that aims to be much simpler and easier to audit than IPsec.
Extensive documentation and description of the protocol and
considerations, along with formal proofs of the cryptography, are
available at:
* https://www.wireguard.com/
* https://www.wireguard.com/papers/wireguard.pdf
This commit implements WireGuard as a simple network device driver,
accessible in the usual RTNL way used by virtual network drivers. It
makes use of the udp_tunnel APIs, GRO, GSO, NAPI, and the usual set of
networking subsystem APIs. It has a somewhat novel multicore queueing
system designed for maximum throughput and minimal latency of encryption
operations, but it is implemented modestly using workqueues and NAPI.
Configuration is done via generic Netlink, and following a review from
the Netlink maintainer a year ago, several high profile userspace tools
have already implemented the API.
This commit also comes with several different tests, both in-kernel
tests and out-of-kernel tests based on network namespaces, taking profit
of the fact that sockets used by WireGuard intentionally stay in the
namespace the WireGuard interface was originally created, exactly like
the semantics of userspace tun devices. See wireguard.com/netns/ for
pictures and examples.
The source code is fairly short, but rather than combining everything
into a single file, WireGuard is developed as cleanly separable files,
making auditing and comprehension easier. Things are laid out as
follows:
* noise.[ch], cookie.[ch], messages.h: These implement the bulk of the
cryptographic aspects of the protocol, and are mostly data-only in
nature, taking in buffers of bytes and spitting out buffers of
bytes. They also handle reference counting for their various shared
pieces of data, like keys and key lists.
* ratelimiter.[ch]: Used as an integral part of cookie.[ch] for
ratelimiting certain types of cryptographic operations in accordance
with particular WireGuard semantics.
* allowedips.[ch], peerlookup.[ch]: The main lookup structures of
WireGuard, the former being trie-like with particular semantics, an
integral part of the design of the protocol, and the latter just
being nice helper functions around the various hashtables we use.
* device.[ch]: Implementation of functions for the netdevice and for
rtnl, responsible for maintaining the life of a given interface and
wiring it up to the rest of WireGuard.
* peer.[ch]: Each interface has a list of peers, with helper functions
available here for creation, destruction, and reference counting.
* socket.[ch]: Implementation of functions related to udp_socket and
the general set of kernel socket APIs, for sending and receiving
ciphertext UDP packets, and taking care of WireGuard-specific sticky
socket routing semantics for the automatic roaming.
* netlink.[ch]: Userspace API entry point for configuring WireGuard
peers and devices. The API has been implemented by several userspace
tools and network management utility, and the WireGuard project
distributes the basic wg(8) tool.
* queueing.[ch]: Shared function on the rx and tx path for handling
the various queues used in the multicore algorithms.
* send.c: Handles encrypting outgoing packets in parallel on
multiple cores, before sending them in order on a single core, via
workqueues and ring buffers. Also handles sending handshake and cookie
messages as part of the protocol, in parallel.
* receive.c: Handles decrypting incoming packets in parallel on
multiple cores, before passing them off in order to be ingested via
the rest of the networking subsystem with GRO via the typical NAPI
poll function. Also handles receiving handshake and cookie messages
as part of the protocol, in parallel.
* timers.[ch]: Uses the timer wheel to implement protocol particular
event timeouts, and gives a set of very simple event-driven entry
point functions for callers.
* main.c, version.h: Initialization and deinitialization of the module.
* selftest/*.h: Runtime unit tests for some of the most security
sensitive functions.
* tools/testing/selftests/wireguard/netns.sh: Aforementioned testing
script using network namespaces.
This commit aims to be as self-contained as possible, implementing
WireGuard as a standalone module not needing much special handling or
coordination from the network subsystem. I expect for future
optimizations to the network stack to positively improve WireGuard, and
vice-versa, but for the time being, this exists as intentionally
standalone.
We introduce a menu option for CONFIG_WIREGUARD, as well as providing a
verbose debug log and self-tests via CONFIG_WIREGUARD_DEBUG.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Cc: David Miller <davem@davemloft.net>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: linux-crypto@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: netdev@vger.kernel.org
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-08 23:27:34 +00:00
|
|
|
{
|
wireguard: queueing: preserve flow hash across packet scrubbing
It's important that we clear most header fields during encapsulation and
decapsulation, because the packet is substantially changed, and we don't
want any info leak or logic bug due to an accidental correlation. But,
for encapsulation, it's wrong to clear skb->hash, since it's used by
fq_codel and flow dissection in general. Without it, classification does
not proceed as usual. This change might make it easier to estimate the
number of innerflows by examining clustering of out of order packets,
but this shouldn't open up anything that can't already be inferred
otherwise (e.g. syn packet size inference), and fq_codel can be disabled
anyway.
