linux/mm/page_reporting.c

365 lines
9.9 KiB
C
Raw Normal View History

mm: introduce Reported pages In order to pave the way for free page reporting in virtualized environments we will need a way to get pages out of the free lists and identify those pages after they have been returned. To accomplish this, this patch adds the concept of a Reported Buddy, which is essentially meant to just be the Uptodate flag used in conjunction with the Buddy page type. To prevent the reported pages from leaking outside of the buddy lists I added a check to clear the PageReported bit in the del_page_from_free_list function. As a result any reported page that is split, merged, or allocated will have the flag cleared prior to the PageBuddy value being cleared. The process for reporting pages is fairly simple. Once we free a page that meets the minimum order for page reporting we will schedule a worker thread to start 2s or more in the future. That worker thread will begin working from the lowest supported page reporting order up to MAX_ORDER - 1 pulling unreported pages from the free list and storing them in the scatterlist. When processing each individual free list it is necessary for the worker thread to release the zone lock when it needs to stop and report the full scatterlist of pages. To reduce the work of the next iteration the worker thread will rotate the free list so that the first unreported page in the free list becomes the first entry in the list. It will then call a reporting function providing information on how many entries are in the scatterlist. Once the function completes it will return the pages to the free area from which they were allocated and start over pulling more pages from the free areas until there are no longer enough pages to report on to keep the worker busy, or we have processed as many pages as were contained in the free area when we started processing the list. The worker thread will work in a round-robin fashion making its way though each zone requesting reporting, and through each reportable free list within that zone. Once all free areas within the zone have been processed it will check to see if there have been any requests for reporting while it was processing. If so it will reschedule the worker thread to start up again in roughly 2s and exit. Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Nitesh Narayan Lal <nitesh@redhat.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Pankaj Gupta <pagupta@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Wang <wei.w.wang@intel.com> Cc: Yang Zhang <yang.zhang.wz@gmail.com> Cc: wei qi <weiqi4@huawei.com> Link: http://lkml.kernel.org/r/20200211224635.29318.19750.stgit@localhost.localdomain Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 03:04:56 +00:00
// SPDX-License-Identifier: GPL-2.0
#include <linux/mm.h>
#include <linux/mmzone.h>
#include <linux/page_reporting.h>
#include <linux/gfp.h>
#include <linux/export.h>
#include <linux/delay.h>
#include <linux/scatterlist.h>
#include "page_reporting.h"
#include "internal.h"
#define PAGE_REPORTING_DELAY (2 * HZ)
static struct page_reporting_dev_info __rcu *pr_dev_info __read_mostly;
enum {
PAGE_REPORTING_IDLE = 0,
PAGE_REPORTING_REQUESTED,
PAGE_REPORTING_ACTIVE
};
/* request page reporting */
static void
__page_reporting_request(struct page_reporting_dev_info *prdev)
{
unsigned int state;
/* Check to see if we are in desired state */
state = atomic_read(&prdev->state);
if (state == PAGE_REPORTING_REQUESTED)
return;
/*
* If reporting is already active there is nothing we need to do.
* Test against 0 as that represents PAGE_REPORTING_IDLE.
*/
state = atomic_xchg(&prdev->state, PAGE_REPORTING_REQUESTED);
if (state != PAGE_REPORTING_IDLE)
return;
/*
* Delay the start of work to allow a sizable queue to build. For
* now we are limiting this to running no more than once every
* couple of seconds.
*/
schedule_delayed_work(&prdev->work, PAGE_REPORTING_DELAY);
}
/* notify prdev of free page reporting request */
void __page_reporting_notify(void)
{
struct page_reporting_dev_info *prdev;
/*
* We use RCU to protect the pr_dev_info pointer. In almost all
* cases this should be present, however in the unlikely case of
* a shutdown this will be NULL and we should exit.
*/
rcu_read_lock();
prdev = rcu_dereference(pr_dev_info);
if (likely(prdev))
__page_reporting_request(prdev);
rcu_read_unlock();
}
static void
page_reporting_drain(struct page_reporting_dev_info *prdev,
struct scatterlist *sgl, unsigned int nents, bool reported)
{
struct scatterlist *sg = sgl;
/*
* Drain the now reported pages back into their respective
* free lists/areas. We assume at least one page is populated.
*/
do {
struct page *page = sg_page(sg);
int mt = get_pageblock_migratetype(page);
unsigned int order = get_order(sg->length);
__putback_isolated_page(page, order, mt);
/* If the pages were not reported due to error skip flagging */
if (!reported)
continue;
/*
* If page was not comingled with another page we can
* consider the result to be "reported" since the page
* hasn't been modified, otherwise we will need to
* report on the new larger page when we make our way
* up to that higher order.
