linux/drivers/net/wireless/ath/ath6kl/sdio.c

850 lines
22 KiB
C
Raw Normal View History

Add ath6kl cleaned up driver Last May we started working on cleaning up ath6kl driver which is currently in staging. The work has happened in a separate ath6kl-cleanup tree: http://git.kernel.org/?p=linux/kernel/git/kvalo/ath6kl-cleanup.git;a=summary After over 1100 (!) patches we have now reached a state where I would like to start discussing about pushing the driver to the wireless trees and replacing the staging driver. The driver is now a lot smaller and looks like a proper Linux driver. The size of the driver (measured with simple wc -l) dropped from 49 kLOC to 18 kLOC and the number of the .c and .h files dropped from 107 to 22. Most importantly the number of subdirectories reduced from 26 to zero :) There are two remaining checkpatch warnings in the driver which we decided to omit for now: drivers/net/wireless/ath/ath6kl/debug.c:31: WARNING: printk() should include KERN_ facility level drivers/net/wireless/ath/ath6kl/sdio.c:527: WARNING: msleep < 20ms can sleep for up to 20ms; see Documentation/timers/timers-howto.txt The driver has endian annotations for all the hardware specific structures and there are no sparse errors. Unfortunately I don't have any big endian hardware to test that right now. We have been testing the driver both on x86 and arm platforms. The code is also compiled with sparc and parisc cross compilers. Notable missing features compared to the current staging driver are: o HCI over SDIO support o nl80211 testmode o firmware logging o suspend support Testmode, firmware logging and suspend support will be added soon. HCI over SDIO support will be more difficult as the HCI driver needs to share code with the wifi driver. This is something we need to research more. Also I want to point out the changes I did for signed endian support. As I wasn't able to find any support for signed endian annotations I decided to follow what NTFS has done and added my own. Grep for sle16 and sle32, especially from wmi.h. Various people have been working on the cleanup, the hall of fame based on number of patches is: 543 Vasanthakumar Thiagarajan 403 Raja Mani 252 Kalle Valo 16 Vivek Natarajan 12 Suraj Sumangala 3 Joe Perches 2 Jouni Malinen Signed-off-by: Vasanthakumar Thiagarajan <vthiagar@qca.qualcomm.com> Signed-off-by: Raja Mani <rmani@qca.qualcomm.com> Signed-off-by: Vivek Natarajan <nataraja@qca.qualcomm.com> Signed-off-by: Suraj Sumangala <surajs@qca.qualcomm.com> Signed-off-by: Joe Perches <joe@perches.com> Signed-off-by: Jouni Malinen <jouni@qca.qualcomm.com> Signed-off-by: Kalle Valo <kvalo@qca.qualcomm.com>
2011-07-17 21:22:30 +00:00
/*
* Copyright (c) 2004-2011 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/mmc/card.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/host.h>
#include <linux/mmc/sdio_func.h>
#include <linux/mmc/sdio_ids.h>
#include <linux/mmc/sdio.h>
#include <linux/mmc/sd.h>
#include "htc_hif.h"
#include "hif-ops.h"
#include "target.h"
#include "debug.h"
struct ath6kl_sdio {
struct sdio_func *func;
spinlock_t lock;
/* free list */
struct list_head bus_req_freeq;
/* available bus requests */
struct bus_request bus_req[BUS_REQUEST_MAX_NUM];
struct ath6kl *ar;
u8 *dma_buffer;
/* scatter request list head */
struct list_head scat_req;
spinlock_t scat_lock;
bool is_disabled;
atomic_t irq_handling;
const struct sdio_device_id *id;
struct work_struct wr_async_work;
struct list_head wr_asyncq;
spinlock_t wr_async_lock;
};
#define CMD53_ARG_READ 0
#define CMD53_ARG_WRITE 1
#define CMD53_ARG_BLOCK_BASIS 1
#define CMD53_ARG_FIXED_ADDRESS 0
#define CMD53_ARG_INCR_ADDRESS 1
static inline struct ath6kl_sdio *ath6kl_sdio_priv(struct ath6kl *ar)
{
return ar->hif_priv;
}
/*
* Macro to check if DMA buffer is WORD-aligned and DMA-able.
* Most host controllers assume the buffer is DMA'able and will
* bug-check otherwise (i.e. buffers on the stack). virt_addr_valid
* check fails on stack memory.