Furthermore, it might be the case that the hash isn't used or queried at
all until after wireguard transmits the encrypted UDP packet, which
means skb->hash might still be zero at this point, and thus no hash
taken over the inner packet data. In order to address this situation, we
force a calculation of skb->hash before encrypting packet data.
Of course this means that fq_codel might transmit packets slightly more
out of order than usual. Toke did some testing on beefy machines with
high quantities of parallel flows and found that increasing the
reply-attack counter to 8192 takes care of the most pathological cases
pretty well.
Reported-by: Dave Taht <dave.taht@gmail.com>
Reviewed-and-tested-by: Toke Høiland-Jørgensen <toke@toke.dk>
Fixes: e7096c131e51 ("net: WireGuard secure network tunnel")
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-20 04:49:29 +00:00
|
|
|
u8 l4_hash = skb->l4_hash;
|
|
|
|
u8 sw_hash = skb->sw_hash;
|
|
|
|
u32 hash = skb->hash;
|
net: WireGuard secure network tunnel
WireGuard is a layer 3 secure networking tunnel made specifically for
the kernel, that aims to be much simpler and easier to audit than IPsec.
Extensive documentation and description of the protocol and
considerations, along with formal proofs of the cryptography, are
available at:
* https://www.wireguard.com/
* https://www.wireguard.com/papers/wireguard.pdf
This commit implements WireGuard as a simple network device driver,
accessible in the usual RTNL way used by virtual network drivers. It
makes use of the udp_tunnel APIs, GRO, GSO, NAPI, and the usual set of
networking subsystem APIs. It has a somewhat novel multicore queueing
system designed for maximum throughput and minimal latency of encryption
operations, but it is implemented modestly using workqueues and NAPI.
Configuration is done via generic Netlink, and following a review from
the Netlink maintainer a year ago, several high profile userspace tools
have already implemented the API.
This commit also comes with several different tests, both in-kernel
tests and out-of-kernel tests based on network namespaces, taking profit
of the fact that sockets used by WireGuard intentionally stay in the
namespace the WireGuard interface was originally created, exactly like
the semantics of userspace tun devices. See wireguard.com/netns/ for
pictures and examples.
The source code is fairly short, but rather than combining everything
into a single file, WireGuard is developed as cleanly separable files,
making auditing and comprehension easier. Things are laid out as
follows:
* noise.[ch], cookie.[ch], messages.h: These implement the bulk of the
cryptographic aspects of the protocol, and are mostly data-only in
nature, taking in buffers of bytes and spitting out buffers of
bytes. They also handle reference counting for their various shared
pieces of data, like keys and key lists.
* ratelimiter.[ch]: Used as an integral part of cookie.[ch] for
ratelimiting certain types of cryptographic operations in accordance
with particular WireGuard semantics.
* allowedips.[ch], peerlookup.[ch]: The main lookup structures of
WireGuard, the former being trie-like with particular semantics, an
integral part of the design of the protocol, and the latter just
being nice helper functions around the various hashtables we use.
* device.[ch]: Implementation of functions for the netdevice and for
rtnl, responsible for maintaining the life of a given interface and
wiring it up to the rest of WireGuard.
* peer.[ch]: Each interface has a list of peers, with helper functions
available here for creation, destruction, and reference counting.
* socket.[ch]: Implementation of functions related to udp_socket and
the general set of kernel socket APIs, for sending and receiving
ciphertext UDP packets, and taking care of WireGuard-specific sticky
socket routing semantics for the automatic roaming.
* netlink.[ch]: Userspace API entry point for configuring WireGuard
peers and devices. The API has been implemented by several userspace
tools and network management utility, and the WireGuard project
distributes the basic wg(8) tool.
* queueing.[ch]: Shared function on the rx and tx path for handling
the various queues used in the multicore algorithms.