*/
if (PageBuddy(page) && buddy_order(page) == order)
mm: introduce Reported pages In order to pave the way for free page reporting in virtualized environments we will need a way to get pages out of the free lists and identify those pages after they have been returned. To accomplish this, this patch adds the concept of a Reported Buddy, which is essentially meant to just be the Uptodate flag used in conjunction with the Buddy page type. To prevent the reported pages from leaking outside of the buddy lists I added a check to clear the PageReported bit in the del_page_from_free_list function. As a result any reported page that is split, merged, or allocated will have the flag cleared prior to the PageBuddy value being cleared. The process for reporting pages is fairly simple. Once we free a page that meets the minimum order for page reporting we will schedule a worker thread to start 2s or more in the future. That worker thread will begin working from the lowest supported page reporting order up to MAX_ORDER - 1 pulling unreported pages from the free list and storing them in the scatterlist. When processing each individual free list it is necessary for the worker thread to release the zone lock when it needs to stop and report the full scatterlist of pages. To reduce the work of the next iteration the worker thread will rotate the free list so that the first unreported page in the free list becomes the first entry in the list. It will then call a reporting function providing information on how many entries are in the scatterlist. Once the function completes it will return the pages to the free area from which they were allocated and start over pulling more pages from the free areas until there are no longer enough pages to report on to keep the worker busy, or we have processed as many pages as were contained in the free area when we started processing the list. The worker thread will work in a round-robin fashion making its way though each zone requesting reporting, and through each reportable free list within that zone. Once all free areas within the zone have been processed it will check to see if there have been any requests for reporting while it was processing. If so it will reschedule the worker thread to start up again in roughly 2s and exit. Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Nitesh Narayan Lal <nitesh@redhat.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Pankaj Gupta <pagupta@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Wang <wei.w.wang@intel.com> Cc: Yang Zhang <yang.zhang.wz@gmail.com> Cc: wei qi <weiqi4@huawei.com> Link: http://lkml.kernel.org/r/20200211224635.29318.19750.stgit@localhost.localdomain Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 03:04:56 +00:00
__SetPageReported(page);
} while ((sg = sg_next(sg)));
/* reinitialize scatterlist now that it is empty */
sg_init_table(sgl, nents);
}
/*
* The page reporting cycle consists of 4 stages, fill, report, drain, and
* idle. We will cycle through the first 3 stages until we cannot obtain a
* full scatterlist of pages, in that case we will switch to idle.
*/
static int
page_reporting_cycle(struct page_reporting_dev_info *prdev, struct zone *zone,
unsigned int order, unsigned int mt,
struct scatterlist *sgl, unsigned int *offset)
{
struct free_area *area = &zone->free_area[order];
struct list_head *list = &area->free_list[mt];
unsigned int page_len = PAGE_SIZE << order;
struct page *page, *next;
mm/page_reporting: add budget limit on how many pages can be reported per pass In order to keep ourselves from reporting pages that are just going to be reused again in the case of heavy churn we can put a limit on how many total pages we will process per pass. Doing this will allow the worker thread to go into idle much more quickly so that we avoid competing with other threads that might be allocating or freeing pages. The logic added here will limit the worker thread to no more than one sixteenth of the total free pages in a given area per list. Once that limit is reached it will update the state so that at the end of the pass we will reschedule the worker to try again in 2 seconds when the memory churn has hopefully settled down. Again this optimization doesn't show much of a benefit in the standard case as the memory churn is minmal. However with page allocator shuffling enabled the gain is quite noticeable. Below are the results with a THP enabled version of the will-it-scale page_fault1 test showing the improvement in iterations for 16 processes or threads. Without: tasks processes processes_idle threads threads_idle 16 8283274.75 0.17 5594261.00 38.15 With: tasks processes processes_idle threads threads_idle 16 8767010.50 0.21 5791312.75 36.98 Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Nitesh Narayan Lal <nitesh@redhat.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Pankaj Gupta <pagupta@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Wang <wei.w.wang@intel.com> Cc: Yang Zhang <yang.zhang.wz@gmail.com> Cc: wei qi <weiqi4@huawei.com> Link: http://lkml.kernel.org/r/20200211224719.29318.72113.stgit@localhost.localdomain Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 03:05:14 +00:00
long budget;
mm: introduce Reported pages In order to pave the way for free page reporting in virtualized environments we will need a way to get pages out of the free lists and identify those pages after they have been returned. To accomplish this, this patch adds the concept of a Reported Buddy, which is essentially meant to just be the Uptodate flag used in conjunction with the Buddy page type. To prevent the reported pages from leaking outside of the buddy lists I added a check to clear the PageReported bit in the del_page_from_free_list function. As a result any reported page that is split, merged, or allocated will have the flag cleared prior to the PageBuddy value being cleared. The process for reporting pages is fairly simple. Once we free a page that meets the minimum order for page reporting we will schedule a worker thread to start 2s or more in the future. That worker thread will begin working from the lowest supported page reporting order up to MAX_ORDER - 1 pulling unreported pages from the free list and storing them in the scatterlist. When processing each individual free list it is necessary for the worker thread to release the zone lock when it needs to stop and report the full scatterlist of pages. To reduce the work of the next iteration the worker thread will rotate the free list so that the first unreported page in the free list becomes the first entry in the list. It will then call a reporting function providing information on how many entries are in the scatterlist. Once the function completes it will return the pages to the free area from which they were allocated and start over pulling more pages from the free areas until there are no longer enough pages to report on to keep the worker busy, or we have processed as many pages as were contained in the free area when we started processing the list. The worker thread will work in a round-robin fashion making its way though each zone requesting reporting, and through each reportable free list within that zone. Once all free areas within the zone have been processed it will check to see if there have been any requests for reporting while it was processing. If so it will reschedule the worker thread to start up again in roughly 2s and exit. Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Nitesh Narayan Lal <nitesh@redhat.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Pankaj Gupta <pagupta@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Wang <wei.w.wang@intel.com> Cc: Yang Zhang <yang.zhang.wz@gmail.com> Cc: wei qi <weiqi4@huawei.com> Link: http://lkml.kernel.org/r/20200211224635.29318.19750.stgit@localhost.localdomain Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 03:04:56 +00:00
int err = 0;
/*
* Perform early check, if free area is empty there is
* nothing to process so we can skip this free_list.
