linux/drivers/net/ipa/ipa_main.c

956 lines
26 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
* Copyright (C) 2018-2020 Linaro Ltd.
*/
#include <linux/types.h>
#include <linux/atomic.h>
#include <linux/bitfield.h>
#include <linux/device.h>
#include <linux/bug.h>
#include <linux/io.h>
#include <linux/firmware.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_address.h>
#include <linux/remoteproc.h>
#include <linux/qcom_scm.h>
#include <linux/soc/qcom/mdt_loader.h>
#include "ipa.h"
#include "ipa_clock.h"
#include "ipa_data.h"
#include "ipa_endpoint.h"
#include "ipa_cmd.h"
#include "ipa_reg.h"
#include "ipa_mem.h"
#include "ipa_table.h"
#include "ipa_modem.h"
#include "ipa_uc.h"
#include "ipa_interrupt.h"
#include "gsi_trans.h"
/**
* DOC: The IP Accelerator
*
* This driver supports the Qualcomm IP Accelerator (IPA), which is a
* networking component found in many Qualcomm SoCs. The IPA is connected
* to the application processor (AP), but is also connected (and partially
* controlled by) other "execution environments" (EEs), such as a modem.
*
* The IPA is the conduit between the AP and the modem that carries network
* traffic. This driver presents a network interface representing the
* connection of the modem to external (e.g. LTE) networks.
*
* The IPA provides protocol checksum calculation, offloading this work
* from the AP. The IPA offers additional functionality, including routing,
* filtering, and NAT support, but that more advanced functionality is not
* currently supported. Despite that, some resources--including routing
* tables and filter tables--are defined in this driver because they must
* be initialized even when the advanced hardware features are not used.
*
* There are two distinct layers that implement the IPA hardware, and this
* is reflected in the organization of the driver. The generic software
* interface (GSI) is an integral component of the IPA, providing a
* well-defined communication layer between the AP subsystem and the IPA
* core. The GSI implements a set of "channels" used for communication
* between the AP and the IPA.
*
* The IPA layer uses GSI channels to implement its "endpoints". And while
* a GSI channel carries data between the AP and the IPA, a pair of IPA
* endpoints is used to carry traffic between two EEs. Specifically, the main
* modem network interface is implemented by two pairs of endpoints: a TX
* endpoint on the AP coupled with an RX endpoint on the modem; and another
* RX endpoint on the AP receiving data from a TX endpoint on the modem.
*/
/* The name of the GSI firmware file relative to /lib/firmware */
#define IPA_FWS_PATH "ipa_fws.mdt"
#define IPA_PAS_ID 15
/**
* ipa_suspend_handler() - Handle the suspend IPA interrupt
* @ipa: IPA pointer
* @irq_id: IPA interrupt type (unused)
*
* If an RX endpoint is in suspend state, and the IPA has a packet
* destined for that endpoint, the IPA generates a SUSPEND interrupt
* to inform the AP that it should resume the endpoint. If we get
* one of these interrupts we just resume everything.
*/
static void ipa_suspend_handler(struct ipa *ipa, enum ipa_irq_id irq_id)
{
/* Just report the event, and let system resume handle the rest.
* More than one endpoint could signal this; if so, ignore
* all but the first.
*/
if (!test_and_set_bit(IPA_FLAG_RESUMED, ipa->flags))
pm_wakeup_dev_event(&ipa->pdev->dev, 0, true);
/* Acknowledge/clear the suspend interrupt on all endpoints */
ipa_interrupt_suspend_clear_all(ipa->interrupt);
}
/**
* ipa_setup() - Set up IPA hardware
* @ipa: IPA pointer
*
* Perform initialization that requires issuing immediate commands on
* the command TX endpoint. If the modem is doing GSI firmware load
* and initialization, this function will be called when an SMP2P
* interrupt has been signaled by the modem. Otherwise it will be
* called from ipa_probe() after GSI firmware has been successfully
* loaded, authenticated, and started by Trust Zone.
