2005-04-16 22:20:36 +00:00
|
|
|
/*
|
|
|
|
* General Purpose functions for the global management of the
|
|
|
|
* 8260 Communication Processor Module.
|
|
|
|
* Copyright (c) 1999 Dan Malek (dmalek@jlc.net)
|
|
|
|
* Copyright (c) 2000 MontaVista Software, Inc (source@mvista.com)
|
|
|
|
* 2.3.99 Updates
|
|
|
|
*
|
|
|
|
* In addition to the individual control of the communication
|
|
|
|
* channels, there are a few functions that globally affect the
|
|
|
|
* communication processor.
|
|
|
|
*
|
|
|
|
* Buffer descriptors must be allocated from the dual ported memory
|
|
|
|
* space. The allocator for that is here. When the communication
|
|
|
|
* process is reset, we reclaim the memory available. There is
|
|
|
|
* currently no deallocator for this memory.
|
|
|
|
*/
|
|
|
|
#include <linux/errno.h>
|
|
|
|
#include <linux/sched.h>
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/param.h>
|
|
|
|
#include <linux/string.h>
|
|
|
|
#include <linux/mm.h>
|
|
|
|
#include <linux/interrupt.h>
|
|
|
|
#include <linux/module.h>
|
2005-06-25 21:54:41 +00:00
|
|
|
#include <asm/io.h>
|
2005-04-16 22:20:36 +00:00
|
|
|
#include <asm/irq.h>
|
|
|
|
#include <asm/mpc8260.h>
|
|
|
|
#include <asm/page.h>
|
|
|
|
#include <asm/pgtable.h>
|
|
|
|
#include <asm/cpm2.h>
|
|
|
|
#include <asm/rheap.h>
|
|
|
|
|
|
|
|
static void cpm2_dpinit(void);
|
|
|
|
cpm_cpm2_t *cpmp; /* Pointer to comm processor space */
|
|
|
|
|
|
|
|
/* We allocate this here because it is used almost exclusively for
|
|
|
|
* the communication processor devices.
|
|
|
|
*/
|
|
|
|
cpm2_map_t *cpm2_immr;
|
|
|
|
|
|
|
|
#define CPM_MAP_SIZE (0x40000) /* 256k - the PQ3 reserve this amount
|
|
|
|
of space for CPM as it is larger
|
|
|
|
than on PQ2 */
|
|
|
|
|
|
|
|
void
|
|
|
|
cpm2_reset(void)
|
|
|
|
{
|
|
|
|
cpm2_immr = (cpm2_map_t *)ioremap(CPM_MAP_ADDR, CPM_MAP_SIZE);
|
|
|
|
|
|
|
|
/* Reclaim the DP memory for our use.
|
|
|
|
*/
|
|
|
|
cpm2_dpinit();
|
|
|
|
|
|
|
|
/* Tell everyone where the comm processor resides.
|
|
|
|
*/
|
|
|
|
cpmp = &cpm2_immr->im_cpm;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Set a baud rate generator. This needs lots of work. There are
|
|
|
|
* eight BRGs, which can be connected to the CPM channels or output
|
|
|
|
* as clocks. The BRGs are in two different block of internal
|
|
|
|
* memory mapped space.
|
|
|
|
* The baud rate clock is the system clock divided by something.
|
|
|
|
* It was set up long ago during the initial boot phase and is
|
|
|
|
* is given to us.
|
|
|
|
* Baud rate clocks are zero-based in the driver code (as that maps
|
|
|
|
* to port numbers). Documentation uses 1-based numbering.
|
|
|
|
*/
|
|
|
|
#define BRG_INT_CLK (((bd_t *)__res)->bi_brgfreq)
|
|
|
|
#define BRG_UART_CLK (BRG_INT_CLK/16)
|
|
|
|
|
|
|
|
/* This function is used by UARTS, or anything else that uses a 16x
|
|
|
|
* oversampled clock.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
cpm_setbrg(uint brg, uint rate)
|
|
|
|
{
|
|
|
|
volatile uint *bp;
|
|
|
|
|
|
|
|
/* This is good enough to get SMCs running.....
|
|
|
|
*/
|
|
|
|
if (brg < 4) {
|
|
|
|
bp = (uint *)&cpm2_immr->im_brgc1;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
bp = (uint *)&cpm2_immr->im_brgc5;
|
|
|
|
brg -= 4;
|
|
|
|
}
|
|
|
|
bp += brg;
|
|
|
|
*bp = ((BRG_UART_CLK / rate) << 1) | CPM_BRG_EN;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* This function is used to set high speed synchronous baud rate
|
|
|
|
* clocks.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
cpm2_fastbrg(uint brg, uint rate, int div16)
|
|
|
|
{
|
|
|
|
volatile uint *bp;
|
|
|
|
|
|
|
|
if (brg < 4) {
|
|
|
|
bp = (uint *)&cpm2_immr->im_brgc1;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
bp = (uint *)&cpm2_immr->im_brgc5;
|
|
|
|
brg -= 4;
|
|
|
|
}
|
|
|
|
bp += brg;
|
|
|
|
*bp = ((BRG_INT_CLK / rate) << 1) | CPM_BRG_EN;
|
|
|
|
if (div16)
|
|
|
|
*bp |= CPM_BRG_DIV16;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* dpalloc / dpfree bits.