*/
if (list_empty(list))
return err;
spin_lock_irq(&zone->lock);
mm/page_reporting: add budget limit on how many pages can be reported per pass In order to keep ourselves from reporting pages that are just going to be reused again in the case of heavy churn we can put a limit on how many total pages we will process per pass. Doing this will allow the worker thread to go into idle much more quickly so that we avoid competing with other threads that might be allocating or freeing pages. The logic added here will limit the worker thread to no more than one sixteenth of the total free pages in a given area per list. Once that limit is reached it will update the state so that at the end of the pass we will reschedule the worker to try again in 2 seconds when the memory churn has hopefully settled down. Again this optimization doesn't show much of a benefit in the standard case as the memory churn is minmal. However with page allocator shuffling enabled the gain is quite noticeable. Below are the results with a THP enabled version of the will-it-scale page_fault1 test showing the improvement in iterations for 16 processes or threads. Without: tasks processes processes_idle threads threads_idle 16 8283274.75 0.17 5594261.00 38.15 With: tasks processes processes_idle threads threads_idle 16 8767010.50 0.21 5791312.75 36.98 Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Nitesh Narayan Lal <nitesh@redhat.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Pankaj Gupta <pagupta@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Wang <wei.w.wang@intel.com> Cc: Yang Zhang <yang.zhang.wz@gmail.com> Cc: wei qi <weiqi4@huawei.com> Link: http://lkml.kernel.org/r/20200211224719.29318.72113.stgit@localhost.localdomain Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 03:05:14 +00:00
/*
* Limit how many calls we will be making to the page reporting
* device for this list. By doing this we avoid processing any
* given list for too long.
*
* The current value used allows us enough calls to process over a
* sixteenth of the current list plus one additional call to handle
* any pages that may have already been present from the previous
* list processed. This should result in us reporting all pages on
* an idle system in about 30 seconds.
*
* The division here should be cheap since PAGE_REPORTING_CAPACITY
* should always be a power of 2.
*/
budget = DIV_ROUND_UP(area->nr_free, PAGE_REPORTING_CAPACITY * 16);
mm: introduce Reported pages In order to pave the way for free page reporting in virtualized environments we will need a way to get pages out of the free lists and identify those pages after they have been returned. To accomplish this, this patch adds the concept of a Reported Buddy, which is essentially meant to just be the Uptodate flag used in conjunction with the Buddy page type. To prevent the reported pages from leaking outside of the buddy lists I added a check to clear the PageReported bit in the del_page_from_free_list function. As a result any reported page that is split, merged, or allocated will have the flag cleared prior to the PageBuddy value being cleared. The process for reporting pages is fairly simple. Once we free a page that meets the minimum order for page reporting we will schedule a worker thread to start 2s or more in the future. That worker thread will begin working from the lowest supported page reporting order up to MAX_ORDER - 1 pulling unreported pages from the free list and storing them in the scatterlist. When processing each individual free list it is necessary for the worker thread to release the zone lock when it needs to stop and report the full scatterlist of pages. To reduce the work of the next iteration the worker thread will rotate the free list so that the first unreported page in the free list becomes the first entry in the list. It will then call a reporting function providing information on how many entries are in the scatterlist. Once the function completes it will return the pages to the free area from which they were allocated and start over pulling more pages from the free areas until there are no longer enough pages to report on to keep the worker busy, or we have processed as many pages as were contained in the free area when we started processing the list. The worker thread will work in a round-robin fashion making its way though each zone requesting reporting, and through each reportable free list within that zone. Once all free areas within the zone have been processed it will check to see if there have been any requests for reporting while it was processing. If so it will reschedule the worker thread to start up again in roughly 2s and exit. Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Nitesh Narayan Lal <nitesh@redhat.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Pankaj Gupta <pagupta@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Wang <wei.w.wang@intel.com> Cc: Yang Zhang <yang.zhang.wz@gmail.com> Cc: wei qi <weiqi4@huawei.com> Link: http://lkml.kernel.org/r/20200211224635.29318.19750.stgit@localhost.localdomain Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 03:04:56 +00:00
/* loop through free list adding unreported pages to sg list */
list_for_each_entry_safe(page, next, list, lru) {
/* We are going to skip over the reported pages. */
if (PageReported(page))
continue;
mm/page_reporting: add budget limit on how many pages can be reported per pass In order to keep ourselves from reporting pages that are just going to be reused again in the case of heavy churn we can put a limit on how many total pages we will process per pass. Doing this will allow the worker thread to go into idle much more quickly so that we avoid competing with other threads that might be allocating or freeing pages. The logic added here will limit the worker thread to no more than one sixteenth of the total free pages in a given area per list. Once that limit is reached it will update the state so that at the end of the pass we will reschedule the worker to try again in 2 seconds when the memory churn has hopefully settled down. Again this optimization doesn't show much of a benefit in the standard case as the memory churn is minmal. However with page allocator shuffling enabled the gain is quite noticeable. Below are the results with a THP enabled version of the will-it-scale page_fault1 test showing the improvement in iterations for 16 processes or threads. Without: tasks processes processes_idle threads threads_idle 16 8283274.75 0.17 5594261.00 38.15 With: tasks processes processes_idle threads threads_idle 16 8767010.50 0.21 5791312.75 36.98 Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Nitesh Narayan Lal <nitesh@redhat.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Pankaj Gupta <pagupta@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Wang <wei.w.wang@intel.com> Cc: Yang Zhang <yang.zhang.wz@gmail.com> Cc: wei qi <weiqi4@huawei.com> Link: http://lkml.kernel.org/r/20200211224719.29318.72113.stgit@localhost.localdomain Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 03:05:14 +00:00
/*
* If we fully consumed our budget then update our
* state to indicate that we are requesting additional
* processing and exit this list.