*/
int ipa_setup(struct ipa *ipa)
{
struct ipa_endpoint *exception_endpoint;
struct ipa_endpoint *command_endpoint;
struct device *dev = &ipa->pdev->dev;
int ret;
ret = gsi_setup(&ipa->gsi);
if (ret)
return ret;
ipa->interrupt = ipa_interrupt_setup(ipa);
if (IS_ERR(ipa->interrupt)) {
ret = PTR_ERR(ipa->interrupt);
goto err_gsi_teardown;
}
ipa_interrupt_add(ipa->interrupt, IPA_IRQ_TX_SUSPEND,
ipa_suspend_handler);
ipa_uc_setup(ipa);
ret = device_init_wakeup(dev, true);
if (ret)
goto err_uc_teardown;
ipa_endpoint_setup(ipa);
/* We need to use the AP command TX endpoint to perform other
* initialization, so we enable first.
*/
command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
ret = ipa_endpoint_enable_one(command_endpoint);
if (ret)
goto err_endpoint_teardown;
ret = ipa_mem_setup(ipa);
if (ret)
goto err_command_disable;
ret = ipa_table_setup(ipa);
if (ret)
goto err_mem_teardown;
/* Enable the exception handling endpoint, and tell the hardware
* to use it by default.
*/
exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX];
ret = ipa_endpoint_enable_one(exception_endpoint);
if (ret)
goto err_table_teardown;
ipa_endpoint_default_route_set(ipa, exception_endpoint->endpoint_id);
/* We're all set. Now prepare for communication with the modem */
ret = ipa_modem_setup(ipa);
if (ret)
goto err_default_route_clear;
ipa->setup_complete = true;
dev_info(dev, "IPA driver setup completed successfully\n");
return 0;
err_default_route_clear:
ipa_endpoint_default_route_clear(ipa);
ipa_endpoint_disable_one(exception_endpoint);
err_table_teardown:
ipa_table_teardown(ipa);
err_mem_teardown:
ipa_mem_teardown(ipa);
err_command_disable:
ipa_endpoint_disable_one(command_endpoint);
err_endpoint_teardown:
ipa_endpoint_teardown(ipa);
(void)device_init_wakeup(dev, false);
err_uc_teardown:
ipa_uc_teardown(ipa);
ipa_interrupt_remove(ipa->interrupt, IPA_IRQ_TX_SUSPEND);
ipa_interrupt_teardown(ipa->interrupt);
err_gsi_teardown:
gsi_teardown(&ipa->gsi);
return ret;
}
/**
* ipa_teardown() - Inverse of ipa_setup()
* @ipa: IPA pointer
*/
static void ipa_teardown(struct ipa *ipa)
{
struct ipa_endpoint *exception_endpoint;
struct ipa_endpoint *command_endpoint;
ipa_modem_teardown(ipa);
ipa_endpoint_default_route_clear(ipa);
exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX];
ipa_endpoint_disable_one(exception_endpoint);
ipa_table_teardown(ipa);
ipa_mem_teardown(ipa);
command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
