linux/sound/usb/usx2y/usbusx2yaudio.c

1016 lines
28 KiB
C
Raw Normal View History

/*
* US-X2Y AUDIO
* Copyright (c) 2002-2004 by Karsten Wiese
*
* based on
*
* (Tentative) USB Audio Driver for ALSA
*
* Main and PCM part
*
* Copyright (c) 2002 by Takashi Iwai <tiwai@suse.de>
*
* Many codes borrowed from audio.c by
* Alan Cox (alan@lxorguk.ukuu.org.uk)
* Thomas Sailer (sailer@ife.ee.ethz.ch)
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/interrupt.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <linux/usb.h>
#include <linux/moduleparam.h>
#include <sound/core.h>
#include <sound/info.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include "usx2y.h"
#include "usbusx2y.h"
#define USX2Y_NRPACKS 4 /* Default value used for nr of packs per urb.
1 to 4 have been tested ok on uhci.
To use 3 on ohci, you'd need a patch:
look for "0000425-linux-2.6.9-rc4-mm1_ohci-hcd.patch.gz" on
"https://bugtrack.alsa-project.org/alsa-bug/bug_view_page.php?bug_id=0000425"
.
1, 2 and 4 work out of the box on ohci, if I recall correctly.
Bigger is safer operation,
smaller gives lower latencies.
*/
#define USX2Y_NRPACKS_VARIABLE y /* If your system works ok with this module's parameter
nrpacks set to 1, you might as well comment
this #define out, and thereby produce smaller, faster code.
You'd also set USX2Y_NRPACKS to 1 then.
*/
#ifdef USX2Y_NRPACKS_VARIABLE
static int nrpacks = USX2Y_NRPACKS; /* number of packets per urb */
#define nr_of_packs() nrpacks
module_param(nrpacks, int, 0444);
MODULE_PARM_DESC(nrpacks, "Number of packets per URB.");
#else
#define nr_of_packs() USX2Y_NRPACKS
#endif
static int usX2Y_urb_capt_retire(struct snd_usX2Y_substream *subs)
{
struct urb *urb = subs->completed_urb;
struct snd_pcm_runtime *runtime = subs->pcm_substream->runtime;
unsigned char *cp;
int i, len, lens = 0, hwptr_done = subs->hwptr_done;
struct usX2Ydev *usX2Y = subs->usX2Y;
for (i = 0; i < nr_of_packs(); i++) {
cp = (unsigned char*)urb->transfer_buffer + urb->iso_frame_desc[i].offset;
if (urb->iso_frame_desc[i].status) { /* active? hmm, skip this */
snd_printk(KERN_ERR "active frame status %i. "
"Most probably some hardware problem.\n",
urb->iso_frame_desc[i].status);
return urb->iso_frame_desc[i].status;
}
len = urb->iso_frame_desc[i].actual_length / usX2Y->stride;
if (! len) {
snd_printd("0 == len ERROR!\n");
continue;
}
/* copy a data chunk */
if ((hwptr_done + len) > runtime->buffer_size) {
int cnt = runtime->buffer_size - hwptr_done;
int blen = cnt * usX2Y->stride;
memcpy(runtime->dma_area + hwptr_done * usX2Y->stride, cp, blen);
memcpy(runtime->dma_area, cp + blen, len * usX2Y->stride - blen);
} else {
memcpy(runtime->dma_area + hwptr_done * usX2Y->stride, cp,
len * usX2Y->stride);
}
lens += len;
if ((hwptr_done += len) >= runtime->buffer_size)
hwptr_done -= runtime->buffer_size;
}
subs->hwptr_done = hwptr_done;
subs->transfer_done += lens;
/* update the pointer, call callback if necessary */
if (subs->transfer_done >= runtime->period_size) {
subs->transfer_done -= runtime->period_size;
snd_pcm_period_elapsed(subs->pcm_substream);
}
return 0;
}
/*
* prepare urb for playback data pipe
*
* we copy the data directly from the pcm buffer.
* the current position to be copied is held in hwptr field.
* since a urb can handle only a single linear buffer, if the total
* transferred area overflows the buffer boundary, we cannot send
* it directly from the buffer. thus the data is once copied to
* a temporary buffer and urb points to that.