*/
if (budget < 0) {
atomic_set(&prdev->state, PAGE_REPORTING_REQUESTED);
next = page;
break;
}
mm/page_reporting: rotate reported pages to the tail of the list Rather than walking over the same pages again and again to get to the pages that have yet to be reported we can save ourselves a significant amount of time by simply rotating the list so that when we have a full list of reported pages the head of the list is pointing to the next non-reported page. Doing this should save us some significant time when processing each free list. This doesn't gain us much in the standard case as all of the non-reported pages should be near the top of the list already. However in the case of page shuffling this results in a noticeable improvement. Below are the will-it-scale page_fault1 w/ THP numbers for 16 tasks with and without this patch. Without: tasks processes processes_idle threads threads_idle 16 8093776.25 0.17 5393242.00 38.20 With: tasks processes processes_idle threads threads_idle 16 8283274.75 0.17 5594261.00 38.15 Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Nitesh Narayan Lal <nitesh@redhat.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Pankaj Gupta <pagupta@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Wang <wei.w.wang@intel.com> Cc: Yang Zhang <yang.zhang.wz@gmail.com> Cc: wei qi <weiqi4@huawei.com> Link: http://lkml.kernel.org/r/20200211224708.29318.16862.stgit@localhost.localdomain Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 03:05:10 +00:00
/* Attempt to pull page from list and place in scatterlist */
if (*offset) {
if (!__isolate_free_page(page, order)) {
next = page;
break;
}
mm: introduce Reported pages In order to pave the way for free page reporting in virtualized environments we will need a way to get pages out of the free lists and identify those pages after they have been returned. To accomplish this, this patch adds the concept of a Reported Buddy, which is essentially meant to just be the Uptodate flag used in conjunction with the Buddy page type. To prevent the reported pages from leaking outside of the buddy lists I added a check to clear the PageReported bit in the del_page_from_free_list function. As a result any reported page that is split, merged, or allocated will have the flag cleared prior to the PageBuddy value being cleared. The process for reporting pages is fairly simple. Once we free a page that meets the minimum order for page reporting we will schedule a worker thread to start 2s or more in the future. That worker thread will begin working from the lowest supported page reporting order up to MAX_ORDER - 1 pulling unreported pages from the free list and storing them in the scatterlist. When processing each individual free list it is necessary for the worker thread to release the zone lock when it needs to stop and report the full scatterlist of pages. To reduce the work of the next iteration the worker thread will rotate the free list so that the first unreported page in the free list becomes the first entry in the list. It will then call a reporting function providing information on how many entries are in the scatterlist. Once the function completes it will return the pages to the free area from which they were allocated and start over pulling more pages from the free areas until there are no longer enough pages to report on to keep the worker busy, or we have processed as many pages as were contained in the free area when we started processing the list. The worker thread will work in a round-robin fashion making its way though each zone requesting reporting, and through each reportable free list within that zone. Once all free areas within the zone have been processed it will check to see if there have been any requests for reporting while it was processing. If so it will reschedule the worker thread to start up again in roughly 2s and exit. Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Nitesh Narayan Lal <nitesh@redhat.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Pankaj Gupta <pagupta@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Wang <wei.w.wang@intel.com> Cc: Yang Zhang <yang.zhang.wz@gmail.com> Cc: wei qi <weiqi4@huawei.com> Link: http://lkml.kernel.org/r/20200211224635.29318.19750.stgit@localhost.localdomain Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 03:04:56 +00:00
mm/page_reporting: rotate reported pages to the tail of the list Rather than walking over the same pages again and again to get to the pages that have yet to be reported we can save ourselves a significant amount of time by simply rotating the list so that when we have a full list of reported pages the head of the list is pointing to the next non-reported page. Doing this should save us some significant time when processing each free list. This doesn't gain us much in the standard case as all of the non-reported pages should be near the top of the list already. However in the case of page shuffling this results in a noticeable improvement. Below are the will-it-scale page_fault1 w/ THP numbers for 16 tasks with and without this patch. Without: tasks processes processes_idle threads threads_idle 16 8093776.25 0.17 5393242.00 38.20 With: tasks processes processes_idle threads threads_idle 16 8283274.75 0.17 5594261.00 38.15 Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Nitesh Narayan Lal <nitesh@redhat.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Pankaj Gupta <pagupta@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Wang <wei.w.wang@intel.com> Cc: Yang Zhang <yang.zhang.wz@gmail.com> Cc: wei qi <weiqi4@huawei.com> Link: http://lkml.kernel.org/r/20200211224708.29318.16862.stgit@localhost.localdomain Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 03:05:10 +00:00
/* Add page to scatter list */
--(*offset);
sg_set_page(&sgl[*offset], page, page_len, 0);
