License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
|
|
|
/* SPDX-License-Identifier: GPL-2.0 */
|
2005-04-16 22:20:36 +00:00
|
|
|
/*
|
|
|
|
* Description of Z8530 Z85C30 and Z85230 communications chips
|
|
|
|
*
|
|
|
|
* Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
|
2008-10-14 02:01:08 +00:00
|
|
|
* Copyright (C) 1998 Alan Cox <alan@lxorguk.ukuu.org.uk>
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef _Z8530_H
|
|
|
|
#define _Z8530_H
|
|
|
|
|
|
|
|
#include <linux/tty.h>
|
|
|
|
#include <linux/interrupt.h>
|
|
|
|
|
|
|
|
/* Conversion routines to/from brg time constants from/to bits
|
|
|
|
* per second.
|
|
|
|
*/
|
|
|
|
#define BRG_TO_BPS(brg, freq) ((freq) / 2 / ((brg) + 2))
|
|
|
|
#define BPS_TO_BRG(bps, freq) ((((freq) + (bps)) / (2 * (bps))) - 2)
|
|
|
|
|
|
|
|
/* The Zilog register set */
|
|
|
|
|
|
|
|
#define FLAG 0x7e
|
|
|
|
|
|
|
|
/* Write Register 0 */
|
|
|
|
#define R0 0 /* Register selects */
|
|
|
|
#define R1 1
|
|
|
|
#define R2 2
|
|
|
|
#define R3 3
|
|
|
|
#define R4 4
|
|
|
|
#define R5 5
|
|
|
|
#define R6 6
|
|
|
|
#define R7 7
|
|
|
|
#define R8 8
|
|
|
|
#define R9 9
|
|
|
|
#define R10 10
|
|
|
|
#define R11 11
|
|
|
|
#define R12 12
|
|
|
|
#define R13 13
|
|
|
|
#define R14 14
|
|
|
|
#define R15 15
|
|
|
|
|
|
|
|
#define RPRIME 16 /* Indicate a prime register access on 230 */
|
|
|
|
|
|
|
|
#define NULLCODE 0 /* Null Code */
|
|
|
|
#define POINT_HIGH 0x8 /* Select upper half of registers */
|
|
|
|
#define RES_EXT_INT 0x10 /* Reset Ext. Status Interrupts */
|
|
|
|
#define SEND_ABORT 0x18 /* HDLC Abort */
|
|
|
|
#define RES_RxINT_FC 0x20 /* Reset RxINT on First Character */
|
|
|
|
#define RES_Tx_P 0x28 /* Reset TxINT Pending */
|
|
|
|
#define ERR_RES 0x30 /* Error Reset */
|
|
|
|
#define RES_H_IUS 0x38 /* Reset highest IUS */
|
|
|
|
|
|
|
|
#define RES_Rx_CRC 0x40 /* Reset Rx CRC Checker */
|
|
|
|
#define RES_Tx_CRC 0x80 /* Reset Tx CRC Checker */
|
|
|
|
#define RES_EOM_L 0xC0 /* Reset EOM latch */
|
|
|
|
|
|
|
|
/* Write Register 1 */
|
|
|
|
|
|
|
|
#define EXT_INT_ENAB 0x1 /* Ext Int Enable */
|
|
|
|
#define TxINT_ENAB 0x2 /* Tx Int Enable */
|
|
|
|
#define PAR_SPEC 0x4 /* Parity is special condition */
|
|
|
|
|
|
|
|
#define RxINT_DISAB 0 /* Rx Int Disable */
|
|
|
|
#define RxINT_FCERR 0x8 /* Rx Int on First Character Only or Error */
|
|
|
|
#define INT_ALL_Rx 0x10 /* Int on all Rx Characters or error */
|
|
|
|
#define INT_ERR_Rx 0x18 /* Int on error only */
|
|
|
|
|
|
|
|
#define WT_RDY_RT 0x20 /* Wait/Ready on R/T */
|
|
|
|
#define WT_FN_RDYFN 0x40 /* Wait/FN/Ready FN */
|
|
|
|
#define WT_RDY_ENAB 0x80 /* Wait/Ready Enable */
|
|
|
|
|
|
|
|
/* Write Register #2 (Interrupt Vector) */
|
|
|
|
|
|
|
|
/* Write Register 3 */
|
|
|
|
|
|
|
|
#define RxENABLE 0x1 /* Rx Enable */
|
|
|
|
#define SYNC_L_INH 0x2 /* Sync Character Load Inhibit */
