2019-05-27 06:55:01 +00:00
|
|
|
/* SPDX-License-Identifier: GPL-2.0-or-later */
|
crypto: chacha20 - Add an eight block AVX2 variant for x86_64
Extends the x86_64 ChaCha20 implementation by a function processing eight
ChaCha20 blocks in parallel using AVX2.
For large messages, throughput increases by ~55-70% compared to four block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 41999675 operations in 10 seconds (671994800 bytes)
test 1 (256 bit key, 64 byte blocks): 45805908 operations in 10 seconds (2931578112 bytes)
test 2 (256 bit key, 256 byte blocks): 32814947 operations in 10 seconds (8400626432 bytes)
test 3 (256 bit key, 1024 byte blocks): 19777167 operations in 10 seconds (20251819008 bytes)
test 4 (256 bit key, 8192 byte blocks): 2279321 operations in 10 seconds (18672197632 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 17:14:03 +00:00
|
|
|
/*
|
2018-12-05 06:20:03 +00:00
|
|
|
* ChaCha 256-bit cipher algorithm, x64 AVX2 functions
|
crypto: chacha20 - Add an eight block AVX2 variant for x86_64
Extends the x86_64 ChaCha20 implementation by a function processing eight
ChaCha20 blocks in parallel using AVX2.
For large messages, throughput increases by ~55-70% compared to four block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 41999675 operations in 10 seconds (671994800 bytes)
test 1 (256 bit key, 64 byte blocks): 45805908 operations in 10 seconds (2931578112 bytes)
test 2 (256 bit key, 256 byte blocks): 32814947 operations in 10 seconds (8400626432 bytes)
test 3 (256 bit key, 1024 byte blocks): 19777167 operations in 10 seconds (20251819008 bytes)
test 4 (256 bit key, 8192 byte blocks): 2279321 operations in 10 seconds (18672197632 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 17:14:03 +00:00
|
|
|
*
|
|
|
|
* Copyright (C) 2015 Martin Willi
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/linkage.h>
|
|
|
|
|
crypto: x86 - make constants readonly, allow linker to merge them
A lot of asm-optimized routines in arch/x86/crypto/ keep its
constants in .data. This is wrong, they should be on .rodata.
Mnay of these constants are the same in different modules.
For example, 128-bit shuffle mask 0x000102030405060708090A0B0C0D0E0F
exists in at least half a dozen places.
There is a way to let linker merge them and use just one copy.
The rules are as follows: mergeable objects of different sizes
should not share sections. You can't put them all in one .rodata
section, they will lose "mergeability".
GCC puts its mergeable constants in ".rodata.cstSIZE" sections,
or ".rodata.cstSIZE.<object_name>" if -fdata-sections is used.
This patch does the same:
.section .rodata.cst16.SHUF_MASK, "aM", @progbits, 16
It is important that all data in such section consists of
16-byte elements, not larger ones, and there are no implicit
use of one element from another.
When this is not the case, use non-mergeable section:
.section .rodata[.VAR_NAME], "a", @progbits
This reduces .data by ~15 kbytes:
text data bss dec hex filename
11097415 2705840 2630712 16433967 fac32f vmlinux-prev.o
11112095 2690672 2630712 16433479 fac147 vmlinux.o
Merged objects are visible in System.map:
ffffffff81a28810 r POLY
ffffffff81a28810 r POLY
ffffffff81a28820 r TWOONE
ffffffff81a28820 r TWOONE
ffffffff81a28830 r PSHUFFLE_BYTE_FLIP_MASK <- merged regardless of
ffffffff81a28830 r SHUF_MASK <------------- the name difference
ffffffff81a28830 r SHUF_MASK
ffffffff81a28830 r SHUF_MASK
..
ffffffff81a28d00 r K512 <- merged three identical 640-byte tables
ffffffff81a28d00 r K512
ffffffff81a28d00 r K512
Use of object names in section name suffixes is not strictly necessary,
but might help if someday link stage will use garbage collection
to eliminate unused sections (ld --gc-sections).
Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com>
CC: Herbert Xu <herbert@gondor.apana.org.au>
CC: Josh Poimboeuf <jpoimboe@redhat.com>
CC: Xiaodong Liu <xiaodong.liu@intel.com>
CC: Megha Dey <megha.dey@intel.com>
CC: linux-crypto@vger.kernel.org
CC: x86@kernel.org
CC: linux-kernel@vger.kernel.org
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-01-19 21:33:04 +00:00
|
|
|
.section .rodata.cst32.ROT8, "aM", @progbits, 32
|
crypto: chacha20 - Add an eight block AVX2 variant for x86_64
Extends the x86_64 ChaCha20 implementation by a function processing eight
ChaCha20 blocks in parallel using AVX2.
For large messages, throughput increases by ~55-70% compared to four block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 41999675 operations in 10 seconds (671994800 bytes)
test 1 (256 bit key, 64 byte blocks): 45805908 operations in 10 seconds (2931578112 bytes)
test 2 (256 bit key, 256 byte blocks): 32814947 operations in 10 seconds (8400626432 bytes)
test 3 (256 bit key, 1024 byte blocks): 19777167 operations in 10 seconds (20251819008 bytes)
test 4 (256 bit key, 8192 byte blocks): 2279321 operations in 10 seconds (18672197632 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 17:14:03 +00:00
|
|
|
.align 32
|
|
|
|
ROT8: .octa 0x0e0d0c0f0a09080b0605040702010003
|
|
|
|
.octa 0x0e0d0c0f0a09080b0605040702010003
|
crypto: x86 - make constants readonly, allow linker to merge them
A lot of asm-optimized routines in arch/x86/crypto/ keep its
constants in .data. This is wrong, they should be on .rodata.
Mnay of these constants are the same in different modules.
For example, 128-bit shuffle mask 0x000102030405060708090A0B0C0D0E0F
exists in at least half a dozen places.
There is a way to let linker merge them and use just one copy.
The rules are as follows: mergeable objects of different sizes
should not share sections. You can't put them all in one .rodata
section, they will lose "mergeability".
GCC puts its mergeable constants in ".rodata.cstSIZE" sections,
or ".rodata.cstSIZE.<object_name>" if -fdata-sections is used.
This patch does the same:
.section .rodata.cst16.SHUF_MASK, "aM", @progbits, 16
It is important that all data in such section consists of
16-byte elements, not larger ones, and there are no implicit
use of one element from another.
When this is not the case, use non-mergeable section:
.section .rodata[.VAR_NAME], "a", @progbits
This reduces .data by ~15 kbytes:
text data bss dec hex filename
11097415 2705840 2630712 16433967 fac32f vmlinux-prev.o
11112095 2690672 2630712 16433479 fac147 vmlinux.o
Merged objects are visible in System.map:
ffffffff81a28810 r POLY
ffffffff81a28810 r POLY
ffffffff81a28820 r TWOONE
ffffffff81a28820 r TWOONE
ffffffff81a28830 r PSHUFFLE_BYTE_FLIP_MASK <- merged regardless of
ffffffff81a28830 r SHUF_MASK <------------- the name difference
ffffffff81a28830 r SHUF_MASK
ffffffff81a28830 r SHUF_MASK
..
ffffffff81a28d00 r K512 <- merged three identical 640-byte tables
ffffffff81a28d00 r K512
ffffffff81a28d00 r K512
Use of object names in section name suffixes is not strictly necessary,
but might help if someday link stage will use garbage collection
to eliminate unused sections (ld --gc-sections).
Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com>
CC: Herbert Xu <herbert@gondor.apana.org.au>
CC: Josh Poimboeuf <jpoimboe@redhat.com>
CC: Xiaodong Liu <xiaodong.liu@intel.com>
CC: Megha Dey <megha.dey@intel.com>
CC: linux-crypto@vger.kernel.org
CC: x86@kernel.org
CC: linux-kernel@vger.kernel.org
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-01-19 21:33:04 +00:00
|
|
|
|
|
|
|
.section .rodata.cst32.ROT16, "aM", @progbits, 32
|
|
|
|
.align 32
|
crypto: chacha20 - Add an eight block AVX2 variant for x86_64
Extends the x86_64 ChaCha20 implementation by a function processing eight
ChaCha20 blocks in parallel using AVX2.
For large messages, throughput increases by ~55-70% compared to four block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 41999675 operations in 10 seconds (671994800 bytes)
test 1 (256 bit key, 64 byte blocks): 45805908 operations in 10 seconds (2931578112 bytes)
test 2 (256 bit key, 256 byte blocks): 32814947 operations in 10 seconds (8400626432 bytes)
test 3 (256 bit key, 1024 byte blocks): 19777167 operations in 10 seconds (20251819008 bytes)
test 4 (256 bit key, 8192 byte blocks): 2279321 operations in 10 seconds (18672197632 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 17:14:03 +00:00
|
|
|
ROT16: .octa 0x0d0c0f0e09080b0a0504070601000302
|
|
|
|
.octa 0x0d0c0f0e09080b0a0504070601000302
|
crypto: x86 - make constants readonly, allow linker to merge them
A lot of asm-optimized routines in arch/x86/crypto/ keep its
constants in .data. This is wrong, they should be on .rodata.
Mnay of these constants are the same in different modules.
For example, 128-bit shuffle mask 0x000102030405060708090A0B0C0D0E0F
exists in at least half a dozen places.
There is a way to let linker merge them and use just one copy.
The rules are as follows: mergeable objects of different sizes
should not share sections. You can't put them all in one .rodata
section, they will lose "mergeability".
GCC puts its mergeable constants in ".rodata.cstSIZE" sections,
or ".rodata.cstSIZE.<object_name>" if -fdata-sections is used.
This patch does the same:
.section .rodata.cst16.SHUF_MASK, "aM", @progbits, 16
It is important that all data in such section consists of
16-byte elements, not larger ones, and there are no implicit
use of one element from another.
When this is not the case, use non-mergeable section:
.section .rodata[.VAR_NAME], "a", @progbits
This reduces .data by ~15 kbytes:
text data bss dec hex filename
11097415 2705840 2630712 16433967 fac32f vmlinux-prev.o
11112095 2690672 2630712 16433479 fac147 vmlinux.o
Merged objects are visible in System.map:
ffffffff81a28810 r POLY
ffffffff81a28810 r POLY
ffffffff81a28820 r TWOONE
ffffffff81a28820 r TWOONE
ffffffff81a28830 r PSHUFFLE_BYTE_FLIP_MASK <- merged regardless of
ffffffff81a28830 r SHUF_MASK <------------- the name difference
ffffffff81a28830 r SHUF_MASK
ffffffff81a28830 r SHUF_MASK
..
ffffffff81a28d00 r K512 <- merged three identical 640-byte tables
ffffffff81a28d00 r K512
ffffffff81a28d00 r K512
Use of object names in section name suffixes is not strictly necessary,
but might help if someday link stage will use garbage collection
to eliminate unused sections (ld --gc-sections).
Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com>
CC: Herbert Xu <herbert@gondor.apana.org.au>
CC: Josh Poimboeuf <jpoimboe@redhat.com>
CC: Xiaodong Liu <xiaodong.liu@intel.com>
CC: Megha Dey <megha.dey@intel.com>
CC: linux-crypto@vger.kernel.org
CC: x86@kernel.org
CC: linux-kernel@vger.kernel.org
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-01-19 21:33:04 +00:00
|
|
|
|
|
|
|
.section .rodata.cst32.CTRINC, "aM", @progbits, 32
|
|
|
|
.align 32
|
crypto: chacha20 - Add an eight block AVX2 variant for x86_64
Extends the x86_64 ChaCha20 implementation by a function processing eight
ChaCha20 blocks in parallel using AVX2.