* send.c: Handles encrypting outgoing packets in parallel on
multiple cores, before sending them in order on a single core, via
workqueues and ring buffers. Also handles sending handshake and cookie
messages as part of the protocol, in parallel.
* receive.c: Handles decrypting incoming packets in parallel on
multiple cores, before passing them off in order to be ingested via
the rest of the networking subsystem with GRO via the typical NAPI
poll function. Also handles receiving handshake and cookie messages
as part of the protocol, in parallel.
* timers.[ch]: Uses the timer wheel to implement protocol particular
event timeouts, and gives a set of very simple event-driven entry
point functions for callers.
* main.c, version.h: Initialization and deinitialization of the module.
* selftest/*.h: Runtime unit tests for some of the most security
sensitive functions.
* tools/testing/selftests/wireguard/netns.sh: Aforementioned testing
script using network namespaces.
This commit aims to be as self-contained as possible, implementing
WireGuard as a standalone module not needing much special handling or
coordination from the network subsystem. I expect for future
optimizations to the network stack to positively improve WireGuard, and
vice-versa, but for the time being, this exists as intentionally
standalone.
We introduce a menu option for CONFIG_WIREGUARD, as well as providing a
verbose debug log and self-tests via CONFIG_WIREGUARD_DEBUG.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Cc: David Miller <davem@davemloft.net>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: linux-crypto@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: netdev@vger.kernel.org
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-08 23:27:34 +00:00
|
|
|
skb_scrub_packet(skb, true);
|
|
|
|
memset(&skb->headers_start, 0,
|
|
|
|
offsetof(struct sk_buff, headers_end) -
|
|
|
|
offsetof(struct sk_buff, headers_start));
|
wireguard: queueing: preserve flow hash across packet scrubbing
It's important that we clear most header fields during encapsulation and
decapsulation, because the packet is substantially changed, and we don't
want any info leak or logic bug due to an accidental correlation. But,
for encapsulation, it's wrong to clear skb->hash, since it's used by
fq_codel and flow dissection in general. Without it, classification does
not proceed as usual. This change might make it easier to estimate the
number of innerflows by examining clustering of out of order packets,
but this shouldn't open up anything that can't already be inferred
otherwise (e.g. syn packet size inference), and fq_codel can be disabled
anyway.
Furthermore, it might be the case that the hash isn't used or queried at
all until after wireguard transmits the encrypted UDP packet, which
means skb->hash might still be zero at this point, and thus no hash
taken over the inner packet data. In order to address this situation, we
force a calculation of skb->hash before encrypting packet data.
Of course this means that fq_codel might transmit packets slightly more
out of order than usual. Toke did some testing on beefy machines with
high quantities of parallel flows and found that increasing the
reply-attack counter to 8192 takes care of the most pathological cases
pretty well.
Reported-by: Dave Taht <dave.taht@gmail.com>
Reviewed-and-tested-by: Toke Høiland-Jørgensen <toke@toke.dk>
Fixes: e7096c131e51 ("net: WireGuard secure network tunnel")
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-20 04:49:29 +00:00
|
|
|
if (encapsulating) {
|
|
|
|
skb->l4_hash = l4_hash;
|
|
|
|
skb->sw_hash = sw_hash;
|
|
|
|
skb->hash = hash;
|
|
|
|
}
|
net: WireGuard secure network tunnel
WireGuard is a layer 3 secure networking tunnel made specifically for
the kernel, that aims to be much simpler and easier to audit than IPsec.
Extensive documentation and description of the protocol and
considerations, along with formal proofs of the cryptography, are
available at:
* https://www.wireguard.com/
* https://www.wireguard.com/papers/wireguard.pdf
This commit implements WireGuard as a simple network device driver,
accessible in the usual RTNL way used by virtual network drivers. It
makes use of the udp_tunnel APIs, GRO, GSO, NAPI, and the usual set of
networking subsystem APIs. It has a somewhat novel multicore queueing
system designed for maximum throughput and minimal latency of encryption
operations, but it is implemented modestly using workqueues and NAPI.
Configuration is done via generic Netlink, and following a review from
the Netlink maintainer a year ago, several high profile userspace tools
have already implemented the API.
This commit also comes with several different tests, both in-kernel
tests and out-of-kernel tests based on network namespaces, taking profit
of the fact that sockets used by WireGuard intentionally stay in the
namespace the WireGuard interface was originally created, exactly like
the semantics of userspace tun devices. See wireguard.com/netns/ for
pictures and examples.
