linux/include/net/netns/nftables.h

17 lines
304 B
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _NETNS_NFTABLES_H_
#define _NETNS_NFTABLES_H_
#include <linux/list.h>
struct netns_nftables {
struct list_head tables;
netfilter: nfnetlink: add batch support and use it from nf_tables This patch adds a batch support to nfnetlink. Basically, it adds two new control messages: * NFNL_MSG_BATCH_BEGIN, that indicates the beginning of a batch, the nfgenmsg->res_id indicates the nfnetlink subsystem ID. * NFNL_MSG_BATCH_END, that results in the invocation of the ss->commit callback function. If not specified or an error ocurred in the batch, the ss->abort function is invoked instead. The end message represents the commit operation in nftables, the lack of end message results in an abort. This patch also adds the .call_batch function that is only called from the batch receival path. This patch adds atomic rule updates and dumps based on bitmask generations. This allows to atomically commit a set of rule-set updates incrementally without altering the internal state of existing nf_tables expressions/matches/targets. The idea consists of using a generation cursor of 1 bit and a bitmask of 2 bits per rule. Assuming the gencursor is 0, then the genmask (expressed as a bitmask) can be interpreted as: 00 active in the present, will be active in the next generation. 01 inactive in the present, will be active in the next generation. 10 active in the present, will be deleted in the next generation. ^ gencursor Once you invoke the transition to the next generation, the global gencursor is updated: 00 active in the present, will be active in the next generation. 01 active in the present, needs to zero its future, it becomes 00. 10 inactive in the present, delete now. ^ gencursor If a dump is in progress and nf_tables enters a new generation, the dump will stop and return -EBUSY to let userspace know that it has to retry again. In order to invalidate dumps, a global genctr counter is increased everytime nf_tables enters a new generation. This new operation can be used from the user-space utility that controls the firewall, eg. nft -f restore The rule updates contained in `file' will be applied atomically. cat file ----- add filter INPUT ip saddr 1.1.1.1 counter accept #1 del filter INPUT ip daddr 2.2.2.2 counter drop #2 -EOF- Note that the rule 1 will be inactive until the transition to the next generation, the rule 2 will be evicted in the next generation. There is a penalty during the rule update due to the branch misprediction in the packet matching framework. But that should be quickly resolved once the iteration over the commit list that contain rules that require updates is finished. Event notification happens once the rule-set update has been committed. So we skip notifications is case the rule-set update is aborted, which can happen in case that the rule-set is tested to apply correctly. This patch squashed the following patches from Pablo: * nf_tables: atomic rule updates and dumps * nf_tables: get rid of per rule list_head for commits * nf_tables: use per netns commit list * nfnetlink: add batch support and use it from nf_tables * nf_tables: all rule updates are transactional * nf_tables: attach replacement rule after stale one * nf_tables: do not allow deletion/replacement of stale rules * nf_tables: remove unused NFTA_RULE_FLAGS Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2013-10-14 09:05:33 +00:00
struct list_head commit_list;
struct mutex commit_mutex;
unsigned int base_seq;
netfilter: nfnetlink: add batch support and use it from nf_tables This patch adds a batch support to nfnetlink. Basically, it adds two new control messages: * NFNL_MSG_BATCH_BEGIN, that indicates the beginning of a batch, the nfgenmsg->res_id indicates the nfnetlink subsystem ID. * NFNL_MSG_BATCH_END, that results in the invocation of the ss->commit callback function. If not specified or an error ocurred in the batch, the ss->abort function is invoked instead. The end message represents the commit operation in nftables, the lack of end message results in an abort. This patch also adds the .call_batch function that is only called from the batch receival path. This patch adds atomic rule updates and dumps based on bitmask generations. This allows to atomically commit a set of rule-set updates incrementally without altering the internal state of existing nf_tables expressions/matches/targets. The idea consists of using a generation cursor of 1 bit and a bitmask of 2 bits per rule. Assuming the gencursor is 0, then the genmask (expressed as a bitmask) can be interpreted as: 00 active in the present, will be active in the next generation. 01 inactive in the present, will be active in the next generation. 10 active in the present, will be deleted in the next generation. ^ gencursor Once you invoke the transition to the next generation, the global gencursor is updated: 00 active in the present, will be active in the next generation. 01 active in the present, needs to zero its future, it becomes 00. 10 inactive in the present, delete now. ^ gencursor If a dump is in progress and nf_tables enters a new generation, the dump will stop and return -EBUSY to let userspace know that it has to retry again. In order to invalidate dumps, a global genctr counter is increased everytime nf_tables enters a new generation. This new operation can be used from the user-space utility that controls the firewall, eg. nft -f restore The rule updates contained in `file' will be applied atomically. cat file ----- add filter INPUT ip saddr 1.1.1.1 counter accept #1 del filter INPUT ip daddr 2.2.2.2 counter drop #2 -EOF- Note that the rule 1 will be inactive until the transition to the next generation, the rule 2 will be evicted in the next generation. There is a penalty during the rule update due to the branch misprediction in the packet matching framework. But that should be quickly resolved once the iteration over the commit list that contain rules that require updates is finished. Event notification happens once the rule-set update has been committed. So we skip notifications is case the rule-set update is aborted, which can happen in case that the rule-set is tested to apply correctly. This patch squashed the following patches from Pablo: * nf_tables: atomic rule updates and dumps * nf_tables: get rid of per rule list_head for commits * nf_tables: use per netns commit list * nfnetlink: add batch support and use it from nf_tables * nf_tables: all rule updates are transactional * nf_tables: attach replacement rule after stale one * nf_tables: do not allow deletion/replacement of stale rules * nf_tables: remove unused NFTA_RULE_FLAGS Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2013-10-14 09:05:33 +00:00
u8 gencursor;
u8 validate_state;
};
#endif