linux/tools/perf/perf.h

108 lines
2.5 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _PERF_PERF_H
#define _PERF_PERF_H
#include <time.h>
#include <stdbool.h>
#include <linux/types.h>
#include <linux/stddef.h>
#include <linux/perf_event.h>
extern bool test_attr__enabled;
void test_attr__ready(void);
void test_attr__init(void);
void test_attr__open(struct perf_event_attr *attr, pid_t pid, int cpu,
int fd, int group_fd, unsigned long flags);
#define HAVE_ATTR_TEST
#include "perf-sys.h"
static inline unsigned long long rdclock(void)
{
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
}
perf tools: Allow overriding MAX_NR_CPUS at compile time After update of kernel, the perf tool doesn't run anymore on my 32MB RAM powerpc board, but still runs on a 128MB RAM board: ~# strace perf execve("/usr/sbin/perf", ["perf"], [/* 12 vars */]) = -1 ENOMEM (Cannot allocate memory) --- SIGSEGV {si_signo=SIGSEGV, si_code=SI_KERNEL, si_addr=0} --- +++ killed by SIGSEGV +++ Segmentation fault objdump -x shows that .bss section has a huge size of 24Mbytes: 27 .bss 016baca8 101cebb8 101cebb8 001cd988 2**3 With especially the following objects having quite big size: 10205f80 l O .bss 00140000 runtime_cycles_stats 10345f80 l O .bss 00140000 runtime_stalled_cycles_front_stats 10485f80 l O .bss 00140000 runtime_stalled_cycles_back_stats 105c5f80 l O .bss 00140000 runtime_branches_stats 10705f80 l O .bss 00140000 runtime_cacherefs_stats 10845f80 l O .bss 00140000 runtime_l1_dcache_stats 10985f80 l O .bss 00140000 runtime_l1_icache_stats 10ac5f80 l O .bss 00140000 runtime_ll_cache_stats 10c05f80 l O .bss 00140000 runtime_itlb_cache_stats 10d45f80 l O .bss 00140000 runtime_dtlb_cache_stats 10e85f80 l O .bss 00140000 runtime_cycles_in_tx_stats 10fc5f80 l O .bss 00140000 runtime_transaction_stats 11105f80 l O .bss 00140000 runtime_elision_stats 11245f80 l O .bss 00140000 runtime_topdown_total_slots 11385f80 l O .bss 00140000 runtime_topdown_slots_retired 114c5f80 l O .bss 00140000 runtime_topdown_slots_issued 11605f80 l O .bss 00140000 runtime_topdown_fetch_bubbles 11745f80 l O .bss 00140000 runtime_topdown_recovery_bubbles This is due to commit 4d255766d28b1 ("perf: Bump max number of cpus to 1024"), because many tables are sized with MAX_NR_CPUS This patch gives the opportunity to redefine MAX_NR_CPUS via $ make EXTRA_CFLAGS=-DMAX_NR_CPUS=1 Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: linuxppc-dev@lists.ozlabs.org Link: http://lkml.kernel.org/r/20170922112043.8349468C57@po15668-vm-win7.idsi0.si.c-s.fr Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2017-09-22 11:20:43 +00:00
#ifndef MAX_NR_CPUS
#define MAX_NR_CPUS 2048
perf tools: Allow overriding MAX_NR_CPUS at compile time After update of kernel, the perf tool doesn't run anymore on my 32MB RAM powerpc board, but still runs on a 128MB RAM board: ~# strace perf execve("/usr/sbin/perf", ["perf"], [/* 12 vars */]) = -1 ENOMEM (Cannot allocate memory) --- SIGSEGV {si_signo=SIGSEGV, si_code=SI_KERNEL, si_addr=0} --- +++ killed by SIGSEGV +++ Segmentation fault objdump -x shows that .bss section has a huge size of 24Mbytes: 27 .bss 016baca8 101cebb8 101cebb8 001cd988 2**3 With especially the following objects having quite big size: 10205f80 l O .bss 00140000 runtime_cycles_stats 10345f80 l O .bss 00140000 runtime_stalled_cycles_front_stats 10485f80 l O .bss 00140000 runtime_stalled_cycles_back_stats 105c5f80 l O .bss 00140000 runtime_branches_stats 10705f80 l O .bss 00140000 runtime_cacherefs_stats 10845f80 l O .bss 00140000 runtime_l1_dcache_stats 10985f80 l O .bss 00140000 runtime_l1_icache_stats 10ac5f80 l O .bss 00140000 runtime_ll_cache_stats 10c05f80 l O .bss 00140000 runtime_itlb_cache_stats 10d45f80 l O .bss 00140000 runtime_dtlb_cache_stats 10e85f80 l O .bss 00140000 runtime_cycles_in_tx_stats 10fc5f80 l O .bss 00140000 runtime_transaction_stats 11105f80 l O .bss 00140000 runtime_elision_stats 11245f80 l O .bss 00140000 runtime_topdown_total_slots 11385f80 l O .bss 00140000 runtime_topdown_slots_retired 114c5f80 l O .bss 00140000 runtime_topdown_slots_issued 11605f80 l O .bss 00140000 runtime_topdown_fetch_bubbles 11745f80 l O .bss 00140000 runtime_topdown_recovery_bubbles This is due to commit 4d255766d28b1 ("perf: Bump max number of cpus to 1024"), because many tables are sized with MAX_NR_CPUS This patch gives the opportunity to redefine MAX_NR_CPUS via $ make EXTRA_CFLAGS=-DMAX_NR_CPUS=1 Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: linuxppc-dev@lists.ozlabs.org Link: http://lkml.kernel.org/r/20170922112043.8349468C57@po15668-vm-win7.idsi0.si.c-s.fr Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2017-09-22 11:20:43 +00:00
#endif
extern const char *input_name;
extern bool perf_host, perf_guest;
perf tools: Make perf.data more self-descriptive (v8) The goal of this patch is to include more information about the host environment into the perf.data so it is more self-descriptive. Overtime, profiles are captured on various machines and it becomes hard to track what was recorded, on what machine and when. This patch provides a way to solve this by extending the perf.data file with basic information about the host machine. To add those extensions, we leverage the feature bits capabilities of the perf.data format. The change is backward compatible with existing perf.data files. We define the following useful new extensions: - HEADER_HOSTNAME: the hostname - HEADER_OSRELEASE: the kernel release number - HEADER_ARCH: the hw architecture - HEADER_CPUDESC: generic CPU description - HEADER_NRCPUS: number of online/avail cpus - HEADER_CMDLINE: perf command line - HEADER_VERSION: perf version - HEADER_TOPOLOGY: cpu topology - HEADER_EVENT_DESC: full event description (attrs) - HEADER_CPUID: easy-to-parse low level CPU identication The small granularity for the entries is to make it easier to extend without breaking backward compatiblity. Many entries are provided as ASCII strings. Perf report/script have been modified to print the basic information as easy-to-parse ASCII strings. Extended information about CPU and NUMA topology may be requested with the -I option. Thanks to David Ahern for reviewing and testing the many versions of this patch. $ perf report --stdio # ======== # captured on : Mon Sep 26 15:22:14 2011 # hostname : quad # os release : 3.1.0-rc4-tip # perf version : 3.1.0-rc4 # arch : x86_64 # nrcpus online : 4 # nrcpus avail : 4 # cpudesc : Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz # cpuid : GenuineIntel,6,15,11 # total memory : 8105360 kB # cmdline : /home/eranian/perfmon/official/tip/build/tools/perf/perf record date # event : name = cycles, type = 0, config = 0x0, config1 = 0x0, config2 = 0x0, excl_usr = 0, excl_kern = 0, id = { 29, 30, 31, # HEADER_CPU_TOPOLOGY info available, use -I to display # HEADER_NUMA_TOPOLOGY info available, use -I to display # ======== # ... $ perf report --stdio -I # ======== # captured on : Mon Sep 26 15:22:14 2011 # hostname : quad # os release : 3.1.0-rc4-tip # perf version : 3.1.0-rc4 # arch : x86_64 # nrcpus online : 4 # nrcpus avail : 4 # cpudesc : Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz # cpuid : GenuineIntel,6,15,11 # total memory : 8105360 kB # cmdline : /home/eranian/perfmon/official/tip/build/tools/perf/perf record date # event : name = cycles, type = 0, config = 0x0, config1 = 0x0, config2 = 0x0, excl_usr = 0, excl_kern = 0, id = { 29, 30, 31, # sibling cores : 0-3 # sibling threads : 0 # sibling threads : 1 # sibling threads : 2 # sibling threads : 3 # node0 meminfo : total = 8320608 kB, free = 7571024 kB # node0 cpu list : 0-3 # ======== # ... Reviewed-by: David Ahern <dsahern@gmail.com> Tested-by: David Ahern <dsahern@gmail.com> Cc: David Ahern <dsahern@gmail.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Robert Richter <robert.richter@amd.com> Cc: Andi Kleen <ak@linux.intel.com> Link: http://lkml.kernel.org/r/20110930134040.GA5575@quad Signed-off-by: Stephane Eranian <eranian@google.com> [ committer notes: Use --show-info in the tools as was in the docs, rename perf_header_fprintf_info to perf_file_section__fprintf_info, fixup conflict with f69b64f7 "perf: Support setting the disassembler style" ] Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2011-09-30 13:40:40 +00:00