The source code is fairly short, but rather than combining everything
into a single file, WireGuard is developed as cleanly separable files,
making auditing and comprehension easier. Things are laid out as
follows:
* noise.[ch], cookie.[ch], messages.h: These implement the bulk of the
cryptographic aspects of the protocol, and are mostly data-only in
nature, taking in buffers of bytes and spitting out buffers of
bytes. They also handle reference counting for their various shared
pieces of data, like keys and key lists.
* ratelimiter.[ch]: Used as an integral part of cookie.[ch] for
ratelimiting certain types of cryptographic operations in accordance
with particular WireGuard semantics.
* allowedips.[ch], peerlookup.[ch]: The main lookup structures of
WireGuard, the former being trie-like with particular semantics, an
integral part of the design of the protocol, and the latter just
being nice helper functions around the various hashtables we use.
* device.[ch]: Implementation of functions for the netdevice and for
rtnl, responsible for maintaining the life of a given interface and
wiring it up to the rest of WireGuard.
* peer.[ch]: Each interface has a list of peers, with helper functions
available here for creation, destruction, and reference counting.
* socket.[ch]: Implementation of functions related to udp_socket and
the general set of kernel socket APIs, for sending and receiving
ciphertext UDP packets, and taking care of WireGuard-specific sticky
socket routing semantics for the automatic roaming.
* netlink.[ch]: Userspace API entry point for configuring WireGuard
peers and devices. The API has been implemented by several userspace
tools and network management utility, and the WireGuard project
distributes the basic wg(8) tool.
* queueing.[ch]: Shared function on the rx and tx path for handling
the various queues used in the multicore algorithms.
* send.c: Handles encrypting outgoing packets in parallel on
multiple cores, before sending them in order on a single core, via
workqueues and ring buffers. Also handles sending handshake and cookie
messages as part of the protocol, in parallel.
* receive.c: Handles decrypting incoming packets in parallel on
multiple cores, before passing them off in order to be ingested via
the rest of the networking subsystem with GRO via the typical NAPI
poll function. Also handles receiving handshake and cookie messages
as part of the protocol, in parallel.
* timers.[ch]: Uses the timer wheel to implement protocol particular
event timeouts, and gives a set of very simple event-driven entry
point functions for callers.
* main.c, version.h: Initialization and deinitialization of the module.
* selftest/*.h: Runtime unit tests for some of the most security
sensitive functions.
* tools/testing/selftests/wireguard/netns.sh: Aforementioned testing
script using network namespaces.
This commit aims to be as self-contained as possible, implementing
WireGuard as a standalone module not needing much special handling or
coordination from the network subsystem. I expect for future
optimizations to the network stack to positively improve WireGuard, and
vice-versa, but for the time being, this exists as intentionally
standalone.
We introduce a menu option for CONFIG_WIREGUARD, as well as providing a
verbose debug log and self-tests via CONFIG_WIREGUARD_DEBUG.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Cc: David Miller <davem@davemloft.net>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: linux-crypto@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: netdev@vger.kernel.org
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-08 23:27:34 +00:00
|
|
|
skb->queue_mapping = 0;
|
|
|
|
skb->nohdr = 0;
|
|
|
|
skb->peeked = 0;
|
|
|
|
skb->mac_len = 0;
|
|
|
|
skb->dev = NULL;
|
|
|
|
#ifdef CONFIG_NET_SCHED
|
|
|
|
skb->tc_index = 0;
|
|
|
|
#endif
|
2020-03-25 12:47:18 +00:00
|
|
|
skb_reset_redirect(skb);
|
net: WireGuard secure network tunnel
WireGuard is a layer 3 secure networking tunnel made specifically for
the kernel, that aims to be much simpler and easier to audit than IPsec.
Extensive documentation and description of the protocol and
considerations, along with formal proofs of the cryptography, are
available at:
* https://www.wireguard.com/
* https://www.wireguard.com/papers/wireguard.pdf
This commit implements WireGuard as a simple network device driver,
accessible in the usual RTNL way used by virtual network drivers. It
makes use of the udp_tunnel APIs, GRO, GSO, NAPI, and the usual set of
networking subsystem APIs. It has a somewhat novel multicore queueing
system designed for maximum throughput and minimal latency of encryption
operations, but it is implemented modestly using workqueues and NAPI.