For large messages, throughput increases by ~55-70% compared to four block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 41999675 operations in 10 seconds (671994800 bytes)
test 1 (256 bit key, 64 byte blocks): 45805908 operations in 10 seconds (2931578112 bytes)
test 2 (256 bit key, 256 byte blocks): 32814947 operations in 10 seconds (8400626432 bytes)
test 3 (256 bit key, 1024 byte blocks): 19777167 operations in 10 seconds (20251819008 bytes)
test 4 (256 bit key, 8192 byte blocks): 2279321 operations in 10 seconds (18672197632 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 17:14:03 +00:00
|
|
|
CTRINC: .octa 0x00000003000000020000000100000000
|
|
|
|
.octa 0x00000007000000060000000500000004
|
|
|
|
|
2018-11-11 09:36:29 +00:00
|
|
|
.section .rodata.cst32.CTR2BL, "aM", @progbits, 32
|
|
|
|
.align 32
|
|
|
|
CTR2BL: .octa 0x00000000000000000000000000000000
|
|
|
|
.octa 0x00000000000000000000000000000001
|
|
|
|
|
2018-11-11 09:36:30 +00:00
|
|
|
.section .rodata.cst32.CTR4BL, "aM", @progbits, 32
|
|
|
|
.align 32
|
|
|
|
CTR4BL: .octa 0x00000000000000000000000000000002
|
|
|
|
.octa 0x00000000000000000000000000000003
|
|
|
|
|
crypto: chacha20 - Add an eight block AVX2 variant for x86_64
Extends the x86_64 ChaCha20 implementation by a function processing eight
ChaCha20 blocks in parallel using AVX2.
For large messages, throughput increases by ~55-70% compared to four block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 41999675 operations in 10 seconds (671994800 bytes)
test 1 (256 bit key, 64 byte blocks): 45805908 operations in 10 seconds (2931578112 bytes)
test 2 (256 bit key, 256 byte blocks): 32814947 operations in 10 seconds (8400626432 bytes)
test 3 (256 bit key, 1024 byte blocks): 19777167 operations in 10 seconds (20251819008 bytes)
test 4 (256 bit key, 8192 byte blocks): 2279321 operations in 10 seconds (18672197632 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 17:14:03 +00:00
|
|
|
.text
|
|
|
|
|
2019-10-11 11:51:04 +00:00
|
|
|
SYM_FUNC_START(chacha_2block_xor_avx2)
|
2018-11-11 09:36:29 +00:00
|
|
|
# %rdi: Input state matrix, s
|
|
|
|
# %rsi: up to 2 data blocks output, o
|
|
|
|
# %rdx: up to 2 data blocks input, i
|
|
|
|
# %rcx: input/output length in bytes
|
2018-12-05 06:20:03 +00:00
|
|
|
# %r8d: nrounds
|
2018-11-11 09:36:29 +00:00
|
|
|
|
2018-12-05 06:20:03 +00:00
|
|
|
# This function encrypts two ChaCha blocks by loading the state
|
2018-11-11 09:36:29 +00:00
|
|
|
# matrix twice across four AVX registers. It performs matrix operations
|
|
|
|
# on four words in each matrix in parallel, but requires shuffling to
|
|
|
|
# rearrange the words after each round.
|
|
|
|
|
|
|
|
vzeroupper
|
|
|
|
|
|
|
|
# x0..3[0-2] = s0..3
|
|
|
|
vbroadcasti128 0x00(%rdi),%ymm0
|
|
|
|
vbroadcasti128 0x10(%rdi),%ymm1
|
|
|
|
vbroadcasti128 0x20(%rdi),%ymm2
|
|
|
|
vbroadcasti128 0x30(%rdi),%ymm3
|
|
|
|
|
|
|
|
vpaddd CTR2BL(%rip),%ymm3,%ymm3
|
|
|
|
|
|
|
|
vmovdqa %ymm0,%ymm8
|
|
|
|
vmovdqa %ymm1,%ymm9
|
|
|
|
vmovdqa %ymm2,%ymm10
|
|
|
|
vmovdqa %ymm3,%ymm11
|
|
|
|
|
|
|
|
vmovdqa ROT8(%rip),%ymm4
|
|
|
|
vmovdqa ROT16(%rip),%ymm5
|
|
|
|
|
|
|
|
mov %rcx,%rax
|
|
|
|
|
|
|
|
.Ldoubleround:
|
|
|
|
|
|
|
|
# x0 += x1, x3 = rotl32(x3 ^ x0, 16)
|
|
|
|
vpaddd %ymm1,%ymm0,%ymm0
|
|
|
|
vpxor %ymm0,%ymm3,%ymm3
|
|
|
|
vpshufb %ymm5,%ymm3,%ymm3
|
|
|
|
|
|
|
|
# x2 += x3, x1 = rotl32(x1 ^ x2, 12)
|
|
|
|
vpaddd %ymm3,%ymm2,%ymm2
|
|
|
|
vpxor %ymm2,%ymm1,%ymm1
|
|
|
|
vmovdqa %ymm1,%ymm6
|
|
|
|
vpslld $12,%ymm6,%ymm6
|
|
|
|
vpsrld $20,%ymm1,%ymm1
|
|
|
|
vpor %ymm6,%ymm1,%ymm1
|
|
|
|
|
|
|
|
# x0 += x1, x3 = rotl32(x3 ^ x0, 8)
|
|
|
|
vpaddd %ymm1,%ymm0,%ymm0
|
|
|
|
vpxor %ymm0,%ymm3,%ymm3
|
|
|
|
vpshufb %ymm4,%ymm3,%ymm3
|
|
|
|
|
|
|
|
# x2 += x3, x1 = rotl32(x1 ^ x2, 7)
|
|
|
|
vpaddd %ymm3,%ymm2,%ymm2
|
|
|
|
vpxor %ymm2,%ymm1,%ymm1
|
|
|
|
vmovdqa %ymm1,%ymm7
|
|
|
|
vpslld $7,%ymm7,%ymm7
|
|
|
|
vpsrld $25,%ymm1,%ymm1
|
|
|
|
vpor %ymm7,%ymm1,%ymm1
|
|
|
|
|
|
|
|
# x1 = shuffle32(x1, MASK(0, 3, 2, 1))
|
|
|
|
vpshufd $0x39,%ymm1,%ymm1
|
|
|
|
# x2 = shuffle32(x2, MASK(1, 0, 3, 2))
|
|
|
|
vpshufd $0x4e,%ymm2,%ymm2
|
|
|
|
# x3 = shuffle32(x3, MASK(2, 1, 0, 3))
|
|
|
|
vpshufd $0x93,%ymm3,%ymm3
|
|
|
|
|
|
|
|
# x0 += x1, x3 = rotl32(x3 ^ x0, 16)
|
|
|
|
vpaddd %ymm1,%ymm0,%ymm0
|
|
|
|
vpxor %ymm0,%ymm3,%ymm3
|
|
|
|
vpshufb %ymm5,%ymm3,%ymm3
|
|
|
|
|
|
|
|
# x2 += x3, x1 = rotl32(x1 ^ x2, 12)
|
|
|
|
vpaddd %ymm3,%ymm2,%ymm2
|
|
|
|
vpxor %ymm2,%ymm1,%ymm1
|
|
|
|
vmovdqa %ymm1,%ymm6
|
|
|
|
vpslld $12,%ymm6,%ymm6
|
|
|
|
vpsrld $20,%ymm1,%ymm1
|
|
|
|
vpor %ymm6,%ymm1,%ymm1
|
|
|
|
|
|
|
|
# x0 += x1, x3 = rotl32(x3 ^ x0, 8)
|
|
|
|
vpaddd %ymm1,%ymm0,%ymm0
|
|
|
|
vpxor %ymm0,%ymm3,%ymm3
|
|
|
|
vpshufb %ymm4,%ymm3,%ymm3
|
|
|
|
|
|
|
|
# x2 += x3, x1 = rotl32(x1 ^ x2, 7)
|
|
|
|
vpaddd %ymm3,%ymm2,%ymm2
|
|
|
|
vpxor %ymm2,%ymm1,%ymm1
|
|
|
|
vmovdqa %ymm1,%ymm7
|
|
|
|
vpslld $7,%ymm7,%ymm7
|
|
|
|
vpsrld $25,%ymm1,%ymm1
|
|
|
|
vpor %ymm7,%ymm1,%ymm1
|
|
|
|
|
|
|
|
# x1 = shuffle32(x1, MASK(2, 1, 0, 3))
|
|
|
|
vpshufd $0x93,%ymm1,%ymm1
|
|
|
|
# x2 = shuffle32(x2, MASK(1, 0, 3, 2))
|
|
|
|
vpshufd $0x4e,%ymm2,%ymm2
|
|
|
|
# x3 = shuffle32(x3, MASK(0, 3, 2, 1))
|
|
|
|
vpshufd $0x39,%ymm3,%ymm3
|
|
|
|
|
2018-12-05 06:20:03 +00:00
|
|
|
sub $2,%r8d
|
2018-11-11 09:36:29 +00:00
|
|
|
jnz .Ldoubleround
|
|
|
|
|
|
|
|
# o0 = i0 ^ (x0 + s0)
|
|
|
|
vpaddd %ymm8,%ymm0,%ymm7
|
|
|
|
cmp $0x10,%rax
|
|
|
|
jl .Lxorpart2
|
|
|
|
vpxor 0x00(%rdx),%xmm7,%xmm6
|
|
|
|
vmovdqu %xmm6,0x00(%rsi)
|
|
|
|
vextracti128 $1,%ymm7,%xmm0
|
|
|
|
# o1 = i1 ^ (x1 + s1)
|
|
|
|
vpaddd %ymm9,%ymm1,%ymm7
|
|
|
|
cmp $0x20,%rax
|
|
|
|
