2015-11-24 15:51:12 +00:00
|
|
|
/*
|
|
|
|
* Copyright (C) 2015, 2016 ARM Ltd.
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
|
|
* published by the Free Software Foundation.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/kvm.h>
|
|
|
|
#include <linux/kvm_host.h>
|
2015-11-25 18:02:16 +00:00
|
|
|
#include <linux/list_sort.h>
|
2015-11-24 15:51:12 +00:00
|
|
|
|
|
|
|
#include "vgic.h"
|
|
|
|
|
2015-11-25 18:02:16 +00:00
|
|
|
#define CREATE_TRACE_POINTS
|
|
|
|
#include "../trace.h"
|
|
|
|
|
|
|
|
#ifdef CONFIG_DEBUG_SPINLOCK
|
|
|
|
#define DEBUG_SPINLOCK_BUG_ON(p) BUG_ON(p)
|
|
|
|
#else
|
|
|
|
#define DEBUG_SPINLOCK_BUG_ON(p)
|
|
|
|
#endif
|
|
|
|
|
2015-11-24 15:51:12 +00:00
|
|
|
struct vgic_global __section(.hyp.text) kvm_vgic_global_state;
|
|
|
|
|
2015-11-25 18:02:16 +00:00
|
|
|
/*
|
|
|
|
* Locking order is always:
|
|
|
|
* vgic_cpu->ap_list_lock
|
|
|
|
* vgic_irq->irq_lock
|
|
|
|
*
|
|
|
|
* (that is, always take the ap_list_lock before the struct vgic_irq lock).
|
|
|
|
*
|
|
|
|
* When taking more than one ap_list_lock at the same time, always take the
|
|
|
|
* lowest numbered VCPU's ap_list_lock first, so:
|
|
|
|
* vcpuX->vcpu_id < vcpuY->vcpu_id:
|
|
|
|
* spin_lock(vcpuX->arch.vgic_cpu.ap_list_lock);
|
|
|
|
* spin_lock(vcpuY->arch.vgic_cpu.ap_list_lock);
|
|
|
|
*/
|
|
|
|
|
2015-11-24 15:51:12 +00:00
|
|
|
struct vgic_irq *vgic_get_irq(struct kvm *kvm, struct kvm_vcpu *vcpu,
|
|
|
|
u32 intid)
|
|
|
|
{
|
|
|
|
/* SGIs and PPIs */
|
|
|
|
if (intid <= VGIC_MAX_PRIVATE)
|
|
|
|
return &vcpu->arch.vgic_cpu.private_irqs[intid];
|
|
|
|
|
|
|
|
/* SPIs */
|
|
|
|
if (intid <= VGIC_MAX_SPI)
|
|
|
|
return &kvm->arch.vgic.spis[intid - VGIC_NR_PRIVATE_IRQS];
|
|
|
|
|
|
|
|
/* LPIs are not yet covered */
|
|
|
|
if (intid >= VGIC_MIN_LPI)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
WARN(1, "Looking up struct vgic_irq for reserved INTID");
|
|
|
|
return NULL;
|
|
|
|
}
|
2015-11-25 18:02:16 +00:00
|
|
|
|
|
|
|
/**
|
|
|
|
* kvm_vgic_target_oracle - compute the target vcpu for an irq
|
|
|
|
*
|
|
|
|
* @irq: The irq to route. Must be already locked.
|
|
|
|
*
|
|
|
|
* Based on the current state of the interrupt (enabled, pending,
|
|
|
|
* active, vcpu and target_vcpu), compute the next vcpu this should be
|
|
|
|
* given to. Return NULL if this shouldn't be injected at all.
|
|
|
|
*
|
|
|
|
* Requires the IRQ lock to be held.
|
|
|
|
*/
|
|
|
|
static struct kvm_vcpu *vgic_target_oracle(struct vgic_irq *irq)
|
|
|
|
{
|
|
|
|
DEBUG_SPINLOCK_BUG_ON(!spin_is_locked(&irq->irq_lock));
|
|
|
|
|
|
|
|
/* If the interrupt is active, it must stay on the current vcpu */
|
|
|
|
if (irq->active)
|
|
|
|
return irq->vcpu ? : irq->target_vcpu;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If the IRQ is not active but enabled and pending, we should direct
|
|
|
|
* it to its configured target VCPU.
|
|
|
|
* If the distributor is disabled, pending interrupts shouldn't be
|
|
|
|
* forwarded.
