linux/drivers/char/tpm/eventlog/acpi.c

109 lines
2.3 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2005 IBM Corporation
*
* Authors:
* Seiji Munetoh <munetoh@jp.ibm.com>
* Stefan Berger <stefanb@us.ibm.com>
* Reiner Sailer <sailer@watson.ibm.com>
* Kylene Hall <kjhall@us.ibm.com>
* Nayna Jain <nayna@linux.vnet.ibm.com>
*
* Maintained by: <tpmdd-devel@lists.sourceforge.net>
*
* Access to the event log extended by the TCG BIOS of PC platform
*/
#include <linux/seq_file.h>
#include <linux/fs.h>
#include <linux/security.h>
#include <linux/module.h>
#include <linux/slab.h>
ACPI: Clean up inclusions of ACPI header files Replace direct inclusions of <acpi/acpi.h>, <acpi/acpi_bus.h> and <acpi/acpi_drivers.h>, which are incorrect, with <linux/acpi.h> inclusions and remove some inclusions of those files that aren't necessary. First of all, <acpi/acpi.h>, <acpi/acpi_bus.h> and <acpi/acpi_drivers.h> should not be included directly from any files that are built for CONFIG_ACPI unset, because that generally leads to build warnings about undefined symbols in !CONFIG_ACPI builds. For CONFIG_ACPI set, <linux/acpi.h> includes those files and for CONFIG_ACPI unset it provides stub ACPI symbols to be used in that case. Second, there are ordering dependencies between those files that always have to be met. Namely, it is required that <acpi/acpi_bus.h> be included prior to <acpi/acpi_drivers.h> so that the acpi_pci_root declarations the latter depends on are always there. And <acpi/acpi.h> which provides basic ACPICA type declarations should always be included prior to any other ACPI headers in CONFIG_ACPI builds. That also is taken care of including <linux/acpi.h> as appropriate. Signed-off-by: Lv Zheng <lv.zheng@intel.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Matthew Garrett <mjg59@srcf.ucam.org> Cc: Tony Luck <tony.luck@intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Acked-by: Bjorn Helgaas <bhelgaas@google.com> (drivers/pci stuff) Acked-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> (Xen stuff) Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-12-03 00:49:16 +00:00
#include <linux/acpi.h>
#include <linux/tpm_eventlog.h>
#include "../tpm.h"
#include "common.h"
struct acpi_tcpa {
struct acpi_table_header hdr;
u16 platform_class;
union {
struct client_hdr {
u32 log_max_len __packed;
u64 log_start_addr __packed;
} client;
struct server_hdr {
u16 reserved;
u64 log_max_len __packed;
u64 log_start_addr __packed;
} server;
};
};
/* read binary bios log */
int tpm_read_log_acpi(struct tpm_chip *chip)
{
struct acpi_tcpa *buff;
acpi_status status;
void __iomem *virt;
u64 len, start;
struct tpm_bios_log *log;
if (chip->flags & TPM_CHIP_FLAG_TPM2)
return -ENODEV;
log = &chip->log;
/* Unfortuntely ACPI does not associate the event log with a specific
* TPM, like PPI. Thus all ACPI TPMs will read the same log.