jl .Lxorpart2
|
|
|
|
vpxor 0x10(%rdx),%xmm7,%xmm6
|
|
|
|
vmovdqu %xmm6,0x10(%rsi)
|
|
|
|
vextracti128 $1,%ymm7,%xmm1
|
|
|
|
# o2 = i2 ^ (x2 + s2)
|
|
|
|
vpaddd %ymm10,%ymm2,%ymm7
|
|
|
|
cmp $0x30,%rax
|
|
|
|
jl .Lxorpart2
|
|
|
|
vpxor 0x20(%rdx),%xmm7,%xmm6
|
|
|
|
vmovdqu %xmm6,0x20(%rsi)
|
|
|
|
vextracti128 $1,%ymm7,%xmm2
|
|
|
|
# o3 = i3 ^ (x3 + s3)
|
|
|
|
vpaddd %ymm11,%ymm3,%ymm7
|
|
|
|
cmp $0x40,%rax
|
|
|
|
jl .Lxorpart2
|
|
|
|
vpxor 0x30(%rdx),%xmm7,%xmm6
|
|
|
|
vmovdqu %xmm6,0x30(%rsi)
|
|
|
|
vextracti128 $1,%ymm7,%xmm3
|
|
|
|
|
|
|
|
# xor and write second block
|
|
|
|
vmovdqa %xmm0,%xmm7
|
|
|
|
cmp $0x50,%rax
|
|
|
|
jl .Lxorpart2
|
|
|
|
vpxor 0x40(%rdx),%xmm7,%xmm6
|
|
|
|
vmovdqu %xmm6,0x40(%rsi)
|
|
|
|
|
|
|
|
vmovdqa %xmm1,%xmm7
|
|
|
|
cmp $0x60,%rax
|
|
|
|
jl .Lxorpart2
|
|
|
|
vpxor 0x50(%rdx),%xmm7,%xmm6
|
|
|
|
vmovdqu %xmm6,0x50(%rsi)
|
|
|
|
|
|
|
|
vmovdqa %xmm2,%xmm7
|
|
|
|
cmp $0x70,%rax
|
|
|
|
jl .Lxorpart2
|
|
|
|
vpxor 0x60(%rdx),%xmm7,%xmm6
|
|
|
|
vmovdqu %xmm6,0x60(%rsi)
|
|
|
|
|
|
|
|
vmovdqa %xmm3,%xmm7
|
|
|
|
cmp $0x80,%rax
|
|
|
|
jl .Lxorpart2
|
|
|
|
vpxor 0x70(%rdx),%xmm7,%xmm6
|
|
|
|
vmovdqu %xmm6,0x70(%rsi)
|
|
|
|
|
|
|
|
.Ldone2:
|
|
|
|
vzeroupper
|
|
|
|
ret
|
|
|
|
|
|
|
|
.Lxorpart2:
|
|
|
|
# xor remaining bytes from partial register into output
|
|
|
|
mov %rax,%r9
|
|
|
|
and $0x0f,%r9
|
|
|
|
jz .Ldone2
|
|
|
|
and $~0x0f,%rax
|
|
|
|
|
|
|
|
mov %rsi,%r11
|
|
|
|
|
|
|
|
lea 8(%rsp),%r10
|
|
|
|
sub $0x10,%rsp
|
|
|
|
and $~31,%rsp
|
|
|
|
|
|
|
|
lea (%rdx,%rax),%rsi
|
|
|
|
mov %rsp,%rdi
|
|
|
|
mov %r9,%rcx
|
|
|
|
rep movsb
|
|
|
|
|
|
|
|
vpxor 0x00(%rsp),%xmm7,%xmm7
|
|
|
|
vmovdqa %xmm7,0x00(%rsp)
|
|
|
|
|
|
|
|
mov %rsp,%rsi
|
|
|
|
lea (%r11,%rax),%rdi
|
|
|
|
mov %r9,%rcx
|
|
|
|
rep movsb
|
|
|
|
|
|
|
|
lea -8(%r10),%rsp
|
|
|
|
jmp .Ldone2
|
|
|
|
|
2019-10-11 11:51:04 +00:00
|
|
|
SYM_FUNC_END(chacha_2block_xor_avx2)
|
2018-11-11 09:36:29 +00:00
|
|
|
|
2019-10-11 11:51:04 +00:00
|
|
|
SYM_FUNC_START(chacha_4block_xor_avx2)
|
2018-11-11 09:36:30 +00:00
|
|
|
# %rdi: Input state matrix, s
|
|
|
|
# %rsi: up to 4 data blocks output, o
|
|
|
|
# %rdx: up to 4 data blocks input, i
|
|
|
|
# %rcx: input/output length in bytes
|
2018-12-05 06:20:03 +00:00
|
|
|
# %r8d: nrounds
|
2018-11-11 09:36:30 +00:00
|
|
|
|
2018-12-05 06:20:03 +00:00
|
|
|
# This function encrypts four ChaCha blocks by loading the state
|
2018-11-11 09:36:30 +00:00
|
|
|
# matrix four times across eight AVX registers. It performs matrix
|
|
|
|
# operations on four words in two matrices in parallel, sequentially
|
|
|
|
# to the operations on the four words of the other two matrices. The
|
|
|
|
# required word shuffling has a rather high latency, we can do the
|
|
|
|
# arithmetic on two matrix-pairs without much slowdown.
|
|
|
|
|
|
|
|
vzeroupper
|
|
|
|
|
|
|
|
# x0..3[0-4] = s0..3
|
|
|
|
vbroadcasti128 0x00(%rdi),%ymm0
|
|
|
|
vbroadcasti128 0x10(%rdi),%ymm1
|
|
|
|
vbroadcasti128 0x20(%rdi),%ymm2
|
|
|
|
vbroadcasti128 0x30(%rdi),%ymm3
|
|
|
|
|
|
|
|
vmovdqa %ymm0,%ymm4
|
|
|
|
vmovdqa %ymm1,%ymm5
|
|
|
|
vmovdqa %ymm2,%ymm6
|
|
|
|
vmovdqa %ymm3,%ymm7
|
|
|
|
|
|
|
|
vpaddd CTR2BL(%rip),%ymm3,%ymm3
|
|
|
|
vpaddd CTR4BL(%rip),%ymm7,%ymm7
|
|
|
|
|
|
|
|
vmovdqa %ymm0,%ymm11
|
|
|
|
vmovdqa %ymm1,%ymm12
|
|
|
|
vmovdqa %ymm2,%ymm13
|
|
|
|
vmovdqa %ymm3,%ymm14
|
|
|
|
vmovdqa %ymm7,%ymm15
|
|
|
|
|
|
|
|
vmovdqa ROT8(%rip),%ymm8
|
|
|
|
vmovdqa ROT16(%rip),%ymm9
|
|
|
|
|
|
|
|
mov %rcx,%rax
|
|
|
|
|
|
|
|
.Ldoubleround4:
|
|
|
|
|
|
|
|
# x0 += x1, x3 = rotl32(x3 ^ x0, 16)
|
|
|
|
vpaddd %ymm1,%ymm0,%ymm0
|
|
|
|
vpxor %ymm0,%ymm3,%ymm3
|
|
|
|
vpshufb %ymm9,%ymm3,%ymm3
|
|
|
|
|
|
|
|
vpaddd %ymm5,%ymm4,%ymm4
|
|
|
|
vpxor %ymm4,%ymm7,%ymm7
|
|
|
|
vpshufb %ymm9,%ymm7,%ymm7
|
|
|
|
|
|
|
|
# x2 += x3, x1 = rotl32(x1 ^ x2, 12)
|
|
|
|
vpaddd %ymm3,%ymm2,%ymm2
|
|
|
|
vpxor %ymm2,%ymm1,%ymm1
|
|
|
|
vmovdqa %ymm1,%ymm10
|
|
|
|
vpslld $12,%ymm10,%ymm10
|
|
|
|
vpsrld $20,%ymm1,%ymm1
|
|
|
|
vpor %ymm10,%ymm1,%ymm1
|
|
|
|
|
|
|
|
vpaddd %ymm7,%ymm6,%ymm6
|
|
|
|
vpxor %ymm6,%ymm5,%ymm5
|
|
|
|
vmovdqa %ymm5,%ymm10
|
|
|
|
vpslld $12,%ymm10,%ymm10
|
|
|
|
vpsrld $20,%ymm5,%ymm5
|
|
|
|
vpor %ymm10,%ymm5,%ymm5
|
|
|
|
|
|
|
|
# x0 += x1, x3 = rotl32(x3 ^ x0, 8)
|
|
|
|
vpaddd %ymm1,%ymm0,%ymm0
|
|
|
|
vpxor %ymm0,%ymm3,%ymm3
|
|
|
|
vpshufb %ymm8,%ymm3,%ymm3
|
|
|
|
|
|
|
|
vpaddd %ymm5,%ymm4,%ymm4
|
|
|
|
vpxor %ymm4,%ymm7,%ymm7
|
|
|
|
vpshufb %ymm8,%ymm7,%ymm7
|
|
|
|
|
|
|
|
# x2 += x3, x1 = rotl32(x1 ^ x2, 7)
|
|
|
|
vpaddd %ymm3,%ymm2,%ymm2
|
|
|
|
vpxor %ymm2,%ymm1,%ymm1
|
|
|
|
vmovdqa %ymm1,%ymm10
|
|
|
|
vpslld $7,%ymm10,%ymm10
|
|
|
|
vpsrld $25,%ymm1,%ymm1
|
|
|
|
vpor %ymm10,%ymm1,%ymm1
|
|
|
|
|
|
|
|
vpaddd %ymm7,%ymm6,%ymm6
|
|
|
|
vpxor %ymm6,%ymm5,%ymm5
|
|
|
|
vmovdqa %ymm5,%ymm10
|
|
|
|
vpslld $7,%ymm10,%ymm10
|
|
|
|
vpsrld $25,%ymm5,%ymm5
|
|
|
|
vpor %ymm10,%ymm5,%ymm5
|
|
|
|
|
|
|
|
# x1 = shuffle32(x1, MASK(0, 3, 2, 1))
|
|
|
|
vpshufd $0x39,%ymm1,%ymm1
|
|
|
|
vpshufd $0x39,%ymm5,%ymm5
|
|
|
|
# x2 = shuffle32(x2, MASK(1, 0, 3, 2))
|
|
|
|
vpshufd $0x4e,%ymm2,%ymm2
|
|
|
|
vpshufd $0x4e,%ymm6,%ymm6
|
|
|
|
# x3 = shuffle32(x3, MASK(2, 1, 0, 3))
|
|
|
|
vpshufd $0x93,%ymm3,%ymm3
|
|
|
|
vpshufd $0x93,%ymm7,%ymm7
|
|
|
|
|
|
|
|
# x0 += x1, x3 = rotl32(x3 ^ x0, 16)
|
|
|
|
vpaddd %ymm1,%ymm0,%ymm0
|
|
|
|
vpxor %ymm0,%ymm3,%ymm3
|
|
|
|
vpshufb %ymm9,%ymm3,%ymm3
|
|
|
|
|
|
|
|
vpaddd %ymm5,%ymm4,%ymm4
|
|
|
|
vpxor %ymm4,%ymm7,%ymm7
|
|
|
|
vpshufb %ymm9,%ymm7,%ymm7
|
|
|
|
|
|
|
|
# x2 += x3, x1 = rotl32(x1 ^ x2, 12)
|
|
|
|
vpaddd %ymm3,%ymm2,%ymm2
|
|
|
|
vpxor %ymm2,%ymm1,%ymm1
|