|
|
|
|
*/
|
|
|
|
if (irq->enabled && irq->pending) {
|
|
|
|
if (unlikely(irq->target_vcpu &&
|
|
|
|
!irq->target_vcpu->kvm->arch.vgic.enabled))
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
return irq->target_vcpu;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* If neither active nor pending and enabled, then this IRQ should not
|
|
|
|
* be queued to any VCPU.
|
|
|
|
*/
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
2015-11-25 18:02:16 +00:00
|
|
|
/*
|
|
|
|
* The order of items in the ap_lists defines how we'll pack things in LRs as
|
|
|
|
* well, the first items in the list being the first things populated in the
|
|
|
|
* LRs.
|
|
|
|
*
|
|
|
|
* A hard rule is that active interrupts can never be pushed out of the LRs
|
|
|
|
* (and therefore take priority) since we cannot reliably trap on deactivation
|
|
|
|
* of IRQs and therefore they have to be present in the LRs.
|
|
|
|
*
|
|
|
|
* Otherwise things should be sorted by the priority field and the GIC
|
|
|
|
* hardware support will take care of preemption of priority groups etc.
|
|
|
|
*
|
|
|
|
* Return negative if "a" sorts before "b", 0 to preserve order, and positive
|
|
|
|
* to sort "b" before "a".
|
|
|
|
*/
|
|
|
|
static int vgic_irq_cmp(void *priv, struct list_head *a, struct list_head *b)
|
|
|
|
{
|
|
|
|
struct vgic_irq *irqa = container_of(a, struct vgic_irq, ap_list);
|
|
|
|
struct vgic_irq *irqb = container_of(b, struct vgic_irq, ap_list);
|
|
|
|
bool penda, pendb;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
spin_lock(&irqa->irq_lock);
|
|
|
|
spin_lock_nested(&irqb->irq_lock, SINGLE_DEPTH_NESTING);
|
|
|
|
|
|
|
|
if (irqa->active || irqb->active) {
|
|
|
|
ret = (int)irqb->active - (int)irqa->active;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
penda = irqa->enabled && irqa->pending;
|
|
|
|
pendb = irqb->enabled && irqb->pending;
|
|
|
|
|
|
|
|
if (!penda || !pendb) {
|
|
|
|
ret = (int)pendb - (int)penda;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Both pending and enabled, sort by priority */
|
|
|
|
ret = irqa->priority - irqb->priority;
|
|
|
|
out:
|
|
|
|
spin_unlock(&irqb->irq_lock);
|
|
|
|
spin_unlock(&irqa->irq_lock);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Must be called with the ap_list_lock held */
|
|
|
|
static void vgic_sort_ap_list(struct kvm_vcpu *vcpu)
|
|
|
|
{
|
|
|
|
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
|
|
|
|
|
|
|
DEBUG_SPINLOCK_BUG_ON(!spin_is_locked(&vgic_cpu->ap_list_lock));
|
|
|
|
|
|
|
|
list_sort(NULL, &vgic_cpu->ap_list_head, vgic_irq_cmp);
|
|
|
|
}
|
|
|
|
|
2015-11-25 18:02:16 +00:00
|
|
|
/*
|
|
|
|
* Only valid injection if changing level for level-triggered IRQs or for a
|
|
|
|
* rising edge.
|
|
|
|
*/
|
|
|
|
static bool vgic_validate_injection(struct vgic_irq *irq, bool level)
|
|
|
|
{
|
|
|
|
switch (irq->config) {
|
|
|
|
case VGIC_CONFIG_LEVEL:
|
|
|
|
return irq->line_level != level;
|
|
|
|
case VGIC_CONFIG_EDGE:
|
|
|
|
return level;
|
|
|
|
}
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Check whether an IRQ needs to (and can) be queued to a VCPU's ap list.
|
|
|
|
* Do the queuing if necessary, taking the right locks in the right order.
|
|
|
|
* Returns true when the IRQ was queued, false otherwise.
|
|
|
|
*
|
|
|
|
* Needs to be entered with the IRQ lock already held, but will return
|
|
|
|
* with all locks dropped.
|
|
|
|
*/
|
|
|
|
bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq)
|
|
|
|
{
|
|
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
|
|
|
|
DEBUG_SPINLOCK_BUG_ON(!spin_is_locked(&irq->irq_lock));
|
|
|
|
|
|
|
|
retry:
|
|
|
|
vcpu = vgic_target_oracle(irq);
|
|
|
|
if (irq->vcpu || !vcpu) {
|
|
|
|
/*
|
|
|
|
* If this IRQ is already on a VCPU's ap_list, then it
|
|
|
|
* cannot be moved or modified and there is no more work for
|
|
|
|
* us to do.