*/
static int usX2Y_urb_play_prepare(struct snd_usX2Y_substream *subs,
struct urb *cap_urb,
struct urb *urb)
{
int count, counts, pack;
struct usX2Ydev *usX2Y = subs->usX2Y;
struct snd_pcm_runtime *runtime = subs->pcm_substream->runtime;
count = 0;
for (pack = 0; pack < nr_of_packs(); pack++) {
/* calculate the size of a packet */
counts = cap_urb->iso_frame_desc[pack].actual_length / usX2Y->stride;
count += counts;
if (counts < 43 || counts > 50) {
snd_printk(KERN_ERR "should not be here with counts=%i\n", counts);
return -EPIPE;
}
/* set up descriptor */
urb->iso_frame_desc[pack].offset = pack ?
urb->iso_frame_desc[pack - 1].offset +
urb->iso_frame_desc[pack - 1].length :
0;
urb->iso_frame_desc[pack].length = cap_urb->iso_frame_desc[pack].actual_length;
}
if (atomic_read(&subs->state) >= state_PRERUNNING)
if (subs->hwptr + count > runtime->buffer_size) {
/* err, the transferred area goes over buffer boundary.
* copy the data to the temp buffer.
*/
int len;
len = runtime->buffer_size - subs->hwptr;
urb->transfer_buffer = subs->tmpbuf;
memcpy(subs->tmpbuf, runtime->dma_area +
subs->hwptr * usX2Y->stride, len * usX2Y->stride);
memcpy(subs->tmpbuf + len * usX2Y->stride,
runtime->dma_area, (count - len) * usX2Y->stride);
subs->hwptr += count;
subs->hwptr -= runtime->buffer_size;
} else {
/* set the buffer pointer */
urb->transfer_buffer = runtime->dma_area + subs->hwptr * usX2Y->stride;
if ((subs->hwptr += count) >= runtime->buffer_size)
subs->hwptr -= runtime->buffer_size;
}
else
urb->transfer_buffer = subs->tmpbuf;
urb->transfer_buffer_length = count * usX2Y->stride;
return 0;
}
/*
* process after playback data complete
*
* update the current position and call callback if a period is processed.
*/
static void usX2Y_urb_play_retire(struct snd_usX2Y_substream *subs, struct urb *urb)
{
struct snd_pcm_runtime *runtime = subs->pcm_substream->runtime;
int len = urb->actual_length / subs->usX2Y->stride;
subs->transfer_done += len;
subs->hwptr_done += len;
if (subs->hwptr_done >= runtime->buffer_size)
subs->hwptr_done -= runtime->buffer_size;
if (subs->transfer_done >= runtime->period_size) {
subs->transfer_done -= runtime->period_size;
snd_pcm_period_elapsed(subs->pcm_substream);
}
}
static int usX2Y_urb_submit(struct snd_usX2Y_substream *subs, struct urb *urb, int frame)
{
int err;
if (!urb)
return -ENODEV;
urb->start_frame = (frame + NRURBS * nr_of_packs()); // let hcd do rollover sanity checks
urb->hcpriv = NULL;
urb->dev = subs->usX2Y->dev; /* we need to set this at each time */
if ((err = usb_submit_urb(urb, GFP_ATOMIC)) < 0) {
snd_printk(KERN_ERR "usb_submit_urb() returned %i\n", err);
return err;
}
return 0;
}
static inline int usX2Y_usbframe_complete(struct snd_usX2Y_substream *capsubs,
struct snd_usX2Y_substream *playbacksubs,
int frame)
{
int err, state;
struct urb *urb = playbacksubs->completed_urb;
state = atomic_read(&playbacksubs->state);
if (NULL != urb) {
if (state == state_RUNNING)
usX2Y_urb_play_retire(playbacksubs, urb);
else if (state >= state_PRERUNNING)
atomic_inc(&playbacksubs->state);
} else {
switch (state) {
case state_STARTING1:
urb = playbacksubs->urb[0];
atomic_inc(&playbacksubs->state);
break;
case state_STARTING2:
urb = playbacksubs->urb[1];
atomic_inc(&playbacksubs->state);
break;
}
}
if (urb) {
if ((err = usX2Y_urb_play_prepare(playbacksubs, capsubs->completed_urb, urb)) ||
(err = usX2Y_urb_submit(playbacksubs, urb, frame))) {
return err;
}
}
playbacksubs->completed_urb = NULL;
state = atomic_read(&capsubs->state);
if (state >= state_PREPARED) {
if (state == state_RUNNING) {