|
|
|
vmovdqa %ymm1,%ymm10
|
|
|
|
vpslld $12,%ymm10,%ymm10
|
|
|
|
vpsrld $20,%ymm1,%ymm1
|
|
|
|
vpor %ymm10,%ymm1,%ymm1
|
|
|
|
|
|
|
|
vpaddd %ymm7,%ymm6,%ymm6
|
|
|
|
vpxor %ymm6,%ymm5,%ymm5
|
|
|
|
vmovdqa %ymm5,%ymm10
|
|
|
|
vpslld $12,%ymm10,%ymm10
|
|
|
|
vpsrld $20,%ymm5,%ymm5
|
|
|
|
vpor %ymm10,%ymm5,%ymm5
|
|
|
|
|
|
|
|
# x0 += x1, x3 = rotl32(x3 ^ x0, 8)
|
|
|
|
vpaddd %ymm1,%ymm0,%ymm0
|
|
|
|
vpxor %ymm0,%ymm3,%ymm3
|
|
|
|
vpshufb %ymm8,%ymm3,%ymm3
|
|
|
|
|
|
|
|
vpaddd %ymm5,%ymm4,%ymm4
|
|
|
|
vpxor %ymm4,%ymm7,%ymm7
|
|
|
|
vpshufb %ymm8,%ymm7,%ymm7
|
|
|
|
|
|
|
|
# x2 += x3, x1 = rotl32(x1 ^ x2, 7)
|
|
|
|
vpaddd %ymm3,%ymm2,%ymm2
|
|
|
|
vpxor %ymm2,%ymm1,%ymm1
|
|
|
|
vmovdqa %ymm1,%ymm10
|
|
|
|
vpslld $7,%ymm10,%ymm10
|
|
|
|
vpsrld $25,%ymm1,%ymm1
|
|
|
|
vpor %ymm10,%ymm1,%ymm1
|
|
|
|
|
|
|
|
vpaddd %ymm7,%ymm6,%ymm6
|
|
|
|
vpxor %ymm6,%ymm5,%ymm5
|
|
|
|
vmovdqa %ymm5,%ymm10
|
|
|
|
vpslld $7,%ymm10,%ymm10
|
|
|
|
vpsrld $25,%ymm5,%ymm5
|
|
|
|
vpor %ymm10,%ymm5,%ymm5
|
|
|
|
|
|
|
|
# x1 = shuffle32(x1, MASK(2, 1, 0, 3))
|
|
|
|
vpshufd $0x93,%ymm1,%ymm1
|
|
|
|
vpshufd $0x93,%ymm5,%ymm5
|
|
|
|
# x2 = shuffle32(x2, MASK(1, 0, 3, 2))
|
|
|
|
vpshufd $0x4e,%ymm2,%ymm2
|
|
|
|
vpshufd $0x4e,%ymm6,%ymm6
|
|
|
|
# x3 = shuffle32(x3, MASK(0, 3, 2, 1))
|
|
|
|
vpshufd $0x39,%ymm3,%ymm3
|
|
|
|
vpshufd $0x39,%ymm7,%ymm7
|
|
|
|
|
2018-12-05 06:20:03 +00:00
|
|
|
sub $2,%r8d
|
2018-11-11 09:36:30 +00:00
|
|
|
jnz .Ldoubleround4
|
|
|
|
|
|
|
|
# o0 = i0 ^ (x0 + s0), first block
|
|
|
|
vpaddd %ymm11,%ymm0,%ymm10
|
|
|
|
cmp $0x10,%rax
|
|
|
|
jl .Lxorpart4
|
|
|
|
vpxor 0x00(%rdx),%xmm10,%xmm9
|
|
|
|
vmovdqu %xmm9,0x00(%rsi)
|
|
|
|
vextracti128 $1,%ymm10,%xmm0
|
|
|
|
# o1 = i1 ^ (x1 + s1), first block
|
|
|
|
vpaddd %ymm12,%ymm1,%ymm10
|
|
|
|
cmp $0x20,%rax
|
|
|
|
jl .Lxorpart4
|
|
|
|
vpxor 0x10(%rdx),%xmm10,%xmm9
|
|
|
|
vmovdqu %xmm9,0x10(%rsi)
|
|
|
|
vextracti128 $1,%ymm10,%xmm1
|
|
|
|
# o2 = i2 ^ (x2 + s2), first block
|
|
|
|
vpaddd %ymm13,%ymm2,%ymm10
|
|
|
|
cmp $0x30,%rax
|
|
|
|
jl .Lxorpart4
|
|
|
|
vpxor 0x20(%rdx),%xmm10,%xmm9
|
|
|
|
vmovdqu %xmm9,0x20(%rsi)
|
|
|
|
vextracti128 $1,%ymm10,%xmm2
|
|
|
|
# o3 = i3 ^ (x3 + s3), first block
|
|
|
|
vpaddd %ymm14,%ymm3,%ymm10
|
|
|
|
cmp $0x40,%rax
|
|
|
|
jl .Lxorpart4
|
|
|
|
vpxor 0x30(%rdx),%xmm10,%xmm9
|
|
|
|
vmovdqu %xmm9,0x30(%rsi)
|
|
|
|
vextracti128 $1,%ymm10,%xmm3
|
|
|
|
|
|
|
|
# xor and write second block
|
|
|
|
vmovdqa %xmm0,%xmm10
|
|
|
|
cmp $0x50,%rax
|
|
|
|
jl .Lxorpart4
|
|
|
|
vpxor 0x40(%rdx),%xmm10,%xmm9
|
|
|
|
vmovdqu %xmm9,0x40(%rsi)
|
|
|
|
|
|
|
|
vmovdqa %xmm1,%xmm10
|
|
|
|
cmp $0x60,%rax
|
|
|
|
jl .Lxorpart4
|
|
|
|
vpxor 0x50(%rdx),%xmm10,%xmm9
|
|
|
|
vmovdqu %xmm9,0x50(%rsi)
|
|
|
|
|
|
|
|
vmovdqa %xmm2,%xmm10
|
|
|
|
cmp $0x70,%rax
|
|
|
|
jl .Lxorpart4
|
|
|
|
vpxor 0x60(%rdx),%xmm10,%xmm9
|
|
|
|
vmovdqu %xmm9,0x60(%rsi)
|
|
|
|
|
|
|
|
vmovdqa %xmm3,%xmm10
|
|
|
|
cmp $0x80,%rax
|
|
|
|
jl .Lxorpart4
|
|
|
|
vpxor 0x70(%rdx),%xmm10,%xmm9
|
|
|
|
vmovdqu %xmm9,0x70(%rsi)
|
|
|
|
|
|
|
|
# o0 = i0 ^ (x0 + s0), third block
|
|
|
|
vpaddd %ymm11,%ymm4,%ymm10
|
|
|
|
cmp $0x90,%rax
|
|
|
|
jl .Lxorpart4
|
|
|
|
vpxor 0x80(%rdx),%xmm10,%xmm9
|
|
|
|
vmovdqu %xmm9,0x80(%rsi)
|
|
|
|
vextracti128 $1,%ymm10,%xmm4
|
|
|
|
# o1 = i1 ^ (x1 + s1), third block
|
|
|
|
vpaddd %ymm12,%ymm5,%ymm10
|
|
|
|
cmp $0xa0,%rax
|
|
|
|
jl .Lxorpart4
|
|
|
|
vpxor 0x90(%rdx),%xmm10,%xmm9
|
|
|
|
vmovdqu %xmm9,0x90(%rsi)
|
|
|
|
vextracti128 $1,%ymm10,%xmm5
|
|
|
|
# o2 = i2 ^ (x2 + s2), third block
|
|
|
|
vpaddd %ymm13,%ymm6,%ymm10
|
|
|
|
cmp $0xb0,%rax
|
|
|
|
jl .Lxorpart4
|
|
|
|
vpxor 0xa0(%rdx),%xmm10,%xmm9
|
|
|
|
vmovdqu %xmm9,0xa0(%rsi)
|
|
|
|
vextracti128 $1,%ymm10,%xmm6
|
|
|
|
# o3 = i3 ^ (x3 + s3), third block
|
|
|
|
vpaddd %ymm15,%ymm7,%ymm10
|
|
|
|
cmp $0xc0,%rax
|
|
|
|
jl .Lxorpart4
|
|
|
|
vpxor 0xb0(%rdx),%xmm10,%xmm9
|
|
|
|
vmovdqu %xmm9,0xb0(%rsi)
|
|
|
|
vextracti128 $1,%ymm10,%xmm7
|
|
|
|
|
|
|
|
# xor and write fourth block
|
|
|
|
vmovdqa %xmm4,%xmm10
|
|
|
|
cmp $0xd0,%rax
|
|
|
|
jl .Lxorpart4
|
|
|
|
vpxor 0xc0(%rdx),%xmm10,%xmm9
|
|
|
|
vmovdqu %xmm9,0xc0(%rsi)
|
|
|
|
|
|
|
|
vmovdqa %xmm5,%xmm10
|
|
|
|
cmp $0xe0,%rax
|
|
|
|
jl .Lxorpart4
|
|
|
|
vpxor 0xd0(%rdx),%xmm10,%xmm9
|
|
|
|
vmovdqu %xmm9,0xd0(%rsi)
|
|
|
|
|
|
|
|
vmovdqa %xmm6,%xmm10
|
|
|
|
cmp $0xf0,%rax
|
|
|
|
jl .Lxorpart4
|
|
|
|
vpxor 0xe0(%rdx),%xmm10,%xmm9
|
|
|
|
vmovdqu %xmm9,0xe0(%rsi)
|
|
|
|
|
|
|
|
vmovdqa %xmm7,%xmm10
|
|
|
|
cmp $0x100,%rax
|
|
|
|
jl .Lxorpart4
|
|
|
|
vpxor 0xf0(%rdx),%xmm10,%xmm9
|
|
|
|
vmovdqu %xmm9,0xf0(%rsi)
|
|
|
|
|
|
|
|
.Ldone4:
|
|
|
|
vzeroupper
|
|
|
|
ret
|
|
|
|
|
|
|
|
.Lxorpart4:
|
|
|
|
# xor remaining bytes from partial register into output
|
|
|
|
mov %rax,%r9
|
|
|
|
and $0x0f,%r9
|
|
|
|
jz .Ldone4
|
|
|
|
and $~0x0f,%rax
|
|
|
|
|
|
|
|
mov %rsi,%r11
|
|
|
|
|
|
|
|
lea 8(%rsp),%r10
|
|
|
|
sub $0x10,%rsp
|
|
|
|
and $~31,%rsp
|
|
|
|
|
|
|
|
lea (%rdx,%rax),%rsi
|
|
|
|
mov %rsp,%rdi
|
|
|
|
mov %r9,%rcx
|
|
|
|
rep movsb
|
|
|
|
|
|
|
|
vpxor 0x00(%rsp),%xmm10,%xmm10
|
|
|
|
vmovdqa %xmm10,0x00(%rsp)
|
|
|
|
|
|
|
|
mov %rsp,%rsi
|
|
|
|
lea (%r11,%rax),%rdi
|
|
|
|
mov %r9,%rcx
|
|
|
|
rep movsb
|
|
|
|
|
|
|
|
lea -8(%r10),%rsp
|
|
|
|
jmp .Ldone4
|
|
|
|
|
2019-10-11 11:51:04 +00:00
|
|
|
SYM_FUNC_END(chacha_4block_xor_avx2)
|
2018-11-11 09:36:30 +00:00
|
|
|
|
2019-10-11 11:51:04 +00:00
|
|
|
SYM_FUNC_START(chacha_8block_xor_avx2)
|
crypto: chacha20 - Add an eight block AVX2 variant for x86_64
Extends the x86_64 ChaCha20 implementation by a function processing eight
ChaCha20 blocks in parallel using AVX2.
