2005-04-16 22:20:36 +00:00
|
|
|
/* mac89x0.c: A Crystal Semiconductor CS89[02]0 driver for linux. */
|
|
|
|
/*
|
|
|
|
Written 1996 by Russell Nelson, with reference to skeleton.c
|
|
|
|
written 1993-1994 by Donald Becker.
|
|
|
|
|
|
|
|
This software may be used and distributed according to the terms
|
|
|
|
of the GNU General Public License, incorporated herein by reference.
|
|
|
|
|
|
|
|
The author may be reached at nelson@crynwr.com, Crynwr
|
|
|
|
Software, 11 Grant St., Potsdam, NY 13676
|
|
|
|
|
|
|
|
Changelog:
|
|
|
|
|
|
|
|
Mike Cruse : mcruse@cti-ltd.com
|
2006-09-13 17:24:59 +00:00
|
|
|
: Changes for Linux 2.0 compatibility.
|
2005-04-16 22:20:36 +00:00
|
|
|
: Added dev_id parameter in net_interrupt(),
|
|
|
|
: request_irq() and free_irq(). Just NULL for now.
|
|
|
|
|
|
|
|
Mike Cruse : Added MOD_INC_USE_COUNT and MOD_DEC_USE_COUNT macros
|
|
|
|
: in net_open() and net_close() so kerneld would know
|
2006-09-13 17:24:59 +00:00
|
|
|
: that the module is in use and wouldn't eject the
|
2005-04-16 22:20:36 +00:00
|
|
|
: driver prematurely.
|
|
|
|
|
|
|
|
Mike Cruse : Rewrote init_module() and cleanup_module using 8390.c
|
|
|
|
: as an example. Disabled autoprobing in init_module(),
|
|
|
|
: not a good thing to do to other devices while Linux
|
|
|
|
: is running from all accounts.
|
2006-09-13 17:24:59 +00:00
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
Alan Cox : Removed 1.2 support, added 2.1 extra counters.
|
|
|
|
|
|
|
|
David Huggins-Daines <dhd@debian.org>
|
2006-09-13 17:24:59 +00:00
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
Split this off into mac89x0.c, and gutted it of all parts which are
|
|
|
|
not relevant to the existing CS8900 cards on the Macintosh
|
|
|
|
(i.e. basically the Daynaport CS and LC cards). To be precise:
|
|
|
|
|
|
|
|
* Removed all the media-detection stuff, because these cards are
|
|
|
|
TP-only.
|
|
|
|
|
|
|
|
* Lobotomized the ISA interrupt bogosity, because these cards use
|
|
|
|
a hardwired NuBus interrupt and a magic ISAIRQ value in the card.
|
|
|
|
|
|
|
|
* Basically eliminated everything not relevant to getting the
|
|
|
|
cards minimally functioning on the Macintosh.
|
|
|
|
|
|
|
|
I might add that these cards are badly designed even from the Mac
|
|
|
|
standpoint, in that Dayna, in their infinite wisdom, used NuBus slot
|
|
|
|
I/O space and NuBus interrupts for these cards, but neglected to
|
|
|
|
provide anything even remotely resembling a NuBus ROM. Therefore we
|
|
|
|
have to probe for them in a brain-damaged ISA-like fashion.
|
|
|
|
|
|
|
|
Arnaldo Carvalho de Melo <acme@conectiva.com.br> - 11/01/2001
|
|
|
|
check kmalloc and release the allocated memory on failure in
|
|
|
|
mac89x0_probe and in init_module
|
|
|
|
use local_irq_{save,restore}(flags) in net_get_stat, not just
|
|
|
|
local_irq_{dis,en}able()
|
|
|
|
*/
|
|
|
|
|
2018-03-01 23:29:28 +00:00
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
|
2017-05-08 22:59:05 +00:00
|
|
|
static const char version[] =
|
2005-04-16 22:20:36 +00:00
|
|
|
"cs89x0.c:v1.02 11/26/96 Russell Nelson <nelson@crynwr.com>\n";
|
|
|
|
|
|
|
|
#include <linux/module.h>
|
|
|
|
|
|
|
|
/*
|
|
|
|
Sources:
|
|
|
|
|
|
|
|
Crynwr packet driver epktisa.
|
|
|
|
|
|
|
|
Crystal Semiconductor data sheets.