ipa_endpoint_disable_one(command_endpoint);
ipa_endpoint_teardown(ipa);
(void)device_init_wakeup(&ipa->pdev->dev, false);
ipa_uc_teardown(ipa);
ipa_interrupt_remove(ipa->interrupt, IPA_IRQ_TX_SUSPEND);
ipa_interrupt_teardown(ipa->interrupt);
gsi_teardown(&ipa->gsi);
}
/* Configure QMB Core Master Port selection */
static void ipa_hardware_config_comp(struct ipa *ipa)
{
u32 val;
/* Nothing to configure for IPA v3.5.1 */
if (ipa->version == IPA_VERSION_3_5_1)
return;
val = ioread32(ipa->reg_virt + IPA_REG_COMP_CFG_OFFSET);
if (ipa->version == IPA_VERSION_4_0) {
val &= ~IPA_QMB_SELECT_CONS_EN_FMASK;
val &= ~IPA_QMB_SELECT_PROD_EN_FMASK;
val &= ~IPA_QMB_SELECT_GLOBAL_EN_FMASK;
} else {
val |= GSI_MULTI_AXI_MASTERS_DIS_FMASK;
}
val |= GSI_MULTI_INORDER_RD_DIS_FMASK;
val |= GSI_MULTI_INORDER_WR_DIS_FMASK;
iowrite32(val, ipa->reg_virt + IPA_REG_COMP_CFG_OFFSET);
}
/* Configure DDR and PCIe max read/write QSB values */
static void ipa_hardware_config_qsb(struct ipa *ipa)
{
u32 val;
/* QMB_0 represents DDR; QMB_1 represents PCIe (not present in 4.2) */
val = u32_encode_bits(8, GEN_QMB_0_MAX_WRITES_FMASK);
if (ipa->version == IPA_VERSION_4_2)
val |= u32_encode_bits(0, GEN_QMB_1_MAX_WRITES_FMASK);
else
val |= u32_encode_bits(4, GEN_QMB_1_MAX_WRITES_FMASK);
iowrite32(val, ipa->reg_virt + IPA_REG_QSB_MAX_WRITES_OFFSET);
if (ipa->version == IPA_VERSION_3_5_1) {
val = u32_encode_bits(8, GEN_QMB_0_MAX_READS_FMASK);
val |= u32_encode_bits(12, GEN_QMB_1_MAX_READS_FMASK);
} else {
val = u32_encode_bits(12, GEN_QMB_0_MAX_READS_FMASK);
if (ipa->version == IPA_VERSION_4_2)
val |= u32_encode_bits(0, GEN_QMB_1_MAX_READS_FMASK);
else
val |= u32_encode_bits(12, GEN_QMB_1_MAX_READS_FMASK);
/* GEN_QMB_0_MAX_READS_BEATS is 0 */
/* GEN_QMB_1_MAX_READS_BEATS is 0 */
}
iowrite32(val, ipa->reg_virt + IPA_REG_QSB_MAX_READS_OFFSET);
}
static void ipa_idle_indication_cfg(struct ipa *ipa,
u32 enter_idle_debounce_thresh,
bool const_non_idle_enable)
{
u32 offset;
u32 val;
val = u32_encode_bits(enter_idle_debounce_thresh,
ENTER_IDLE_DEBOUNCE_THRESH_FMASK);
if (const_non_idle_enable)
val |= CONST_NON_IDLE_ENABLE_FMASK;
offset = ipa_reg_idle_indication_cfg_offset(ipa->version);
iowrite32(val, ipa->reg_virt + offset);
}
/**
* ipa_hardware_dcd_config() - Enable dynamic clock division on IPA
* @ipa: IPA pointer
*
* Configures when the IPA signals it is idle to the global clock
* controller, which can respond by scalling down the clock to
* save power.