extern const char perf_version_string[];
void pthread__unblock_sigwinch(void);
#include "util/target.h"
struct record_opts {
struct target target;
bool group;
bool inherit_stat;
bool no_buffering;
bool no_inherit;
bool no_inherit_set;
bool no_samples;
bool raw_samples;
bool sample_address;
bool sample_phys_addr;
bool sample_weight;
bool sample_time;
bool sample_time_set;
bool sample_cpu;
bool period;
perf record: Fix period option handling Stephan reported we don't unset PERIOD sample type when --no-period is specified. Adding the unset check and reset PERIOD if --no-period is specified. Committer notes: Check the sample_type, it shouldn't have PERF_SAMPLE_PERIOD there when --no-period is used. Before: # perf record --no-period sleep 1 [ perf record: Woken up 1 times to write data ] [ perf record: Captured and wrote 0.018 MB perf.data (7 samples) ] # perf evlist -v cycles:ppp: size: 112, { sample_period, sample_freq }: 4000, sample_type: IP|TID|TIME|PERIOD, disabled: 1, inherit: 1, mmap: 1, comm: 1, freq: 1, enable_on_exec: 1, task: 1, precise_ip: 3, sample_id_all: 1, exclude_guest: 1, mmap2: 1, comm_exec: 1 # After: [root@jouet ~]# perf record --no-period sleep 1 [ perf record: Woken up 1 times to write data ] [ perf record: Captured and wrote 0.019 MB perf.data (17 samples) ] [root@jouet ~]# perf evlist -v cycles:ppp: size: 112, { sample_period, sample_freq }: 4000, sample_type: IP|TID|TIME, disabled: 1, inherit: 1, mmap: 1, comm: 1, freq: 1, enable_on_exec: 1, task: 1, precise_ip: 3, sample_id_all: 1, exclude_guest: 1, mmap2: 1, comm_exec: 1 [root@jouet ~]# Reported-by: Stephane Eranian <eranian@google.com> Signed-off-by: Jiri Olsa <jolsa@kernel.org> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Tested-by: Stephane Eranian <eranian@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: David Ahern <dsahern@gmail.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20180201083812.11359-3-jolsa@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2018-02-01 08:38:11 +00:00
bool period_set;
bool running_time;
bool full_auxtrace;
bool auxtrace_snapshot_mode;
perf tools: Add PERF_RECORD_NAMESPACES to include namespaces related info Introduce a new option to record PERF_RECORD_NAMESPACES events emitted by the kernel when fork, clone, setns or unshare are invoked. And update perf-record documentation with the new option to record namespace events. Committer notes: Combined it with a later patch to allow printing it via 'perf report -D' and be able to test the feature introduced in this patch. Had to move here also perf_ns__name(), that was introduced in another later patch. Also used PRIu64 and PRIx64 to fix the build in some enfironments wrt: util/event.c:1129:39: error: format '%lx' expects argument of type 'long unsigned int', but argument 6 has type 'long long unsigned int' [-Werror=format=] ret += fprintf(fp, "%u/%s: %lu/0x%lx%s", idx ^ Testing it: # perf record --namespaces -a ^C[ perf record: Woken up 1 times to write data ] [ perf record: Captured and wrote 1.083 MB perf.data (423 samples) ] # # perf report -D <SNIP> 3 2028902078892 0x115140 [0xa0]: PERF_RECORD_NAMESPACES 14783/14783 - nr_namespaces: 7 [0/net: 3/0xf0000081, 1/uts: 3/0xeffffffe, 2/ipc: 3/0xefffffff, 3/pid: 3/0xeffffffc, 4/user: 3/0xeffffffd, 5/mnt: 3/0xf0000000, 6/cgroup: 3/0xeffffffb] 0x1151e0 [0x30]: event: 9 . . ... raw event: size 48 bytes . 0000: 09 00 00 00 02 00 30 00 c4 71 82 68 0c 7f 00 00 ......0..q.h.... . 0010: a9 39 00 00 a9 39 00 00 94 28 fe 63 d8 01 00 00 .9...9...(.c.... . 0020: 03 00 00 00 00 00 00 00 ce c4 02 00 00 00 00 00 ................ <SNIP> NAMESPACES events: 1 <SNIP> # Signed-off-by: Hari Bathini <hbathini@linux.vnet.ibm.