For large messages, throughput increases by ~55-70% compared to four block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 41999675 operations in 10 seconds (671994800 bytes)
test 1 (256 bit key, 64 byte blocks): 45805908 operations in 10 seconds (2931578112 bytes)
test 2 (256 bit key, 256 byte blocks): 32814947 operations in 10 seconds (8400626432 bytes)
test 3 (256 bit key, 1024 byte blocks): 19777167 operations in 10 seconds (20251819008 bytes)
test 4 (256 bit key, 8192 byte blocks): 2279321 operations in 10 seconds (18672197632 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 17:14:03 +00:00
|
|
|
# %rdi: Input state matrix, s
|
2018-11-11 09:36:27 +00:00
|
|
|
# %rsi: up to 8 data blocks output, o
|
|
|
|
# %rdx: up to 8 data blocks input, i
|
|
|
|
# %rcx: input/output length in bytes
|
2018-12-05 06:20:03 +00:00
|
|
|
# %r8d: nrounds
|
crypto: chacha20 - Add an eight block AVX2 variant for x86_64
Extends the x86_64 ChaCha20 implementation by a function processing eight
ChaCha20 blocks in parallel using AVX2.
For large messages, throughput increases by ~55-70% compared to four block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 41999675 operations in 10 seconds (671994800 bytes)
test 1 (256 bit key, 64 byte blocks): 45805908 operations in 10 seconds (2931578112 bytes)
test 2 (256 bit key, 256 byte blocks): 32814947 operations in 10 seconds (8400626432 bytes)
test 3 (256 bit key, 1024 byte blocks): 19777167 operations in 10 seconds (20251819008 bytes)
test 4 (256 bit key, 8192 byte blocks): 2279321 operations in 10 seconds (18672197632 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 17:14:03 +00:00
|
|
|
|
2018-12-05 06:20:03 +00:00
|
|
|
# This function encrypts eight consecutive ChaCha blocks by loading
|
crypto: chacha20 - Add an eight block AVX2 variant for x86_64
Extends the x86_64 ChaCha20 implementation by a function processing eight
ChaCha20 blocks in parallel using AVX2.
For large messages, throughput increases by ~55-70% compared to four block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 41999675 operations in 10 seconds (671994800 bytes)
test 1 (256 bit key, 64 byte blocks): 45805908 operations in 10 seconds (2931578112 bytes)
test 2 (256 bit key, 256 byte blocks): 32814947 operations in 10 seconds (8400626432 bytes)
test 3 (256 bit key, 1024 byte blocks): 19777167 operations in 10 seconds (20251819008 bytes)
test 4 (256 bit key, 8192 byte blocks): 2279321 operations in 10 seconds (18672197632 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 17:14:03 +00:00
|
|
|
# the state matrix in AVX registers eight times. As we need some
|
|
|
|
# scratch registers, we save the first four registers on the stack. The
|
|
|
|
# algorithm performs each operation on the corresponding word of each
|
|
|
|
# state matrix, hence requires no word shuffling. For final XORing step
|
|
|
|
# we transpose the matrix by interleaving 32-, 64- and then 128-bit
|
|
|
|
# words, which allows us to do XOR in AVX registers. 8/16-bit word
|
|
|
|
# rotation is done with the slightly better performing byte shuffling,
|
|
|
|
# 7/12-bit word rotation uses traditional shift+OR.
|
|
|
|
|
|
|
|
vzeroupper
|
|
|
|
# 4 * 32 byte stack, 32-byte aligned
|
2017-10-08 20:50:53 +00:00
|
|
|
lea 8(%rsp),%r10
|
crypto: chacha20 - Add an eight block AVX2 variant for x86_64
Extends the x86_64 ChaCha20 implementation by a function processing eight
ChaCha20 blocks in parallel using AVX2.
For large messages, throughput increases by ~55-70% compared to four block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 41999675 operations in 10 seconds (671994800 bytes)
test 1 (256 bit key, 64 byte blocks): 45805908 operations in 10 seconds (2931578112 bytes)
test 2 (256 bit key, 256 byte blocks): 32814947 operations in 10 seconds (8400626432 bytes)
test 3 (256 bit key, 1024 byte blocks): 19777167 operations in 10 seconds (20251819008 bytes)
test 4 (256 bit key, 8192 byte blocks): 2279321 operations in 10 seconds (18672197632 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 17:14:03 +00:00
|
|
|
and $~31, %rsp
|
|
|
|
sub $0x80, %rsp
|
2018-11-11 09:36:27 +00:00
|
|
|
mov %rcx,%rax
|
crypto: chacha20 - Add an eight block AVX2 variant for x86_64
Extends the x86_64 ChaCha20 implementation by a function processing eight
ChaCha20 blocks in parallel using AVX2.
For large messages, throughput increases by ~55-70% compared to four block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 41999675 operations in 10 seconds (671994800 bytes)
test 1 (256 bit key, 64 byte blocks): 45805908 operations in 10 seconds (2931578112 bytes)
test 2 (256 bit key, 256 byte blocks): 32814947 operations in 10 seconds (8400626432 bytes)
test 3 (256 bit key, 1024 byte blocks): 19777167 operations in 10 seconds (20251819008 bytes)
test 4 (256 bit key, 8192 byte blocks): 2279321 operations in 10 seconds (18672197632 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 17:14:03 +00:00
|
|
|
|
|
|
|
# x0..15[0-7] = s[0..15]
|
|
|
|
vpbroadcastd 0x00(%rdi),%ymm0
|
|
|
|
vpbroadcastd 0x04(%rdi),%ymm1
|
|
|
|
vpbroadcastd 0x08(%rdi),%ymm2
|
|
|
|
vpbroadcastd 0x0c(%rdi),%ymm3
|
|
|
|
vpbroadcastd 0x10(%rdi),%ymm4
|
|
|
|
vpbroadcastd 0x14(%rdi),%ymm5
|
|
|
|
vpbroadcastd 0x18(%rdi),%ymm6
|
|
|
|
vpbroadcastd 0x1c(%rdi),%ymm7
|
|
|
|
vpbroadcastd 0x20(%rdi),%ymm8
|
|
|
|
vpbroadcastd 0x24(%rdi),%ymm9
|
|
|
|
vpbroadcastd 0x28(%rdi),%ymm10
|
|
|
|
vpbroadcastd 0x2c(%rdi),%ymm11
|
|
|
|
vpbroadcastd 0x30(%rdi),%ymm12
|
|
|
|
vpbroadcastd 0x34(%rdi),%ymm13
|
|
|
|
vpbroadcastd 0x38(%rdi),%ymm14
|
|
|
|
vpbroadcastd 0x3c(%rdi),%ymm15
|
|
|
|
# x0..3 on stack
|
|
|
|
vmovdqa %ymm0,0x00(%rsp)
|
|
|
|
vmovdqa %ymm1,0x20(%rsp)
|
|
|
|
vmovdqa %ymm2,0x40(%rsp)
|
|
|
|
vmovdqa %ymm3,0x60(%rsp)
|
|
|
|
|
|
|
|
vmovdqa CTRINC(%rip),%ymm1
|
|
|
|
vmovdqa ROT8(%rip),%ymm2
|
|
|
|
vmovdqa ROT16(%rip),%ymm3
|
|
|
|
|
|
|
|
# x12 += counter values 0-3
|
|
|
|
vpaddd %ymm1,%ymm12,%ymm12
|
|
|
|
|
|
|
|
.Ldoubleround8:
|
|
|
|
# x0 += x4, x12 = rotl32(x12 ^ x0, 16)
|
|
|
|
vpaddd 0x00(%rsp),%ymm4,%ymm0
|
|
|
|
vmovdqa %ymm0,0x00(%rsp)
|
|
|
|
vpxor %ymm0,%ymm12,%ymm12
|
|
|
|
vpshufb %ymm3,%ymm12,%ymm12
|
|
|
|
# x1 += x5, x13 = rotl32(x13 ^ x1, 16)
|
|
|
|
vpaddd 0x20(%rsp),%ymm5,%ymm0
|
|
|
|
vmovdqa %ymm0,0x20(%rsp)