if ((err = usX2Y_urb_capt_retire(capsubs)))
return err;
} else if (state >= state_PRERUNNING)
atomic_inc(&capsubs->state);
if ((err = usX2Y_urb_submit(capsubs, capsubs->completed_urb, frame)))
return err;
}
capsubs->completed_urb = NULL;
return 0;
}
static void usX2Y_clients_stop(struct usX2Ydev *usX2Y)
{
int s, u;
for (s = 0; s < 4; s++) {
struct snd_usX2Y_substream *subs = usX2Y->subs[s];
if (subs) {
snd_printdd("%i %p state=%i\n", s, subs, atomic_read(&subs->state));
atomic_set(&subs->state, state_STOPPED);
}
}
for (s = 0; s < 4; s++) {
struct snd_usX2Y_substream *subs = usX2Y->subs[s];
if (subs) {
if (atomic_read(&subs->state) >= state_PRERUNNING)
snd_pcm_stop_xrun(subs->pcm_substream);
for (u = 0; u < NRURBS; u++) {
struct urb *urb = subs->urb[u];
if (NULL != urb)
snd_printdd("%i status=%i start_frame=%i\n",
u, urb->status, urb->start_frame);
}
}
}
usX2Y->prepare_subs = NULL;
wake_up(&usX2Y->prepare_wait_queue);
}
static void usX2Y_error_urb_status(struct usX2Ydev *usX2Y,
struct snd_usX2Y_substream *subs, struct urb *urb)
{
snd_printk(KERN_ERR "ep=%i stalled with status=%i\n", subs->endpoint, urb->status);
urb->status = 0;
usX2Y_clients_stop(usX2Y);
}
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 13:55:46 +00:00
static void i_usX2Y_urb_complete(struct urb *urb)
{
struct snd_usX2Y_substream *subs = urb->context;
struct usX2Ydev *usX2Y = subs->usX2Y;
if (unlikely(atomic_read(&subs->state) < state_PREPARED)) {
snd_printdd("hcd_frame=%i ep=%i%s status=%i start_frame=%i\n",
usb_get_current_frame_number(usX2Y->dev),
subs->endpoint, usb_pipein(urb->pipe) ? "in" : "out",
urb->status, urb->start_frame);
return;
}
if (unlikely(urb->status)) {
usX2Y_error_urb_status(usX2Y, subs, urb);
return;
}
subs->completed_urb = urb;
{
struct snd_usX2Y_substream *capsubs = usX2Y->subs[SNDRV_PCM_STREAM_CAPTURE],
*playbacksubs = usX2Y->subs[SNDRV_PCM_STREAM_PLAYBACK];
if (capsubs->completed_urb &&
atomic_read(&capsubs->state) >= state_PREPARED &&
(playbacksubs->completed_urb ||
atomic_read(&playbacksubs->state) < state_PREPARED)) {
if (!usX2Y_usbframe_complete(capsubs, playbacksubs, urb->start_frame))
usX2Y->wait_iso_frame += nr_of_packs();
else {
snd_printdd("\n");
usX2Y_clients_stop(usX2Y);
}
}
}
}
static void usX2Y_urbs_set_complete(struct usX2Ydev * usX2Y,
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 13:55:46 +00:00
void (*complete)(struct urb *))
{
int s, u;
for (s = 0; s < 4; s++) {
struct snd_usX2Y_substream *subs = usX2Y->subs[s];
if (NULL != subs)
for (u = 0; u < NRURBS; u++) {
struct urb * urb = subs->urb[u];
if (NULL != urb)
urb->complete = complete;
}
}
}
static void usX2Y_subs_startup_finish(struct usX2Ydev * usX2Y)
{
usX2Y_urbs_set_complete(usX2Y, i_usX2Y_urb_complete);
usX2Y->prepare_subs = NULL;
}
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 13:55:46 +00:00
static void i_usX2Y_subs_startup(struct urb *urb)
{
struct snd_usX2Y_substream *subs = urb->context;
struct usX2Ydev *usX2Y = subs->usX2Y;
struct snd_usX2Y_substream *prepare_subs = usX2Y->prepare_subs;
if (NULL != prepare_subs)
if (urb->start_frame == prepare_subs->urb[0]->start_frame) {
usX2Y_subs_startup_finish(usX2Y);
atomic_inc(&prepare_subs->state);
wake_up(&usX2Y->prepare_wait_queue);
}
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 13:55:46 +00:00
i_usX2Y_urb_complete(urb);
}
static void usX2Y_subs_prepare(struct snd_usX2Y_substream *subs)
{
snd_printdd("usX2Y_substream_prepare(%p) ep=%i urb0=%p urb1=%p\n",
subs, subs->endpoint, subs->urb[0], subs->urb[1]);
/* reset the pointer */
subs->hwptr = 0;
subs->hwptr_done = 0;