mm: introduce Reported pages In order to pave the way for free page reporting in virtualized environments we will need a way to get pages out of the free lists and identify those pages after they have been returned. To accomplish this, this patch adds the concept of a Reported Buddy, which is essentially meant to just be the Uptodate flag used in conjunction with the Buddy page type. To prevent the reported pages from leaking outside of the buddy lists I added a check to clear the PageReported bit in the del_page_from_free_list function. As a result any reported page that is split, merged, or allocated will have the flag cleared prior to the PageBuddy value being cleared. The process for reporting pages is fairly simple. Once we free a page that meets the minimum order for page reporting we will schedule a worker thread to start 2s or more in the future. That worker thread will begin working from the lowest supported page reporting order up to MAX_ORDER - 1 pulling unreported pages from the free list and storing them in the scatterlist. When processing each individual free list it is necessary for the worker thread to release the zone lock when it needs to stop and report the full scatterlist of pages. To reduce the work of the next iteration the worker thread will rotate the free list so that the first unreported page in the free list becomes the first entry in the list. It will then call a reporting function providing information on how many entries are in the scatterlist. Once the function completes it will return the pages to the free area from which they were allocated and start over pulling more pages from the free areas until there are no longer enough pages to report on to keep the worker busy, or we have processed as many pages as were contained in the free area when we started processing the list. The worker thread will work in a round-robin fashion making its way though each zone requesting reporting, and through each reportable free list within that zone. Once all free areas within the zone have been processed it will check to see if there have been any requests for reporting while it was processing. If so it will reschedule the worker thread to start up again in roughly 2s and exit. Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Nitesh Narayan Lal <nitesh@redhat.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Pankaj Gupta <pagupta@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Wang <wei.w.wang@intel.com> Cc: Yang Zhang <yang.zhang.wz@gmail.com> Cc: wei qi <weiqi4@huawei.com> Link: http://lkml.kernel.org/r/20200211224635.29318.19750.stgit@localhost.localdomain Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 03:04:56 +00:00
continue;
mm/page_reporting: rotate reported pages to the tail of the list Rather than walking over the same pages again and again to get to the pages that have yet to be reported we can save ourselves a significant amount of time by simply rotating the list so that when we have a full list of reported pages the head of the list is pointing to the next non-reported page. Doing this should save us some significant time when processing each free list. This doesn't gain us much in the standard case as all of the non-reported pages should be near the top of the list already. However in the case of page shuffling this results in a noticeable improvement. Below are the will-it-scale page_fault1 w/ THP numbers for 16 tasks with and without this patch. Without: tasks processes processes_idle threads threads_idle 16 8093776.25 0.17 5393242.00 38.20 With: tasks processes processes_idle threads threads_idle 16 8283274.75 0.17 5594261.00 38.15 Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Nitesh Narayan Lal <nitesh@redhat.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Pankaj Gupta <pagupta@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Wang <wei.w.wang@intel.com> Cc: Yang Zhang <yang.zhang.wz@gmail.com> Cc: wei qi <weiqi4@huawei.com> Link: http://lkml.kernel.org/r/20200211224708.29318.16862.stgit@localhost.localdomain Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 03:05:10 +00:00
}
/*
mm/page_reporting: add budget limit on how many pages can be reported per pass In order to keep ourselves from reporting pages that are just going to be reused again in the case of heavy churn we can put a limit on how many total pages we will process per pass. Doing this will allow the worker thread to go into idle much more quickly so that we avoid competing with other threads that might be allocating or freeing pages. The logic added here will limit the worker thread to no more than one sixteenth of the total free pages in a given area per list. Once that limit is reached it will update the state so that at the end of the pass we will reschedule the worker to try again in 2 seconds when the memory churn has hopefully settled down. Again this optimization doesn't show much of a benefit in the standard case as the memory churn is minmal. However with page allocator shuffling enabled the gain is quite noticeable. Below are the results with a THP enabled version of the will-it-scale page_fault1 test showing the improvement in iterations for 16 processes or threads. Without: tasks processes processes_idle threads threads_idle 16 8283274.75 0.17 5594261.00 38.15 With: tasks processes processes_idle threads threads_idle 16 8767010.50 0.21 5791312.75 36.98 Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Nitesh Narayan Lal <nitesh@redhat.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Pankaj Gupta <pagupta@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Wang <wei.w.wang@intel.com> Cc: Yang Zhang <yang.zhang.wz@gmail.com> Cc: wei qi <weiqi4@huawei.com> Link: http://lkml.kernel.org/r/20200211224719.29318.72113.stgit@localhost.localdomain Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 03:05:14 +00:00
* Make the first non-reported page in the free list
mm/page_reporting: rotate reported pages to the tail of the list Rather than walking over the same pages again and again to get to the pages that have yet to be reported we can save ourselves a significant amount of time by simply rotating the list so that when we have a full list of reported pages the head of the list is pointing to the next non-reported page. Doing this should save us some significant time when processing each free list. This doesn't gain us much in the standard case as all of the non-reported pages should be near the top of the list already. However in the case of page shuffling this results in a noticeable improvement. Below are the will-it-scale page_fault1 w/ THP numbers for 16 tasks with and without this patch. Without: tasks processes processes_idle threads threads_idle 16 8093776.25 0.17 5393242.00 38.20 With: tasks processes processes_idle threads threads_idle 16 8283274.75 0.17 5594261.00 38.15 Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Nitesh Narayan Lal <nitesh@redhat.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Pankaj Gupta <pagupta@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Wang <wei.w.wang@intel.com> Cc: Yang Zhang <yang.zhang.wz@gmail.com> Cc: wei qi <weiqi4@huawei.com> Link: http://lkml.kernel.org/r/20200211224708.29318.16862.stgit@localhost.localdomain Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 03:05:10 +00:00
* the new head of the free list before we release the
* zone lock.