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Alexei Starovoitov <ast@fb.com> Cc: Ananth N Mavinakayanahalli <ananth@linux.vnet.ibm.com> Cc: Aravinda Prasad <aravinda@linux.vnet.ibm.com> Cc: Brendan Gregg <brendan.d.gregg@gmail.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Eric Biederman <ebiederm@xmission.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sargun Dhillon <sargun@sargun.me> Cc: Steven Rostedt <rostedt@goodmis.org> Link: http://lkml.kernel.org/r/148891930386.25309.18412039920746995488.stgit@hbathini.in.ibm.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2017-03-07 20:41:43 +00:00
bool record_namespaces;
bool record_switch_events;
perf record: Add --all-user/--all-kernel options Allow user to easily switch all events to user or kernel space with simple --all-user or --all-kernel options. This will be handy within perf mem/c2c wrappers to switch easily monitoring modes. Committer note: Testing it: # perf record --all-kernel --all-user -a sleep 2 Error: option `all-user' cannot be used with all-kernel Usage: perf record [<options>] [<command>] or: perf record [<options>] -- <command> [<options>] --all-user Configure all used events to run in user space. --all-kernel Configure all used events to run in kernel space. # perf record --all-user --all-kernel -a sleep 2 Error: option `all-kernel' cannot be used with all-user Usage: perf record [<options>] [<command>] or: perf record [<options>] -- <command> [<options>] --all-kernel Configure all used events to run in kernel space. --all-user Configure all used events to run in user space. # perf record --all-user -a sleep 1 [ perf record: Woken up 1 times to write data ] [ perf record: Captured and wrote 1.416 MB perf.data (162 samples) ] # perf report | grep '\[k\]' # perf record --all-kernel -a sleep 1 [ perf record: Woken up 1 times to write data ] [ perf record: Captured and wrote 1.423 MB perf.data (296 samples) ] # perf report | grep '\[\.\]' # Signed-off-by: Jiri Olsa <jolsa@kernel.org> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: David Ahern <dsahern@gmail.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Stephane Eranian <eranian@google.com> Link: http://lkml.kernel.org/r/1455525293-8671-2-git-send-email-jolsa@kernel.org [ Made those options to be mutually exclusive ] Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2016-02-15 08:34:31 +00:00
bool all_kernel;
bool all_user;
bool kernel_callchains;
bool user_callchains;
perf record: Add --tail-synthesize option When working with overwritable ring buffer there's a inconvenience problem: if perf dumps data after a long period after it starts, non-sample events may lost, which makes following 'perf report' unable to identify proc name and mmap layout. For example: # perf record -m 4 -e raw_syscalls:* -g --overwrite --switch-output \ dd if=/dev/zero of=/dev/null send SIGUSR2 after dd runs long enough. The resuling perf.data lost correct comm and mmap events: # perf script -i perf.data.2016061522374354 perf 24478 [004] 2581325.601789: raw_syscalls:sys_exit: NR 0 = 512 ^^^^ Should be 'dd' 27b2e8 syscall_slow_exit_work+0xfe2000e3 (/lib/modules/4.6.0-rc3+/build/vmlinux) 203cc7 do_syscall_64+0xfe200117 (/lib/modules/4.6.0-rc3+/build/vmlinux) b18d83 return_from_SYSCALL_64+0xfe200000 (/lib/modules/4.6.0-rc3+/build/vmlinux) 7f47c417edf0 [unknown] ([unknown]) ^^^^^^^^^^^^ Fail to unwind This patch provides a '--tail-synthesize' option, allows perf to collect system status when finalizing output file. In resuling output file, the non-sample events reflect system status when dumping data. After this patch: # perf record -m 4 -e raw_syscalls:* -g --overwrite --switch-output --tail-synthesize \ dd if=/dev/zero of=/dev/null # perf script -i perf.data.2016061600544998 dd 27364 [004] 2583244.994464: raw_syscalls:sys_enter: NR 1 (1, ... ^^ Correct comm 203a18 syscall_trace_enter_phase2+0xfe2001a8 ([kernel.kallsyms]) 203aa5 syscall_trace_enter+0xfe200055 ([kernel.kallsyms]) 