|
|
|
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/types.h>
|
|
|
|
#include <linux/fcntl.h>
|
|
|
|
#include <linux/interrupt.h>
|
|
|
|
#include <linux/ioport.h>
|
|
|
|
#include <linux/in.h>
|
|
|
|
#include <linux/string.h>
|
|
|
|
#include <linux/nubus.h>
|
|
|
|
#include <linux/errno.h>
|
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/netdevice.h>
|
2018-03-01 23:29:28 +00:00
|
|
|
#include <linux/platform_device.h>
|
2005-04-16 22:20:36 +00:00
|
|
|
#include <linux/etherdevice.h>
|
|
|
|
#include <linux/skbuff.h>
|
|
|
|
#include <linux/delay.h>
|
2007-10-19 06:40:25 +00:00
|
|
|
#include <linux/bitops.h>
|
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
|
|
|
#include <linux/gfp.h>
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
#include <asm/io.h>
|
|
|
|
#include <asm/hwtest.h>
|
|
|
|
#include <asm/macints.h>
|
|
|
|
|
|
|
|
#include "cs89x0.h"
|
|
|
|
|
2018-03-01 23:29:28 +00:00
|
|
|
static int debug = -1;
|
2018-03-01 23:29:28 +00:00
|
|
|
module_param(debug, int, 0);
|
2018-03-01 23:29:28 +00:00
|
|
|
MODULE_PARM_DESC(debug, "debug message level");
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* Information that need to be kept for each board. */
|
|
|
|
struct net_local {
|
2018-03-01 23:29:28 +00:00
|
|
|
int msg_enable;
|
2005-04-16 22:20:36 +00:00
|
|
|
int chip_type; /* one of: CS8900, CS8920, CS8920M */
|
|
|
|
char chip_revision; /* revision letter of the chip ('A'...) */
|
|
|
|
int send_cmd; /* the propercommand used to send a packet. */
|
|
|
|
int rx_mode;
|
|
|
|
int curr_rx_cfg;
|
|
|
|
int send_underrun; /* keep track of how many underruns in a row we get */
|
|
|
|
};
|
|
|
|
|
|
|
|
/* Index to functions, as function prototypes. */
|
|
|
|
static int net_open(struct net_device *dev);
|
2018-09-21 03:02:37 +00:00
|
|
|
static netdev_tx_t net_send_packet(struct sk_buff *skb, struct net_device *dev);
|
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers
Maintain a per-CPU global "struct pt_regs *" variable which can be used instead
of passing regs around manually through all ~1800 interrupt handlers in the
Linux kernel.
The regs pointer is used in few places, but it potentially costs both stack
space and code to pass it around. On the FRV arch, removing the regs parameter
from all the genirq function results in a 20% speed up of the IRQ exit path
(ie: from leaving timer_interrupt() to leaving do_IRQ()).
Where appropriate, an arch may override the generic storage facility and do
something different with the variable. On FRV, for instance, the address is
maintained in GR28 at all times inside the kernel as part of general exception
handling.
Having looked over the code, it appears that the parameter may be handed down
through up to twenty or so layers of functions. Consider a USB character
device attached to a USB hub, attached to a USB controller that posts its
interrupts through a cascaded auxiliary interrupt controller. A character
device driver may want to pass regs to the sysrq handler through the input
layer which adds another few layers of parameter passing.
I've build this code with allyesconfig for x86_64 and i386. I've runtested the
main part of the code on FRV and i386, though I can't test most of the drivers.
I've also done partial conversion for powerpc and MIPS - these at least compile
with minimal configurations.
This will affect all archs. Mostly the changes should be relatively easy.
Take do_IRQ(), store the regs pointer at the beginning, saving the old one:
struct pt_regs *old_regs = set_irq_regs(regs);
And put the old one back at the end:
set_irq_regs(old_regs);
Don't pass regs through to generic_handle_irq() or __do_IRQ().
In timer_interrupt(), this sort of change will be necessary:
- update_process_times(user_mode(regs));
- profile_tick(CPU_PROFILING, regs);
+ update_process_times(user_mode(get_irq_regs()));
+ profile_tick(CPU_PROFILING);
I'd like to move update_process_times()'s use of get_irq_regs() into itself,
except that i386, alone of the archs, uses something other than user_mode().
Some notes on the interrupt handling in the drivers:
(*) input_dev() is now gone entirely. The regs pointer is no longer stored in
the input_dev struct.
(*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does
something different depending on whether it's been supplied with a regs
pointer or not.
(*) Various IRQ handler function pointers have been moved to type
irq_handler_t.