|
|
|
|
*
|
|
|
|
* Otherwise, if the irq is not pending and enabled, it does
|
|
|
|
* not need to be inserted into an ap_list and there is also
|
|
|
|
* no more work for us to do.
|
|
|
|
*/
|
|
|
|
spin_unlock(&irq->irq_lock);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We must unlock the irq lock to take the ap_list_lock where
|
|
|
|
* we are going to insert this new pending interrupt.
|
|
|
|
*/
|
|
|
|
spin_unlock(&irq->irq_lock);
|
|
|
|
|
|
|
|
/* someone can do stuff here, which we re-check below */
|
|
|
|
|
|
|
|
spin_lock(&vcpu->arch.vgic_cpu.ap_list_lock);
|
|
|
|
spin_lock(&irq->irq_lock);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Did something change behind our backs?
|
|
|
|
*
|
|
|
|
* There are two cases:
|
|
|
|
* 1) The irq lost its pending state or was disabled behind our
|
|
|
|
* backs and/or it was queued to another VCPU's ap_list.
|
|
|
|
* 2) Someone changed the affinity on this irq behind our
|
|
|
|
* backs and we are now holding the wrong ap_list_lock.
|
|
|
|
*
|
|
|
|
* In both cases, drop the locks and retry.
|
|
|
|
*/
|
|
|
|
|
|
|
|
if (unlikely(irq->vcpu || vcpu != vgic_target_oracle(irq))) {
|
|
|
|
spin_unlock(&irq->irq_lock);
|
|
|
|
spin_unlock(&vcpu->arch.vgic_cpu.ap_list_lock);
|
|
|
|
|
|
|
|
spin_lock(&irq->irq_lock);
|
|
|
|
goto retry;
|
|
|
|
}
|
|
|
|
|
|
|
|
list_add_tail(&irq->ap_list, &vcpu->arch.vgic_cpu.ap_list_head);
|
|
|
|
irq->vcpu = vcpu;
|
|
|
|
|
|
|
|
spin_unlock(&irq->irq_lock);
|
|
|
|
spin_unlock(&vcpu->arch.vgic_cpu.ap_list_lock);
|
|
|
|
|
|
|
|
kvm_vcpu_kick(vcpu);
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int vgic_update_irq_pending(struct kvm *kvm, int cpuid,
|
|
|
|
unsigned int intid, bool level,
|
|
|
|
bool mapped_irq)
|
|
|
|
{
|
|
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
struct vgic_irq *irq;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
trace_vgic_update_irq_pending(cpuid, intid, level);
|
|
|
|
|
|
|
|
vcpu = kvm_get_vcpu(kvm, cpuid);
|
|
|
|
if (!vcpu && intid < VGIC_NR_PRIVATE_IRQS)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
irq = vgic_get_irq(kvm, vcpu, intid);
|
|
|
|
if (!irq)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
if (irq->hw != mapped_irq)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
spin_lock(&irq->irq_lock);
|
|
|
|
|
|
|
|
if (!vgic_validate_injection(irq, level)) {
|
|
|
|
/* Nothing to see here, move along... */
|
|
|
|
spin_unlock(&irq->irq_lock);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (irq->config == VGIC_CONFIG_LEVEL) {
|
|
|
|
irq->line_level = level;
|
|
|
|
irq->pending = level || irq->soft_pending;
|
|
|
|
} else {
|
|
|
|
irq->pending = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
vgic_queue_irq_unlock(kvm, irq);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
|
|
|
|
* @kvm: The VM structure pointer
|
|
|
|
* @cpuid: The CPU for PPIs
|
|
|
|
* @intid: The INTID to inject a new state to.
|
|
|
|
* @level: Edge-triggered: true: to trigger the interrupt
|
|
|
|
* false: to ignore the call
|
|
|
|
* Level-sensitive true: raise the input signal
|
|
|
|
* false: lower the input signal
|
|
|
|
*
|
|
|
|
* The VGIC is not concerned with devices being active-LOW or active-HIGH for
|
|
|
|
* level-sensitive interrupts. You can think of the level parameter as 1
|
|
|
|
* being HIGH and 0 being LOW and all devices being active-HIGH.