*/
static void ipa_hardware_dcd_config(struct ipa *ipa)
{
/* Recommended values for IPA 3.5 according to IPA HPG */
ipa_idle_indication_cfg(ipa, 256, false);
}
static void ipa_hardware_dcd_deconfig(struct ipa *ipa)
{
/* Power-on reset values */
ipa_idle_indication_cfg(ipa, 0, true);
}
/**
* ipa_hardware_config() - Primitive hardware initialization
* @ipa: IPA pointer
*/
static void ipa_hardware_config(struct ipa *ipa)
{
u32 granularity;
u32 val;
/* Fill in backward-compatibility register, based on version */
val = ipa_reg_bcr_val(ipa->version);
iowrite32(val, ipa->reg_virt + IPA_REG_BCR_OFFSET);
if (ipa->version != IPA_VERSION_3_5_1) {
/* Enable open global clocks (hardware workaround) */
val = GLOBAL_FMASK;
val |= GLOBAL_2X_CLK_FMASK;
iowrite32(val, ipa->reg_virt + IPA_REG_CLKON_CFG_OFFSET);
/* Disable PA mask to allow HOLB drop (hardware workaround) */
val = ioread32(ipa->reg_virt + IPA_REG_TX_CFG_OFFSET);
val &= ~PA_MASK_EN_FMASK;
iowrite32(val, ipa->reg_virt + IPA_REG_TX_CFG_OFFSET);
}
ipa_hardware_config_comp(ipa);
/* Configure system bus limits */
ipa_hardware_config_qsb(ipa);
/* Configure aggregation granularity */
granularity = ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY);
val = u32_encode_bits(granularity, AGGR_GRANULARITY_FMASK);
iowrite32(val, ipa->reg_virt + IPA_REG_COUNTER_CFG_OFFSET);
/* IPA v4.2 does not support hashed tables, so disable them */
if (ipa->version == IPA_VERSION_4_2) {
u32 offset = ipa_reg_filt_rout_hash_en_offset(ipa->version);
iowrite32(0, ipa->reg_virt + offset);
}
/* Enable dynamic clock division */
ipa_hardware_dcd_config(ipa);
}
/**
* ipa_hardware_deconfig() - Inverse of ipa_hardware_config()
* @ipa: IPA pointer
*
* This restores the power-on reset values (even if they aren't different)
*/
static void ipa_hardware_deconfig(struct ipa *ipa)
{
/* Mostly we just leave things as we set them. */
ipa_hardware_dcd_deconfig(ipa);
}
#ifdef IPA_VALIDATION
static bool ipa_resource_limits_valid(struct ipa *ipa,
const struct ipa_resource_data *data)
{
u32 group_count;
u32 i;
u32 j;
/* We program at most 6 source or destination resource group limits */
BUILD_BUG_ON(IPA_RESOURCE_GROUP_SRC_MAX > 6);
group_count = ipa_resource_group_src_count(ipa->version);
if (!group_count || group_count > IPA_RESOURCE_GROUP_SRC_MAX)
return false;
/* Return an error if a non-zero resource limit is specified
* for a resource group not supported by hardware.
*/
for (i = 0; i < data->resource_src_count; i++) {
const struct ipa_resource_src *resource;
resource = &data->resource_src[i];
for (j = group_count; j < IPA_RESOURCE_GROUP_SRC_MAX; j++)
if (resource->limits[j].min || resource->limits[j].max)
return false;
}
group_count = ipa_resource_group_dst_count(ipa->version);
if (!group_count || group_count > IPA_RESOURCE_GROUP_DST_MAX)
return false;
for (i = 0; i < data->resource_dst_count; i++) {
const struct ipa_resource_dst *resource;
resource = &data->resource_dst[i];
for (j = group_count; j < IPA_RESOURCE_GROUP_DST_MAX; j++)
if (resource->limits[j].min || resource->limits[j].max)
return false;
}
return true;
}
#else /* !IPA_VALIDATION */
static bool ipa_resource_limits_valid(struct ipa *ipa,