|
|
|
|
#define ADD_SM 0x4 /* Address Search Mode (SDLC) */
|
|
|
|
#define RxCRC_ENAB 0x8 /* Rx CRC Enable */
|
|
|
|
#define ENT_HM 0x10 /* Enter Hunt Mode */
|
|
|
|
#define AUTO_ENAB 0x20 /* Auto Enables */
|
|
|
|
#define Rx5 0x0 /* Rx 5 Bits/Character */
|
|
|
|
#define Rx7 0x40 /* Rx 7 Bits/Character */
|
|
|
|
#define Rx6 0x80 /* Rx 6 Bits/Character */
|
|
|
|
#define Rx8 0xc0 /* Rx 8 Bits/Character */
|
|
|
|
|
|
|
|
/* Write Register 4 */
|
|
|
|
|
|
|
|
#define PAR_ENA 0x1 /* Parity Enable */
|
|
|
|
#define PAR_EVEN 0x2 /* Parity Even/Odd* */
|
|
|
|
|
|
|
|
#define SYNC_ENAB 0 /* Sync Modes Enable */
|
|
|
|
#define SB1 0x4 /* 1 stop bit/char */
|
|
|
|
#define SB15 0x8 /* 1.5 stop bits/char */
|
|
|
|
#define SB2 0xc /* 2 stop bits/char */
|
|
|
|
|
|
|
|
#define MONSYNC 0 /* 8 Bit Sync character */
|
|
|
|
#define BISYNC 0x10 /* 16 bit sync character */
|
|
|
|
#define SDLC 0x20 /* SDLC Mode (01111110 Sync Flag) */
|
|
|
|
#define EXTSYNC 0x30 /* External Sync Mode */
|
|
|
|
|
|
|
|
#define X1CLK 0x0 /* x1 clock mode */
|
|
|
|
#define X16CLK 0x40 /* x16 clock mode */
|
|
|
|
#define X32CLK 0x80 /* x32 clock mode */
|
|
|
|
#define X64CLK 0xC0 /* x64 clock mode */
|
|
|
|
|
|
|
|
/* Write Register 5 */
|
|
|
|
|
|
|
|
#define TxCRC_ENAB 0x1 /* Tx CRC Enable */
|
|
|
|
#define RTS 0x2 /* RTS */
|
|
|
|
#define SDLC_CRC 0x4 /* SDLC/CRC-16 */
|
|
|
|
#define TxENAB 0x8 /* Tx Enable */
|
|
|
|
#define SND_BRK 0x10 /* Send Break */
|
|
|
|
#define Tx5 0x0 /* Tx 5 bits (or less)/character */
|
|
|
|
#define Tx7 0x20 /* Tx 7 bits/character */
|
|
|
|
#define Tx6 0x40 /* Tx 6 bits/character */
|
|
|
|
#define Tx8 0x60 /* Tx 8 bits/character */
|
|
|
|
#define DTR 0x80 /* DTR */
|
|
|
|
|
|
|
|
/* Write Register 6 (Sync bits 0-7/SDLC Address Field) */
|
|
|
|
|
|
|
|
/* Write Register 7 (Sync bits 8-15/SDLC 01111110) */
|
|
|
|
|
|
|
|
/* Write Register 8 (transmit buffer) */
|
|
|
|
|
|
|
|
/* Write Register 9 (Master interrupt control) */
|
|
|
|
#define VIS 1 /* Vector Includes Status */
|
|
|
|
#define NV 2 /* No Vector */
|
|
|
|
#define DLC 4 /* Disable Lower Chain */
|
|
|
|
#define MIE 8 /* Master Interrupt Enable */
|
|
|
|
#define STATHI 0x10 /* Status high */
|
|
|
|
#define NORESET 0 /* No reset on write to R9 */
|
|
|
|
#define CHRB 0x40 /* Reset channel B */
|
|
|
|
#define CHRA 0x80 /* Reset channel A */
|
|
|
|
#define FHWRES 0xc0 /* Force hardware reset */
|
|
|
|
|
|
|
|
/* Write Register 10 (misc control bits) */
|
|
|
|
#define BIT6 1 /* 6 bit/8bit sync */
|
|
|
|
#define LOOPMODE 2 /* SDLC Loop mode */
|
|
|
|
#define ABUNDER 4 /* Abort/flag on SDLC xmit underrun */
|
|
|
|
#define MARKIDLE 8 /* Mark/flag on idle */
|
|
|
|
#define GAOP 0x10 /* Go active on poll */
|
|
|
|
#define NRZ 0 /* NRZ mode */
|
|
|
|
#define NRZI 0x20 /* NRZI mode */
|
|
|
|