|
|
|
|
vpxor %ymm0,%ymm13,%ymm13
|
|
|
|
vpshufb %ymm3,%ymm13,%ymm13
|
|
|
|
# x2 += x6, x14 = rotl32(x14 ^ x2, 16)
|
|
|
|
vpaddd 0x40(%rsp),%ymm6,%ymm0
|
|
|
|
vmovdqa %ymm0,0x40(%rsp)
|
|
|
|
vpxor %ymm0,%ymm14,%ymm14
|
|
|
|
vpshufb %ymm3,%ymm14,%ymm14
|
|
|
|
# x3 += x7, x15 = rotl32(x15 ^ x3, 16)
|
|
|
|
vpaddd 0x60(%rsp),%ymm7,%ymm0
|
|
|
|
vmovdqa %ymm0,0x60(%rsp)
|
|
|
|
vpxor %ymm0,%ymm15,%ymm15
|
|
|
|
vpshufb %ymm3,%ymm15,%ymm15
|
|
|
|
|
|
|
|
# x8 += x12, x4 = rotl32(x4 ^ x8, 12)
|
|
|
|
vpaddd %ymm12,%ymm8,%ymm8
|
|
|
|
vpxor %ymm8,%ymm4,%ymm4
|
|
|
|
vpslld $12,%ymm4,%ymm0
|
|
|
|
vpsrld $20,%ymm4,%ymm4
|
|
|
|
vpor %ymm0,%ymm4,%ymm4
|
|
|
|
# x9 += x13, x5 = rotl32(x5 ^ x9, 12)
|
|
|
|
vpaddd %ymm13,%ymm9,%ymm9
|
|
|
|
vpxor %ymm9,%ymm5,%ymm5
|
|
|
|
vpslld $12,%ymm5,%ymm0
|
|
|
|
vpsrld $20,%ymm5,%ymm5
|
|
|
|
vpor %ymm0,%ymm5,%ymm5
|
|
|
|
# x10 += x14, x6 = rotl32(x6 ^ x10, 12)
|
|
|
|
vpaddd %ymm14,%ymm10,%ymm10
|
|
|
|
vpxor %ymm10,%ymm6,%ymm6
|
|
|
|
vpslld $12,%ymm6,%ymm0
|
|
|
|
vpsrld $20,%ymm6,%ymm6
|
|
|
|
vpor %ymm0,%ymm6,%ymm6
|
|
|
|
# x11 += x15, x7 = rotl32(x7 ^ x11, 12)
|
|
|
|
vpaddd %ymm15,%ymm11,%ymm11
|
|
|
|
vpxor %ymm11,%ymm7,%ymm7
|
|
|
|
vpslld $12,%ymm7,%ymm0
|
|
|
|
vpsrld $20,%ymm7,%ymm7
|
|
|
|
vpor %ymm0,%ymm7,%ymm7
|
|
|
|
|
|
|
|
# x0 += x4, x12 = rotl32(x12 ^ x0, 8)
|
|
|
|
vpaddd 0x00(%rsp),%ymm4,%ymm0
|
|
|
|
vmovdqa %ymm0,0x00(%rsp)
|
|
|
|
vpxor %ymm0,%ymm12,%ymm12
|
|
|
|
vpshufb %ymm2,%ymm12,%ymm12
|
|
|
|
# x1 += x5, x13 = rotl32(x13 ^ x1, 8)
|
|
|
|
vpaddd 0x20(%rsp),%ymm5,%ymm0
|
|
|
|
vmovdqa %ymm0,0x20(%rsp)
|
|
|
|
vpxor %ymm0,%ymm13,%ymm13
|
|
|
|
vpshufb %ymm2,%ymm13,%ymm13
|
|
|
|
# x2 += x6, x14 = rotl32(x14 ^ x2, 8)
|
|
|
|
vpaddd 0x40(%rsp),%ymm6,%ymm0
|
|
|
|
vmovdqa %ymm0,0x40(%rsp)
|
|
|
|
vpxor %ymm0,%ymm14,%ymm14
|
|
|
|
vpshufb %ymm2,%ymm14,%ymm14
|
|
|
|
# x3 += x7, x15 = rotl32(x15 ^ x3, 8)
|
|
|
|
vpaddd 0x60(%rsp),%ymm7,%ymm0
|
|
|
|
vmovdqa %ymm0,0x60(%rsp)
|
|
|
|
vpxor %ymm0,%ymm15,%ymm15
|
|
|
|
vpshufb %ymm2,%ymm15,%ymm15
|
|
|
|
|
|
|
|
# x8 += x12, x4 = rotl32(x4 ^ x8, 7)
|
|
|
|
vpaddd %ymm12,%ymm8,%ymm8
|
|
|
|
vpxor %ymm8,%ymm4,%ymm4
|
|
|
|
vpslld $7,%ymm4,%ymm0
|
|
|
|
vpsrld $25,%ymm4,%ymm4
|
|
|
|
vpor %ymm0,%ymm4,%ymm4
|
|
|
|
# x9 += x13, x5 = rotl32(x5 ^ x9, 7)
|
|
|
|
vpaddd %ymm13,%ymm9,%ymm9
|
|
|
|
vpxor %ymm9,%ymm5,%ymm5
|
|
|
|
vpslld $7,%ymm5,%ymm0
|
|
|
|
vpsrld $25,%ymm5,%ymm5
|
|
|
|
vpor %ymm0,%ymm5,%ymm5
|
|
|
|
# x10 += x14, x6 = rotl32(x6 ^ x10, 7)
|
|
|
|
vpaddd %ymm14,%ymm10,%ymm10
|
|
|
|
vpxor %ymm10,%ymm6,%ymm6
|
|
|
|
vpslld $7,%ymm6,%ymm0
|
|
|
|
vpsrld $25,%ymm6,%ymm6
|
|
|
|
vpor %ymm0,%ymm6,%ymm6
|
|
|
|
# x11 += x15, x7 = rotl32(x7 ^ x11, 7)
|
|
|
|
vpaddd %ymm15,%ymm11,%ymm11
|
|
|
|
vpxor %ymm11,%ymm7,%ymm7
|
|
|
|
vpslld $7,%ymm7,%ymm0
|
|
|
|
vpsrld $25,%ymm7,%ymm7
|
|
|
|
vpor %ymm0,%ymm7,%ymm7
|
|
|
|
|
|
|
|
# x0 += x5, x15 = rotl32(x15 ^ x0, 16)
|
|
|
|
vpaddd 0x00(%rsp),%ymm5,%ymm0
|
|
|
|
vmovdqa %ymm0,0x00(%rsp)
|
|
|
|
vpxor %ymm0,%ymm15,%ymm15
|
|
|
|
vpshufb %ymm3,%ymm15,%ymm15
|
|
|
|
# x1 += x6, x12 = rotl32(x12 ^ x1, 16)%ymm0
|
|
|
|
vpaddd 0x20(%rsp),%ymm6,%ymm0
|
|
|
|
vmovdqa %ymm0,0x20(%rsp)
|
|
|
|
vpxor %ymm0,%ymm12,%ymm12
|
|
|
|
vpshufb %ymm3,%ymm12,%ymm12
|
|
|
|
# x2 += x7, x13 = rotl32(x13 ^ x2, 16)
|
|
|
|
vpaddd 0x40(%rsp),%ymm7,%ymm0
|
|
|
|
vmovdqa %ymm0,0x40(%rsp)
|
|
|
|
vpxor %ymm0,%ymm13,%ymm13
|
|
|
|
vpshufb %ymm3,%ymm13,%ymm13
|
|
|
|
# x3 += x4, x14 = rotl32(x14 ^ x3, 16)
|
|
|
|
vpaddd 0x60(%rsp),%ymm4,%ymm0
|
|
|
|
vmovdqa %ymm0,0x60(%rsp)
|
|
|
|
vpxor %ymm0,%ymm14,%ymm14
|
|
|
|
vpshufb %ymm3,%ymm14,%ymm14
|
|
|
|
|
|
|
|
# x10 += x15, x5 = rotl32(x5 ^ x10, 12)
|
|
|
|
vpaddd %ymm15,%ymm10,%ymm10
|
|
|
|
vpxor %ymm10,%ymm5,%ymm5
|
|
|
|
vpslld $12,%ymm5,%ymm0
|
|
|
|
vpsrld $20,%ymm5,%ymm5
|
|
|
|
vpor %ymm0,%ymm5,%ymm5
|
|
|
|
# x11 += x12, x6 = rotl32(x6 ^ x11, 12)
|
|
|
|
vpaddd %ymm12,%ymm11,%ymm11
|
|
|
|
vpxor %ymm11,%ymm6,%ymm6
|
|
|
|
vpslld $12,%ymm6,%ymm0
|
|
|
|
vpsrld $20,%ymm6,%ymm6
|
|
|
|
vpor %ymm0,%ymm6,%ymm6
|
|
|
|
# x8 += x13, x7 = rotl32(x7 ^ x8, 12)
|
|
|
|
vpaddd %ymm13,%ymm8,%ymm8
|
|
|
|
vpxor %ymm8,%ymm7,%ymm7
|
|
|
|
vpslld $12,%ymm7,%ymm0
|
|
|
|
vpsrld $20,%ymm7,%ymm7
|
|
|
|
vpor %ymm0,%ymm7,%ymm7
|
|
|
|
# x9 += x14, x4 = rotl32(x4 ^ x9, 12)
|
|
|
|
vpaddd %ymm14,%ymm9,%ymm9
|
|
|
|
vpxor %ymm9,%ymm4,%ymm4
|
|
|
|
vpslld $12,%ymm4,%ymm0
|
|
|
|
vpsrld $20,%ymm4,%ymm4
|
|
|
|
vpor %ymm0,%ymm4,%ymm4
|
|
|
|
|
|
|
|
# x0 += x5, x15 = rotl32(x15 ^ x0, 8)
|
|
|
|
vpaddd 0x00(%rsp),%ymm5,%ymm0
|
|
|
|
vmovdqa %ymm0,0x00(%rsp)
|
|
|
|
vpxor %ymm0,%ymm15,%ymm15
|
|
|
|
vpshufb %ymm2,%ymm15,%ymm15
|
|
|
|
# x1 += x6, x12 = rotl32(x12 ^ x1, 8)
|
|
|
|
vpaddd 0x20(%rsp),%ymm6,%ymm0
|
|
|
|
vmovdqa %ymm0,0x20(%rsp)
|
|
|
|
vpxor %ymm0,%ymm12,%ymm12
|
|
|
|
vpshufb %ymm2,%ymm12,%ymm12
|
|
|
|
# x2 += x7, x13 = rotl32(x13 ^ x2, 8)
|
|
|
|
vpaddd 0x40(%rsp),%ymm7,%ymm0
|
|
|
|
vmovdqa %ymm0,0x40(%rsp)
|
|
|
|
vpxor %ymm0,%ymm13,%ymm13
|
|
|
|
vpshufb %ymm2,%ymm13,%ymm13
|
|
|
|
# x3 += x4, x14 = rotl32(x14 ^ x3, 8)
|
|
|
|
vpaddd 0x60(%rsp),%ymm4,%ymm0
|
|
|
|
vmovdqa %ymm0,0x60(%rsp)
|
|
|
|
vpxor %ymm0,%ymm14,%ymm14
|
|
|
|
vpshufb %ymm2,%ymm14,%ymm14
|
|
|
|
|
|
|
|
# x10 += x15, x5 = rotl32(x5 ^ x10, 7)
|
|
|
|
vpaddd %ymm15,%ymm10,%ymm10
|
|
|
|
vpxor %ymm10,%ymm5,%ymm5
|
|
|
|
vpslld $7,%ymm5,%ymm0
|
|
|
|
vpsrld $25,%ymm5,%ymm5
|
|
|
|
vpor %ymm0,%ymm5,%ymm5
|
|
|
|
# x11 += x12, x6 = rotl32(x6 ^ x11, 7)
|
|
|
|
vpaddd %ymm12,%ymm11,%ymm11
|
|
|
|
vpxor %ymm11,%ymm6,%ymm6
|
|
|
|
vpslld $7,%ymm6,%ymm0
|
|
|
|
vpsrld $25,%ymm6,%ymm6
|
|
|
|
vpor %ymm0,%ymm6,%ymm6
|
|
|
|
# x8 += x13, x7 = rotl32(x7 ^ x8, 7)
|
|
|
|
vpaddd %ymm13,%ymm8,%ymm8
|
|
|
|
vpxor %ymm8,%ymm7,%ymm7
|
|
|
|
vpslld $7,%ymm7,%ymm0
|
|
|
|
vpsrld $25,%ymm7,%ymm7
|
|
|
|
vpor %ymm0,%ymm7,%ymm7
|
|
|
|
# x9 += x14, x4 = rotl32(x4 ^ x9, 7)
|
|
|
|
vpaddd %ymm14,%ymm9,%ymm9
|
|
|
|
vpxor %ymm9,%ymm4,%ymm4
|
|
|
|
vpslld $7,%ymm4,%ymm0
|
|
|
|
vpsrld $25,%ymm4,%ymm4
|
|
|
|
vpor %ymm0,%ymm4,%ymm4
|
|
|
|
|
2018-12-05 06:20:03 +00:00
|
|
|
sub $2,%r8d
|
crypto: chacha20 - Add an eight block AVX2 variant for x86_64
Extends the x86_64 ChaCha20 implementation by a function processing eight
ChaCha20 blocks in parallel using AVX2.