const struct ipa_resource_data *data)
{
return true;
}
#endif /* !IPA_VALIDATION */
static void
ipa_resource_config_common(struct ipa *ipa, u32 offset,
const struct ipa_resource_limits *xlimits,
const struct ipa_resource_limits *ylimits)
{
u32 val;
val = u32_encode_bits(xlimits->min, X_MIN_LIM_FMASK);
val |= u32_encode_bits(xlimits->max, X_MAX_LIM_FMASK);
if (ylimits) {
val |= u32_encode_bits(ylimits->min, Y_MIN_LIM_FMASK);
val |= u32_encode_bits(ylimits->max, Y_MAX_LIM_FMASK);
}
iowrite32(val, ipa->reg_virt + offset);
}
static void ipa_resource_config_src(struct ipa *ipa,
const struct ipa_resource_src *resource)
{
u32 group_count = ipa_resource_group_src_count(ipa->version);
const struct ipa_resource_limits *ylimits;
u32 offset;
offset = IPA_REG_SRC_RSRC_GRP_01_RSRC_TYPE_N_OFFSET(resource->type);
ylimits = group_count == 1 ? NULL : &resource->limits[1];
ipa_resource_config_common(ipa, offset, &resource->limits[0], ylimits);
if (group_count < 2)
return;
offset = IPA_REG_SRC_RSRC_GRP_23_RSRC_TYPE_N_OFFSET(resource->type);
ylimits = group_count == 3 ? NULL : &resource->limits[3];
ipa_resource_config_common(ipa, offset, &resource->limits[2], ylimits);
if (group_count < 4)
return;
offset = IPA_REG_SRC_RSRC_GRP_45_RSRC_TYPE_N_OFFSET(resource->type);
ylimits = group_count == 5 ? NULL : &resource->limits[5];
ipa_resource_config_common(ipa, offset, &resource->limits[4], ylimits);
}
static void ipa_resource_config_dst(struct ipa *ipa,
const struct ipa_resource_dst *resource)
{
u32 group_count = ipa_resource_group_dst_count(ipa->version);
const struct ipa_resource_limits *ylimits;
u32 offset;
offset = IPA_REG_DST_RSRC_GRP_01_RSRC_TYPE_N_OFFSET(resource->type);
ylimits = group_count == 1 ? NULL : &resource->limits[1];
ipa_resource_config_common(ipa, offset, &resource->limits[0], ylimits);
if (group_count < 2)
return;
offset = IPA_REG_DST_RSRC_GRP_23_RSRC_TYPE_N_OFFSET(resource->type);
ylimits = group_count == 3 ? NULL : &resource->limits[3];
ipa_resource_config_common(ipa, offset, &resource->limits[2], ylimits);
if (group_count < 4)
return;
offset = IPA_REG_DST_RSRC_GRP_45_RSRC_TYPE_N_OFFSET(resource->type);
ylimits = group_count == 5 ? NULL : &resource->limits[5];
ipa_resource_config_common(ipa, offset, &resource->limits[4], ylimits);
}
static int
ipa_resource_config(struct ipa *ipa, const struct ipa_resource_data *data)
{
u32 i;
if (!ipa_resource_limits_valid(ipa, data))
return -EINVAL;
for (i = 0; i < data->resource_src_count; i++)
ipa_resource_config_src(ipa, data->resource_src);
for (i = 0; i < data->resource_dst_count; i++)
ipa_resource_config_dst(ipa, data->resource_dst);
return 0;
}
static void ipa_resource_deconfig(struct ipa *ipa)
{
/* Nothing to do */
}
/**
* ipa_config() - Configure IPA hardware
* @ipa: IPA pointer
* @data: IPA configuration data
*
* Perform initialization requiring IPA clock to be enabled.
*/
static int ipa_config(struct ipa *ipa, const struct ipa_data *data)
{
int ret;
/* Get a clock reference to allow initialization. This reference
* is held after initialization completes, and won't get dropped
* unless/until a system suspend request arrives.