*/
static inline bool buf_needs_bounce(u8 *buf)
{
return ((unsigned long) buf & 0x3) || !virt_addr_valid(buf);
}
static void ath6kl_sdio_set_mbox_info(struct ath6kl *ar)
{
struct ath6kl_mbox_info *mbox_info = &ar->mbox_info;
/* EP1 has an extended range */
mbox_info->htc_addr = HIF_MBOX_BASE_ADDR;
mbox_info->htc_ext_addr = HIF_MBOX0_EXT_BASE_ADDR;
mbox_info->htc_ext_sz = HIF_MBOX0_EXT_WIDTH;
mbox_info->block_size = HIF_MBOX_BLOCK_SIZE;
mbox_info->gmbox_addr = HIF_GMBOX_BASE_ADDR;
mbox_info->gmbox_sz = HIF_GMBOX_WIDTH;
}
static inline void ath6kl_sdio_set_cmd53_arg(u32 *arg, u8 rw, u8 func,
u8 mode, u8 opcode, u32 addr,
u16 blksz)
{
*arg = (((rw & 1) << 31) |
((func & 0x7) << 28) |
((mode & 1) << 27) |
((opcode & 1) << 26) |
((addr & 0x1FFFF) << 9) |
(blksz & 0x1FF));
}
static inline void ath6kl_sdio_set_cmd52_arg(u32 *arg, u8 write, u8 raw,
unsigned int address,
unsigned char val)
{
const u8 func = 0;
*arg = ((write & 1) << 31) |
((func & 0x7) << 28) |
((raw & 1) << 27) |
(1 << 26) |
((address & 0x1FFFF) << 9) |
(1 << 8) |
(val & 0xFF);
}
static int ath6kl_sdio_func0_cmd52_wr_byte(struct mmc_card *card,
unsigned int address,
unsigned char byte)
{
struct mmc_command io_cmd;
memset(&io_cmd, 0, sizeof(io_cmd));
ath6kl_sdio_set_cmd52_arg(&io_cmd.arg, 1, 0, address, byte);
io_cmd.opcode = SD_IO_RW_DIRECT;
io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC;
return mmc_wait_for_cmd(card->host, &io_cmd, 0);
}
static struct bus_request *ath6kl_sdio_alloc_busreq(struct ath6kl_sdio *ar_sdio)
{
struct bus_request *bus_req;
unsigned long flag;
spin_lock_irqsave(&ar_sdio->lock, flag);
if (list_empty(&ar_sdio->bus_req_freeq)) {
spin_unlock_irqrestore(&ar_sdio->lock, flag);
return NULL;
}
bus_req = list_first_entry(&ar_sdio->bus_req_freeq,
struct bus_request, list);
list_del(&bus_req->list);
spin_unlock_irqrestore(&ar_sdio->lock, flag);
ath6kl_dbg(ATH6KL_DBG_TRC, "%s: bus request 0x%p\n", __func__, bus_req);
return bus_req;
}
static void ath6kl_sdio_free_bus_req(struct ath6kl_sdio *ar_sdio,
struct bus_request *bus_req)
{
unsigned long flag;
ath6kl_dbg(ATH6KL_DBG_TRC, "%s: bus request 0x%p\n", __func__, bus_req);
spin_lock_irqsave(&ar_sdio->lock, flag);
list_add_tail(&bus_req->list, &ar_sdio->bus_req_freeq);
spin_unlock_irqrestore(&ar_sdio->lock, flag);
}
static void ath6kl_sdio_setup_scat_data(struct hif_scatter_req *scat_req,
struct mmc_data *data)
{
struct scatterlist *sg;
int i;
data->blksz = HIF_MBOX_BLOCK_SIZE;
data->blocks = scat_req->len / HIF_MBOX_BLOCK_SIZE;
ath6kl_dbg(ATH6KL_DBG_SCATTER,
"hif-scatter: (%s) addr: 0x%X, (block len: %d, block count: %d) , (tot:%d,sg:%d)\n",
(scat_req->req & HIF_WRITE) ? "WR" : "RD", scat_req->addr,
data->blksz, data->blocks, scat_req->len,
scat_req->scat_entries);
data->flags = (scat_req->req & HIF_WRITE) ? MMC_DATA_WRITE :
MMC_DATA_READ;
/* fill SG entries */
sg = scat_req->sgentries;
Add ath6kl cleaned up driver Last May we started working on cleaning up ath6kl driver which is currently in staging. The work has happened in a separate ath6kl-cleanup tree: http://git.kernel.org/?p=linux/kernel/git/kvalo/ath6kl-cleanup.git;a=summary After over 1100 (!) patches we have now reached a state where I would like to start discussing about pushing the driver to the wireless trees and replacing the staging driver. The driver is now a lot smaller and looks like a proper Linux driver. The size of the driver (measured with simple wc -l) dropped from 49 kLOC to 18 kLOC and the number of the .c and .h files dropped from 107 to 22. Most importantly the number of subdirectories reduced from 26 to zero :) There are two remaining checkpatch warnings in the driver which we decided to omit for now: drivers/net/wireless/ath/ath6kl/debug.c:31: WARNING: printk() should include KERN_ facility level drivers/net/wireless/ath/ath6kl/sdio.c:527: WARNING: msleep < 20ms can sleep for up to 20ms; see Documentation/timers/timers-howto.txt The driver has endian annotations for all the hardware specific structures and there are no sparse errors. Unfortunately I don't have any big endian hardware to test that right now. We have been testing the driver both on x86 and arm platforms. The code is also compiled with sparc and parisc cross compilers. Notable missing features compared to the current staging driver are: o HCI over SDIO support o nl80211 testmode o firmware logging o suspend support Testmode, firmware logging and suspend support will be added soon. HCI over SDIO support will be more difficult as the HCI driver needs to share code with the wifi driver. This is something we need to research more. Also I want to point out the changes I did for signed endian support. As I wasn't able to find any support for signed endian annotations I decided to follow what NTFS has done and added my own. Grep for sle16 and sle32, especially from wmi.h. Various people have been working on the cleanup, the hall of fame based on number of patches is: 543 Vasanthakumar Thiagarajan 403 Raja Mani 252 Kalle Valo 16 Vivek Natarajan 12 Suraj Sumangala 3 Joe Perches 2 Jouni Malinen Signed-off-by: Vasanthakumar Thiagarajan <vthiagar@qca.qualcomm.com> Signed-off-by: Raja Mani <rmani@qca.qualcomm.com> Signed-off-by: Vivek Natarajan <nataraja@qca.qualcomm.com> Signed-off-by: Suraj Sumangala <surajs@qca.qualcomm.com> Signed-off-by: Joe Perches <joe@perches.com> Signed-off-by: Jouni Malinen <jouni@qca.qualcomm.com> Signed-off-by: Kalle Valo <kvalo@qca.qualcomm.com>
2011-07-17 21:22:30 +00:00
sg_init_table(sg, scat_req->scat_entries);
/* assemble SG list */
for (i = 0; i < scat_req->scat_entries; i++, sg++) {
if ((unsigned long)scat_req->scat_list[i].buf & 0x3)
/*
* Some scatter engines can handle unaligned
* buffers, print this as informational only.