For large messages, throughput increases by ~55-70% compared to four block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 41999675 operations in 10 seconds (671994800 bytes)
test 1 (256 bit key, 64 byte blocks): 45805908 operations in 10 seconds (2931578112 bytes)
test 2 (256 bit key, 256 byte blocks): 32814947 operations in 10 seconds (8400626432 bytes)
test 3 (256 bit key, 1024 byte blocks): 19777167 operations in 10 seconds (20251819008 bytes)
test 4 (256 bit key, 8192 byte blocks): 2279321 operations in 10 seconds (18672197632 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 17:14:03 +00:00
|
|
|
jnz .Ldoubleround8
|
|
|
|
|
|
|
|
# x0..15[0-3] += s[0..15]
|
|
|
|
vpbroadcastd 0x00(%rdi),%ymm0
|
|
|
|
vpaddd 0x00(%rsp),%ymm0,%ymm0
|
|
|
|
vmovdqa %ymm0,0x00(%rsp)
|
|
|
|
vpbroadcastd 0x04(%rdi),%ymm0
|
|
|
|
vpaddd 0x20(%rsp),%ymm0,%ymm0
|
|
|
|
vmovdqa %ymm0,0x20(%rsp)
|
|
|
|
vpbroadcastd 0x08(%rdi),%ymm0
|
|
|
|
vpaddd 0x40(%rsp),%ymm0,%ymm0
|
|
|
|
vmovdqa %ymm0,0x40(%rsp)
|
|
|
|
vpbroadcastd 0x0c(%rdi),%ymm0
|
|
|
|
vpaddd 0x60(%rsp),%ymm0,%ymm0
|
|
|
|
vmovdqa %ymm0,0x60(%rsp)
|
|
|
|
vpbroadcastd 0x10(%rdi),%ymm0
|
|
|
|
vpaddd %ymm0,%ymm4,%ymm4
|
|
|
|
vpbroadcastd 0x14(%rdi),%ymm0
|
|
|
|
vpaddd %ymm0,%ymm5,%ymm5
|
|
|
|
vpbroadcastd 0x18(%rdi),%ymm0
|
|
|
|
vpaddd %ymm0,%ymm6,%ymm6
|
|
|
|
vpbroadcastd 0x1c(%rdi),%ymm0
|
|
|
|
vpaddd %ymm0,%ymm7,%ymm7
|
|
|
|
vpbroadcastd 0x20(%rdi),%ymm0
|
|
|
|
vpaddd %ymm0,%ymm8,%ymm8
|
|
|
|
vpbroadcastd 0x24(%rdi),%ymm0
|
|
|
|
vpaddd %ymm0,%ymm9,%ymm9
|
|
|
|
vpbroadcastd 0x28(%rdi),%ymm0
|
|
|
|
vpaddd %ymm0,%ymm10,%ymm10
|
|
|
|
vpbroadcastd 0x2c(%rdi),%ymm0
|
|
|
|
vpaddd %ymm0,%ymm11,%ymm11
|
|
|
|
vpbroadcastd 0x30(%rdi),%ymm0
|
|
|
|
vpaddd %ymm0,%ymm12,%ymm12
|
|
|
|
vpbroadcastd 0x34(%rdi),%ymm0
|
|
|
|
vpaddd %ymm0,%ymm13,%ymm13
|
|
|
|
vpbroadcastd 0x38(%rdi),%ymm0
|
|
|
|
vpaddd %ymm0,%ymm14,%ymm14
|
|
|
|
vpbroadcastd 0x3c(%rdi),%ymm0
|
|
|
|
vpaddd %ymm0,%ymm15,%ymm15
|
|
|
|
|
|
|
|
# x12 += counter values 0-3
|
|
|
|
vpaddd %ymm1,%ymm12,%ymm12
|
|
|
|
|
|
|
|
# interleave 32-bit words in state n, n+1
|
|
|
|
vmovdqa 0x00(%rsp),%ymm0
|
|
|
|
vmovdqa 0x20(%rsp),%ymm1
|
|
|
|
vpunpckldq %ymm1,%ymm0,%ymm2
|
|
|
|
vpunpckhdq %ymm1,%ymm0,%ymm1
|
|
|
|
vmovdqa %ymm2,0x00(%rsp)
|
|
|
|
vmovdqa %ymm1,0x20(%rsp)
|
|
|
|
vmovdqa 0x40(%rsp),%ymm0
|
|
|
|
vmovdqa 0x60(%rsp),%ymm1
|
|
|
|
vpunpckldq %ymm1,%ymm0,%ymm2
|
|
|
|
vpunpckhdq %ymm1,%ymm0,%ymm1
|
|
|
|
vmovdqa %ymm2,0x40(%rsp)
|
|
|
|
vmovdqa %ymm1,0x60(%rsp)
|
|
|
|
vmovdqa %ymm4,%ymm0
|
|
|
|
vpunpckldq %ymm5,%ymm0,%ymm4
|
|
|
|
vpunpckhdq %ymm5,%ymm0,%ymm5
|
|
|
|
vmovdqa %ymm6,%ymm0
|
|
|
|
vpunpckldq %ymm7,%ymm0,%ymm6
|
|
|
|
vpunpckhdq %ymm7,%ymm0,%ymm7
|
|
|
|
vmovdqa %ymm8,%ymm0
|
|
|
|
vpunpckldq %ymm9,%ymm0,%ymm8
|
|
|
|
vpunpckhdq %ymm9,%ymm0,%ymm9
|
|
|
|
vmovdqa %ymm10,%ymm0
|
|
|
|
vpunpckldq %ymm11,%ymm0,%ymm10
|
|
|
|
vpunpckhdq %ymm11,%ymm0,%ymm11
|
|
|
|
vmovdqa %ymm12,%ymm0
|
|
|
|
vpunpckldq %ymm13,%ymm0,%ymm12
|
|
|
|
vpunpckhdq %ymm13,%ymm0,%ymm13
|
|
|
|
vmovdqa %ymm14,%ymm0
|
|
|
|
vpunpckldq %ymm15,%ymm0,%ymm14
|
|
|
|
vpunpckhdq %ymm15,%ymm0,%ymm15
|
|
|
|
|
|
|
|
# interleave 64-bit words in state n, n+2
|
|
|
|
vmovdqa 0x00(%rsp),%ymm0
|
|
|
|
vmovdqa 0x40(%rsp),%ymm2
|
|
|
|
vpunpcklqdq %ymm2,%ymm0,%ymm1
|
|
|
|
vpunpckhqdq %ymm2,%ymm0,%ymm2
|
|
|
|
vmovdqa %ymm1,0x00(%rsp)
|
|
|
|
vmovdqa %ymm2,0x40(%rsp)
|
|
|
|
vmovdqa 0x20(%rsp),%ymm0
|
|
|
|
vmovdqa 0x60(%rsp),%ymm2
|
|
|
|
vpunpcklqdq %ymm2,%ymm0,%ymm1
|
|
|
|
vpunpckhqdq %ymm2,%ymm0,%ymm2
|
|
|
|
vmovdqa %ymm1,0x20(%rsp)
|
|
|
|
vmovdqa %ymm2,0x60(%rsp)
|
|
|
|
vmovdqa %ymm4,%ymm0
|
|
|
|
vpunpcklqdq %ymm6,%ymm0,%ymm4
|
|
|
|
vpunpckhqdq %ymm6,%ymm0,%ymm6
|
|
|
|
vmovdqa %ymm5,%ymm0
|
|
|
|
vpunpcklqdq %ymm7,%ymm0,%ymm5
|
|
|
|
vpunpckhqdq %ymm7,%ymm0,%ymm7
|
|
|
|
vmovdqa %ymm8,%ymm0
|
|
|
|
vpunpcklqdq %ymm10,%ymm0,%ymm8
|
|
|
|
vpunpckhqdq %ymm10,%ymm0,%ymm10
|
|
|
|
vmovdqa %ymm9,%ymm0
|
|
|
|
vpunpcklqdq %ymm11,%ymm0,%ymm9
|
|
|
|
vpunpckhqdq %ymm11,%ymm0,%ymm11
|
|
|
|
vmovdqa %ymm12,%ymm0
|
|
|
|
vpunpcklqdq %ymm14,%ymm0,%ymm12
|
|
|
|
vpunpckhqdq %ymm14,%ymm0,%ymm14
|
|
|
|
vmovdqa %ymm13,%ymm0
|
|
|
|
vpunpcklqdq %ymm15,%ymm0,%ymm13
|
|
|
|
vpunpckhqdq %ymm15,%ymm0,%ymm15
|
|
|
|
|
|
|
|
# interleave 128-bit words in state n, n+4
|
2018-11-11 09:36:27 +00:00
|
|
|
# xor/write first four blocks
|
|
|
|
vmovdqa 0x00(%rsp),%ymm1
|
|
|
|
vperm2i128 $0x20,%ymm4,%ymm1,%ymm0
|
|
|
|
cmp $0x0020,%rax
|
|
|
|
jl .Lxorpart8
|
|
|
|
vpxor 0x0000(%rdx),%ymm0,%ymm0
|
|
|
|
vmovdqu %ymm0,0x0000(%rsi)
|
|
|
|
vperm2i128 $0x31,%ymm4,%ymm1,%ymm4
|
|
|
|
|
crypto: chacha20 - Add an eight block AVX2 variant for x86_64
Extends the x86_64 ChaCha20 implementation by a function processing eight
ChaCha20 blocks in parallel using AVX2.
For large messages, throughput increases by ~55-70% compared to four block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 41999675 operations in 10 seconds (671994800 bytes)
test 1 (256 bit key, 64 byte blocks): 45805908 operations in 10 seconds (2931578112 bytes)
test 2 (256 bit key, 256 byte blocks): 32814947 operations in 10 seconds (8400626432 bytes)
test 3 (256 bit key, 1024 byte blocks): 19777167 operations in 10 seconds (20251819008 bytes)
test 4 (256 bit key, 8192 byte blocks): 2279321 operations in 10 seconds (18672197632 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 17:14:03 +00:00
|
|
|
vperm2i128 $0x20,%ymm12,%ymm8,%ymm0
|
2018-11-11 09:36:27 +00:00
|
|
|
cmp $0x0040,%rax
|
|
|
|
jl .Lxorpart8
|
|
|
|
vpxor 0x0020(%rdx),%ymm0,%ymm0
|
|
|
|
vmovdqu %ymm0,0x0020(%rsi)
|
crypto: chacha20 - Add an eight block AVX2 variant for x86_64
Extends the x86_64 ChaCha20 implementation by a function processing eight
ChaCha20 blocks in parallel using AVX2.
For large messages, throughput increases by ~55-70% compared to four block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 41999675 operations in 10 seconds (671994800 bytes)
test 1 (256 bit key, 64 byte blocks): 45805908 operations in 10 seconds (2931578112 bytes)
test 2 (256 bit key, 256 byte blocks): 32814947 operations in 10 seconds (8400626432 bytes)
test 3 (256 bit key, 1024 byte blocks): 19777167 operations in 10 seconds (20251819008 bytes)
test 4 (256 bit key, 8192 byte blocks): 2279321 operations in 10 seconds (18672197632 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 17:14:03 +00:00
|
|
|
vperm2i128 $0x31,%ymm12,%ymm8,%ymm12
|
2018-11-11 09:36:27 +00:00
|
|
|
|
|
|
|
vmovdqa 0x40(%rsp),%ymm1
|
|
|
|
vperm2i128 $0x20,%ymm6,%ymm1,%ymm0
|
|
|
|
cmp $0x0060,%rax
|
|
|
|
jl .Lxorpart8
|
|
|
|
vpxor 0x0040(%rdx),%ymm0,%ymm0
|
|
|
|
vmovdqu %ymm0,0x0040(%rsi)
|
|
|
|
vperm2i128 $0x31,%ymm6,%ymm1,%ymm6
|
|
|
|
|
crypto: chacha20 - Add an eight block AVX2 variant for x86_64
Extends the x86_64 ChaCha20 implementation by a function processing eight
ChaCha20 blocks in parallel using AVX2.
For large messages, throughput increases by ~55-70% compared to four block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 41999675 operations in 10 seconds (671994800 bytes)
test 1 (256 bit key, 64 byte blocks): 45805908 operations in 10 seconds (2931578112 bytes)
test 2 (256 bit key, 256 byte blocks): 32814947 operations in 10 seconds (8400626432 bytes)
test 3 (256 bit key, 1024 byte blocks): 19777167 operations in 10 seconds (20251819008 bytes)
test 4 (256 bit key, 8192 byte blocks): 2279321 operations in 10 seconds (18672197632 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 17:14:03 +00:00
|
|
|
vperm2i128 $0x20,%ymm14,%ymm10,%ymm0
|
2018-11-11 09:36:27 +00:00
|
|
|
cmp $0x0080,%rax
|
|
|
|
jl .Lxorpart8
|
|
|
|
vpxor 0x0060(%rdx),%ymm0,%ymm0
|
|
|
|
vmovdqu %ymm0,0x0060(%rsi)
|
crypto: chacha20 - Add an eight block AVX2 variant for x86_64
Extends the x86_64 ChaCha20 implementation by a function processing eight
ChaCha20 blocks in parallel using AVX2.