#define FM1 0x40 /* FM1 (transition = 1) */
|
|
|
|
#define FM0 0x60 /* FM0 (transition = 0) */
|
|
|
|
#define CRCPS 0x80 /* CRC Preset I/O */
|
|
|
|
|
|
|
|
/* Write Register 11 (Clock Mode control) */
|
|
|
|
#define TRxCXT 0 /* TRxC = Xtal output */
|
|
|
|
#define TRxCTC 1 /* TRxC = Transmit clock */
|
|
|
|
#define TRxCBR 2 /* TRxC = BR Generator Output */
|
|
|
|
#define TRxCDP 3 /* TRxC = DPLL output */
|
|
|
|
#define TRxCOI 4 /* TRxC O/I */
|
|
|
|
#define TCRTxCP 0 /* Transmit clock = RTxC pin */
|
|
|
|
#define TCTRxCP 8 /* Transmit clock = TRxC pin */
|
|
|
|
#define TCBR 0x10 /* Transmit clock = BR Generator output */
|
|
|
|
#define TCDPLL 0x18 /* Transmit clock = DPLL output */
|
|
|
|
#define RCRTxCP 0 /* Receive clock = RTxC pin */
|
|
|
|
#define RCTRxCP 0x20 /* Receive clock = TRxC pin */
|
|
|
|
#define RCBR 0x40 /* Receive clock = BR Generator output */
|
|
|
|
#define RCDPLL 0x60 /* Receive clock = DPLL output */
|
|
|
|
#define RTxCX 0x80 /* RTxC Xtal/No Xtal */
|
|
|
|
|
|
|
|
/* Write Register 12 (lower byte of baud rate generator time constant) */
|
|
|
|
|
|
|
|
/* Write Register 13 (upper byte of baud rate generator time constant) */
|
|
|
|
|
|
|
|
/* Write Register 14 (Misc control bits) */
|
|
|
|
#define BRENABL 1 /* Baud rate generator enable */
|
|
|
|
#define BRSRC 2 /* Baud rate generator source */
|
|
|
|
#define DTRREQ 4 /* DTR/Request function */
|
|
|
|
#define AUTOECHO 8 /* Auto Echo */
|
|
|
|
#define LOOPBAK 0x10 /* Local loopback */
|
|
|
|
#define SEARCH 0x20 /* Enter search mode */
|
|
|
|
#define RMC 0x40 /* Reset missing clock */
|
|
|
|
#define DISDPLL 0x60 /* Disable DPLL */
|
|
|
|
#define SSBR 0x80 /* Set DPLL source = BR generator */
|
|
|
|
#define SSRTxC 0xa0 /* Set DPLL source = RTxC */
|
|
|
|
#define SFMM 0xc0 /* Set FM mode */
|
|
|
|
#define SNRZI 0xe0 /* Set NRZI mode */
|
|
|
|
|
|
|
|
/* Write Register 15 (external/status interrupt control) */
|
|
|
|
#define PRIME 1 /* R5' etc register access (Z85C30/230 only) */
|
|
|
|
#define ZCIE 2 /* Zero count IE */
|
|
|
|
#define FIFOE 4 /* Z85230 only */
|
|
|
|
#define DCDIE 8 /* DCD IE */
|
|
|
|
#define SYNCIE 0x10 /* Sync/hunt IE */
|
|
|
|
#define CTSIE 0x20 /* CTS IE */
|
|
|
|
#define TxUIE 0x40 /* Tx Underrun/EOM IE */
|
|
|
|
#define BRKIE 0x80 /* Break/Abort IE */
|
|
|
|
|
|
|
|
|
|
|
|
/* Read Register 0 */
|
|
|
|
#define Rx_CH_AV 0x1 /* Rx Character Available */
|
|
|
|
#define ZCOUNT 0x2 /* Zero count */
|
|
|
|
#define Tx_BUF_EMP 0x4 /* Tx Buffer empty */
|
|
|
|
#define DCD 0x8 /* DCD */
|
|
|
|
#define SYNC_HUNT 0x10 /* Sync/hunt */
|
|
|
|
#define CTS 0x20 /* CTS */
|
|
|
|
#define TxEOM 0x40 /* Tx underrun */
|
|
|
|
#define BRK_ABRT 0x80 /* Break/Abort */
|
|
|
|
|
|
|
|
/* Read Register 1 */
|
|
|
|
#define ALL_SNT 0x1 /* All sent */
|
|
|
|
/* Residue Data for 8 Rx bits/char programmed */