subs->transfer_done = 0;
}
static void usX2Y_urb_release(struct urb **urb, int free_tb)
{
if (*urb) {
usb_kill_urb(*urb);
if (free_tb)
kfree((*urb)->transfer_buffer);
usb_free_urb(*urb);
*urb = NULL;
}
}
/*
* release a substreams urbs
*/
static void usX2Y_urbs_release(struct snd_usX2Y_substream *subs)
{
int i;
snd_printdd("usX2Y_urbs_release() %i\n", subs->endpoint);
for (i = 0; i < NRURBS; i++)
usX2Y_urb_release(subs->urb + i,
subs != subs->usX2Y->subs[SNDRV_PCM_STREAM_PLAYBACK]);
kfree(subs->tmpbuf);
subs->tmpbuf = NULL;
}
/*
* initialize a substream's urbs
*/
static int usX2Y_urbs_allocate(struct snd_usX2Y_substream *subs)
{
int i;
unsigned int pipe;
int is_playback = subs == subs->usX2Y->subs[SNDRV_PCM_STREAM_PLAYBACK];
struct usb_device *dev = subs->usX2Y->dev;
pipe = is_playback ? usb_sndisocpipe(dev, subs->endpoint) :
usb_rcvisocpipe(dev, subs->endpoint);
subs->maxpacksize = usb_maxpacket(dev, pipe, is_playback);
if (!subs->maxpacksize)
return -EINVAL;
if (is_playback && NULL == subs->tmpbuf) { /* allocate a temporary buffer for playback */
subs->tmpbuf = kcalloc(nr_of_packs(), subs->maxpacksize, GFP_KERNEL);
if (!subs->tmpbuf)
return -ENOMEM;
}
/* allocate and initialize data urbs */
for (i = 0; i < NRURBS; i++) {
struct urb **purb = subs->urb + i;
if (*purb) {
usb_kill_urb(*purb);
continue;
}
*purb = usb_alloc_urb(nr_of_packs(), GFP_KERNEL);
if (NULL == *purb) {
usX2Y_urbs_release(subs);
return -ENOMEM;
}
if (!is_playback && !(*purb)->transfer_buffer) {
/* allocate a capture buffer per urb */
(*purb)->transfer_buffer = kmalloc(subs->maxpacksize * nr_of_packs(), GFP_KERNEL);
if (NULL == (*purb)->transfer_buffer) {
usX2Y_urbs_release(subs);
return -ENOMEM;
}
}
(*purb)->dev = dev;
(*purb)->pipe = pipe;
(*purb)->number_of_packets = nr_of_packs();
(*purb)->context = subs;
(*purb)->interval = 1;
(*purb)->complete = i_usX2Y_subs_startup;
}
return 0;
}
static void usX2Y_subs_startup(struct snd_usX2Y_substream *subs)
{
struct usX2Ydev *usX2Y = subs->usX2Y;
usX2Y->prepare_subs = subs;
subs->urb[0]->start_frame = -1;
wmb();
usX2Y_urbs_set_complete(usX2Y, i_usX2Y_subs_startup);
}
static int usX2Y_urbs_start(struct snd_usX2Y_substream *subs)
{
int i, err;
struct usX2Ydev *usX2Y = subs->usX2Y;
if ((err = usX2Y_urbs_allocate(subs)) < 0)
return err;
subs->completed_urb = NULL;
for (i = 0; i < 4; i++) {
struct snd_usX2Y_substream *subs = usX2Y->subs[i];
if (subs != NULL && atomic_read(&subs->state) >= state_PREPARED)
goto start;
}
start:
usX2Y_subs_startup(subs);
for (i = 0; i < NRURBS; i++) {
struct urb *urb = subs->urb[i];
if (usb_pipein(urb->pipe)) {
unsigned long pack;
if (0 == i)
atomic_set(&subs->state, state_STARTING3);
urb->dev = usX2Y->dev;
for (pack = 0; pack < nr_of_packs(); pack++) {
urb->iso_frame_desc[pack].offset = subs->maxpacksize * pack;
urb->iso_frame_desc[pack].length = subs->maxpacksize;
}
urb->transfer_buffer_length = subs->maxpacksize * nr_of_packs();
if ((err = usb_submit_urb(urb, GFP_ATOMIC)) < 0) {
snd_printk (KERN_ERR "cannot submit datapipe for urb %d, err = %d\n", i, err);
err = -EPIPE;
goto cleanup;
} else
if (i == 0)
usX2Y->wait_iso_frame = urb->start_frame;
urb->transfer_flags = 0;
} else {
atomic_set(&subs->state, state_STARTING1);
break;
}
}
err = 0;
wait_event(usX2Y->prepare_wait_queue, NULL == usX2Y->prepare_subs);
if (atomic_read(&subs->state) != state_PREPARED)
err = -EPIPE;
cleanup:
if (err) {
usX2Y_subs_startup_finish(usX2Y);
usX2Y_clients_stop(usX2Y); // something is completely wroong > stop evrything
}
return err;
}
/*
* return the current pcm pointer. just return the hwptr_done value.