203caa do_syscall_64+0xfe2000fa ([kernel.kallsyms]) b18d83 return_from_SYSCALL_64+0xfe200000 ([kernel.kallsyms]) d8e50 __GI___libc_write+0xffff01d9639f4010 (/tmp/oxygen_root-w00229757/lib64/libc-2.18.so) ^^^^^ Correct unwind This option doesn't aim to solve this problem completely. If a process terminates before SIGUSR2, we still lost its COMM and MMAP events. For example, we can't unwind correctly from the final perf.data we get from the previous example, because when perf collects the final output file (when we press C-c), 'dd' has been terminated so its '/proc/<pid>/mmap' becomes empty. However, this is a cheaper choice. To completely solve this problem we need to continously output non-sample events. To satisify the requirement of daemonization, we need to merge them periodically. It is possible but requires much more code and cycles. Automatically select --tail-synthesize when --overwrite is provided. Signed-off-by: Wang Nan <wangnan0@huawei.com> Cc: He Kuang <hekuang@huawei.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Nilay Vaish <nilayvaish@gmail.com> Cc: Zefan Li <lizefan@huawei.com> Cc: pi3orama@163.com Link: http://lkml.kernel.org/r/1468485287-33422-16-git-send-email-wangnan0@huawei.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2016-07-14 08:34:47 +00:00
bool tail_synthesize;
perf tools: Enable overwrite settings This patch allows following config terms and option: Globally setting events to overwrite; # perf record --overwrite ... Set specific events to be overwrite or no-overwrite. # perf record --event cycles/overwrite/ ... # perf record --event cycles/no-overwrite/ ... Add missing config terms and update the config term array size because the longest string length has changed. For overwritable events, it automatically selects attr.write_backward since perf requires it to be backward for reading. Test result: # perf record --overwrite -e syscalls:*enter_nanosleep* usleep 1 [ perf record: Woken up 2 times to write data ] [ perf record: Captured and wrote 0.011 MB perf.data (1 samples) ] # perf evlist -v syscalls:sys_enter_nanosleep: type: 2, size: 112, config: 0x134, { sample_period, sample_freq }: 1, sample_type: IP|TID|TIME|CPU|PERIOD|RAW, disabled: 1, inherit: 1, mmap: 1, comm: 1, enable_on_exec: 1, task: 1, sample_id_all: 1, exclude_guest: 1, mmap2: 1, comm_exec: 1, write_backward: 1 # Tip: use 'perf evlist --trace-fields' to show fields for tracepoint events Signed-off-by: Wang Nan <wangnan0@huawei.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Nilay Vaish <nilayvaish@gmail.com> Cc: Zefan Li <lizefan@huawei.com> Cc: pi3orama@163.com Link: http://lkml.kernel.org/r/1468485287-33422-14-git-send-email-wangnan0@huawei.com Signed-off-by: He Kuang <hekuang@huawei.com> Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2016-07-14 08:34:45 +00:00
bool overwrite;
bool ignore_missing_thread;
bool strict_freq;
perf record: Fix crash in pipe mode Currently we can crash perf record when running in pipe mode, like: $ perf record ls | perf report # To display the perf.data header info, please use --header/--header-only options. # perf: Segmentation fault Error: The - file has no samples! The callstack of the crash is: 0x0000000000515242 in perf_event__synthesize_event_update_name 3513 ev = event_update_event__new(len + 1, PERF_EVENT_UPDATE__NAME, evsel->id[0]); (gdb) bt #0 0x0000000000515242 in perf_event__synthesize_event_update_name #1 0x00000000005158a4 in perf_event__synthesize_extra_attr #2 0x0000000000443347 in record__synthesize #3 0x00000000004438e3 in __cmd_record #4 0x000000000044514e in cmd_record #5 0x00000000004cbc95 in run_builtin #6 0x00000000004cbf02 in handle_internal_command #7 0x00000000004cc054 in run_argv #8 0x00000000004cc422 in main The reason of the crash is that the evsel does not have ids array allocated and the pipe's synthesize code tries to access it. We don't force evsel ids allocation when we have single event, because it's not needed. However we need it when we are in pipe mode even for single event as a key for evsel update event. Fixing this by forcing evsel ids allocation event for single event, when we are in pipe mode. Signed-off-by: Jiri Olsa <jolsa@kernel.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: David Ahern <dsahern@gmail.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20180302161354.30192-1-jolsa@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2018-03-02 16:13:54 +00:00