*/
ipa_clock_get(ipa);
ipa_hardware_config(ipa);
ret = ipa_endpoint_config(ipa);
if (ret)
goto err_hardware_deconfig;
ret = ipa_mem_config(ipa);
if (ret)
goto err_endpoint_deconfig;
ipa_table_config(ipa);
/* Assign resource limitation to each group */
ret = ipa_resource_config(ipa, data->resource_data);
if (ret)
goto err_table_deconfig;
ret = ipa_modem_config(ipa);
if (ret)
goto err_resource_deconfig;
return 0;
err_resource_deconfig:
ipa_resource_deconfig(ipa);
err_table_deconfig:
ipa_table_deconfig(ipa);
ipa_mem_deconfig(ipa);
err_endpoint_deconfig:
ipa_endpoint_deconfig(ipa);
err_hardware_deconfig:
ipa_hardware_deconfig(ipa);
ipa_clock_put(ipa);
return ret;
}
/**
* ipa_deconfig() - Inverse of ipa_config()
* @ipa: IPA pointer
*/
static void ipa_deconfig(struct ipa *ipa)
{
ipa_modem_deconfig(ipa);
ipa_resource_deconfig(ipa);
ipa_table_deconfig(ipa);
ipa_mem_deconfig(ipa);
ipa_endpoint_deconfig(ipa);
ipa_hardware_deconfig(ipa);
ipa_clock_put(ipa);
}
static int ipa_firmware_load(struct device *dev)
{
const struct firmware *fw;
struct device_node *node;
struct resource res;
phys_addr_t phys;
ssize_t size;
void *virt;
int ret;
node = of_parse_phandle(dev->of_node, "memory-region", 0);
if (!node) {
dev_err(dev, "DT error getting \"memory-region\" property\n");
return -EINVAL;
}
ret = of_address_to_resource(node, 0, &res);
if (ret) {
dev_err(dev, "error %d getting \"memory-region\" resource\n",
ret);
return ret;
}
ret = request_firmware(&fw, IPA_FWS_PATH, dev);
if (ret) {
dev_err(dev, "error %d requesting \"%s\"\n", ret, IPA_FWS_PATH);
return ret;
}
phys = res.start;
size = (size_t)resource_size(&res);
virt = memremap(phys, size, MEMREMAP_WC);
if (!virt) {
dev_err(dev, "unable to remap firmware memory\n");
ret = -ENOMEM;
goto out_release_firmware;
}
ret = qcom_mdt_load(dev, fw, IPA_FWS_PATH, IPA_PAS_ID,
virt, phys, size, NULL);
if (ret)
dev_err(dev, "error %d loading \"%s\"\n", ret, IPA_FWS_PATH);
else if ((ret = qcom_scm_pas_auth_and_reset(IPA_PAS_ID)))
dev_err(dev, "error %d authenticating \"%s\"\n", ret,
IPA_FWS_PATH);
memunmap(virt);
out_release_firmware:
release_firmware(fw);
return ret;
}
static const struct of_device_id ipa_match[] = {
{
.compatible = "qcom,sdm845-ipa",
.data = &ipa_data_sdm845,
},
{
.compatible = "qcom,sc7180-ipa",
.data = &ipa_data_sc7180,
},
{ },
};
MODULE_DEVICE_TABLE(of, ipa_match);
static phandle of_property_read_phandle(const struct device_node *np,
const char *name)
{
struct property *prop;
int len = 0;
prop = of_find_property(np, name, &len);
if (!prop || len != sizeof(__be32))
return 0;
return be32_to_cpup(prop->value);
}
/* Check things that can be validated at build time. This just
* groups these things BUILD_BUG_ON() calls don't clutter the rest
* of the code.
* */
static void ipa_validate_build(void)
{
#ifdef IPA_VALIDATE
/* We assume we're working on 64-bit hardware */
BUILD_BUG_ON(!IS_ENABLED(CONFIG_64BIT));
/* Code assumes the EE ID for the AP is 0 (zeroed structure field) */
BUILD_BUG_ON(GSI_EE_AP != 0);
/* There's no point if we have no channels or event rings */
BUILD_BUG_ON(!GSI_CHANNEL_COUNT_MAX);
BUILD_BUG_ON(!GSI_EVT_RING_COUNT_MAX);
/* GSI hardware design limits */
BUILD_BUG_ON(GSI_CHANNEL_COUNT_MAX > 32);
BUILD_BUG_ON(GSI_EVT_RING_COUNT_MAX > 31);
/* The number of TREs in a transaction is limited by the channel's
* TLV FIFO size. A transaction structure uses 8-bit fields
* to represents the number of TREs it has allocated and used.