*/
if (!list_is_first(&page->lru, list))
mm/page_reporting: rotate reported pages to the tail of the list Rather than walking over the same pages again and again to get to the pages that have yet to be reported we can save ourselves a significant amount of time by simply rotating the list so that when we have a full list of reported pages the head of the list is pointing to the next non-reported page. Doing this should save us some significant time when processing each free list. This doesn't gain us much in the standard case as all of the non-reported pages should be near the top of the list already. However in the case of page shuffling this results in a noticeable improvement. Below are the will-it-scale page_fault1 w/ THP numbers for 16 tasks with and without this patch. Without: tasks processes processes_idle threads threads_idle 16 8093776.25 0.17 5393242.00 38.20 With: tasks processes processes_idle threads threads_idle 16 8283274.75 0.17 5594261.00 38.15 Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Nitesh Narayan Lal <nitesh@redhat.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Pankaj Gupta <pagupta@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Wang <wei.w.wang@intel.com> Cc: Yang Zhang <yang.zhang.wz@gmail.com> Cc: wei qi <weiqi4@huawei.com> Link: http://lkml.kernel.org/r/20200211224708.29318.16862.stgit@localhost.localdomain Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 03:05:10 +00:00
list_rotate_to_front(&page->lru, list);
mm: introduce Reported pages In order to pave the way for free page reporting in virtualized environments we will need a way to get pages out of the free lists and identify those pages after they have been returned. To accomplish this, this patch adds the concept of a Reported Buddy, which is essentially meant to just be the Uptodate flag used in conjunction with the Buddy page type. To prevent the reported pages from leaking outside of the buddy lists I added a check to clear the PageReported bit in the del_page_from_free_list function. As a result any reported page that is split, merged, or allocated will have the flag cleared prior to the PageBuddy value being cleared. The process for reporting pages is fairly simple. Once we free a page that meets the minimum order for page reporting we will schedule a worker thread to start 2s or more in the future. That worker thread will begin working from the lowest supported page reporting order up to MAX_ORDER - 1 pulling unreported pages from the free list and storing them in the scatterlist. When processing each individual free list it is necessary for the worker thread to release the zone lock when it needs to stop and report the full scatterlist of pages. To reduce the work of the next iteration the worker thread will rotate the free list so that the first unreported page in the free list becomes the first entry in the list. It will then call a reporting function providing information on how many entries are in the scatterlist. Once the function completes it will return the pages to the free area from which they were allocated and start over pulling more pages from the free areas until there are no longer enough pages to report on to keep the worker busy, or we have processed as many pages as were contained in the free area when we started processing the list. The worker thread will work in a round-robin fashion making its way though each zone requesting reporting, and through each reportable free list within that zone. Once all free areas within the zone have been processed it will check to see if there have been any requests for reporting while it was processing. If so it will reschedule the worker thread to start up again in roughly 2s and exit. Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Nitesh Narayan Lal <nitesh@redhat.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Pankaj Gupta <pagupta@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Wang <wei.w.wang@intel.com> Cc: Yang Zhang <yang.zhang.wz@gmail.com> Cc: wei qi <weiqi4@huawei.com> Link: http://lkml.kernel.org/r/20200211224635.29318.19750.stgit@localhost.localdomain Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 03:04:56 +00:00
/* release lock before waiting on report processing */
spin_unlock_irq(&zone->lock);
/* begin processing pages in local list */
err = prdev->report(prdev, sgl, PAGE_REPORTING_CAPACITY);
/* reset offset since the full list was reported */
*offset = PAGE_REPORTING_CAPACITY;
mm/page_reporting: add budget limit on how many pages can be reported per pass In order to keep ourselves from reporting pages that are just going to be reused again in the case of heavy churn we can put a limit on how many total pages we will process per pass. Doing this will allow the worker thread to go into idle much more quickly so that we avoid competing with other threads that might be allocating or freeing pages. The logic added here will limit the worker thread to no more than one sixteenth of the total free pages in a given area per list. Once that limit is reached it will update the state so that at the end of the pass we will reschedule the worker to try again in 2 seconds when the memory churn has hopefully settled down. Again this optimization doesn't show much of a benefit in the standard case as the memory churn is minmal. However with page allocator shuffling enabled the gain is quite noticeable. Below are the results with a THP enabled version of the will-it-scale page_fault1 test showing the improvement in iterations for 16 processes or threads. Without: tasks processes processes_idle threads threads_idle 16 8283274.75 0.17 5594261.00 38.15 With: tasks processes processes_idle threads threads_idle 16 8767010.50 0.21 5791312.75 36.98 Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Nitesh Narayan Lal <nitesh@redhat.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Pankaj Gupta <pagupta@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Wang <wei.w.wang@intel.com> Cc: Yang Zhang <yang.zhang.wz@gmail.com> Cc: wei qi <weiqi4@huawei.com> Link: http://lkml.kernel.org/r/20200211224719.29318.72113.stgit@localhost.localdomain Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 03:05:14 +00:00
/* update budget to reflect call to report function */
budget--;