*/
ath6kl_dbg(ATH6KL_DBG_SCATTER,
"(%s) scatter buffer is unaligned 0x%p\n",
scat_req->req & HIF_WRITE ? "WR" : "RD",
scat_req->scat_list[i].buf);
ath6kl_dbg(ATH6KL_DBG_SCATTER, "%d: addr:0x%p, len:%d\n",
i, scat_req->scat_list[i].buf,
scat_req->scat_list[i].len);
sg_set_buf(sg, scat_req->scat_list[i].buf,
scat_req->scat_list[i].len);
}
/* set scatter-gather table for request */
data->sg = scat_req->sgentries;
Add ath6kl cleaned up driver Last May we started working on cleaning up ath6kl driver which is currently in staging. The work has happened in a separate ath6kl-cleanup tree: http://git.kernel.org/?p=linux/kernel/git/kvalo/ath6kl-cleanup.git;a=summary After over 1100 (!) patches we have now reached a state where I would like to start discussing about pushing the driver to the wireless trees and replacing the staging driver. The driver is now a lot smaller and looks like a proper Linux driver. The size of the driver (measured with simple wc -l) dropped from 49 kLOC to 18 kLOC and the number of the .c and .h files dropped from 107 to 22. Most importantly the number of subdirectories reduced from 26 to zero :) There are two remaining checkpatch warnings in the driver which we decided to omit for now: drivers/net/wireless/ath/ath6kl/debug.c:31: WARNING: printk() should include KERN_ facility level drivers/net/wireless/ath/ath6kl/sdio.c:527: WARNING: msleep < 20ms can sleep for up to 20ms; see Documentation/timers/timers-howto.txt The driver has endian annotations for all the hardware specific structures and there are no sparse errors. Unfortunately I don't have any big endian hardware to test that right now. We have been testing the driver both on x86 and arm platforms. The code is also compiled with sparc and parisc cross compilers. Notable missing features compared to the current staging driver are: o HCI over SDIO support o nl80211 testmode o firmware logging o suspend support Testmode, firmware logging and suspend support will be added soon. HCI over SDIO support will be more difficult as the HCI driver needs to share code with the wifi driver. This is something we need to research more. Also I want to point out the changes I did for signed endian support. As I wasn't able to find any support for signed endian annotations I decided to follow what NTFS has done and added my own. Grep for sle16 and sle32, especially from wmi.h. Various people have been working on the cleanup, the hall of fame based on number of patches is: 543 Vasanthakumar Thiagarajan 403 Raja Mani 252 Kalle Valo 16 Vivek Natarajan 12 Suraj Sumangala 3 Joe Perches 2 Jouni Malinen Signed-off-by: Vasanthakumar Thiagarajan <vthiagar@qca.qualcomm.com> Signed-off-by: Raja Mani <rmani@qca.qualcomm.com> Signed-off-by: Vivek Natarajan <nataraja@qca.qualcomm.com> Signed-off-by: Suraj Sumangala <surajs@qca.qualcomm.com> Signed-off-by: Joe Perches <joe@perches.com> Signed-off-by: Jouni Malinen <jouni@qca.qualcomm.com> Signed-off-by: Kalle Valo <kvalo@qca.qualcomm.com>
2011-07-17 21:22:30 +00:00
data->sg_len = scat_req->scat_entries;
}
static int ath6kl_sdio_scat_rw(struct ath6kl_sdio *ar_sdio,
struct bus_request *req)
{
struct mmc_request mmc_req;
struct mmc_command cmd;
struct mmc_data data;
struct hif_scatter_req *scat_req;
u8 opcode, rw;
int status;
scat_req = req->scat_req;
memset(&mmc_req, 0, sizeof(struct mmc_request));
memset(&cmd, 0, sizeof(struct mmc_command));
memset(&data, 0, sizeof(struct mmc_data));
ath6kl_sdio_setup_scat_data(scat_req, &data);
Add ath6kl cleaned up driver Last May we started working on cleaning up ath6kl driver which is currently in staging. The work has happened in a separate ath6kl-cleanup tree: http://git.kernel.org/?p=linux/kernel/git/kvalo/ath6kl-cleanup.git;a=summary After over 1100 (!) patches we have now reached a state where I would like to start discussing about pushing the driver to the wireless trees and replacing the staging driver. The driver is now a lot smaller and looks like a proper Linux driver. The size of the driver (measured with simple wc -l) dropped from 49 kLOC to 18 kLOC and the number of the .c and .h files dropped from 107 to 22. Most importantly the number of subdirectories reduced from 26 to zero :) There are two remaining checkpatch warnings in the driver which we decided to omit for now: drivers/net/wireless/ath/ath6kl/debug.c:31: WARNING: printk() should include KERN_ facility level drivers/net/wireless/ath/ath6kl/sdio.c:527: WARNING: msleep < 20ms can sleep for up to 20ms; see Documentation/timers/timers-howto.txt The driver has endian annotations for all the hardware specific structures and there are no sparse errors. Unfortunately I don't have any big endian hardware to test that right now. We have been testing the driver both on x86 and arm platforms. The code is also compiled with sparc and parisc cross compilers. Notable missing features compared to the current staging driver are: o HCI over SDIO support o nl80211 testmode o firmware logging o suspend support Testmode, firmware logging and suspend support will be added soon. HCI over SDIO support will be more difficult as the HCI driver needs to share code with the wifi driver. This is something we need to research more. Also I want to point out the changes I did for signed endian support. As I wasn't able to find any support for signed endian annotations I decided to follow what NTFS has done and added my own. Grep for sle16 and sle32, especially from wmi.h. Various people have been working on the cleanup, the hall of fame based on number of patches is: 543 Vasanthakumar Thiagarajan 403 Raja Mani 252 Kalle Valo 16 Vivek Natarajan 12 Suraj Sumangala 3 Joe Perches 2 Jouni Malinen Signed-off-by: Vasanthakumar Thiagarajan <vthiagar@qca.qualcomm.com> Signed-off-by: Raja Mani <rmani@qca.qualcomm.com> Signed-off-by: Vivek Natarajan <nataraja@qca.qualcomm.com> Signed-off-by: Suraj Sumangala <surajs@qca.qualcomm.com> Signed-off-by: Joe Perches <joe@perches.com> Signed-off-by: Jouni Malinen <jouni@qca.qualcomm.com> Signed-off-by: Kalle Valo <kvalo@qca.qualcomm.com>
2011-07-17 21:22:30 +00:00
opcode = (scat_req->req & HIF_FIXED_ADDRESS) ?