Signed-Off-By: David Howells <dhowells@redhat.com>
(cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 13:55:46 +00:00
|
|
|
static irqreturn_t net_interrupt(int irq, void *dev_id);
|
2005-04-16 22:20:36 +00:00
|
|
|
static void set_multicast_list(struct net_device *dev);
|
|
|
|
static void net_rx(struct net_device *dev);
|
|
|
|
static int net_close(struct net_device *dev);
|
|
|
|
static struct net_device_stats *net_get_stats(struct net_device *dev);
|
|
|
|
static int set_mac_address(struct net_device *dev, void *addr);
|
|
|
|
|
|
|
|
/* For reading/writing registers ISA-style */
|
|
|
|
static inline int
|
|
|
|
readreg_io(struct net_device *dev, int portno)
|
|
|
|
{
|
|
|
|
nubus_writew(swab16(portno), dev->base_addr + ADD_PORT);
|
|
|
|
return swab16(nubus_readw(dev->base_addr + DATA_PORT));
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void
|
|
|
|
writereg_io(struct net_device *dev, int portno, int value)
|
|
|
|
{
|
|
|
|
nubus_writew(swab16(portno), dev->base_addr + ADD_PORT);
|
|
|
|
nubus_writew(swab16(value), dev->base_addr + DATA_PORT);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* These are for reading/writing registers in shared memory */
|
|
|
|
static inline int
|
|
|
|
readreg(struct net_device *dev, int portno)
|
|
|
|
{
|
|
|
|
return swab16(nubus_readw(dev->mem_start + portno));
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void
|
|
|
|
writereg(struct net_device *dev, int portno, int value)
|
|
|
|
{
|
|
|
|
nubus_writew(swab16(value), dev->mem_start + portno);
|
|
|
|
}
|
|
|
|
|
2009-04-11 07:43:11 +00:00
|
|
|
static const struct net_device_ops mac89x0_netdev_ops = {
|
|
|
|
.ndo_open = net_open,
|
|
|
|
.ndo_stop = net_close,
|
|
|
|
.ndo_start_xmit = net_send_packet,
|
|
|
|
.ndo_get_stats = net_get_stats,
|
2011-08-16 06:29:01 +00:00
|
|
|
.ndo_set_rx_mode = set_multicast_list,
|
2009-04-11 07:43:11 +00:00
|
|
|
.ndo_set_mac_address = set_mac_address,
|
|
|
|
.ndo_validate_addr = eth_validate_addr,
|
|
|
|
};
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* Probe for the CS8900 card in slot E. We won't bother looking
|
|
|
|
anywhere else until we have a really good reason to do so. */
|
2018-03-01 23:29:28 +00:00
|
|
|
static int mac89x0_device_probe(struct platform_device *pdev)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
|
|
|
struct net_device *dev;
|
|
|
|
struct net_local *lp;
|
|
|
|
int i, slot;
|
|
|
|
unsigned rev_type = 0;
|
|
|
|
unsigned long ioaddr;
|
|
|
|
unsigned short sig;
|
|
|
|
int err = -ENODEV;
|
2018-01-13 22:37:13 +00:00
|
|
|
struct nubus_rsrc *fres;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
dev = alloc_etherdev(sizeof(struct net_local));
|
|
|
|
if (!dev)
|
2018-03-01 23:29:28 +00:00
|
|
|
return -ENOMEM;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* We might have to parameterize this later */
|
|
|
|
slot = 0xE;
|
|
|
|
/* Get out now if there's a real NuBus card in slot E */
|
2018-01-13 22:37:13 +00:00
|
|
|
for_each_func_rsrc(fres)
|
|
|
|
if (fres->board->slot == slot)
|
|
|
|
goto out;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* The pseudo-ISA bits always live at offset 0x300 (gee,
|
|
|
|
wonder why...) */
|
|
|
|
ioaddr = (unsigned long)
|
|
|
|
nubus_slot_addr(slot) | (((slot&0xf) << 20) + DEFAULTIOBASE);
|
|
|
|
{
|
|
|
|
int card_present;
|
2006-09-13 17:24:59 +00:00
|
|
|
|
2014-10-21 17:53:11 +00:00
|
|
|
card_present = (hwreg_present((void *)ioaddr + 4) &&