|
|
|
|
#define RES3 0x8 /* 0/3 */
|
|
|
|
#define RES4 0x4 /* 0/4 */
|
|
|
|
#define RES5 0xc /* 0/5 */
|
|
|
|
#define RES6 0x2 /* 0/6 */
|
|
|
|
#define RES7 0xa /* 0/7 */
|
|
|
|
#define RES8 0x6 /* 0/8 */
|
|
|
|
#define RES18 0xe /* 1/8 */
|
|
|
|
#define RES28 0x0 /* 2/8 */
|
|
|
|
/* Special Rx Condition Interrupts */
|
|
|
|
#define PAR_ERR 0x10 /* Parity error */
|
|
|
|
#define Rx_OVR 0x20 /* Rx Overrun Error */
|
|
|
|
#define CRC_ERR 0x40 /* CRC/Framing Error */
|
|
|
|
#define END_FR 0x80 /* End of Frame (SDLC) */
|
|
|
|
|
|
|
|
/* Read Register 2 (channel b only) - Interrupt vector */
|
|
|
|
|
|
|
|
/* Read Register 3 (interrupt pending register) ch a only */
|
|
|
|
#define CHBEXT 0x1 /* Channel B Ext/Stat IP */
|
|
|
|
#define CHBTxIP 0x2 /* Channel B Tx IP */
|
|
|
|
#define CHBRxIP 0x4 /* Channel B Rx IP */
|
|
|
|
#define CHAEXT 0x8 /* Channel A Ext/Stat IP */
|
|
|
|
#define CHATxIP 0x10 /* Channel A Tx IP */
|
|
|
|
#define CHARxIP 0x20 /* Channel A Rx IP */
|
|
|
|
|
|
|
|
/* Read Register 8 (receive data register) */
|
|
|
|
|
|
|
|
/* Read Register 10 (misc status bits) */
|
|
|
|
#define ONLOOP 2 /* On loop */
|
|
|
|
#define LOOPSEND 0x10 /* Loop sending */
|
|
|
|
#define CLK2MIS 0x40 /* Two clocks missing */
|
|
|
|
#define CLK1MIS 0x80 /* One clock missing */
|
|
|
|
|
|
|
|
/* Read Register 12 (lower byte of baud rate generator constant) */
|
|
|
|
|
|
|
|
/* Read Register 13 (upper byte of baud rate generator constant) */
|
|
|
|
|
|
|
|
/* Read Register 15 (value of WR 15) */
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Interrupt handling functions for this SCC
|
|
|
|
*/
|
|
|
|
|
|
|
|
struct z8530_channel;
|
|
|
|
|
|
|
|
struct z8530_irqhandler
|
|
|
|
{
|
|
|
|
void (*rx)(struct z8530_channel *);
|
|
|
|
void (*tx)(struct z8530_channel *);
|
|
|
|
void (*status)(struct z8530_channel *);
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A channel of the Z8530
|
|
|
|
*/
|
|
|
|
|
|
|
|
struct z8530_channel
|
|
|
|
{
|
|
|
|
struct z8530_irqhandler *irqs; /* IRQ handlers */
|
|
|
|
/*
|
|
|
|
* Synchronous
|
|
|
|
*/
|
|
|
|
u16 count; /* Buyes received */
|
|
|
|
u16 max; /* Most we can receive this frame */
|
|
|
|
u16 mtu; /* MTU of the device */
|
|
|
|
u8 *dptr; /* Pointer into rx buffer */
|
|
|
|
struct sk_buff *skb; /* Buffer dptr points into */
|
|
|
|
struct sk_buff *skb2; /* Pending buffer */
|
|
|
|
u8 status; /* Current DCD */
|
|
|
|
u8 dcdcheck; /* which bit to check for line */
|
|
|
|
u8 sync; /* Set if in sync mode */
|
|
|
|
|
|
|
|
u8 regs[32]; /* Register map for the chip */
|
|
|
|
u8 pendregs[32]; /* Pending register values */
|
|
|
|
|
|
|
|
struct sk_buff *tx_skb; /* Buffer being transmitted */
|
|
|
|
struct sk_buff *tx_next_skb; /* Next transmit buffer */
|
|
|
|
u8 *tx_ptr; /* Byte pointer into the buffer */
|
|
|
|