*/
static snd_pcm_uframes_t snd_usX2Y_pcm_pointer(struct snd_pcm_substream *substream)
{
struct snd_usX2Y_substream *subs = substream->runtime->private_data;
return subs->hwptr_done;
}
/*
* start/stop substream
*/
static int snd_usX2Y_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
{
struct snd_usX2Y_substream *subs = substream->runtime->private_data;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
snd_printdd("snd_usX2Y_pcm_trigger(START)\n");
if (atomic_read(&subs->state) == state_PREPARED &&
atomic_read(&subs->usX2Y->subs[SNDRV_PCM_STREAM_CAPTURE]->state) >= state_PREPARED) {
atomic_set(&subs->state, state_PRERUNNING);
} else {
snd_printdd("\n");
return -EPIPE;
}
break;
case SNDRV_PCM_TRIGGER_STOP:
snd_printdd("snd_usX2Y_pcm_trigger(STOP)\n");
if (atomic_read(&subs->state) >= state_PRERUNNING)
atomic_set(&subs->state, state_PREPARED);
break;
default:
return -EINVAL;
}
return 0;
}
/*
* allocate a buffer, setup samplerate
*
* so far we use a physically linear buffer although packetize transfer
* doesn't need a continuous area.
* if sg buffer is supported on the later version of alsa, we'll follow
* that.
*/
static struct s_c2
{
char c1, c2;
}
SetRate44100[] =
{
{ 0x14, 0x08}, // this line sets 44100, well actually a little less
{ 0x18, 0x40}, // only tascam / frontier design knows the further lines .......
{ 0x18, 0x42},
{ 0x18, 0x45},
{ 0x18, 0x46},
{ 0x18, 0x48},
{ 0x18, 0x4A},
{ 0x18, 0x4C},
{ 0x18, 0x4E},
{ 0x18, 0x50},
{ 0x18, 0x52},
{ 0x18, 0x54},
{ 0x18, 0x56},
{ 0x18, 0x58},
{ 0x18, 0x5A},
{ 0x18, 0x5C},
{ 0x18, 0x5E},
{ 0x18, 0x60},
{ 0x18, 0x62},
{ 0x18, 0x64},
{ 0x18, 0x66},
{ 0x18, 0x68},
{ 0x18, 0x6A},
{ 0x18, 0x6C},
{ 0x18, 0x6E},
{ 0x18, 0x70},
{ 0x18, 0x72},
{ 0x18, 0x74},
{ 0x18, 0x76},
{ 0x18, 0x78},
{ 0x18, 0x7A},
{ 0x18, 0x7C},
{ 0x18, 0x7E}
};
static struct s_c2 SetRate48000[] =
{
{ 0x14, 0x09}, // this line sets 48000, well actually a little less
{ 0x18, 0x40}, // only tascam / frontier design knows the further lines .......