Configuration is done via generic Netlink, and following a review from
the Netlink maintainer a year ago, several high profile userspace tools
have already implemented the API.
This commit also comes with several different tests, both in-kernel
tests and out-of-kernel tests based on network namespaces, taking profit
of the fact that sockets used by WireGuard intentionally stay in the
namespace the WireGuard interface was originally created, exactly like
the semantics of userspace tun devices. See wireguard.com/netns/ for
pictures and examples.
The source code is fairly short, but rather than combining everything
into a single file, WireGuard is developed as cleanly separable files,
making auditing and comprehension easier. Things are laid out as
follows:
* noise.[ch], cookie.[ch], messages.h: These implement the bulk of the
cryptographic aspects of the protocol, and are mostly data-only in
nature, taking in buffers of bytes and spitting out buffers of
bytes. They also handle reference counting for their various shared
pieces of data, like keys and key lists.
* ratelimiter.[ch]: Used as an integral part of cookie.[ch] for
ratelimiting certain types of cryptographic operations in accordance
with particular WireGuard semantics.
* allowedips.[ch], peerlookup.[ch]: The main lookup structures of
WireGuard, the former being trie-like with particular semantics, an
integral part of the design of the protocol, and the latter just
being nice helper functions around the various hashtables we use.
* device.[ch]: Implementation of functions for the netdevice and for
rtnl, responsible for maintaining the life of a given interface and
wiring it up to the rest of WireGuard.
* peer.[ch]: Each interface has a list of peers, with helper functions
available here for creation, destruction, and reference counting.
* socket.[ch]: Implementation of functions related to udp_socket and
the general set of kernel socket APIs, for sending and receiving
ciphertext UDP packets, and taking care of WireGuard-specific sticky
socket routing semantics for the automatic roaming.
* netlink.[ch]: Userspace API entry point for configuring WireGuard
peers and devices. The API has been implemented by several userspace
tools and network management utility, and the WireGuard project
distributes the basic wg(8) tool.
* queueing.[ch]: Shared function on the rx and tx path for handling
the various queues used in the multicore algorithms.
* send.c: Handles encrypting outgoing packets in parallel on
multiple cores, before sending them in order on a single core, via
workqueues and ring buffers. Also handles sending handshake and cookie
messages as part of the protocol, in parallel.
* receive.c: Handles decrypting incoming packets in parallel on
multiple cores, before passing them off in order to be ingested via
the rest of the networking subsystem with GRO via the typical NAPI
poll function. Also handles receiving handshake and cookie messages
as part of the protocol, in parallel.
* timers.[ch]: Uses the timer wheel to implement protocol particular
event timeouts, and gives a set of very simple event-driven entry
point functions for callers.
* main.c, version.h: Initialization and deinitialization of the module.
* selftest/*.h: Runtime unit tests for some of the most security
sensitive functions.
* tools/testing/selftests/wireguard/netns.sh: Aforementioned testing
script using network namespaces.
This commit aims to be as self-contained as possible, implementing
WireGuard as a standalone module not needing much special handling or
coordination from the network subsystem. I expect for future
optimizations to the network stack to positively improve WireGuard, and
vice-versa, but for the time being, this exists as intentionally
standalone.
We introduce a menu option for CONFIG_WIREGUARD, as well as providing a
verbose debug log and self-tests via CONFIG_WIREGUARD_DEBUG.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Cc: David Miller <davem@davemloft.net>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: linux-crypto@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: netdev@vger.kernel.org
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-08 23:27:34 +00:00
|
|
|
skb->hdr_len = skb_headroom(skb);
|
|
|
|
skb_reset_mac_header(skb);
|
|
|
|
skb_reset_network_header(skb);
|
|
|
|
skb_reset_transport_header(skb);
|
|
|
|
skb_probe_transport_header(skb);
|
|
|
|
skb_reset_inner_headers(skb);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int wg_cpumask_choose_online(int *stored_cpu, unsigned int id)
|
|
|
|
{
|
|
|
|
unsigned int cpu = *stored_cpu, cpu_index, i;
|
|
|
|
|
|
|
|
if (unlikely(cpu == nr_cpumask_bits ||
|
|
|
|
!cpumask_test_cpu(cpu, cpu_online_mask))) {
|
|
|
|
cpu_index = id % cpumask_weight(cpu_online_mask);
|
|
|
|
cpu = cpumask_first(cpu_online_mask);
|
|
|
|
for (i = 0; i < cpu_index; ++i)
|
|
|
|
cpu = cpumask_next(cpu, cpu_online_mask);
|
|
|
|
*stored_cpu = cpu;
|
|
|
|
}
|
|
|
|
return cpu;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* This function is racy, in the sense that next is unlocked, so it could return
|
|
|
|
* the same CPU twice. A race-free version of this would be to instead store an
|
|
|
|
* atomic sequence number, do an increment-and-return, and then iterate through
|
|
|
|
* every possible CPU until we get to that index -- choose_cpu. However that's
|
|
|
|
* a bit slower, and it doesn't seem like this potential race actually
|
|
|
|
* introduces any performance loss, so we live with it.