bool sample_id;
bool no_bpf_event;
unsigned int freq;
unsigned int mmap_pages;
unsigned int auxtrace_mmap_pages;
unsigned int user_freq;
u64 branch_stack;
perf record: Add ability to name registers to record This patch modifies the -I/--int-regs option to enablepassing the name of the registers to sample on interrupt. Registers can be specified by their symbolic names. For instance on x86, --intr-regs=ax,si. The motivation is to reduce the size of the perf.data file and the overhead of sampling by only collecting the registers useful to a specific analysis. For instance, for value profiling, sampling only the registers used to passed arguements to functions. With no parameter, the --intr-regs still records all possible registers based on the architecture. To name registers, it is necessary to use the long form of the option, i.e., --intr-regs: $ perf record --intr-regs=si,di,r8,r9 ..... To record any possible registers: $ perf record -I ..... $ perf report --intr-regs ... To display the register, one can use perf report -D To list the available registers: $ perf record --intr-regs=\? available registers: AX BX CX DX SI DI BP SP IP FLAGS CS SS R8 R9 R10 R11 R12 R13 R14 R15 Signed-off-by: Stephane Eranian <eranian@google.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: David Ahern <dsahern@gmail.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Kan Liang <kan.liang@intel.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1441039273-16260-4-git-send-email-eranian@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2015-08-31 16:41:12 +00:00
u64 sample_intr_regs;
u64 sample_user_regs;
u64 default_interval;
u64 user_interval;
size_t auxtrace_snapshot_size;
const char *auxtrace_snapshot_opts;
bool sample_transaction;
unsigned initial_delay;
bool use_clockid;
clockid_t clockid;
u64 clockid_res_ns;
int nr_cblocks;
int affinity;
perf record: Implement --mmap-flush=<number> option Implement a --mmap-flush option that specifies minimal number of bytes that is extracted from mmaped kernel buffer to store into a trace. The default option value is 1 byte what means every time trace writing thread finds some new data in the mmaped buffer the data is extracted, possibly compressed and written to a trace. $ tools/perf/perf record --mmap-flush 1024 -e cycles -- matrix.gcc $ tools/perf/perf record --aio --mmap-flush 1K -e cycles -- matrix.gcc The option is independent from -z setting, doesn't vary with compression level and can serve two purposes. The first purpose is to increase the compression ratio of a trace data. Larger data chunks are compressed more effectively so the implemented option allows specifying data chunk size to compress. Also at some cases executing more write syscalls with smaller data size can take longer than executing less write syscalls with bigger data size due to syscall overhead so extracting bigger data chunks specified by the option value could additionally decrease runtime overhead. The second purpose is to avoid self monitoring live-lock issue in system wide (-a) profiling mode. Profiling in system wide mode with compression (-a -z) can additionally induce data into the kernel buffers along with the data from monitored processes. If performance data rate and volume from the monitored processes is high then trace streaming and compression activity in the tool is also high. High tool process activity can lead to subtle live-lock effect when compression of single new byte from some of mmaped kernel buffer leads to generation of the next single