CMD53_ARG_FIXED_ADDRESS : CMD53_ARG_INCR_ADDRESS;
rw = (scat_req->req & HIF_WRITE) ? CMD53_ARG_WRITE : CMD53_ARG_READ;
/* Fixup the address so that the last byte will fall on MBOX EOM */
if (scat_req->req & HIF_WRITE) {
if (scat_req->addr == HIF_MBOX_BASE_ADDR)
scat_req->addr += HIF_MBOX_WIDTH - scat_req->len;
else
/* Uses extended address range */
scat_req->addr += HIF_MBOX0_EXT_WIDTH - scat_req->len;
}
/* set command argument */
ath6kl_sdio_set_cmd53_arg(&cmd.arg, rw, ar_sdio->func->num,
CMD53_ARG_BLOCK_BASIS, opcode, scat_req->addr,
data.blocks);
cmd.opcode = SD_IO_RW_EXTENDED;
cmd.flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_ADTC;
mmc_req.cmd = &cmd;
mmc_req.data = &data;
mmc_set_data_timeout(&data, ar_sdio->func->card);
/* synchronous call to process request */
mmc_wait_for_req(ar_sdio->func->card->host, &mmc_req);
status = cmd.error ? cmd.error : data.error;
scat_req->status = status;
if (scat_req->status)
ath6kl_err("Scatter write request failed:%d\n",
scat_req->status);
if (scat_req->req & HIF_ASYNCHRONOUS)
scat_req->complete(ar_sdio->ar->htc_target, scat_req);
Add ath6kl cleaned up driver Last May we started working on cleaning up ath6kl driver which is currently in staging. The work has happened in a separate ath6kl-cleanup tree: http://git.kernel.org/?p=linux/kernel/git/kvalo/ath6kl-cleanup.git;a=summary After over 1100 (!) patches we have now reached a state where I would like to start discussing about pushing the driver to the wireless trees and replacing the staging driver. The driver is now a lot smaller and looks like a proper Linux driver. The size of the driver (measured with simple wc -l) dropped from 49 kLOC to 18 kLOC and the number of the .c and .h files dropped from 107 to 22. Most importantly the number of subdirectories reduced from 26 to zero :) There are two remaining checkpatch warnings in the driver which we decided to omit for now: drivers/net/wireless/ath/ath6kl/debug.c:31: WARNING: printk() should include KERN_ facility level drivers/net/wireless/ath/ath6kl/sdio.c:527: WARNING: msleep < 20ms can sleep for up to 20ms; see Documentation/timers/timers-howto.txt The driver has endian annotations for all the hardware specific structures and there are no sparse errors. Unfortunately I don't have any big endian hardware to test that right now. We have been testing the driver both on x86 and arm platforms. The code is also compiled with sparc and parisc cross compilers. Notable missing features compared to the current staging driver are: o HCI over SDIO support o nl80211 testmode o firmware logging o suspend support Testmode, firmware logging and suspend support will be added soon. HCI over SDIO support will be more difficult as the HCI driver needs to share code with the wifi driver. This is something we need to research more. Also I want to point out the changes I did for signed endian support. As I wasn't able to find any support for signed endian annotations I decided to follow what NTFS has done and added my own. Grep for sle16 and sle32, especially from wmi.h. Various people have been working on the cleanup, the hall of fame based on number of patches is: 543 Vasanthakumar Thiagarajan 403 Raja Mani 252 Kalle Valo 16 Vivek Natarajan 12 Suraj Sumangala 3 Joe Perches 2 Jouni Malinen Signed-off-by: Vasanthakumar Thiagarajan <vthiagar@qca.qualcomm.com> Signed-off-by: Raja Mani <rmani@qca.qualcomm.com> Signed-off-by: Vivek Natarajan <nataraja@qca.qualcomm.com> Signed-off-by: Suraj Sumangala <surajs@qca.qualcomm.com> Signed-off-by: Joe Perches <joe@perches.com> Signed-off-by: Jouni Malinen <jouni@qca.qualcomm.com> Signed-off-by: Kalle Valo <kvalo@qca.qualcomm.com>
2011-07-17 21:22:30 +00:00
return status;
}
static int ath6kl_sdio_alloc_prep_scat_req(struct ath6kl_sdio *ar_sdio,
int n_scat_entry, int n_scat_req,
bool virt_scat)
{
struct hif_scatter_req *s_req;
struct bus_request *bus_req;
int i, scat_req_sz, scat_list_sz, sg_sz = 0;
scat_list_sz = (n_scat_entry - 1) * sizeof(struct hif_scatter_item);
scat_req_sz = sizeof(*s_req) + scat_list_sz;
if (!virt_scat)
sg_sz = sizeof(struct scatterlist) * n_scat_entry;
for (i = 0; i < n_scat_req; i++) {
/* allocate the scatter request */
s_req = kzalloc(scat_req_sz, GFP_KERNEL);
if (!s_req)
return -ENOMEM;
if (sg_sz) {
/* allocate sglist */
s_req->sgentries = kzalloc(sg_sz, GFP_KERNEL);
if (!s_req->sgentries) {
kfree(s_req);
return -ENOMEM;
}
}
/* allocate a bus request for this scatter request */
bus_req = ath6kl_sdio_alloc_busreq(ar_sdio);
if (!bus_req) {
kfree(s_req->sgentries);
kfree(s_req);
return -ENOMEM;
}
/* assign the scatter request to this bus request */
bus_req->scat_req = s_req;
s_req->busrequest = bus_req;
/* add it to the scatter pool */
hif_scatter_req_add(ar_sdio->ar, s_req);
}
return 0;
}