|
|
|
|
*/
|
|
|
|
static inline int wg_cpumask_next_online(int *next)
|
|
|
|
{
|
|
|
|
int cpu = *next;
|
|
|
|
|
|
|
|
while (unlikely(!cpumask_test_cpu(cpu, cpu_online_mask)))
|
|
|
|
cpu = cpumask_next(cpu, cpu_online_mask) % nr_cpumask_bits;
|
|
|
|
*next = cpumask_next(cpu, cpu_online_mask) % nr_cpumask_bits;
|
|
|
|
return cpu;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int wg_queue_enqueue_per_device_and_peer(
|
|
|
|
struct crypt_queue *device_queue, struct crypt_queue *peer_queue,
|
|
|
|
struct sk_buff *skb, struct workqueue_struct *wq, int *next_cpu)
|
|
|
|
{
|
|
|
|
int cpu;
|
|
|
|
|
|
|
|
atomic_set_release(&PACKET_CB(skb)->state, PACKET_STATE_UNCRYPTED);
|
|
|
|
/* We first queue this up for the peer ingestion, but the consumer
|
|
|
|
* will wait for the state to change to CRYPTED or DEAD before.
|
|
|
|
*/
|
|
|
|
if (unlikely(ptr_ring_produce_bh(&peer_queue->ring, skb)))
|
|
|
|
return -ENOSPC;
|
|
|
|
/* Then we queue it up in the device queue, which consumes the
|
|
|
|
* packet as soon as it can.
|
|
|
|
*/
|
|
|
|
cpu = wg_cpumask_next_online(next_cpu);
|
|
|
|
if (unlikely(ptr_ring_produce_bh(&device_queue->ring, skb)))
|
|
|
|
return -EPIPE;
|
|
|
|
queue_work_on(cpu, wq, &per_cpu_ptr(device_queue->worker, cpu)->work);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void wg_queue_enqueue_per_peer(struct crypt_queue *queue,
|
|
|
|
struct sk_buff *skb,
|
|
|
|
enum packet_state state)
|
|
|
|
{
|
|
|
|
/* We take a reference, because as soon as we call atomic_set, the
|
|
|
|
* peer can be freed from below us.
|
|
|
|
*/
|
|
|
|
struct wg_peer *peer = wg_peer_get(PACKET_PEER(skb));
|
|
|
|
|
|
|
|
atomic_set_release(&PACKET_CB(skb)->state, state);
|
|
|
|
queue_work_on(wg_cpumask_choose_online(&peer->serial_work_cpu,
|
|
|
|
peer->internal_id),
|
|
|
|
peer->device->packet_crypt_wq, &queue->work);
|
|
|
|
wg_peer_put(peer);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void wg_queue_enqueue_per_peer_napi(struct sk_buff *skb,
|
|
|
|
enum packet_state state)
|
|
|
|
{
|
|
|
|
/* We take a reference, because as soon as we call atomic_set, the
|
|
|
|
* peer can be freed from below us.
|
|
|
|
*/
|
|
|
|
struct wg_peer *peer = wg_peer_get(PACKET_PEER(skb));
|
|
|
|
|
|
|
|
atomic_set_release(&PACKET_CB(skb)->state, state);
|
|
|
|
napi_schedule(&peer->napi);
|
|
|
|
wg_peer_put(peer);
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef DEBUG
|
|
|
|
bool wg_packet_counter_selftest(void);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#endif /* _WG_QUEUEING_H */
|