*/
BUILD_BUG_ON(GSI_TLV_MAX > U8_MAX);
/* This is used as a divisor */
BUILD_BUG_ON(!IPA_AGGR_GRANULARITY);
/* Aggregation granularity value can't be 0, and must fit */
BUILD_BUG_ON(!ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY));
BUILD_BUG_ON(ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY) >
field_max(AGGR_GRANULARITY_FMASK));
#endif /* IPA_VALIDATE */
}
/**
* ipa_probe() - IPA platform driver probe function
* @pdev: Platform device pointer
*
* Return: 0 if successful, or a negative error code (possibly
* EPROBE_DEFER)
*
* This is the main entry point for the IPA driver. Initialization proceeds
* in several stages:
* - The "init" stage involves activities that can be initialized without
* access to the IPA hardware.
* - The "config" stage requires the IPA clock to be active so IPA registers
* can be accessed, but does not require the use of IPA immediate commands.
* - The "setup" stage uses IPA immediate commands, and so requires the GSI
* layer to be initialized.
*
* A Boolean Device Tree "modem-init" property determines whether GSI
* initialization will be performed by the AP (Trust Zone) or the modem.
* If the AP does GSI initialization, the setup phase is entered after
* this has completed successfully. Otherwise the modem initializes
* the GSI layer and signals it has finished by sending an SMP2P interrupt
* to the AP; this triggers the start if IPA setup.
*/
static int ipa_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
const struct ipa_data *data;
struct ipa_clock *clock;
struct rproc *rproc;
bool modem_init;
struct ipa *ipa;
phandle ph;
int ret;
ipa_validate_build();
/* Get configuration data early; needed for clock initialization */
data = of_device_get_match_data(dev);
if (!data) {
/* This is really IPA_VALIDATE (should never happen) */
dev_err(dev, "matched hardware not supported\n");
return -ENODEV;
}
/* If we need Trust Zone, make sure it's available */
modem_init = of_property_read_bool(dev->of_node, "modem-init");
if (!modem_init)
if (!qcom_scm_is_available())
return -EPROBE_DEFER;
/* We rely on remoteproc to tell us about modem state changes */
ph = of_property_read_phandle(dev->of_node, "modem-remoteproc");
if (!ph) {
dev_err(dev, "DT missing \"modem-remoteproc\" property\n");
return -EINVAL;
}
rproc = rproc_get_by_phandle(ph);
if (!rproc)
return -EPROBE_DEFER;
/* The clock and interconnects might not be ready when we're
* probed, so might return -EPROBE_DEFER.
*/
clock = ipa_clock_init(dev, data->clock_data);
if (IS_ERR(clock)) {
ret = PTR_ERR(clock);
goto err_rproc_put;
}
/* No more EPROBE_DEFER. Allocate and initialize the IPA structure */
ipa = kzalloc(sizeof(*ipa), GFP_KERNEL);
if (!ipa) {
ret = -ENOMEM;
goto err_clock_exit;
}
ipa->pdev = pdev;
dev_set_drvdata(dev, ipa);
ipa->modem_rproc = rproc;
ipa->clock = clock;
ipa->version = data->version;
ret = ipa_reg_init(ipa);
if (ret)
goto err_kfree_ipa;
ret = ipa_mem_init(ipa, data->mem_data);
if (ret)
goto err_reg_exit;
ret = gsi_init(&ipa->gsi, pdev, ipa->version, data->endpoint_count,
data->endpoint_data);
if (ret)
goto err_mem_exit;
/* Result is a non-zero mask of endpoints that support filtering */
ipa->filter_map = ipa_endpoint_init(ipa, data->endpoint_count,
data->endpoint_data);
if (!ipa->filter_map) {
ret = -EINVAL;
goto err_gsi_exit;
}
ret = ipa_table_init(ipa);
if (ret)
goto err_endpoint_exit;
ret = ipa_modem_init(ipa, modem_init);
if (ret)
goto err_table_exit;
ret = ipa_config(ipa, data);
if (ret)
goto err_modem_exit;
dev_info(dev, "IPA driver initialized");
/* If the modem is doing early initialization, it will trigger a
* call to ipa_setup() call when it has finished. In that case
* we're done here.