|
|
|
|
*/
|
|
|
|
int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int intid,
|
|
|
|
bool level)
|
|
|
|
{
|
|
|
|
return vgic_update_irq_pending(kvm, cpuid, intid, level, false);
|
|
|
|
}
|
2015-11-26 17:19:25 +00:00
|
|
|
|
|
|
|
/**
|
|
|
|
* vgic_prune_ap_list - Remove non-relevant interrupts from the list
|
|
|
|
*
|
|
|
|
* @vcpu: The VCPU pointer
|
|
|
|
*
|
|
|
|
* Go over the list of "interesting" interrupts, and prune those that we
|
|
|
|
* won't have to consider in the near future.
|
|
|
|
*/
|
|
|
|
static void vgic_prune_ap_list(struct kvm_vcpu *vcpu)
|
|
|
|
{
|
|
|
|
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
|
|
|
struct vgic_irq *irq, *tmp;
|
|
|
|
|
|
|
|
retry:
|
|
|
|
spin_lock(&vgic_cpu->ap_list_lock);
|
|
|
|
|
|
|
|
list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) {
|
|
|
|
struct kvm_vcpu *target_vcpu, *vcpuA, *vcpuB;
|
|
|
|
|
|
|
|
spin_lock(&irq->irq_lock);
|
|
|
|
|
|
|
|
BUG_ON(vcpu != irq->vcpu);
|
|
|
|
|
|
|
|
target_vcpu = vgic_target_oracle(irq);
|
|
|
|
|
|
|
|
if (!target_vcpu) {
|
|
|
|
/*
|
|
|
|
* We don't need to process this interrupt any
|
|
|
|
* further, move it off the list.
|
|
|
|
*/
|
|
|
|
list_del(&irq->ap_list);
|
|
|
|
irq->vcpu = NULL;
|
|
|
|
spin_unlock(&irq->irq_lock);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (target_vcpu == vcpu) {
|
|
|
|
/* We're on the right CPU */
|
|
|
|
spin_unlock(&irq->irq_lock);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* This interrupt looks like it has to be migrated. */
|
|
|
|
|
|
|
|
spin_unlock(&irq->irq_lock);
|
|
|
|
spin_unlock(&vgic_cpu->ap_list_lock);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Ensure locking order by always locking the smallest
|
|
|
|
* ID first.
|
|
|
|
*/
|
|
|
|
if (vcpu->vcpu_id < target_vcpu->vcpu_id) {
|
|
|
|
vcpuA = vcpu;
|
|
|
|
vcpuB = target_vcpu;
|
|
|
|
} else {
|
|
|
|
vcpuA = target_vcpu;
|
|
|
|
vcpuB = vcpu;
|
|
|
|
}
|
|
|
|
|
|
|
|
spin_lock(&vcpuA->arch.vgic_cpu.ap_list_lock);
|
|
|
|
spin_lock_nested(&vcpuB->arch.vgic_cpu.ap_list_lock,
|
|
|
|
SINGLE_DEPTH_NESTING);
|
|
|
|
spin_lock(&irq->irq_lock);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If the affinity has been preserved, move the
|
|
|
|
* interrupt around. Otherwise, it means things have
|
|
|
|
* changed while the interrupt was unlocked, and we
|
|
|
|
* need to replay this.
|
|
|
|
*
|
|
|
|
* In all cases, we cannot trust the list not to have
|
|
|
|
* changed, so we restart from the beginning.
|
|
|
|
*/
|
|
|
|
if (target_vcpu == vgic_target_oracle(irq)) {
|
|
|
|
struct vgic_cpu *new_cpu = &target_vcpu->arch.vgic_cpu;
|
|
|
|
|
|
|
|
list_del(&irq->ap_list);
|
|
|
|
irq->vcpu = target_vcpu;
|
|
|
|
list_add_tail(&irq->ap_list, &new_cpu->ap_list_head);
|
|
|
|
}
|
|
|
|
|
|
|
|
spin_unlock(&irq->irq_lock);
|
|
|
|
spin_unlock(&vcpuB->arch.vgic_cpu.ap_list_lock);
|
|
|
|
spin_unlock(&vcpuA->arch.vgic_cpu.ap_list_lock);
|
|
|
|
goto retry;
|
|
|
|
}
|
|
|
|
|
|
|
|
spin_unlock(&vgic_cpu->ap_list_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void vgic_process_maintenance_interrupt(struct kvm_vcpu *vcpu)
|
|
|
|
{
|
2015-11-26 17:19:25 +00:00
|
|
|
vgic_v2_process_maintenance(vcpu);
|
2015-11-26 17:19:25 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline void vgic_fold_lr_state(struct kvm_vcpu *vcpu)
|
|
|
|
{
|
2015-11-26 17:19:25 +00:00
|
|
|
vgic_v2_fold_lr_state(vcpu);
|
2015-11-26 17:19:25 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Requires the irq_lock to be held. */