u8 *tx_next_ptr; /* Next pointer to use */
|
|
|
|
u8 *tx_dma_buf[2]; /* TX flip buffers for DMA */
|
|
|
|
u8 tx_dma_used; /* Flip buffer usage toggler */
|
|
|
|
u16 txcount; /* Count of bytes to transmit */
|
|
|
|
|
|
|
|
void (*rx_function)(struct z8530_channel *, struct sk_buff *);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Sync DMA
|
|
|
|
*/
|
|
|
|
|
|
|
|
u8 rxdma; /* DMA channels */
|
|
|
|
u8 txdma;
|
|
|
|
u8 rxdma_on; /* DMA active if flag set */
|
|
|
|
u8 txdma_on;
|
|
|
|
u8 dma_num; /* Buffer we are DMAing into */
|
|
|
|
u8 dma_ready; /* Is the other buffer free */
|
|
|
|
u8 dma_tx; /* TX is to use DMA */
|
|
|
|
u8 *rx_buf[2]; /* The flip buffers */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* System
|
|
|
|
*/
|
|
|
|
|
|
|
|
struct z8530_dev *dev; /* Z85230 chip instance we are from */
|
|
|
|
unsigned long ctrlio; /* I/O ports */
|
|
|
|
unsigned long dataio;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* For PC we encode this way.
|
|
|
|
*/
|
|
|
|
#define Z8530_PORT_SLEEP 0x80000000
|
|
|
|
#define Z8530_PORT_OF(x) ((x)&0xFFFF)
|
|
|
|
|
|
|
|
u32 rx_overrun; /* Overruns - not done yet */
|
|
|
|
u32 rx_crc_err;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Bound device pointers
|
|
|
|
*/
|
|
|
|
|
|
|
|
void *private; /* For our owner */
|
|
|
|
struct net_device *netdevice; /* Network layer device */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Async features
|
|
|
|
*/
|
|
|
|
|
|
|
|
struct tty_struct *tty; /* Attached terminal */
|
|
|
|
int line; /* Minor number */
|
|
|
|
wait_queue_head_t open_wait; /* Tasks waiting to open */
|
|
|
|
wait_queue_head_t close_wait; /* and for close to end */
|
|
|
|
unsigned long event; /* Pending events */
|
|
|
|
int fdcount; /* # of fd on device */
|
|
|
|
int blocked_open; /* # of blocked opens */
|
|
|
|
int x_char; /* XON/XOF char */
|
|
|
|
unsigned char *xmit_buf; /* Transmit pointer */
|
|
|
|
int xmit_head; /* Transmit ring */
|
|
|
|
int xmit_tail;
|
|
|
|
int xmit_cnt;
|
|
|
|
int flags;
|
|
|
|
int timeout;
|
|
|
|
int xmit_fifo_size; /* Transmit FIFO info */
|
|
|
|
|
|
|
|
int close_delay; /* Do we wait for drain on close ? */
|
|
|
|
unsigned short closing_wait;
|
|
|
|
|
|
|
|
/* We need to know the current clock divisor
|
|
|
|
* to read the bps rate the chip has currently
|
|
|
|
* loaded.
|
|
|
|
*/
|
|
|
|
|
|
|
|
unsigned char clk_divisor; /* May be 1, 16, 32, or 64 */
|
|
|
|
int zs_baud;
|
|
|
|
|
|
|
|
int magic;
|
|
|
|
int baud_base; /* Baud parameters */
|
|
|
|
int custom_divisor;
|
|
|
|
|
|
|
|
|
|
|
|
unsigned char tx_active; /* character is being xmitted */
|
|
|
|
unsigned char tx_stopped; /* output is suspended */
|
|
|
|
|
2008-07-02 15:47:52 +00:00
|
|
|
spinlock_t *lock; /* Device lock */
|
|
|
|
};
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Each Z853x0 device.