*/
if (!chip->acpi_dev_handle)
return -ENODEV;
/* Find TCPA entry in RSDT (ACPI_LOGICAL_ADDRESSING) */
status = acpi_get_table(ACPI_SIG_TCPA, 1,
(struct acpi_table_header **)&buff);
if (ACPI_FAILURE(status))
return -ENODEV;
switch(buff->platform_class) {
case BIOS_SERVER:
len = buff->server.log_max_len;
start = buff->server.log_start_addr;
break;
case BIOS_CLIENT:
default:
len = buff->client.log_max_len;
start = buff->client.log_start_addr;
break;
}
if (!len) {
dev_warn(&chip->dev, "%s: TCPA log area empty\n", __func__);
return -EIO;
}
/* malloc EventLog space */
log->bios_event_log = kmalloc(len, GFP_KERNEL);
if (!log->bios_event_log)
return -ENOMEM;
log->bios_event_log_end = log->bios_event_log + len;
ACPI: Clean up acpi_os_map/unmap_memory() to eliminate __iomem. ACPICA doesn't include protections around address space checking, Linux build tests always complain increased sparse warnings around ACPICA internal acpi_os_map/unmap_memory() invocations. This patch tries to fix this issue permanently. There are 2 choices left for us to solve this issue: 1. Add __iomem address space awareness into ACPICA. 2. Remove sparse checker of __iomem from ACPICA source code. This patch chooses solution 2, because: 1. Most of the acpi_os_map/unmap_memory() invocations are used for ACPICA. table mappings, which in fact are not IO addresses. 2. The only IO addresses usage is for "system memory space" mapping code in: drivers/acpi/acpica/exregion.c drivers/acpi/acpica/evrgnini.c drivers/acpi/acpica/exregion.c The mapped address is accessed in the handler of "system memory space" - acpi_ex_system_memory_space_handler(). This function in fact can be changed to invoke acpi_os_read/write_memory() so that __iomem can always be type-casted in the OSL layer. According to the above investigation, we drew the following conclusion: It is not a good idea to introduce __iomem address space awareness into ACPICA mostly in order to protect non-IO addresses. We can simply remove __iomem for acpi_os_map/unmap_memory() to remove __iomem checker for ACPICA code. Then we need to enforce external usages to invoke other APIs that are aware of __iomem address space. The external usages are: drivers/acpi/apei/einj.c drivers/acpi/acpi_extlog.c drivers/char/tpm/tpm_acpi.c drivers/acpi/nvs.c This patch thus performs cleanups in this way: 1. Add acpi_os_map/unmap_iomem() to be invoked by non-ACPICA code. 2. Remove __iomem from acpi_os_map/unmap_memory(). Signed-off-by: Lv Zheng <lv.zheng@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2014-05-20 07:39:41 +00:00
virt = acpi_os_map_iomem(start, len);
if (!virt)
goto err;
memcpy_fromio(log->bios_event_log, virt, len);
ACPI: Clean up acpi_os_map/unmap_memory() to eliminate __iomem. ACPICA doesn't include protections around address space checking, Linux build tests always complain increased sparse warnings around ACPICA internal acpi_os_map/unmap_memory() invocations. This patch tries to fix this issue permanently. There are 2 choices left for us to solve this issue: 1. Add __iomem address space awareness into ACPICA. 2. Remove sparse checker of __iomem from ACPICA source code. This patch chooses solution 2, because: 1. Most of the acpi_os_map/unmap_memory() invocations are used for ACPICA. table mappings, which in fact are not IO addresses. 2. The only IO addresses usage is for "system memory space" mapping code in: drivers/acpi/acpica/exregion.c drivers/acpi/acpica/evrgnini.c drivers/acpi/acpica/exregion.c The mapped address is accessed in the handler of "system memory space" - acpi_ex_system_memory_space_handler(). This function in fact can be changed to invoke acpi_os_read/write_memory() so that __iomem can always be type-casted in the OSL layer. According to the above investigation, we drew the following conclusion: It is not a good idea to introduce __iomem address space awareness into ACPICA mostly in order to protect non-IO addresses. We can simply remove __iomem for acpi_os_map/unmap_memory() to remove __iomem checker for ACPICA code. Then we need to enforce external usages to invoke other APIs that are aware of __iomem address space. The external usages are: drivers/acpi/apei/einj.c drivers/acpi/acpi_extlog.c drivers/char/tpm/tpm_acpi.c drivers/acpi/nvs.c This patch thus performs cleanups in this way: 1. Add acpi_os_map/unmap_iomem() to be invoked by non-ACPICA code. 2. Remove __iomem from acpi_os_map/unmap_memory(). Signed-off-by: Lv Zheng <lv.zheng@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2014-05-20 07:39:41 +00:00
acpi_os_unmap_iomem(virt, len);
return EFI_TCG2_EVENT_LOG_FORMAT_TCG_1_2;
err:
kfree(log->bios_event_log);
log->bios_event_log = NULL;
return -EIO;
}