|
|
|
|
static inline void vgic_populate_lr(struct kvm_vcpu *vcpu,
|
|
|
|
struct vgic_irq *irq, int lr)
|
|
|
|
{
|
|
|
|
DEBUG_SPINLOCK_BUG_ON(!spin_is_locked(&irq->irq_lock));
|
2015-11-26 17:19:25 +00:00
|
|
|
|
|
|
|
vgic_v2_populate_lr(vcpu, irq, lr);
|
2015-11-26 17:19:25 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline void vgic_clear_lr(struct kvm_vcpu *vcpu, int lr)
|
|
|
|
{
|
2015-11-26 17:19:25 +00:00
|
|
|
vgic_v2_clear_lr(vcpu, lr);
|
2015-11-26 17:19:25 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline void vgic_set_underflow(struct kvm_vcpu *vcpu)
|
|
|
|
{
|
2015-11-26 17:19:25 +00:00
|
|
|
vgic_v2_set_underflow(vcpu);
|
2015-11-26 17:19:25 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Requires the ap_list_lock to be held. */
|
|
|
|
static int compute_ap_list_depth(struct kvm_vcpu *vcpu)
|
|
|
|
{
|
|
|
|
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
|
|
|
struct vgic_irq *irq;
|
|
|
|
int count = 0;
|
|
|
|
|
|
|
|
DEBUG_SPINLOCK_BUG_ON(!spin_is_locked(&vgic_cpu->ap_list_lock));
|
|
|
|
|
|
|
|
list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
|
|
|
|
spin_lock(&irq->irq_lock);
|
|
|
|
/* GICv2 SGIs can count for more than one... */
|
|
|
|
if (vgic_irq_is_sgi(irq->intid) && irq->source)
|
|
|
|
count += hweight8(irq->source);
|
|
|
|
else
|
|
|
|
count++;
|
|
|
|
spin_unlock(&irq->irq_lock);
|
|
|
|
}
|
|
|
|
return count;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Requires the VCPU's ap_list_lock to be held. */
|
|
|
|
static void vgic_flush_lr_state(struct kvm_vcpu *vcpu)
|
|
|
|
{
|
|
|
|
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
|
|
|
struct vgic_irq *irq;
|
|
|
|
int count = 0;
|
|
|
|
|
|
|
|
DEBUG_SPINLOCK_BUG_ON(!spin_is_locked(&vgic_cpu->ap_list_lock));
|
|
|
|
|
|
|
|
if (compute_ap_list_depth(vcpu) > kvm_vgic_global_state.nr_lr) {
|
|
|
|
vgic_set_underflow(vcpu);
|
|
|
|
vgic_sort_ap_list(vcpu);
|
|
|
|
}
|
|
|
|
|
|
|
|
list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
|
|
|
|
spin_lock(&irq->irq_lock);
|
|
|
|
|
|
|
|
if (unlikely(vgic_target_oracle(irq) != vcpu))
|
|
|
|
goto next;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If we get an SGI with multiple sources, try to get
|
|
|
|
* them in all at once.
|
|
|
|
*/
|
|
|
|
do {
|
|
|
|
vgic_populate_lr(vcpu, irq, count++);
|
|
|
|
} while (irq->source && count < kvm_vgic_global_state.nr_lr);
|
|
|
|
|
|
|
|
next:
|
|
|
|
spin_unlock(&irq->irq_lock);
|
|
|
|
|
|
|
|
if (count == kvm_vgic_global_state.nr_lr)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
vcpu->arch.vgic_cpu.used_lrs = count;
|
|
|
|
|
|
|
|
/* Nuke remaining LRs */
|
|
|
|
for ( ; count < kvm_vgic_global_state.nr_lr; count++)
|
|
|
|
vgic_clear_lr(vcpu, count);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Sync back the hardware VGIC state into our emulation after a guest's run. */
|
|
|
|
void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
|
|
|
|
{
|
|
|
|
vgic_process_maintenance_interrupt(vcpu);
|
|
|
|
vgic_fold_lr_state(vcpu);
|
|
|
|
vgic_prune_ap_list(vcpu);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Flush our emulation state into the GIC hardware before entering the guest. */
|
|
|
|
void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
|
|
|
|
{
|
|
|
|
spin_lock(&vcpu->arch.vgic_cpu.ap_list_lock);
|
|
|
|
vgic_flush_lr_state(vcpu);
|
|
|
|
spin_unlock(&vcpu->arch.vgic_cpu.ap_list_lock);
|
|
|
|
}
|