|
2008-07-02 15:47:52 +00:00
|
|
|
*/
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
struct z8530_dev
|
|
|
|
{
|
|
|
|
char *name; /* Device instance name */
|
|
|
|
struct z8530_channel chanA; /* SCC channel A */
|
|
|
|
struct z8530_channel chanB; /* SCC channel B */
|
|
|
|
int type;
|
|
|
|
#define Z8530 0 /* NMOS dinosaur */
|
|
|
|
#define Z85C30 1 /* CMOS - better */
|
|
|
|
#define Z85230 2 /* CMOS with real FIFO */
|
|
|
|
int irq; /* Interrupt for the device */
|
|
|
|
int active; /* Soft interrupt enable - the Mac doesn't
|
|
|
|
always have a hard disable on its 8530s... */
|
|
|
|
spinlock_t lock;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Functions
|
|
|
|
*/
|
|
|
|
|
|
|
|
extern u8 z8530_dead_port[];
|
|
|
|
extern u8 z8530_hdlc_kilostream_85230[];
|
|
|
|
extern u8 z8530_hdlc_kilostream[];
|
2013-09-23 18:37:59 +00:00
|
|
|
irqreturn_t z8530_interrupt(int, void *);
|
|
|
|
void z8530_describe(struct z8530_dev *, char *mapping, unsigned long io);
|
|
|
|
int z8530_init(struct z8530_dev *);
|
|
|
|
int z8530_shutdown(struct z8530_dev *);
|
|
|
|
int z8530_sync_open(struct net_device *, struct z8530_channel *);
|
|
|
|
int z8530_sync_close(struct net_device *, struct z8530_channel *);
|
|
|
|
int z8530_sync_dma_open(struct net_device *, struct z8530_channel *);
|
|
|
|
int z8530_sync_dma_close(struct net_device *, struct z8530_channel *);
|
|
|
|
int z8530_sync_txdma_open(struct net_device *, struct z8530_channel *);
|
|
|
|
int z8530_sync_txdma_close(struct net_device *, struct z8530_channel *);
|
|
|
|
int z8530_channel_load(struct z8530_channel *, u8 *);
|
|
|
|
netdev_tx_t z8530_queue_xmit(struct z8530_channel *c, struct sk_buff *skb);
|
|
|
|
void z8530_null_rx(struct z8530_channel *c, struct sk_buff *skb);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Standard interrupt vector sets
|
|
|
|
*/
|
|
|
|
|
|
|
|
extern struct z8530_irqhandler z8530_sync, z8530_async, z8530_nop;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Asynchronous Interfacing
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define SERIAL_MAGIC 0x5301
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The size of the serial xmit buffer is 1 page, or 4096 bytes
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define SERIAL_XMIT_SIZE 4096
|
|
|
|
#define WAKEUP_CHARS 256
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Events are used to schedule things to happen at timer-interrupt
|
|
|
|
* time, instead of at rs interrupt time.
|
|
|
|
*/
|
|
|
|
#define RS_EVENT_WRITE_WAKEUP 0
|
|
|
|
|
|
|
|
/* Internal flags used only by kernel/chr_drv/serial.c */
|
|
|
|
#define ZILOG_INITIALIZED 0x80000000 /* Serial port was initialized */
|
|
|
|
#define ZILOG_CALLOUT_ACTIVE 0x40000000 /* Call out device is active */
|
|
|
|
#define ZILOG_NORMAL_ACTIVE 0x20000000 /* Normal device is active */
|
|
|
|
#define ZILOG_BOOT_AUTOCONF 0x10000000 /* Autoconfigure port on bootup */
|
|
|
|
#define ZILOG_CLOSING 0x08000000 /* Serial port is closing */
|
|
|
|
#define ZILOG_CTS_FLOW 0x04000000 /* Do CTS flow control */
|
|
|
|
#define ZILOG_CHECK_CD 0x02000000 /* i.e., CLOCAL */
|
|
|
|
|
|
|
|
#endif /* !(_Z8530_H) */
|