{ 0x18, 0x42},
{ 0x18, 0x45},
{ 0x18, 0x46},
{ 0x18, 0x48},
{ 0x18, 0x4A},
{ 0x18, 0x4C},
{ 0x18, 0x4E},
{ 0x18, 0x50},
{ 0x18, 0x52},
{ 0x18, 0x54},
{ 0x18, 0x56},
{ 0x18, 0x58},
{ 0x18, 0x5A},
{ 0x18, 0x5C},
{ 0x18, 0x5E},
{ 0x18, 0x60},
{ 0x18, 0x62},
{ 0x18, 0x64},
{ 0x18, 0x66},
{ 0x18, 0x68},
{ 0x18, 0x6A},
{ 0x18, 0x6C},
{ 0x18, 0x6E},
{ 0x18, 0x70},
{ 0x18, 0x73},
{ 0x18, 0x74},
{ 0x18, 0x76},
{ 0x18, 0x78},
{ 0x18, 0x7A},
{ 0x18, 0x7C},
{ 0x18, 0x7E}
};
#define NOOF_SETRATE_URBS ARRAY_SIZE(SetRate48000)
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 13:55:46 +00:00
static void i_usX2Y_04Int(struct urb *urb)
{
struct usX2Ydev *usX2Y = urb->context;
if (urb->status)
snd_printk(KERN_ERR "snd_usX2Y_04Int() urb->status=%i\n", urb->status);
if (0 == --usX2Y->US04->len)
wake_up(&usX2Y->In04WaitQueue);
}
static int usX2Y_rate_set(struct usX2Ydev *usX2Y, int rate)
{
int err = 0, i;
struct snd_usX2Y_urbSeq *us = NULL;
int *usbdata = NULL;
struct s_c2 *ra = rate == 48000 ? SetRate48000 : SetRate44100;
if (usX2Y->rate != rate) {
us = kzalloc(sizeof(*us) + sizeof(struct urb*) * NOOF_SETRATE_URBS, GFP_KERNEL);
if (NULL == us) {
err = -ENOMEM;
goto cleanup;
}
usbdata = kmalloc(sizeof(int) * NOOF_SETRATE_URBS, GFP_KERNEL);
if (NULL == usbdata) {
err = -ENOMEM;
goto cleanup;
}
for (i = 0; i < NOOF_SETRATE_URBS; ++i) {
if (NULL == (us->urb[i] = usb_alloc_urb(0, GFP_KERNEL))) {
err = -ENOMEM;
goto cleanup;
}
((char*)(usbdata + i))[0] = ra[i].c1;
((char*)(usbdata + i))[1] = ra[i].c2;
usb_fill_bulk_urb(us->urb[i], usX2Y->dev, usb_sndbulkpipe(usX2Y->dev, 4),
usbdata + i, 2, i_usX2Y_04Int, usX2Y);
}
err = usb_urb_ep_type_check(us->urb[0]);
if (err < 0)
goto cleanup;
us->submitted = 0;
us->len = NOOF_SETRATE_URBS;
usX2Y->US04 = us;
wait_event_timeout(usX2Y->In04WaitQueue, 0 == us->len, HZ);
usX2Y->US04 = NULL;
if (us->len)
err = -ENODEV;
cleanup:
if (us) {
us->submitted = 2*NOOF_SETRATE_URBS;
for (i = 0; i < NOOF_SETRATE_URBS; ++i) {
struct urb *urb = us->urb[i];
if (urb->status) {
if (!err)
err = -ENODEV;
usb_kill_urb(urb);
}
usb_free_urb(urb);
}
usX2Y->US04 = NULL;
kfree(usbdata);
kfree(us);
if (!err)
usX2Y->rate = rate;
}
}
return err;
}
static int usX2Y_format_set(struct usX2Ydev *usX2Y, snd_pcm_format_t format)
{
int alternate, err;
struct list_head* p;
if (format == SNDRV_PCM_FORMAT_S24_3LE) {
alternate = 2;
usX2Y->stride = 6;
} else {
alternate = 1;
usX2Y->stride = 4;
}
list_for_each(p, &usX2Y->midi_list) {
snd_usbmidi_input_stop(p);
}
usb_kill_urb(usX2Y->In04urb);
if ((err = usb_set_interface(usX2Y->dev, 0, alternate))) {
snd_printk(KERN_ERR "usb_set_interface error \n");
return err;
}
usX2Y->In04urb->dev = usX2Y->dev;
err = usb_submit_urb(usX2Y->In04urb, GFP_KERNEL);
list_for_each(p, &usX2Y->midi_list) {
snd_usbmidi_input_start(p);
}
usX2Y->format = format;
usX2Y->rate = 0;
return err;
}
static int snd_usX2Y_pcm_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
int err = 0;
unsigned int rate = params_rate(hw_params);
snd_pcm_format_t format = params_format(hw_params);
struct snd_card *card = substream->pstr->pcm->card;
struct usX2Ydev *dev = usX2Y(card);
int i;
mutex_lock(&usX2Y(card)->pcm_mutex);
snd_printdd("snd_usX2Y_hw_params(%p, %p)\n", substream, hw_params);
/* all pcm substreams off one usX2Y have to operate at the same
* rate & format
*/
for (i = 0; i < dev->pcm_devs * 2; i++) {
struct snd_usX2Y_substream *subs = dev->subs[i];
struct snd_pcm_substream *test_substream;
if (!subs)