For large messages, throughput increases by ~55-70% compared to four block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 41999675 operations in 10 seconds (671994800 bytes)
test 1 (256 bit key, 64 byte blocks): 45805908 operations in 10 seconds (2931578112 bytes)
test 2 (256 bit key, 256 byte blocks): 32814947 operations in 10 seconds (8400626432 bytes)
test 3 (256 bit key, 1024 byte blocks): 19777167 operations in 10 seconds (20251819008 bytes)
test 4 (256 bit key, 8192 byte blocks): 2279321 operations in 10 seconds (18672197632 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 17:14:03 +00:00
|
|
|
vperm2i128 $0x31,%ymm14,%ymm10,%ymm14
|
|
|
|
|
2018-11-11 09:36:27 +00:00
|
|
|
vmovdqa 0x20(%rsp),%ymm1
|
|
|
|
vperm2i128 $0x20,%ymm5,%ymm1,%ymm0
|
|
|
|
cmp $0x00a0,%rax
|
|
|
|
jl .Lxorpart8
|
crypto: chacha20 - Add an eight block AVX2 variant for x86_64
Extends the x86_64 ChaCha20 implementation by a function processing eight
ChaCha20 blocks in parallel using AVX2.
For large messages, throughput increases by ~55-70% compared to four block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 41999675 operations in 10 seconds (671994800 bytes)
test 1 (256 bit key, 64 byte blocks): 45805908 operations in 10 seconds (2931578112 bytes)
test 2 (256 bit key, 256 byte blocks): 32814947 operations in 10 seconds (8400626432 bytes)
test 3 (256 bit key, 1024 byte blocks): 19777167 operations in 10 seconds (20251819008 bytes)
test 4 (256 bit key, 8192 byte blocks): 2279321 operations in 10 seconds (18672197632 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 17:14:03 +00:00
|
|
|
vpxor 0x0080(%rdx),%ymm0,%ymm0
|
|
|
|
vmovdqu %ymm0,0x0080(%rsi)
|
2018-11-11 09:36:27 +00:00
|
|
|
vperm2i128 $0x31,%ymm5,%ymm1,%ymm5
|
|
|
|
|
|
|
|
vperm2i128 $0x20,%ymm13,%ymm9,%ymm0
|
|
|
|
cmp $0x00c0,%rax
|
|
|
|
jl .Lxorpart8
|
|
|
|
vpxor 0x00a0(%rdx),%ymm0,%ymm0
|
|
|
|
vmovdqu %ymm0,0x00a0(%rsi)
|
|
|
|
vperm2i128 $0x31,%ymm13,%ymm9,%ymm13
|
|
|
|
|
|
|
|
vmovdqa 0x60(%rsp),%ymm1
|
|
|
|
vperm2i128 $0x20,%ymm7,%ymm1,%ymm0
|
|
|
|
cmp $0x00e0,%rax
|
|
|
|
jl .Lxorpart8
|
crypto: chacha20 - Add an eight block AVX2 variant for x86_64
Extends the x86_64 ChaCha20 implementation by a function processing eight
ChaCha20 blocks in parallel using AVX2.
For large messages, throughput increases by ~55-70% compared to four block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 41999675 operations in 10 seconds (671994800 bytes)
test 1 (256 bit key, 64 byte blocks): 45805908 operations in 10 seconds (2931578112 bytes)
test 2 (256 bit key, 256 byte blocks): 32814947 operations in 10 seconds (8400626432 bytes)
test 3 (256 bit key, 1024 byte blocks): 19777167 operations in 10 seconds (20251819008 bytes)
test 4 (256 bit key, 8192 byte blocks): 2279321 operations in 10 seconds (18672197632 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 17:14:03 +00:00
|
|
|
vpxor 0x00c0(%rdx),%ymm0,%ymm0
|
|
|
|
vmovdqu %ymm0,0x00c0(%rsi)
|
2018-11-11 09:36:27 +00:00
|
|
|
vperm2i128 $0x31,%ymm7,%ymm1,%ymm7
|
|
|
|
|
|
|
|
vperm2i128 $0x20,%ymm15,%ymm11,%ymm0
|
|
|
|
cmp $0x0100,%rax
|
|
|
|
jl .Lxorpart8
|
|
|
|
vpxor 0x00e0(%rdx),%ymm0,%ymm0
|
|
|
|
vmovdqu %ymm0,0x00e0(%rsi)
|
|
|
|
vperm2i128 $0x31,%ymm15,%ymm11,%ymm15
|
|
|
|
|
|
|
|
# xor remaining blocks, write to output
|
|
|
|
vmovdqa %ymm4,%ymm0
|
|
|
|
cmp $0x0120,%rax
|
|
|
|
jl .Lxorpart8
|
|
|
|
vpxor 0x0100(%rdx),%ymm0,%ymm0
|
|
|
|
vmovdqu %ymm0,0x0100(%rsi)
|
crypto: chacha20 - Add an eight block AVX2 variant for x86_64
Extends the x86_64 ChaCha20 implementation by a function processing eight
ChaCha20 blocks in parallel using AVX2.
For large messages, throughput increases by ~55-70% compared to four block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 41999675 operations in 10 seconds (671994800 bytes)
test 1 (256 bit key, 64 byte blocks): 45805908 operations in 10 seconds (2931578112 bytes)
test 2 (256 bit key, 256 byte blocks): 32814947 operations in 10 seconds (8400626432 bytes)
test 3 (256 bit key, 1024 byte blocks): 19777167 operations in 10 seconds (20251819008 bytes)
test 4 (256 bit key, 8192 byte blocks): 2279321 operations in 10 seconds (18672197632 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 17:14:03 +00:00
|
|
|
|
2018-11-11 09:36:27 +00:00
|
|
|
vmovdqa %ymm12,%ymm0
|
|
|
|
cmp $0x0140,%rax
|
|
|
|
jl .Lxorpart8
|
|
|
|
vpxor 0x0120(%rdx),%ymm0,%ymm0
|
|
|
|
vmovdqu %ymm0,0x0120(%rsi)
|
|
|
|
|
|
|
|
vmovdqa %ymm6,%ymm0
|
|
|
|
cmp $0x0160,%rax
|
|
|
|
jl .Lxorpart8
|
|
|
|
vpxor 0x0140(%rdx),%ymm0,%ymm0
|
|
|
|
vmovdqu %ymm0,0x0140(%rsi)
|
|
|
|
|
|
|
|
vmovdqa %ymm14,%ymm0
|
|
|
|
cmp $0x0180,%rax
|
|
|
|
jl .Lxorpart8
|
|
|
|
vpxor 0x0160(%rdx),%ymm0,%ymm0
|
|
|
|
vmovdqu %ymm0,0x0160(%rsi)
|
|
|
|
|
|
|
|
vmovdqa %ymm5,%ymm0
|
|
|
|
cmp $0x01a0,%rax
|
|
|
|
jl .Lxorpart8
|
|
|
|
vpxor 0x0180(%rdx),%ymm0,%ymm0
|
|
|
|
vmovdqu %ymm0,0x0180(%rsi)
|
|
|
|
|
|
|
|
vmovdqa %ymm13,%ymm0
|
|
|
|
cmp $0x01c0,%rax
|
|
|
|
jl .Lxorpart8
|
|
|
|
vpxor 0x01a0(%rdx),%ymm0,%ymm0
|
|
|
|
vmovdqu %ymm0,0x01a0(%rsi)
|
|
|
|
|
|
|
|
vmovdqa %ymm7,%ymm0
|
|
|
|
cmp $0x01e0,%rax
|
|
|
|
jl .Lxorpart8
|
|
|
|
vpxor 0x01c0(%rdx),%ymm0,%ymm0
|
|
|
|
vmovdqu %ymm0,0x01c0(%rsi)
|
|
|
|
|
|
|
|
vmovdqa %ymm15,%ymm0
|
|
|
|
cmp $0x0200,%rax
|
|
|
|
jl .Lxorpart8
|
|
|
|
vpxor 0x01e0(%rdx),%ymm0,%ymm0
|
|
|
|
vmovdqu %ymm0,0x01e0(%rsi)
|
|
|
|
|
|
|
|
.Ldone8:
|
crypto: chacha20 - Add an eight block AVX2 variant for x86_64
Extends the x86_64 ChaCha20 implementation by a function processing eight
ChaCha20 blocks in parallel using AVX2.
For large messages, throughput increases by ~55-70% compared to four block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 41999675 operations in 10 seconds (671994800 bytes)
test 1 (256 bit key, 64 byte blocks): 45805908 operations in 10 seconds (2931578112 bytes)
test 2 (256 bit key, 256 byte blocks): 32814947 operations in 10 seconds (8400626432 bytes)
test 3 (256 bit key, 1024 byte blocks): 19777167 operations in 10 seconds (20251819008 bytes)
test 4 (256 bit key, 8192 byte blocks): 2279321 operations in 10 seconds (18672197632 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 17:14:03 +00:00
|
|
|
vzeroupper
|
2017-10-08 20:50:53 +00:00
|
|
|
lea -8(%r10),%rsp
|
crypto: chacha20 - Add an eight block AVX2 variant for x86_64
Extends the x86_64 ChaCha20 implementation by a function processing eight
ChaCha20 blocks in parallel using AVX2.
For large messages, throughput increases by ~55-70% compared to four block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 41999675 operations in 10 seconds (671994800 bytes)
test 1 (256 bit key, 64 byte blocks): 45805908 operations in 10 seconds (2931578112 bytes)
test 2 (256 bit key, 256 byte blocks): 32814947 operations in 10 seconds (8400626432 bytes)
test 3 (256 bit key, 1024 byte blocks): 19777167 operations in 10 seconds (20251819008 bytes)
test 4 (256 bit key, 8192 byte blocks): 2279321 operations in 10 seconds (18672197632 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 17:14:03 +00:00
|
|
|
ret
|
2018-11-11 09:36:27 +00:00
|
|
|
|
|
|
|
.Lxorpart8:
|
|
|
|
# xor remaining bytes from partial register into output
|
|
|
|
mov %rax,%r9
|
|
|
|
and $0x1f,%r9
|
|
|
|
jz .Ldone8
|
|
|
|
and $~0x1f,%rax
|
|
|
|
|
|
|
|
mov %rsi,%r11
|
|
|
|
|
|
|
|
lea (%rdx,%rax),%rsi
|
|
|
|
mov %rsp,%rdi
|
|
|
|
mov %r9,%rcx
|
|
|
|
rep movsb
|
|
|
|
|
|
|
|
vpxor 0x00(%rsp),%ymm0,%ymm0
|
|
|
|
vmovdqa %ymm0,0x00(%rsp)
|
|
|
|
|
|
|
|
mov %rsp,%rsi
|
|
|
|
lea (%r11,%rax),%rdi
|
|
|
|
mov %r9,%rcx
|
|
|
|
rep movsb
|
|
|
|
|
|
|
|
jmp .Ldone8
|
|
|
|
|
2019-10-11 11:51:04 +00:00
|
|
|
SYM_FUNC_END(chacha_8block_xor_avx2)
|