Add ath6kl cleaned up driver Last May we started working on cleaning up ath6kl driver which is currently in staging. The work has happened in a separate ath6kl-cleanup tree: http://git.kernel.org/?p=linux/kernel/git/kvalo/ath6kl-cleanup.git;a=summary After over 1100 (!) patches we have now reached a state where I would like to start discussing about pushing the driver to the wireless trees and replacing the staging driver. The driver is now a lot smaller and looks like a proper Linux driver. The size of the driver (measured with simple wc -l) dropped from 49 kLOC to 18 kLOC and the number of the .c and .h files dropped from 107 to 22. Most importantly the number of subdirectories reduced from 26 to zero :) There are two remaining checkpatch warnings in the driver which we decided to omit for now: drivers/net/wireless/ath/ath6kl/debug.c:31: WARNING: printk() should include KERN_ facility level drivers/net/wireless/ath/ath6kl/sdio.c:527: WARNING: msleep < 20ms can sleep for up to 20ms; see Documentation/timers/timers-howto.txt The driver has endian annotations for all the hardware specific structures and there are no sparse errors. Unfortunately I don't have any big endian hardware to test that right now. We have been testing the driver both on x86 and arm platforms. The code is also compiled with sparc and parisc cross compilers. Notable missing features compared to the current staging driver are: o HCI over SDIO support o nl80211 testmode o firmware logging o suspend support Testmode, firmware logging and suspend support will be added soon. HCI over SDIO support will be more difficult as the HCI driver needs to share code with the wifi driver. This is something we need to research more. Also I want to point out the changes I did for signed endian support. As I wasn't able to find any support for signed endian annotations I decided to follow what NTFS has done and added my own. Grep for sle16 and sle32, especially from wmi.h. Various people have been working on the cleanup, the hall of fame based on number of patches is: 543 Vasanthakumar Thiagarajan 403 Raja Mani 252 Kalle Valo 16 Vivek Natarajan 12 Suraj Sumangala 3 Joe Perches 2 Jouni Malinen Signed-off-by: Vasanthakumar Thiagarajan <vthiagar@qca.qualcomm.com> Signed-off-by: Raja Mani <rmani@qca.qualcomm.com> Signed-off-by: Vivek Natarajan <nataraja@qca.qualcomm.com> Signed-off-by: Suraj Sumangala <surajs@qca.qualcomm.com> Signed-off-by: Joe Perches <joe@perches.com> Signed-off-by: Jouni Malinen <jouni@qca.qualcomm.com> Signed-off-by: Kalle Valo <kvalo@qca.qualcomm.com>
2011-07-17 21:22:30 +00:00
static int ath6kl_sdio_read_write_sync(struct ath6kl *ar, u32 addr, u8 *buf,
u32 len, u32 request)
{
struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
u8 *tbuf = NULL;
int ret;
bool bounced = false;
if (request & HIF_BLOCK_BASIS)
len = round_down(len, HIF_MBOX_BLOCK_SIZE);
if (buf_needs_bounce(buf)) {
if (!ar_sdio->dma_buffer)
return -ENOMEM;
tbuf = ar_sdio->dma_buffer;
memcpy(tbuf, buf, len);
bounced = true;
} else
tbuf = buf;
sdio_claim_host(ar_sdio->func);
if (request & HIF_WRITE) {
if (addr >= HIF_MBOX_BASE_ADDR &&
addr <= HIF_MBOX_END_ADDR)
addr += (HIF_MBOX_WIDTH - len);
if (addr == HIF_MBOX0_EXT_BASE_ADDR)
addr += HIF_MBOX0_EXT_WIDTH - len;
if (request & HIF_FIXED_ADDRESS)
ret = sdio_writesb(ar_sdio->func, addr, tbuf, len);
else
ret = sdio_memcpy_toio(ar_sdio->func, addr, tbuf, len);
} else {
if (request & HIF_FIXED_ADDRESS)
ret = sdio_readsb(ar_sdio->func, tbuf, addr, len);
else
ret = sdio_memcpy_fromio(ar_sdio->func, tbuf,
addr, len);
if (bounced)
memcpy(buf, tbuf, len);
}
sdio_release_host(ar_sdio->func);
return ret;
}
static void __ath6kl_sdio_write_async(struct ath6kl_sdio *ar_sdio,
struct bus_request *req)
{
if (req->scat_req)
ath6kl_sdio_scat_rw(ar_sdio, req);
else {
void *context;
int status;
status = ath6kl_sdio_read_write_sync(ar_sdio->ar, req->address,
req->buffer, req->length,
req->request);
context = req->packet;
ath6kl_sdio_free_bus_req(ar_sdio, req);
ath6kldev_rw_comp_handler(context, status);
}
}
static void ath6kl_sdio_write_async_work(struct work_struct *work)
{
struct ath6kl_sdio *ar_sdio;
unsigned long flags;
struct bus_request *req, *tmp_req;
ar_sdio = container_of(work, struct ath6kl_sdio, wr_async_work);
sdio_claim_host(ar_sdio->func);
spin_lock_irqsave(&ar_sdio->wr_async_lock, flags);
list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) {
list_del(&req->list);
spin_unlock_irqrestore(&ar_sdio->wr_async_lock, flags);
__ath6kl_sdio_write_async(ar_sdio, req);
spin_lock_irqsave(&ar_sdio->wr_async_lock, flags);
}
spin_unlock_irqrestore(&ar_sdio->wr_async_lock, flags);
sdio_release_host(ar_sdio->func);
}
static void ath6kl_sdio_irq_handler(struct sdio_func *func)
{
int status;
struct ath6kl_sdio *ar_sdio;
ar_sdio = sdio_get_drvdata(func);
atomic_set(&ar_sdio->irq_handling, 1);
/*
* Release the host during interrups so we can pick it back up when
* we process commands.
*/
sdio_release_host(ar_sdio->func);
status = ath6kldev_intr_bh_handler(ar_sdio->ar);
sdio_claim_host(ar_sdio->func);
atomic_set(&ar_sdio->irq_handling, 0);
WARN_ON(status && status != -ECANCELED);
}
static int ath6kl_sdio_power_on(struct ath6kl_sdio *ar_sdio)
{
struct sdio_func *func = ar_sdio->func;
int ret = 0;
if (!ar_sdio->is_disabled)
return 0;
sdio_claim_host(func);
ret = sdio_enable_func(func);
if (ret) {
ath6kl_err("Unable to enable sdio func: %d)\n", ret);
sdio_release_host(func);
return ret;
}
sdio_release_host(func);
/*
* Wait for hardware to initialise. It should take a lot less than
* 10 ms but let's be conservative here.