|
|
|
|
hwreg_present((void *)ioaddr + DATA_PORT));
|
2005-04-16 22:20:36 +00:00
|
|
|
if (!card_present)
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
nubus_writew(0, ioaddr + ADD_PORT);
|
|
|
|
sig = nubus_readw(ioaddr + DATA_PORT);
|
|
|
|
if (sig != swab16(CHIP_EISA_ID_SIG))
|
|
|
|
goto out;
|
|
|
|
|
2018-03-01 23:29:28 +00:00
|
|
|
SET_NETDEV_DEV(dev, &pdev->dev);
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* Initialize the net_device structure. */
|
|
|
|
lp = netdev_priv(dev);
|
|
|
|
|
2018-03-01 23:29:28 +00:00
|
|
|
lp->msg_enable = netif_msg_init(debug, 0);
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* Fill in the 'dev' fields. */
|
|
|
|
dev->base_addr = ioaddr;
|
2006-09-13 17:24:59 +00:00
|
|
|
dev->mem_start = (unsigned long)
|
2005-04-16 22:20:36 +00:00
|
|
|
nubus_slot_addr(slot) | (((slot&0xf) << 20) + MMIOBASE);
|
|
|
|
dev->mem_end = dev->mem_start + 0x1000;
|
|
|
|
|
|
|
|
/* Turn on shared memory */
|
|
|
|
writereg_io(dev, PP_BusCTL, MEMORY_ON);
|
|
|
|
|
|
|
|
/* get the chip type */
|
|
|
|
rev_type = readreg(dev, PRODUCT_ID_ADD);
|
|
|
|
lp->chip_type = rev_type &~ REVISON_BITS;
|
|
|
|
lp->chip_revision = ((rev_type & REVISON_BITS) >> 8) + 'A';
|
|
|
|
|
|
|
|
/* Check the chip type and revision in order to set the correct send command
|
|
|
|
CS8920 revision C and CS8900 revision F can use the faster send. */
|
|
|
|
lp->send_cmd = TX_AFTER_381;
|
|
|
|
if (lp->chip_type == CS8900 && lp->chip_revision >= 'F')
|
|
|
|
lp->send_cmd = TX_NOW;
|
|
|
|
if (lp->chip_type != CS8900 && lp->chip_revision >= 'C')
|
|
|
|
lp->send_cmd = TX_NOW;
|
|
|
|
|
2018-03-01 23:29:28 +00:00
|
|
|
netif_dbg(lp, drv, dev, "%s", version);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2018-03-01 23:29:28 +00:00
|
|
|
pr_info("cs89%c0%s rev %c found at %#8lx\n",
|
|
|
|
lp->chip_type == CS8900 ? '0' : '2',
|
|
|
|
lp->chip_type == CS8920M ? "M" : "",
|
|
|
|
lp->chip_revision, dev->base_addr);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* Try to read the MAC address */
|
|
|
|
if ((readreg(dev, PP_SelfST) & (EEPROM_PRESENT | EEPROM_OK)) == 0) {
|
2018-03-01 23:29:28 +00:00
|
|
|
pr_info("No EEPROM, giving up now.\n");
|
2005-04-16 22:20:36 +00:00
|
|
|
goto out1;
|
|
|
|
} else {
|
|
|
|
for (i = 0; i < ETH_ALEN; i += 2) {
|
|
|
|
/* Big-endian (why??!) */
|
|
|
|
unsigned short s = readreg(dev, PP_IA + i);
|
|
|
|
dev->dev_addr[i] = s >> 8;
|
|
|
|
dev->dev_addr[i+1] = s & 0xff;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
dev->irq = SLOT2IRQ(slot);
|
|
|
|
|
2007-10-04 00:59:30 +00:00
|
|
|
/* print the IRQ and ethernet address. */
|
|
|
|
|
2018-03-01 23:29:28 +00:00
|
|
|
pr_info("MAC %pM, IRQ %d\n", dev->dev_addr, dev->irq);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2009-04-11 07:43:11 +00:00
|
|
|
dev->netdev_ops = &mac89x0_netdev_ops;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
err = register_netdev(dev);
|
|
|
|
if (err)
|
|
|
|
goto out1;
|
2018-03-01 23:29:28 +00:00
|
|
|
|
|
|
|
platform_set_drvdata(pdev, dev);
|
|
|
|
return 0;
|
2005-04-16 22:20:36 +00:00
|
|
|
out1:
|
|
|
|
nubus_writew(0, dev->base_addr + ADD_PORT);
|
|
|
|
out:
|
|
|
|
free_netdev(dev);
|
2018-03-01 23:29:28 +00:00
|
|
|
return err;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Open/initialize the board. This is called (in the current kernel)
|
|
|
|
sometime after booting when the 'ifconfig' program is run.