mm: introduce Reported pages In order to pave the way for free page reporting in virtualized environments we will need a way to get pages out of the free lists and identify those pages after they have been returned. To accomplish this, this patch adds the concept of a Reported Buddy, which is essentially meant to just be the Uptodate flag used in conjunction with the Buddy page type. To prevent the reported pages from leaking outside of the buddy lists I added a check to clear the PageReported bit in the del_page_from_free_list function. As a result any reported page that is split, merged, or allocated will have the flag cleared prior to the PageBuddy value being cleared. The process for reporting pages is fairly simple. Once we free a page that meets the minimum order for page reporting we will schedule a worker thread to start 2s or more in the future. That worker thread will begin working from the lowest supported page reporting order up to MAX_ORDER - 1 pulling unreported pages from the free list and storing them in the scatterlist. When processing each individual free list it is necessary for the worker thread to release the zone lock when it needs to stop and report the full scatterlist of pages. To reduce the work of the next iteration the worker thread will rotate the free list so that the first unreported page in the free list becomes the first entry in the list. It will then call a reporting function providing information on how many entries are in the scatterlist. Once the function completes it will return the pages to the free area from which they were allocated and start over pulling more pages from the free areas until there are no longer enough pages to report on to keep the worker busy, or we have processed as many pages as were contained in the free area when we started processing the list. The worker thread will work in a round-robin fashion making its way though each zone requesting reporting, and through each reportable free list within that zone. Once all free areas within the zone have been processed it will check to see if there have been any requests for reporting while it was processing. If so it will reschedule the worker thread to start up again in roughly 2s and exit. Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Nitesh Narayan Lal <nitesh@redhat.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Pankaj Gupta <pagupta@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Wang <wei.w.wang@intel.com> Cc: Yang Zhang <yang.zhang.wz@gmail.com> Cc: wei qi <weiqi4@huawei.com> Link: http://lkml.kernel.org/r/20200211224635.29318.19750.stgit@localhost.localdomain Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 03:04:56 +00:00
/* reacquire zone lock and resume processing */
spin_lock_irq(&zone->lock);
/* flush reported pages from the sg list */
page_reporting_drain(prdev, sgl, PAGE_REPORTING_CAPACITY, !err);
/*
* Reset next to first entry, the old next isn't valid
* since we dropped the lock to report the pages
*/
next = list_first_entry(list, struct page, lru);
/* exit on error */
if (err)
break;
}
mm/page_reporting: rotate reported pages to the tail of the list Rather than walking over the same pages again and again to get to the pages that have yet to be reported we can save ourselves a significant amount of time by simply rotating the list so that when we have a full list of reported pages the head of the list is pointing to the next non-reported page. Doing this should save us some significant time when processing each free list. This doesn't gain us much in the standard case as all of the non-reported pages should be near the top of the list already. However in the case of page shuffling this results in a noticeable improvement. Below are the will-it-scale page_fault1 w/ THP numbers for 16 tasks with and without this patch. Without: tasks processes processes_idle threads threads_idle 16 8093776.25 0.17 5393242.00 38.20 With: tasks processes processes_idle threads threads_idle 16 8283274.75 0.17 5594261.00 38.15 Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Nitesh Narayan Lal <nitesh@redhat.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Pankaj Gupta <pagupta@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Wang <wei.w.wang@intel.com> Cc: Yang Zhang <yang.zhang.wz@gmail.com> Cc: wei qi <weiqi4@huawei.com> Link: http://lkml.kernel.org/r/20200211224708.29318.16862.stgit@localhost.localdomain Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 03:05:10 +00:00
/* Rotate any leftover pages to the head of the freelist */
if (&next->lru != list && !list_is_first(&next->lru, list))
list_rotate_to_front(&next->lru, list);
mm: introduce Reported pages In order to pave the way for free page reporting in virtualized environments we will need a way to get pages out of the free lists and identify those pages after they have been returned. To accomplish this, this patch adds the concept of a Reported Buddy, which is essentially meant to just be the Uptodate flag used in conjunction with the Buddy page type. To prevent the reported pages from leaking outside of the buddy lists I added a check to clear the PageReported bit in the del_page_from_free_list function. As a result any reported page that is split, merged, or allocated will have the flag cleared prior to the PageBuddy value being cleared. The process for reporting pages is fairly simple. Once we free a page that meets the minimum order for page reporting we will schedule a worker thread to start 2s or more in the future. That worker thread will begin working from the lowest supported page reporting order up to MAX_ORDER - 1 pulling unreported pages from the free list and storing them in the scatterlist. When processing each individual free list it is necessary for the worker thread to release the zone lock when it needs to stop and report the full scatterlist of pages. To reduce the work of the next iteration the worker thread will rotate the free list so that the first unreported page in the free list becomes the first entry in the list. It will then call a reporting function providing information on how many entries are in the scatterlist. Once the function completes it will return the pages to the free area from which they were allocated and start over pulling more pages from the free areas until there are no longer enough pages to report on to keep the worker busy, or we have processed as many pages as were contained in the free area when we started processing the list. The worker thread will work in a round-robin fashion making its way though each zone requesting reporting, and through each reportable free list within that zone. Once all free areas within the zone have been processed it will check to see if there have been any requests for reporting while it was processing. If so it will reschedule the worker thread to start up again in roughly 2s and exit. Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Nitesh Narayan Lal <nitesh@redhat.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Pankaj Gupta <pagupta@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Wang <wei.w.wang@intel.com> Cc: Yang Zhang <yang.zhang.wz@gmail.com> Cc: wei qi <weiqi4@huawei.com> Link: http://lkml.kernel.org/r/20200211224635.29318.19750.stgit@localhost.localdomain Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 03:04:56 +00:00
spin_unlock_irq(&zone->lock);
return err;
}
static int
page_reporting_process_zone(struct page_reporting_dev_info *prdev,
struct scatterlist *sgl, struct zone *zone)
{
unsigned int order, mt, leftover, offset = PAGE_REPORTING_CAPACITY;
unsigned long watermark;
int err = 0;
/* Generate minimum watermark to be able to guarantee progress */
watermark = low_wmark_pages(zone) +
(PAGE_REPORTING_CAPACITY << PAGE_REPORTING_MIN_ORDER);
/*
* Cancel request if insufficient free memory or if we failed
* to allocate page reporting statistics for the zone.