*/
msleep(10);
ar_sdio->is_disabled = false;
return ret;
}
static int ath6kl_sdio_power_off(struct ath6kl_sdio *ar_sdio)
{
int ret;
if (ar_sdio->is_disabled)
return 0;
/* Disable the card */
sdio_claim_host(ar_sdio->func);
ret = sdio_disable_func(ar_sdio->func);
sdio_release_host(ar_sdio->func);
if (ret)
return ret;
ar_sdio->is_disabled = true;
return ret;
}
static int ath6kl_sdio_write_async(struct ath6kl *ar, u32 address, u8 *buffer,
u32 length, u32 request,
struct htc_packet *packet)
{
struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
struct bus_request *bus_req;
unsigned long flags;
bus_req = ath6kl_sdio_alloc_busreq(ar_sdio);
if (!bus_req)
return -ENOMEM;
bus_req->address = address;
bus_req->buffer = buffer;
bus_req->length = length;
bus_req->request = request;
bus_req->packet = packet;
spin_lock_irqsave(&ar_sdio->wr_async_lock, flags);
list_add_tail(&bus_req->list, &ar_sdio->wr_asyncq);
spin_unlock_irqrestore(&ar_sdio->wr_async_lock, flags);
queue_work(ar->ath6kl_wq, &ar_sdio->wr_async_work);
return 0;
}
static void ath6kl_sdio_irq_enable(struct ath6kl *ar)
{
struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
int ret;
sdio_claim_host(ar_sdio->func);
/* Register the isr */
ret = sdio_claim_irq(ar_sdio->func, ath6kl_sdio_irq_handler);
if (ret)
ath6kl_err("Failed to claim sdio irq: %d\n", ret);
sdio_release_host(ar_sdio->func);
}
static void ath6kl_sdio_irq_disable(struct ath6kl *ar)
{
struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
int ret;
sdio_claim_host(ar_sdio->func);
/* Mask our function IRQ */
while (atomic_read(&ar_sdio->irq_handling)) {
sdio_release_host(ar_sdio->func);
schedule_timeout(HZ / 10);
sdio_claim_host(ar_sdio->func);
}
ret = sdio_release_irq(ar_sdio->func);
if (ret)
ath6kl_err("Failed to release sdio irq: %d\n", ret);
sdio_release_host(ar_sdio->func);
}
static struct hif_scatter_req *ath6kl_sdio_scatter_req_get(struct ath6kl *ar)
{
struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
struct hif_scatter_req *node = NULL;
unsigned long flag;
spin_lock_irqsave(&ar_sdio->scat_lock, flag);
if (!list_empty(&ar_sdio->scat_req)) {
node = list_first_entry(&ar_sdio->scat_req,
struct hif_scatter_req, list);
list_del(&node->list);
}
spin_unlock_irqrestore(&ar_sdio->scat_lock, flag);
return node;
}
static void ath6kl_sdio_scatter_req_add(struct ath6kl *ar,
struct hif_scatter_req *s_req)
{
struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
unsigned long flag;
spin_lock_irqsave(&ar_sdio->scat_lock, flag);
list_add_tail(&s_req->list, &ar_sdio->scat_req);
spin_unlock_irqrestore(&ar_sdio->scat_lock, flag);
}
/* scatter gather read write request */
static int ath6kl_sdio_async_rw_scatter(struct ath6kl *ar,
struct hif_scatter_req *scat_req)
{
struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
u32 request = scat_req->req;
int status = 0;
unsigned long flags;
if (!scat_req->len)
return -EINVAL;
ath6kl_dbg(ATH6KL_DBG_SCATTER,
"hif-scatter: total len: %d scatter entries: %d\n",
scat_req->len, scat_req->scat_entries);
if (request & HIF_SYNCHRONOUS) {
sdio_claim_host(ar_sdio->func);
status = ath6kl_sdio_scat_rw(ar_sdio, scat_req->busrequest);
sdio_release_host(ar_sdio->func);
} else {
spin_lock_irqsave(&ar_sdio->wr_async_lock, flags);
list_add_tail(&scat_req->busrequest->list, &ar_sdio->wr_asyncq);
spin_unlock_irqrestore(&ar_sdio->wr_async_lock, flags);
queue_work(ar->ath6kl_wq, &ar_sdio->wr_async_work);
}
return status;
}
/* clean up scatter support */
static void ath6kl_sdio_cleanup_scatter(struct ath6kl *ar)
{
struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
struct hif_scatter_req *s_req, *tmp_req;
unsigned long flag;
/* empty the free list */
spin_lock_irqsave(&ar_sdio->scat_lock, flag);
list_for_each_entry_safe(s_req, tmp_req, &ar_sdio->scat_req, list) {
list_del(&s_req->list);
spin_unlock_irqrestore(&ar_sdio->scat_lock, flag);
if (s_req->busrequest)
ath6kl_sdio_free_bus_req(ar_sdio, s_req->busrequest);
kfree(s_req->virt_dma_buf);
kfree(s_req->sgentries);
kfree(s_req);
spin_lock_irqsave(&ar_sdio->scat_lock, flag);
}
spin_unlock_irqrestore(&ar_sdio->scat_lock, flag);
}
/* setup of HIF scatter resources */
static int ath6kl_sdio_enable_scatter(struct ath6kl *ar,
struct hif_dev_scat_sup_info *pinfo)
{
struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
int ret = 0;
/* check if host supports scatter and it meets our requirements */
if (ar_sdio->func->card->host->max_segs < MAX_SCATTER_ENTRIES_PER_REQ) {
ath6kl_err("hif-scatter: host only supports scatter of : %d entries, need: %d\n",
ar_sdio->func->card->host->max_segs,
MAX_SCATTER_ENTRIES_PER_REQ);
return -EINVAL;
}
ath6kl_dbg(ATH6KL_DBG_ANY,
"hif-scatter enabled: max scatter req : %d entries: %d\n",
MAX_SCATTER_REQUESTS, MAX_SCATTER_ENTRIES_PER_REQ);
ret = ath6kl_sdio_alloc_prep_scat_req(ar_sdio,
MAX_SCATTER_ENTRIES_PER_REQ,
MAX_SCATTER_REQUESTS, 0);
if (ret) {
ath6kl_err("hif-scatter: failed to alloc scatter resources !\n");