|
|
|
|
|
|
|
|
This routine should set everything up anew at each open, even
|
|
|
|
registers that "should" only need to be set once at boot, so that
|
|
|
|
there is non-reboot way to recover if something goes wrong.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
net_open(struct net_device *dev)
|
|
|
|
{
|
|
|
|
struct net_local *lp = netdev_priv(dev);
|
|
|
|
int i;
|
|
|
|
|
|
|
|
/* Disable the interrupt for now */
|
|
|
|
writereg(dev, PP_BusCTL, readreg(dev, PP_BusCTL) & ~ENABLE_IRQ);
|
|
|
|
|
|
|
|
/* Grab the interrupt */
|
2009-11-19 07:29:17 +00:00
|
|
|
if (request_irq(dev->irq, net_interrupt, 0, "cs89x0", dev))
|
2005-04-16 22:20:36 +00:00
|
|
|
return -EAGAIN;
|
|
|
|
|
|
|
|
/* Set up the IRQ - Apparently magic */
|
|
|
|
if (lp->chip_type == CS8900)
|
|
|
|
writereg(dev, PP_CS8900_ISAINT, 0);
|
|
|
|
else
|
|
|
|
writereg(dev, PP_CS8920_ISAINT, 0);
|
|
|
|
|
|
|
|
/* set the Ethernet address */
|
|
|
|
for (i=0; i < ETH_ALEN/2; i++)
|
|
|
|
writereg(dev, PP_IA+i*2, dev->dev_addr[i*2] | (dev->dev_addr[i*2+1] << 8));
|
|
|
|
|
|
|
|
/* Turn on both receive and transmit operations */
|
|
|
|
writereg(dev, PP_LineCTL, readreg(dev, PP_LineCTL) | SERIAL_RX_ON | SERIAL_TX_ON);
|
|
|
|
|
|
|
|
/* Receive only error free packets addressed to this card */
|
|
|
|
lp->rx_mode = 0;
|
|
|
|
writereg(dev, PP_RxCTL, DEF_RX_ACCEPT);
|
|
|
|
|
|
|
|
lp->curr_rx_cfg = RX_OK_ENBL | RX_CRC_ERROR_ENBL;
|
|
|
|
|
|
|
|
writereg(dev, PP_RxCFG, lp->curr_rx_cfg);
|
|
|
|
|
|
|
|
writereg(dev, PP_TxCFG, TX_LOST_CRS_ENBL | TX_SQE_ERROR_ENBL | TX_OK_ENBL |
|
|
|
|
TX_LATE_COL_ENBL | TX_JBR_ENBL | TX_ANY_COL_ENBL | TX_16_COL_ENBL);
|
|
|
|
|
|
|
|
writereg(dev, PP_BufCFG, READY_FOR_TX_ENBL | RX_MISS_COUNT_OVRFLOW_ENBL |
|
|
|
|
TX_COL_COUNT_OVRFLOW_ENBL | TX_UNDERRUN_ENBL);
|
|
|
|
|
|
|
|
/* now that we've got our act together, enable everything */
|
|
|
|
writereg(dev, PP_BusCTL, readreg(dev, PP_BusCTL) | ENABLE_IRQ);
|
|
|
|
netif_start_queue(dev);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2018-09-21 03:02:37 +00:00
|
|
|
static netdev_tx_t
|
2005-04-16 22:20:36 +00:00
|
|
|
net_send_packet(struct sk_buff *skb, struct net_device *dev)
|
|
|
|
{
|
2007-05-01 20:32:41 +00:00
|
|
|
struct net_local *lp = netdev_priv(dev);
|
|
|
|
unsigned long flags;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2018-03-01 23:29:28 +00:00
|
|
|
netif_dbg(lp, tx_queued, dev, "sent %d byte packet of type %x\n",
|
|
|
|
skb->len, skb->data[ETH_ALEN + ETH_ALEN] << 8 |
|
|
|
|
skb->data[ETH_ALEN + ETH_ALEN + 1]);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2007-05-01 20:32:41 +00:00
|
|
|
/* keep the upload from being interrupted, since we
|
|
|
|
ask the chip to start transmitting before the
|
|
|
|
whole packet has been completely uploaded. */
|
|
|
|
local_irq_save(flags);
|
|
|
|
netif_stop_queue(dev);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2007-05-01 20:32:41 +00:00
|
|
|
/* initiate a transmit sequence */
|
|
|
|
writereg(dev, PP_TxCMD, lp->send_cmd);
|
|
|
|
writereg(dev, PP_TxLength, skb->len);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2007-05-01 20:32:41 +00:00
|
|
|
/* Test to see if the chip has allocated memory for the packet */
|
|
|
|
if ((readreg(dev, PP_BusST) & READY_FOR_TX_NOW) == 0) {
|
|
|
|
/* Gasp! It hasn't. But that shouldn't happen since
|
|
|
|
we're waiting for TxOk, so return 1 and requeue this packet. */
|
2005-04-16 22:20:36 +00:00
|
|
|
local_irq_restore(flags);
|
2009-06-12 06:22:29 +00:00
|
|
|
return NETDEV_TX_BUSY;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
2007-05-01 20:32:41 +00:00
|
|
|
|
|
|
|
/* Write the contents of the packet */
|
|
|
|
skb_copy_from_linear_data(skb, (void *)(dev->mem_start + PP_TxFrame),
|
|
|
|
skb->len+1);
|
|
|
|
|
|
|
|
local_irq_restore(flags);
|
2005-04-16 22:20:36 +00:00
|
|
|
dev_kfree_skb (skb);
|
|
|
|
|
2009-06-23 06:03:08 +00:00
|
|
|
return NETDEV_TX_OK;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
2006-09-13 17:24:59 +00:00
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* The typical workload of the driver:
|
|
|
|
Handle the network interface interrupts. */
|
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers
Maintain a per-CPU global "struct pt_regs *" variable which can be used instead
of passing regs around manually through all ~1800 interrupt handlers in the
Linux kernel.