*/
if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
return err;
/* Process each free list starting from lowest order/mt */
for (order = PAGE_REPORTING_MIN_ORDER; order < MAX_ORDER; order++) {
for (mt = 0; mt < MIGRATE_TYPES; mt++) {
/* We do not pull pages from the isolate free list */
if (is_migrate_isolate(mt))
continue;
err = page_reporting_cycle(prdev, zone, order, mt,
sgl, &offset);
if (err)
return err;
}
}
/* report the leftover pages before going idle */
leftover = PAGE_REPORTING_CAPACITY - offset;
if (leftover) {
sgl = &sgl[offset];
err = prdev->report(prdev, sgl, leftover);
/* flush any remaining pages out from the last report */
spin_lock_irq(&zone->lock);
page_reporting_drain(prdev, sgl, leftover, !err);
spin_unlock_irq(&zone->lock);
}
return err;
}
static void page_reporting_process(struct work_struct *work)
{
struct delayed_work *d_work = to_delayed_work(work);
struct page_reporting_dev_info *prdev =
container_of(d_work, struct page_reporting_dev_info, work);
int err = 0, state = PAGE_REPORTING_ACTIVE;
struct scatterlist *sgl;
struct zone *zone;
/*
* Change the state to "Active" so that we can track if there is
* anyone requests page reporting after we complete our pass. If
* the state is not altered by the end of the pass we will switch
* to idle and quit scheduling reporting runs.
*/
atomic_set(&prdev->state, state);
/* allocate scatterlist to store pages being reported on */
sgl = kmalloc_array(PAGE_REPORTING_CAPACITY, sizeof(*sgl), GFP_KERNEL);
if (!sgl)
goto err_out;
sg_init_table(sgl, PAGE_REPORTING_CAPACITY);
for_each_zone(zone) {
err = page_reporting_process_zone(prdev, sgl, zone);
if (err)
break;
}
kfree(sgl);
err_out:
/*
* If the state has reverted back to requested then there may be
* additional pages to be processed. We will defer for 2s to allow
* more pages to accumulate.
*/
state = atomic_cmpxchg(&prdev->state, state, PAGE_REPORTING_IDLE);
if (state == PAGE_REPORTING_REQUESTED)
schedule_delayed_work(&prdev->work, PAGE_REPORTING_DELAY);
}
static DEFINE_MUTEX(page_reporting_mutex);
DEFINE_STATIC_KEY_FALSE(page_reporting_enabled);
int page_reporting_register(struct page_reporting_dev_info *prdev)
{
int err = 0;
mutex_lock(&page_reporting_mutex);
/* nothing to do if already in use */
if (rcu_access_pointer(pr_dev_info)) {
err = -EBUSY;
goto err_out;
}
/* initialize state and work structures */
atomic_set(&prdev->state, PAGE_REPORTING_IDLE);
INIT_DELAYED_WORK(&prdev->work, &page_reporting_process);
/* Begin initial flush of zones */
__page_reporting_request(prdev);
/* Assign device to allow notifications */
rcu_assign_pointer(pr_dev_info, prdev);
/* enable page reporting notification */
if (!static_key_enabled(&page_reporting_enabled)) {
static_branch_enable(&page_reporting_enabled);
pr_info("Free page reporting enabled\n");
}
err_out:
mutex_unlock(&page_reporting_mutex);
return err;
}
EXPORT_SYMBOL_GPL(page_reporting_register);
void page_reporting_unregister(struct page_reporting_dev_info *prdev)
{
mutex_lock(&page_reporting_mutex);
if (rcu_access_pointer(pr_dev_info) == prdev) {
/* Disable page reporting notification */
RCU_INIT_POINTER(pr_dev_info, NULL);
synchronize_rcu();
/* Flush any existing work, and lock it out */
cancel_delayed_work_sync(&prdev->work);
}
mutex_unlock(&page_reporting_mutex);
}
EXPORT_SYMBOL_GPL(page_reporting_unregister);