ath6kl_sdio_cleanup_scatter(ar);
return ret;
}
pinfo->max_scat_entries = MAX_SCATTER_ENTRIES_PER_REQ;
pinfo->max_xfer_szper_scatreq = MAX_SCATTER_REQ_TRANSFER_SIZE;
return 0;
}
Add ath6kl cleaned up driver Last May we started working on cleaning up ath6kl driver which is currently in staging. The work has happened in a separate ath6kl-cleanup tree: http://git.kernel.org/?p=linux/kernel/git/kvalo/ath6kl-cleanup.git;a=summary After over 1100 (!) patches we have now reached a state where I would like to start discussing about pushing the driver to the wireless trees and replacing the staging driver. The driver is now a lot smaller and looks like a proper Linux driver. The size of the driver (measured with simple wc -l) dropped from 49 kLOC to 18 kLOC and the number of the .c and .h files dropped from 107 to 22. Most importantly the number of subdirectories reduced from 26 to zero :) There are two remaining checkpatch warnings in the driver which we decided to omit for now: drivers/net/wireless/ath/ath6kl/debug.c:31: WARNING: printk() should include KERN_ facility level drivers/net/wireless/ath/ath6kl/sdio.c:527: WARNING: msleep < 20ms can sleep for up to 20ms; see Documentation/timers/timers-howto.txt The driver has endian annotations for all the hardware specific structures and there are no sparse errors. Unfortunately I don't have any big endian hardware to test that right now. We have been testing the driver both on x86 and arm platforms. The code is also compiled with sparc and parisc cross compilers. Notable missing features compared to the current staging driver are: o HCI over SDIO support o nl80211 testmode o firmware logging o suspend support Testmode, firmware logging and suspend support will be added soon. HCI over SDIO support will be more difficult as the HCI driver needs to share code with the wifi driver. This is something we need to research more. Also I want to point out the changes I did for signed endian support. As I wasn't able to find any support for signed endian annotations I decided to follow what NTFS has done and added my own. Grep for sle16 and sle32, especially from wmi.h. Various people have been working on the cleanup, the hall of fame based on number of patches is: 543 Vasanthakumar Thiagarajan 403 Raja Mani 252 Kalle Valo 16 Vivek Natarajan 12 Suraj Sumangala 3 Joe Perches 2 Jouni Malinen Signed-off-by: Vasanthakumar Thiagarajan <vthiagar@qca.qualcomm.com> Signed-off-by: Raja Mani <rmani@qca.qualcomm.com> Signed-off-by: Vivek Natarajan <nataraja@qca.qualcomm.com> Signed-off-by: Suraj Sumangala <surajs@qca.qualcomm.com> Signed-off-by: Joe Perches <joe@perches.com> Signed-off-by: Jouni Malinen <jouni@qca.qualcomm.com> Signed-off-by: Kalle Valo <kvalo@qca.qualcomm.com>
2011-07-17 21:22:30 +00:00
static const struct ath6kl_hif_ops ath6kl_sdio_ops = {
.read_write_sync = ath6kl_sdio_read_write_sync,
.write_async = ath6kl_sdio_write_async,
.irq_enable = ath6kl_sdio_irq_enable,
.irq_disable = ath6kl_sdio_irq_disable,
.scatter_req_get = ath6kl_sdio_scatter_req_get,
.scatter_req_add = ath6kl_sdio_scatter_req_add,
.enable_scatter = ath6kl_sdio_enable_scatter,
.scat_req_rw = ath6kl_sdio_async_rw_scatter,
Add ath6kl cleaned up driver Last May we started working on cleaning up ath6kl driver which is currently in staging. The work has happened in a separate ath6kl-cleanup tree: http://git.kernel.org/?p=linux/kernel/git/kvalo/ath6kl-cleanup.git;a=summary After over 1100 (!) patches we have now reached a state where I would like to start discussing about pushing the driver to the wireless trees and replacing the staging driver. The driver is now a lot smaller and looks like a proper Linux driver. The size of the driver (measured with simple wc -l) dropped from 49 kLOC to 18 kLOC and the number of the .c and .h files dropped from 107 to 22. Most importantly the number of subdirectories reduced from 26 to zero :) There are two remaining checkpatch warnings in the driver which we decided to omit for now: drivers/net/wireless/ath/ath6kl/debug.c:31: WARNING: printk() should include KERN_ facility level drivers/net/wireless/ath/ath6kl/sdio.c:527: WARNING: msleep < 20ms can sleep for up to 20ms; see Documentation/timers/timers-howto.txt The driver has endian annotations for all the hardware specific structures and there are no sparse errors. Unfortunately I don't have any big endian hardware to test that right now. We have been testing the driver both on x86 and arm platforms. The code is also compiled with sparc and parisc cross compilers. Notable missing features compared to the current staging driver are: o HCI over SDIO support o nl80211 testmode o firmware logging o suspend support Testmode, firmware logging and suspend support will be added soon. HCI over SDIO support will be more difficult as the HCI driver needs to share code with the wifi driver. This is something we need to research more. Also I want to point out the changes I did for