The regs pointer is used in few places, but it potentially costs both stack
space and code to pass it around. On the FRV arch, removing the regs parameter
from all the genirq function results in a 20% speed up of the IRQ exit path
(ie: from leaving timer_interrupt() to leaving do_IRQ()).
Where appropriate, an arch may override the generic storage facility and do
something different with the variable. On FRV, for instance, the address is
maintained in GR28 at all times inside the kernel as part of general exception
handling.
Having looked over the code, it appears that the parameter may be handed down
through up to twenty or so layers of functions. Consider a USB character
device attached to a USB hub, attached to a USB controller that posts its
interrupts through a cascaded auxiliary interrupt controller. A character
device driver may want to pass regs to the sysrq handler through the input
layer which adds another few layers of parameter passing.
I've build this code with allyesconfig for x86_64 and i386. I've runtested the
main part of the code on FRV and i386, though I can't test most of the drivers.
I've also done partial conversion for powerpc and MIPS - these at least compile
with minimal configurations.
This will affect all archs. Mostly the changes should be relatively easy.
Take do_IRQ(), store the regs pointer at the beginning, saving the old one:
struct pt_regs *old_regs = set_irq_regs(regs);
And put the old one back at the end:
set_irq_regs(old_regs);
Don't pass regs through to generic_handle_irq() or __do_IRQ().
In timer_interrupt(), this sort of change will be necessary:
- update_process_times(user_mode(regs));
- profile_tick(CPU_PROFILING, regs);
+ update_process_times(user_mode(get_irq_regs()));
+ profile_tick(CPU_PROFILING);
I'd like to move update_process_times()'s use of get_irq_regs() into itself,
except that i386, alone of the archs, uses something other than user_mode().
Some notes on the interrupt handling in the drivers:
(*) input_dev() is now gone entirely. The regs pointer is no longer stored in
the input_dev struct.
(*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does
something different depending on whether it's been supplied with a regs
pointer or not.
(*) Various IRQ handler function pointers have been moved to type
irq_handler_t.
Signed-Off-By: David Howells <dhowells@redhat.com>
(cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 13:55:46 +00:00
|
|
|
static irqreturn_t net_interrupt(int irq, void *dev_id)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
|
|
|
struct net_device *dev = dev_id;
|
|
|
|
struct net_local *lp;
|
|
|
|
int ioaddr, status;
|
|
|
|
|
|
|
|
ioaddr = dev->base_addr;
|
|
|
|
lp = netdev_priv(dev);
|
|
|
|
|
|
|
|
/* we MUST read all the events out of the ISQ, otherwise we'll never
|
|
|
|
get interrupted again. As a consequence, we can't have any limit
|
|
|
|
on the number of times we loop in the interrupt handler. The
|
|
|
|
hardware guarantees that eventually we'll run out of events. Of
|
|
|
|
course, if you're on a slow machine, and packets are arriving
|
|
|
|
faster than you can read them off, you're screwed. Hasta la
|
|
|
|
vista, baby! */
|
|
|
|
while ((status = swab16(nubus_readw(dev->base_addr + ISQ_PORT)))) {
|
2018-03-01 23:29:28 +00:00
|
|
|
netif_dbg(lp, intr, dev, "status=%04x\n", status);
|
2005-04-16 22:20:36 +00:00
|
|
|
switch(status & ISQ_EVENT_MASK) {
|
|
|
|
case ISQ_RECEIVER_EVENT:
|
|
|
|
/* Got a packet(s). */
|
|
|
|
net_rx(dev);
|
|
|
|
break;
|
|
|
|
case ISQ_TRANSMITTER_EVENT:
|
2010-07-05 02:14:09 +00:00
|
|
|
dev->stats.tx_packets++;
|
2007-05-01 20:32:41 +00:00
|
|
|
netif_wake_queue(dev);
|
2010-07-05 02:14:09 +00:00
|
|
|
if ((status & TX_OK) == 0)
|
|
|
|
dev->stats.tx_errors++;
|
|
|
|
if (status & TX_LOST_CRS)
|
|
|
|
dev->stats.tx_carrier_errors++;
|
|
|
|
if (status & TX_SQE_ERROR)
|
|
|
|
dev->stats.tx_heartbeat_errors++;
|
|
|
|
if (status & TX_LATE_COL)
|
|
|
|
dev->stats.tx_window_errors++;
|
|
|
|
if (status & TX_16_COL)
|
|
|
|
dev->stats.tx_aborted_errors++;
|
2005-04-16 22:20:36 +00:00
|
|
|
break;
|
|
|
|
case ISQ_BUFFER_EVENT:
|
|
|
|
if (status & READY_FOR_TX) {
|
|
|
|
/* we tried to transmit a packet earlier,
|
|
|
|
but inexplicably ran out of buffers.