*/
if (modem_init)
return 0;
/* Otherwise we need to load the firmware and have Trust Zone validate
* and install it. If that succeeds we can proceed with setup.
*/
ret = ipa_firmware_load(dev);
if (ret)
goto err_deconfig;
ret = ipa_setup(ipa);
if (ret)
goto err_deconfig;
return 0;
err_deconfig:
ipa_deconfig(ipa);
err_modem_exit:
ipa_modem_exit(ipa);
err_table_exit:
ipa_table_exit(ipa);
err_endpoint_exit:
ipa_endpoint_exit(ipa);
err_gsi_exit:
gsi_exit(&ipa->gsi);
err_mem_exit:
ipa_mem_exit(ipa);
err_reg_exit:
ipa_reg_exit(ipa);
err_kfree_ipa:
kfree(ipa);
err_clock_exit:
ipa_clock_exit(clock);
err_rproc_put:
rproc_put(rproc);
return ret;
}
static int ipa_remove(struct platform_device *pdev)
{
struct ipa *ipa = dev_get_drvdata(&pdev->dev);
struct rproc *rproc = ipa->modem_rproc;
struct ipa_clock *clock = ipa->clock;
int ret;
if (ipa->setup_complete) {
ret = ipa_modem_stop(ipa);
if (ret)
return ret;
ipa_teardown(ipa);
}
ipa_deconfig(ipa);
ipa_modem_exit(ipa);
ipa_table_exit(ipa);
ipa_endpoint_exit(ipa);
gsi_exit(&ipa->gsi);
ipa_mem_exit(ipa);
ipa_reg_exit(ipa);
kfree(ipa);
ipa_clock_exit(clock);
rproc_put(rproc);
return 0;
}
/**
* ipa_suspend() - Power management system suspend callback
* @dev: IPA device structure
*
* Return: Always returns zero
*
* Called by the PM framework when a system suspend operation is invoked.
* Suspends endpoints and releases the clock reference held to keep
* the IPA clock running until this point.
*/
static int ipa_suspend(struct device *dev)
{
struct ipa *ipa = dev_get_drvdata(dev);
/* When a suspended RX endpoint has a packet ready to receive, we
* get an IPA SUSPEND interrupt. We trigger a system resume in
* that case, but only on the first such interrupt since suspend.
*/
__clear_bit(IPA_FLAG_RESUMED, ipa->flags);
ipa_endpoint_suspend(ipa);
ipa_clock_put(ipa);
return 0;
}
/**
* ipa_resume() - Power management system resume callback
* @dev: IPA device structure
*
* Return: Always returns 0
*
* Called by the PM framework when a system resume operation is invoked.
* Takes an IPA clock reference to keep the clock running until suspend,
* and resumes endpoints.
*/
static int ipa_resume(struct device *dev)
{
struct ipa *ipa = dev_get_drvdata(dev);
/* This clock reference will keep the IPA out of suspend
* until we get a power management suspend request.
*/
ipa_clock_get(ipa);
ipa_endpoint_resume(ipa);
return 0;
}
static const struct dev_pm_ops ipa_pm_ops = {
.suspend = ipa_suspend,
.resume = ipa_resume,
};
static struct platform_driver ipa_driver = {
.probe = ipa_probe,
.remove = ipa_remove,
.driver = {
.name = "ipa",
.pm = &ipa_pm_ops,
.of_match_table = ipa_match,
},
};
module_platform_driver(ipa_driver);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Qualcomm IP Accelerator device driver");