signed endian support. As I wasn't able to find any support for signed endian annotations I decided to follow what NTFS has done and added my own. Grep for sle16 and sle32, especially from wmi.h. Various people have been working on the cleanup, the hall of fame based on number of patches is: 543 Vasanthakumar Thiagarajan 403 Raja Mani 252 Kalle Valo 16 Vivek Natarajan 12 Suraj Sumangala 3 Joe Perches 2 Jouni Malinen Signed-off-by: Vasanthakumar Thiagarajan <vthiagar@qca.qualcomm.com> Signed-off-by: Raja Mani <rmani@qca.qualcomm.com> Signed-off-by: Vivek Natarajan <nataraja@qca.qualcomm.com> Signed-off-by: Suraj Sumangala <surajs@qca.qualcomm.com> Signed-off-by: Joe Perches <joe@perches.com> Signed-off-by: Jouni Malinen <jouni@qca.qualcomm.com> Signed-off-by: Kalle Valo <kvalo@qca.qualcomm.com>
2011-07-17 21:22:30 +00:00
.cleanup_scatter = ath6kl_sdio_cleanup_scatter,
};
static int ath6kl_sdio_probe(struct sdio_func *func,
const struct sdio_device_id *id)
{
int ret;
struct ath6kl_sdio *ar_sdio;
struct ath6kl *ar;
int count;
ath6kl_dbg(ATH6KL_DBG_TRC,
"%s: func: 0x%X, vendor id: 0x%X, dev id: 0x%X, block size: 0x%X/0x%X\n",
__func__, func->num, func->vendor,
func->device, func->max_blksize, func->cur_blksize);
ar_sdio = kzalloc(sizeof(struct ath6kl_sdio), GFP_KERNEL);
if (!ar_sdio)
return -ENOMEM;
ar_sdio->dma_buffer = kzalloc(HIF_DMA_BUFFER_SIZE, GFP_KERNEL);
if (!ar_sdio->dma_buffer) {
ret = -ENOMEM;
goto err_hif;
}
ar_sdio->func = func;
sdio_set_drvdata(func, ar_sdio);
ar_sdio->id = id;
ar_sdio->is_disabled = true;
spin_lock_init(&ar_sdio->lock);
spin_lock_init(&ar_sdio->scat_lock);
spin_lock_init(&ar_sdio->wr_async_lock);
INIT_LIST_HEAD(&ar_sdio->scat_req);
INIT_LIST_HEAD(&ar_sdio->bus_req_freeq);
INIT_LIST_HEAD(&ar_sdio->wr_asyncq);
INIT_WORK(&ar_sdio->wr_async_work, ath6kl_sdio_write_async_work);
for (count = 0; count < BUS_REQUEST_MAX_NUM; count++)
ath6kl_sdio_free_bus_req(ar_sdio, &ar_sdio->bus_req[count]);
ar = ath6kl_core_alloc(&ar_sdio->func->dev);
if (!ar) {
ath6kl_err("Failed to alloc ath6kl core\n");
ret = -ENOMEM;
goto err_dma;
}
ar_sdio->ar = ar;
ar->hif_priv = ar_sdio;
ar->hif_ops = &ath6kl_sdio_ops;
ath6kl_sdio_set_mbox_info(ar);
sdio_claim_host(func);
if ((ar_sdio->id->device & MANUFACTURER_ID_ATH6KL_BASE_MASK) >=
MANUFACTURER_ID_AR6003_BASE) {
/* enable 4-bit ASYNC interrupt on AR6003 or later */
ret = ath6kl_sdio_func0_cmd52_wr_byte(func->card,
CCCR_SDIO_IRQ_MODE_REG,
SDIO_IRQ_MODE_ASYNC_4BIT_IRQ);
if (ret) {
ath6kl_err("Failed to enable 4-bit async irq mode %d\n",
ret);
sdio_release_host(func);
goto err_dma;
}
ath6kl_dbg(ATH6KL_DBG_TRC, "4-bit async irq mode enabled\n");
}
/* give us some time to enable, in ms */
func->enable_timeout = 100;
sdio_release_host(func);
ret = ath6kl_sdio_power_on(ar_sdio);
if (ret)
goto err_dma;
sdio_claim_host(func);
ret = sdio_set_block_size(func, HIF_MBOX_BLOCK_SIZE);
if (ret) {
ath6kl_err("Set sdio block size %d failed: %d)\n",
HIF_MBOX_BLOCK_SIZE, ret);
sdio_release_host(func);
goto err_off;
}
sdio_release_host(func);
ret = ath6kl_core_init(ar);
if (ret) {
ath6kl_err("Failed to init ath6kl core\n");
goto err_off;
}
return ret;
err_off:
ath6kl_sdio_power_off(ar_sdio);
err_dma:
kfree(ar_sdio->dma_buffer);
err_hif:
kfree(ar_sdio);
return ret;
}
static void ath6kl_sdio_remove(struct sdio_func *func)
{
struct ath6kl_sdio *ar_sdio;
ar_sdio = sdio_get_drvdata(func);
ath6kl_stop_txrx(ar_sdio->ar);
cancel_work_sync(&ar_sdio->wr_async_work);
ath6kl_unavail_ev(ar_sdio->ar);
ath6kl_sdio_power_off(ar_sdio);
kfree(ar_sdio->dma_buffer);
kfree(ar_sdio);
}
static const struct sdio_device_id ath6kl_sdio_devices[] = {
{SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6003_BASE | 0x0))},
{SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6003_BASE | 0x1))},
{},
};
MODULE_DEVICE_TABLE(sdio, ath6kl_sdio_devices);
static struct sdio_driver ath6kl_sdio_driver = {
.name = "ath6kl_sdio",
.id_table = ath6kl_sdio_devices,
.probe = ath6kl_sdio_probe,
.remove = ath6kl_sdio_remove,
};
static int __init ath6kl_sdio_init(void)
{
int ret;
ret = sdio_register_driver(&ath6kl_sdio_driver);
if (ret)
ath6kl_err("sdio driver registration failed: %d\n", ret);
return ret;
}
static void __exit ath6kl_sdio_exit(void)
{
sdio_unregister_driver(&ath6kl_sdio_driver);
}
module_init(ath6kl_sdio_init);
module_exit(ath6kl_sdio_exit);
MODULE_AUTHOR("Atheros Communications, Inc.");
MODULE_DESCRIPTION("Driver support for Atheros AR600x SDIO devices");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_FIRMWARE(AR6003_REV2_OTP_FILE);
MODULE_FIRMWARE(AR6003_REV2_FIRMWARE_FILE);
MODULE_FIRMWARE(AR6003_REV2_PATCH_FILE);
MODULE_FIRMWARE(AR6003_REV2_BOARD_DATA_FILE);
MODULE_FIRMWARE(AR6003_REV2_DEFAULT_BOARD_DATA_FILE);
MODULE_FIRMWARE(AR6003_REV3_OTP_FILE);
MODULE_FIRMWARE(AR6003_REV3_FIRMWARE_FILE);
MODULE_FIRMWARE(AR6003_REV3_PATCH_FILE);
MODULE_FIRMWARE(AR6003_REV3_BOARD_DATA_FILE);
MODULE_FIRMWARE(AR6003_REV3_DEFAULT_BOARD_DATA_FILE);