|
|
|
|
*/
|
|
|
|
static spinlock_t cpm_dpmem_lock;
|
|
|
|
/* 16 blocks should be enough to satisfy all requests
|
|
|
|
* until the memory subsystem goes up... */
|
|
|
|
static rh_block_t cpm_boot_dpmem_rh_block[16];
|
|
|
|
static rh_info_t cpm_dpmem_info;
|
|
|
|
|
|
|
|
static void cpm2_dpinit(void)
|
|
|
|
{
|
|
|
|
spin_lock_init(&cpm_dpmem_lock);
|
|
|
|
|
|
|
|
/* initialize the info header */
|
|
|
|
rh_init(&cpm_dpmem_info, 1,
|
|
|
|
sizeof(cpm_boot_dpmem_rh_block) /
|
|
|
|
sizeof(cpm_boot_dpmem_rh_block[0]),
|
|
|
|
cpm_boot_dpmem_rh_block);
|
|
|
|
|
|
|
|
/* Attach the usable dpmem area */
|
|
|
|
/* XXX: This is actually crap. CPM_DATAONLY_BASE and
|
|
|
|
* CPM_DATAONLY_SIZE is only a subset of the available dpram. It
|
|
|
|
* varies with the processor and the microcode patches activated.
|
|
|
|
* But the following should be at least safe.
|
|
|
|
*/
|
2007-05-08 19:46:36 +00:00
|
|
|
rh_attach_region(&cpm_dpmem_info, CPM_DATAONLY_BASE, CPM_DATAONLY_SIZE);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* This function returns an index into the DPRAM area.
|
|
|
|
*/
|
2007-05-08 19:46:36 +00:00
|
|
|
unsigned long cpm_dpalloc(uint size, uint align)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2007-05-08 19:46:36 +00:00
|
|
|
unsigned long start;
|
2005-04-16 22:20:36 +00:00
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&cpm_dpmem_lock, flags);
|
|
|
|
cpm_dpmem_info.alignment = align;
|
|
|
|
start = rh_alloc(&cpm_dpmem_info, size, "commproc");
|
|
|
|
spin_unlock_irqrestore(&cpm_dpmem_lock, flags);
|
|
|
|
|
2007-05-08 19:46:36 +00:00
|
|
|
return start;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(cpm_dpalloc);
|
|
|
|
|
2007-05-08 19:46:36 +00:00
|
|
|
int cpm_dpfree(unsigned long offset)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&cpm_dpmem_lock, flags);
|
2007-05-08 19:46:36 +00:00
|
|
|
ret = rh_free(&cpm_dpmem_info, offset);
|
2005-04-16 22:20:36 +00:00
|
|
|
spin_unlock_irqrestore(&cpm_dpmem_lock, flags);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(cpm_dpfree);
|
|
|
|
|
|
|
|
/* not sure if this is ever needed */
|
2007-05-08 19:46:36 +00:00
|
|
|
unsigned long cpm_dpalloc_fixed(unsigned long offset, uint size, uint align)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2007-05-08 19:46:36 +00:00
|
|
|
unsigned long start;
|
2005-04-16 22:20:36 +00:00
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&cpm_dpmem_lock, flags);
|
|
|
|
cpm_dpmem_info.alignment = align;
|
2007-05-08 19:46:36 +00:00
|
|
|
start = rh_alloc_fixed(&cpm_dpmem_info, offset, size, "commproc");
|
2005-04-16 22:20:36 +00:00
|
|
|
spin_unlock_irqrestore(&cpm_dpmem_lock, flags);
|
|
|
|
|
2007-05-08 19:46:36 +00:00
|
|
|
return start;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(cpm_dpalloc_fixed);
|
|
|
|
|
|
|
|
void cpm_dpdump(void)
|
|
|
|
{
|
|
|
|
rh_dump(&cpm_dpmem_info);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(cpm_dpdump);
|
|
|
|
|
2007-05-08 19:46:36 +00:00
|
|
|
void *cpm_dpram_addr(unsigned long offset)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
|
|
|
return (void *)&cpm2_immr->im_dprambase[offset];
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(cpm_dpram_addr);
|