|
|
|
|
That shouldn't happen since we only ever
|
|
|
|
load one packet. Shrug. Do the right
|
|
|
|
thing anyway. */
|
2007-05-01 20:32:41 +00:00
|
|
|
netif_wake_queue(dev);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
if (status & TX_UNDERRUN) {
|
2018-03-01 23:29:28 +00:00
|
|
|
netif_dbg(lp, tx_err, dev, "transmit underrun\n");
|
2005-04-16 22:20:36 +00:00
|
|
|
lp->send_underrun++;
|
|
|
|
if (lp->send_underrun == 3) lp->send_cmd = TX_AFTER_381;
|
|
|
|
else if (lp->send_underrun == 6) lp->send_cmd = TX_AFTER_ALL;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case ISQ_RX_MISS_EVENT:
|
2010-07-05 02:14:09 +00:00
|
|
|
dev->stats.rx_missed_errors += (status >> 6);
|
2005-04-16 22:20:36 +00:00
|
|
|
break;
|
|
|
|
case ISQ_TX_COL_EVENT:
|
2010-07-05 02:14:09 +00:00
|
|
|
dev->stats.collisions += (status >> 6);
|
2005-04-16 22:20:36 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* We have a good packet(s), get it/them out of the buffers. */
|
|
|
|
static void
|
|
|
|
net_rx(struct net_device *dev)
|
|
|
|
{
|
2018-03-01 23:29:28 +00:00
|
|
|
struct net_local *lp = netdev_priv(dev);
|
2005-04-16 22:20:36 +00:00
|
|
|
struct sk_buff *skb;
|
|
|
|
int status, length;
|
|
|
|
|
|
|
|
status = readreg(dev, PP_RxStatus);
|
|
|
|
if ((status & RX_OK) == 0) {
|
2010-07-05 02:14:09 +00:00
|
|
|
dev->stats.rx_errors++;
|
|
|
|
if (status & RX_RUNT)
|
|
|
|
dev->stats.rx_length_errors++;
|
|
|
|
if (status & RX_EXTRA_DATA)
|
|
|
|
dev->stats.rx_length_errors++;
|
|
|
|
if ((status & RX_CRC_ERROR) &&
|
|
|
|
!(status & (RX_EXTRA_DATA|RX_RUNT)))
|
2005-04-16 22:20:36 +00:00
|
|
|
/* per str 172 */
|
2010-07-05 02:14:09 +00:00
|
|
|
dev->stats.rx_crc_errors++;
|
|
|
|
if (status & RX_DRIBBLE)
|
|
|
|
dev->stats.rx_frame_errors++;
|
2005-04-16 22:20:36 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
length = readreg(dev, PP_RxLength);
|
|
|
|
/* Malloc up new buffer. */
|
|
|
|
skb = alloc_skb(length, GFP_ATOMIC);
|
|
|
|
if (skb == NULL) {
|
2010-07-05 02:14:09 +00:00
|
|
|
dev->stats.rx_dropped++;
|
2005-04-16 22:20:36 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
skb_put(skb, length);
|
|
|
|
|
2007-05-01 20:32:41 +00:00
|
|
|
skb_copy_to_linear_data(skb, (void *)(dev->mem_start + PP_RxFrame),
|
|
|
|
length);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2018-03-01 23:29:28 +00:00
|
|
|
netif_dbg(lp, rx_status, dev, "received %d byte packet of type %x\n",
|
|
|
|
length, skb->data[ETH_ALEN + ETH_ALEN] << 8 |
|
|
|
|
skb->data[ETH_ALEN + ETH_ALEN + 1]);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
skb->protocol=eth_type_trans(skb,dev);
|
|
|
|
netif_rx(skb);
|
2010-07-05 02:14:09 +00:00
|
|
|
dev->stats.rx_packets++;
|
|
|
|
dev->stats.rx_bytes += length;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* The inverse routine to net_open(). */
|
|
|
|
static int
|
|
|
|
net_close(struct net_device *dev)
|
|
|
|
{
|
|
|
|
|
|
|
|
writereg(dev, PP_RxCFG, 0);
|
|
|
|
writereg(dev, PP_TxCFG, 0);
|
|
|
|
writereg(dev, PP_BufCFG, 0);
|
|
|
|
writereg(dev, PP_BusCTL, 0);
|
|
|
|
|
|
|
|
netif_stop_queue(dev);
|
|
|
|
|
|
|
|
free_irq(dev->irq, dev);
|
|
|
|
|
|
|
|
/* Update the statistics here. */