byte at some mmaped buffer. So perf tool process ends up in endless self monitoring. Implemented synch parameter is the mean to force data move independently from the specified flush threshold value. Despite the provided flush value the tool needs capability to unconditionally drain memory buffers, at least in the end of the collection. Committer testing: Running with the default value, i.e. as soon as there is something to read go on consuming, we first write the synthesized events, small chunks of about 128 bytes: # perf trace -m 2048 --call-graph dwarf -e write -- perf record <SNIP> 101.142 ( 0.004 ms): perf/25821 write(fd: 3</root/perf.data>, buf: 0x210db60, count: 120) = 120 __libc_write (/usr/lib64/libpthread-2.28.so) ion (/home/acme/bin/perf) record__write (inlined) process_synthesized_event (/home/acme/bin/perf) perf_tool__process_synth_event (inlined) perf_event__synthesize_mmap_events (/home/acme/bin/perf) Then we move to reading the mmap buffers consuming the events put there by the kernel perf infrastructure: 107.561 ( 0.005 ms): perf/25821 write(fd: 3</root/perf.data>, buf: 0x7f1befc02000, count: 336) = 336 __libc_write (/usr/lib64/libpthread-2.28.so) ion (/home/acme/bin/perf) record__write (inlined) record__pushfn (/home/acme/bin/perf) perf_mmap__push (/home/acme/bin/perf) record__mmap_read_evlist (inlined) record__mmap_read_all (inlined) __cmd_record (inlined) cmd_record (/home/acme/bin/perf) 12919.953 ( 0.136 ms): perf/25821 write(fd: 3</root/perf.data>, buf: 0x7f1befc83150, count: 184984) = 184984 <SNIP same backtrace as in the 107.561 timestamp> 12920.094 ( 0.155 ms): perf/25821 write(fd: 3</root/perf.data>, buf: 0x7f1befc02150, count: 261816) = 261816 <SNIP same backtrace as in the 107.561 timestamp> 12920.253 ( 0.093 ms): perf/25821 write(fd: 3</root/perf.data>, buf: 0x7f1befb81120, count: 170832) = 170832 <SNIP same backtrace as in the 107.561 timestamp> If we limit it to write only when more than 16MB are available for reading, it throttles that to a quarter of the --mmap-pages set for 'perf record', which by default get to 528384 bytes, found out using 'record -v': mmap flush: 132096 mmap size 528384B With that in place all the writes coming from record__mmap_read_evlist(), i.e. from the mmap buffers setup by the kernel perf infrastructure were at least 132096 bytes long. Trying with a bigger mmap size: perf trace -e write perf record -v -m 2048 --mmap-flush 16M 74982.928 ( 2.471 ms): perf/26500 write(fd: 3</root/perf.data>, buf: 0x7ff94a6cc000, count: 3580888) = 3580888 74985.406 ( 2.353 ms): perf/26500 write(fd: 3</root/perf.data>, buf: 0x7ff949ecb000, count: 3453256) = 3453256 74987.764 ( 2.629 ms): perf/26500 write(fd: 3</root/perf.data>, buf: 0x7ff9496ca000, count: 3859232) = 3859232 74990.399 ( 2.341 ms): perf/26500 write(fd: 3</root/perf.data>, buf: 0x7ff948ec9000, count: 3769032) = 3769032 74992.744 ( 2.064 ms): perf/26500 write(fd: 3</root/perf.data>, buf: 0x7ff9486c8000, count: 3310520) = 3310520 74994.814 ( 2.619 ms): perf/26500 write(fd: 3</root/perf.data>, buf: 0x7ff947ec7000, count: 4194688) = 4194688 74997.439 ( 2.787 ms): perf/26500 write(fd: 3</root/perf.data>, buf: 0x7ff9476c6000, count: 4029760) = 4029760 Was again limited to a quarter of the mmap size: mmap flush: 2098176 mmap size 8392704B A warning about that would be good to have but can be added later, something like: "max flush is a quarter of the mmap size, if wanting to bump the mmap flush further, bump the mmap size as well using -m/--mmap-pages" Also rename the 'sync' parameters to 'synch' to keep tools/perf building with older glibcs: cc1: warnings being treated as errors builtin-record.c: In function 'record__mmap_read_evlist': builtin-record.c:775: warning: declaration of 'sync' shadows a global declaration /usr/include/unistd.h:933: warning: shadowed declaration is here builtin-record.c: In function 'record__mmap_read_all': builtin-record.c:856: warning: declaration of 'sync' shadows a global declaration /usr/include/unistd.h:933: warning: shadowed declaration is here Signed-off-by: Alexey Budankov <alexey.budankov@linux.intel.com> Reviewed-by: Jiri Olsa <jolsa@kernel.org> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/f6600d72-ecfa-2eb7-7e51-f6954547d500@linux.intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2019-03-18 17:40:26 +00:00