continue;
test_substream = subs->pcm_substream;
if (!test_substream || test_substream == substream ||
!test_substream->runtime)
continue;
if ((test_substream->runtime->format &&
test_substream->runtime->format != format) ||
(test_substream->runtime->rate &&
test_substream->runtime->rate != rate)) {
err = -EINVAL;
goto error;
}
}
err = snd_pcm_lib_malloc_pages(substream,
params_buffer_bytes(hw_params));
if (err < 0) {
snd_printk(KERN_ERR "snd_pcm_lib_malloc_pages(%p, %i) returned %i\n",
substream, params_buffer_bytes(hw_params), err);
goto error;
}
error:
mutex_unlock(&usX2Y(card)->pcm_mutex);
return err;
}
/*
* free the buffer
*/
static int snd_usX2Y_pcm_hw_free(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_usX2Y_substream *subs = runtime->private_data;
mutex_lock(&subs->usX2Y->pcm_mutex);
snd_printdd("snd_usX2Y_hw_free(%p)\n", substream);
if (SNDRV_PCM_STREAM_PLAYBACK == substream->stream) {
struct snd_usX2Y_substream *cap_subs = subs->usX2Y->subs[SNDRV_PCM_STREAM_CAPTURE];
atomic_set(&subs->state, state_STOPPED);
usX2Y_urbs_release(subs);
if (!cap_subs->pcm_substream ||
!cap_subs->pcm_substream->runtime ||
!cap_subs->pcm_substream->runtime->status ||
cap_subs->pcm_substream->runtime->status->state < SNDRV_PCM_STATE_PREPARED) {
atomic_set(&cap_subs->state, state_STOPPED);
usX2Y_urbs_release(cap_subs);
}
} else {
struct snd_usX2Y_substream *playback_subs = subs->usX2Y->subs[SNDRV_PCM_STREAM_PLAYBACK];
if (atomic_read(&playback_subs->state) < state_PREPARED) {
atomic_set(&subs->state, state_STOPPED);
usX2Y_urbs_release(subs);
}
}
mutex_unlock(&subs->usX2Y->pcm_mutex);
return snd_pcm_lib_free_pages(substream);
}
/*
* prepare callback
*
* set format and initialize urbs
*/
static int snd_usX2Y_pcm_prepare(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_usX2Y_substream *subs = runtime->private_data;
struct usX2Ydev *usX2Y = subs->usX2Y;
struct snd_usX2Y_substream *capsubs = subs->usX2Y->subs[SNDRV_PCM_STREAM_CAPTURE];
int err = 0;
snd_printdd("snd_usX2Y_pcm_prepare(%p)\n", substream);
mutex_lock(&usX2Y->pcm_mutex);
usX2Y_subs_prepare(subs);
// Start hardware streams
// SyncStream first....
if (atomic_read(&capsubs->state) < state_PREPARED) {
if (usX2Y->format != runtime->format)
if ((err = usX2Y_format_set(usX2Y, runtime->format)) < 0)
goto up_prepare_mutex;
if (usX2Y->rate != runtime->rate)
if ((err = usX2Y_rate_set(usX2Y, runtime->rate)) < 0)
goto up_prepare_mutex;
snd_printdd("starting capture pipe for %s\n", subs == capsubs ? "self" : "playpipe");
if (0 > (err = usX2Y_urbs_start(capsubs)))
goto up_prepare_mutex;
}
if (subs != capsubs && atomic_read(&subs->state) < state_PREPARED)
err = usX2Y_urbs_start(subs);
up_prepare_mutex:
mutex_unlock(&usX2Y->pcm_mutex);
return err;
}
static struct snd_pcm_hardware snd_usX2Y_2c =
{
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_BATCH),
.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S24_3LE,
.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
.rate_min = 44100,
.rate_max = 48000,
.channels_min = 2,
.channels_max = 2,
.buffer_bytes_max = (2*128*1024),
.period_bytes_min = 64,
.period_bytes_max = (128*1024),
.periods_min = 2,
.periods_max = 1024,
.fifo_size = 0
};
static int snd_usX2Y_pcm_open(struct snd_pcm_substream *substream)
{
struct snd_usX2Y_substream *subs = ((struct snd_usX2Y_substream **)
snd_pcm_substream_chip(substream))[substream->stream];
struct snd_pcm_runtime *runtime = substream->runtime;