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Get the current statistics. This may be called with the card open or
|
|
|
|
closed. */
|
|
|
|
static struct net_device_stats *
|
|
|
|
net_get_stats(struct net_device *dev)
|
|
|
|
{
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
local_irq_save(flags);
|
|
|
|
/* Update the statistics from the device registers. */
|
2010-07-05 02:14:09 +00:00
|
|
|
dev->stats.rx_missed_errors += (readreg(dev, PP_RxMiss) >> 6);
|
|
|
|
dev->stats.collisions += (readreg(dev, PP_TxCol) >> 6);
|
2005-04-16 22:20:36 +00:00
|
|
|
local_irq_restore(flags);
|
|
|
|
|
2010-07-05 02:14:09 +00:00
|
|
|
return &dev->stats;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void set_multicast_list(struct net_device *dev)
|
|
|
|
{
|
|
|
|
struct net_local *lp = netdev_priv(dev);
|
|
|
|
|
|
|
|
if(dev->flags&IFF_PROMISC)
|
|
|
|
{
|
|
|
|
lp->rx_mode = RX_ALL_ACCEPT;
|
2010-02-23 09:19:49 +00:00
|
|
|
} else if ((dev->flags & IFF_ALLMULTI) || !netdev_mc_empty(dev)) {
|
2005-04-16 22:20:36 +00:00
|
|
|
/* The multicast-accept list is initialized to accept-all, and we
|
|
|
|
rely on higher-level filtering for now. */
|
|
|
|
lp->rx_mode = RX_MULTCAST_ACCEPT;
|
2006-09-13 17:24:59 +00:00
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
else
|
|
|
|
lp->rx_mode = 0;
|
|
|
|
|
|
|
|
writereg(dev, PP_RxCTL, DEF_RX_ACCEPT | lp->rx_mode);
|
|
|
|
|
|
|
|
/* in promiscuous mode, we accept errored packets, so we have to enable interrupts on them also */
|
|
|
|
writereg(dev, PP_RxCFG, lp->curr_rx_cfg |
|
|
|
|
(lp->rx_mode == RX_ALL_ACCEPT? (RX_CRC_ERROR_ENBL|RX_RUNT_ENBL|RX_EXTRA_DATA_ENBL) : 0));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static int set_mac_address(struct net_device *dev, void *addr)
|
|
|
|
{
|
2012-02-24 03:45:54 +00:00
|
|
|
struct sockaddr *saddr = addr;
|
2012-02-28 20:48:42 +00:00
|
|
|
int i;
|
2012-02-24 03:45:54 +00:00
|
|
|
|
2012-02-28 20:48:42 +00:00
|
|
|
if (!is_valid_ether_addr(saddr->sa_data))
|
2012-02-24 03:45:54 +00:00
|
|
|
return -EADDRNOTAVAIL;
|
|
|
|
|
2012-02-28 20:48:42 +00:00
|
|
|
memcpy(dev->dev_addr, saddr->sa_data, ETH_ALEN);
|
2018-03-01 23:29:28 +00:00
|
|
|
netdev_info(dev, "Setting MAC address to %pM\n", dev->dev_addr);
|
2012-02-24 03:45:54 +00:00
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* set the Ethernet address */
|
|
|
|
for (i=0; i < ETH_ALEN/2; i++)
|
|
|
|
writereg(dev, PP_IA+i*2, dev->dev_addr[i*2] | (dev->dev_addr[i*2+1] << 8));
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
MODULE_LICENSE("GPL");
|
|
|
|
|
2018-03-01 23:29:28 +00:00
|
|
|
static int mac89x0_device_remove(struct platform_device *pdev)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2018-03-01 23:29:28 +00:00
|
|
|
struct net_device *dev = platform_get_drvdata(pdev);
|
|
|
|
|
|
|
|
unregister_netdev(dev);
|
|
|
|
nubus_writew(0, dev->base_addr + ADD_PORT);
|
|
|
|
free_netdev(dev);
|
2005-04-16 22:20:36 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2018-03-01 23:29:28 +00:00
|
|
|
static struct platform_driver mac89x0_platform_driver = {
|
|
|
|
.probe = mac89x0_device_probe,
|
|
|
|
.remove = mac89x0_device_remove,
|
|
|
|
.driver = {
|
|
|
|
.name = "mac89x0",
|
|
|
|
},
|
|
|
|
};
|
|
|
|
|
|
|
|
module_platform_driver(mac89x0_platform_driver);
|