int mmap_flush;
unsigned int comp_level;
};
enum perf_affinity {
PERF_AFFINITY_SYS = 0,
PERF_AFFINITY_NODE,
PERF_AFFINITY_CPU,
PERF_AFFINITY_MAX
};
struct option;
extern const char * const *record_usage;
extern struct option *record_options;
perf tools: Add 'perf -vv' as an alias to 'perf version --build-options' We keep having bug reports that when users build perf on their own, but they don't install some needed libraries such as libelf, libbfd/libibery. The perf can build, but it is missing important functionality. This patch provides a new option '-vv' for perf which will print the compiled-in status of libraries. The 'perf -vv' is mapped to 'perf version --build-options'. For example: $ ./perf -vv perf version 4.13.rc5.g6727c5 dwarf: [ on ] # HAVE_DWARF_SUPPORT dwarf_getlocations: [ on ] # HAVE_DWARF_GETLOCATIONS_SUPPORT glibc: [ on ] # HAVE_GLIBC_SUPPORT gtk2: [ on ] # HAVE_GTK2_SUPPORT libaudit: [ OFF ] # HAVE_LIBAUDIT_SUPPORT libbfd: [ on ] # HAVE_LIBBFD_SUPPORT libelf: [ on ] # HAVE_LIBELF_SUPPORT libnuma: [ on ] # HAVE_LIBNUMA_SUPPORT numa_num_possible_cpus: [ on ] # HAVE_LIBNUMA_SUPPORT libperl: [ on ] # HAVE_LIBPERL_SUPPORT libpython: [ on ] # HAVE_LIBPYTHON_SUPPORT libslang: [ on ] # HAVE_SLANG_SUPPORT libcrypto: [ on ] # HAVE_LIBCRYPTO_SUPPORT libunwind: [ on ] # HAVE_LIBUNWIND_SUPPORT libdw-dwarf-unwind: [ on ] # HAVE_DWARF_SUPPORT zlib: [ on ] # HAVE_ZLIB_SUPPORT lzma: [ on ] # HAVE_LZMA_SUPPORT get_cpuid: [ on ] # HAVE_AUXTRACE_SUPPORT bpf: [ on ] # HAVE_LIBBPF_SUPPORT v3: One bug is found in v2. It didn't process the option like '-vabc' correctly. Fix this bug. v2: Use a global variable version_verbose to record the number of 'v'. Signed-off-by: Jin Yao <yao.jin@linux.intel.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Jin Yao <yao.jin@intel.com> Cc: Kan Liang <kan.liang@intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1522402036-22915-6-git-send-email-yao.jin@linux.intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2018-03-30 09:27:15 +00:00
extern int version_verbose;
perf record: Allow asking for the maximum allowed sample rate Add the handy '-F max' shortcut to reading and using the kernel.perf_event_max_sample_rate value as the user supplied sampling frequency: # perf record -F max sleep 1 info: Using a maximum frequency rate of 15,000 Hz [ perf record: Woken up 1 times to write data ] [ perf record: Captured and wrote 0.019 MB perf.data (14 samples) ] # sysctl kernel.perf_event_max_sample_rate kernel.perf_event_max_sample_rate = 15000 # perf evlist -v cycles:ppp: size: 112, { sample_period, sample_freq }: 15000, sample_type: IP|TID|TIME|PERIOD, disabled: 1, inherit: 1, mmap: 1, comm: 1, freq: 1, enable_on_exec: 1, task: 1, precise_ip: 3, sample_id_all: 1, exclude_guest: 1, mmap2: 1, comm_exec: 1 # perf record -F 10 sleep 1 [ perf record: Woken up 1 times to write data ] [ perf record: Captured and wrote 0.019 MB perf.data (4 samples) ] # perf evlist -v cycles:ppp: size: 112, { sample_period, sample_freq }: 10, sample_type: IP|TID|TIME|PERIOD, disabled: 1, inherit: 1, mmap: 1, comm: 1, freq: 1, enable_on_exec: 1, task: 1, precise_ip: 3, sample_id_all: 1, exclude_guest: 1, mmap2: 1, comm_exec: 1 # Suggested-by: Ingo Molnar <mingo@kernel.org> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: David Ahern <dsahern@gmail.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Wang Nan <wangnan0@huawei.com> Link: https://lkml.kernel.org/n/tip-4y0tiuws62c64gp4cf0hme0m@git.kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2018-03-01 16:46:23 +00:00
int record__parse_freq(const struct option *opt, const char *str, int unset);
#endif