if (subs->usX2Y->chip_status & USX2Y_STAT_CHIP_MMAP_PCM_URBS)
return -EBUSY;
runtime->hw = snd_usX2Y_2c;
runtime->private_data = subs;
subs->pcm_substream = substream;
snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_TIME, 1000, 200000);
return 0;
}
static int snd_usX2Y_pcm_close(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_usX2Y_substream *subs = runtime->private_data;
subs->pcm_substream = NULL;
return 0;
}
static const struct snd_pcm_ops snd_usX2Y_pcm_ops =
{
.open = snd_usX2Y_pcm_open,
.close = snd_usX2Y_pcm_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_usX2Y_pcm_hw_params,
.hw_free = snd_usX2Y_pcm_hw_free,
.prepare = snd_usX2Y_pcm_prepare,
.trigger = snd_usX2Y_pcm_trigger,
.pointer = snd_usX2Y_pcm_pointer,
};
/*
* free a usb stream instance
*/
static void usX2Y_audio_stream_free(struct snd_usX2Y_substream **usX2Y_substream)
{
kfree(usX2Y_substream[SNDRV_PCM_STREAM_PLAYBACK]);
usX2Y_substream[SNDRV_PCM_STREAM_PLAYBACK] = NULL;
kfree(usX2Y_substream[SNDRV_PCM_STREAM_CAPTURE]);
usX2Y_substream[SNDRV_PCM_STREAM_CAPTURE] = NULL;
}
static void snd_usX2Y_pcm_private_free(struct snd_pcm *pcm)
{
struct snd_usX2Y_substream **usX2Y_stream = pcm->private_data;
if (usX2Y_stream)
usX2Y_audio_stream_free(usX2Y_stream);
}
static int usX2Y_audio_stream_new(struct snd_card *card, int playback_endpoint, int capture_endpoint)
{
struct snd_pcm *pcm;
int err, i;
struct snd_usX2Y_substream **usX2Y_substream =
usX2Y(card)->subs + 2 * usX2Y(card)->pcm_devs;
for (i = playback_endpoint ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE;
i <= SNDRV_PCM_STREAM_CAPTURE; ++i) {
usX2Y_substream[i] = kzalloc(sizeof(struct snd_usX2Y_substream), GFP_KERNEL);
if (!usX2Y_substream[i])
return -ENOMEM;
usX2Y_substream[i]->usX2Y = usX2Y(card);
}
if (playback_endpoint)
usX2Y_substream[SNDRV_PCM_STREAM_PLAYBACK]->endpoint = playback_endpoint;
usX2Y_substream[SNDRV_PCM_STREAM_CAPTURE]->endpoint = capture_endpoint;
err = snd_pcm_new(card, NAME_ALLCAPS" Audio", usX2Y(card)->pcm_devs,
playback_endpoint ? 1 : 0, 1,
&pcm);
if (err < 0) {
usX2Y_audio_stream_free(usX2Y_substream);
return err;
}
if (playback_endpoint)
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_usX2Y_pcm_ops);
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_usX2Y_pcm_ops);
pcm->private_data = usX2Y_substream;
pcm->private_free = snd_usX2Y_pcm_private_free;
pcm->info_flags = 0;
sprintf(pcm->name, NAME_ALLCAPS" Audio #%d", usX2Y(card)->pcm_devs);
if ((playback_endpoint &&
0 > (err = snd_pcm_lib_preallocate_pages(pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream,
SNDRV_DMA_TYPE_CONTINUOUS,
snd_dma_continuous_data(GFP_KERNEL),
64*1024, 128*1024))) ||
0 > (err = snd_pcm_lib_preallocate_pages(pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream,
SNDRV_DMA_TYPE_CONTINUOUS,
snd_dma_continuous_data(GFP_KERNEL),
64*1024, 128*1024))) {
snd_usX2Y_pcm_private_free(pcm);
return err;
}
usX2Y(card)->pcm_devs++;
return 0;
}
/*
* create a chip instance and set its names.
*/
int usX2Y_audio_create(struct snd_card *card)
{
int err = 0;
INIT_LIST_HEAD(&usX2Y(card)->pcm_list);
if (0 > (err = usX2Y_audio_stream_new(card, 0xA, 0x8)))
return err;
if (le16_to_cpu(usX2Y(card)->dev->descriptor.idProduct) == USB_ID_US428)
if (0 > (err = usX2Y_audio_stream_new(card, 0, 0xA)))
return err;
if (le16_to_cpu(usX2Y(card)->dev->descriptor.idProduct) != USB_ID_US122)
err = usX2Y_rate_set(usX2Y(card), 44100); // Lets us428 recognize output-volume settings, disturbs us122.
return err;
}